
The-12th Indonesian Scientific Meeting, Osaka University, September 6-7, 2003

Indonesian Student Association in Japan

OOExpert: An Agent Based System for Identifying and Refining Objects
from Software Requirements Based on Object Based Formal

Specification

Romi Satria Wahono

Indonesian Institute of Science (LIPI)
Department of Information and Computer Sciences, Saitama University

Keywords: object model creation process, object identification, object-oriented analysis and

design

Abstract. This paper examines the issues associated with the methodology for object identification
and refinement, and also the use of multi-agent system approach for collaborative object-oriented
analysis and design. We propose an agent based system called OOExpert for solving problems on
object model creation process by identifying and refining objects from software requirements
based on object based formal specification.

Introduction

There are numerous object-oriented analysis and design methods being advocated at the present
time, all fairly similar but with significant differences in approach and notation. However, the
challenges of object-oriented analysis and design are, to identify the objects, attributes,
associations between the identified objects, and refine objects and organize classes by using
inheritance to share common structure [6]. Researchers and software designers have come to a
conclusion that object identification and refinement process are an ill-defined task [5] [21] [22]
[23], because of the difficulty of heuristics and there is no unified methodology for object-oriented
analysis and design.

Although there are many projects focusing on Computer Aided Software Engineering (CASE)
tools for object-oriented analysis and design, there are only a few focusing on the formalization
and implementation of the methodology for object model creation process. This paper presents a
methodology for object identification and refinement, and also the use of agent-based approach for
identifying and refining objects from software requirements based on object based formal
specification [15] [16] [22].

Requirement Acquisition and Specification Based on Object Orientation

The primary goal of the requirements document is to be a reference for the software designers,
facilitating improved software design through detection of incompleteness, inconsistency and
ambiguity. Most of the faults found during testing and operation result from poor understanding or
misinterpretation of requirements. Until now, there are only a few effective methods and tools to
guarantee a complete, consistent, and unambiguous requirement model [17]. Recent advances in
software technology such as the development of the Unified Modeling Language (UML) for
object-oriented design have not reduced the need for better requirement acquisition and
specification.

In the traditional approach to software analysis, system analyst interviews end-users to capture

 630

requirement. We propose an approach where end-users take an active role in the analysis by
specifying requirements using Object-Based Formal Specification (OBFS). We use OBFS to guide
end-users in describing their problem. OBFS is composed of Description Statements (DS),
Collaborative Statements (CS), Attributive Statements (AS), Behavioral Statements (BS), and
Inheritance Statements (IS). This approach also takes advantage of end-users' domain knowledge.

Object-Based Formal Specification

Description Statements (DS)
Description statements are used to guide for writing an overview of the system that we want to
build. Description statements contain four kinds of elements: Requirements ID, Requirements
Name, Language, and Description. The description statements should state what is to be done and
not how it is to be done. It should be a statement of needs, not a proposal for a solution.

{ }nDescriptioLanguagereqNamereqIDDS ,,,= … (2)
Collaborative Statements (CS)
Collaborative statements (CS) are used to identify objects, and associations between objects. The
first step in the object model creation process is to identify relevant objects and their association
from the application domain. Objects include physical entities and all objects must make sense in
the application domain. All objects are explicit in the collaborative statements. Objects correspond
to nouns that are identified from collaborative statements. CS consists of a set of forms with
contains Subject (S), Verb (V), and Object (O) as well as the English (E) natural language that is
based on CS syntax rules.

{ },...),,(,),,(,),,(333222111 cscscs OVSOVSOVSCS = and ECS ∈∀ … (3)
Scs and Ocs will be identified as a tentative object (OBJt), and Vcs will be identified as a tentative
association (ASSt) in terms of object-oriented paradigm.

][tcs OBJSECS ⇒∈∀ and][tcs OBJOECS ⇒∈∀ (4)

][tcs ASSVECS ⇒∈∀ (5)

The CS syntax rules are listed as follows. Predicates are extracted from synonym data dictionary
(thesaurus) [14].

 towith|refermmunicate talk to|co
OteCmSPredicaS

tonext to|go
OteLcSPredicaS

rve|useexecute|se
|own|ain|manage for|maintdrive|work

OteAcSPredicaS

cscs

cscs

cscs

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

=〉〈

〉〈=〉〈

::
::

::
::

::
::

teCmSPredica
e(CmS)ionSentencCommunicat

teLcSPredica
)ntence(LcSLocationSe

teAcSPredica
ence(AcS)ActionSent

Attributive Statements (AS)
Attributive statements (AS) are used to identify the attributes of objects. Attributes are properties of
individual objects. Attributes usually correspond to nouns followed by possessive phrases, and
sometimes are characterized by adjectives or adverbs. Attributive statement must contain
properties of each object identified at the previous step. AS consists of a set of forms with contains
Subject (S), Verb (V), and Object (O) as well as the English (E) natural language that is based on
AS syntax rules.

{ },...),,(,),,(,),,(333222111 asasas OVSOVSOVSAS = and EAS ∈∀ … (6)
Oas will be identified as a tentative attribute (ATTt) in the term of object-oriented paradigm. And
Sas is identified and refined objects (OBJ) from tentative object (OBJt), as the final result of object
identification’s process.

 631

][tas ATTOEAS ⇒∈∀ … (7)

][OBJSEAS as =∈∀ … (8)

The AS syntax rules are listed as follows.

ntain ofsits of|corties)|conhas (prope
OteOwSPredicaS asas

=〉〈

〉〈=〉〈

::
::

teOwSPredica
S)entence(OwOwnershipS

Behavioral Statements (BS)
Behavioral statements are used to identify object behaviors. Behavior is how an object acts and
reacts, in terms of state changes and message passing. A behavioral statement must contain
behaviors of each object identified at the previous step. BS consists of a set of forms with contains
Subject (S), Verb (V), and Object (O) as well as the English (E) natural language that is based on
BS syntax rules.

{ },...),,(,),,(,),,(333222111 bsbsbs OVSOVSOVSBS = and EBS ∈∀ … (9)
Oas will be identified as a tentative behavior (BEHt) in the term of object-oriented paradigm. And
Sbs is identified and refined objects (OBJ) from tentative object (OBJt), as the final result of object
identification’s process.

][tbs BEHOEBS ⇒∈∀ … (10)

][OBJSEBS bs =∈∀ … (11)
The BS syntax rules are listed as follows.

ities)o (capabilnot able tbilities)| not (capay for)|can(a capacit
not y to)|has capabilithas not (a

)pabilitiesble to (cailities)|acan (capab
r)|apacity fo)|has (a cability tohas (a cap

OedicateCpSMinusPrS
OteCpSPredicaS

bsbs

bsbs

=〉〈

=〉〈

〉〈

〉〈=〉〈

::

::

::

edicateCpSMinusPr

teCpSPredica

|pS)Sentence(CCapability

Inheritance Sentences (IS)
Inheritance statements are used to organize classes by using inheritance, to share common object
attributes and behaviors. Inheritance provides a natural classification for kinds of objects and
allows for the commonality of objects to be explicitly taken advantage of in modeling and
constructing object systems. Inheritance statements provide sentences that describe is-a-kind-of
relationship. Inheritance statements consists of a set of forms with contains Subject (S), Verb (V),
and Object (O) as well as the English (E) natural language that is based on IS syntax rules.

{ },...),,(,),,(,),,(333222111 isisis OVSOVSOVSIS = and EIS∈∀ … (12)
Ois will be identified as a tentative superclass (SCLt) in the term of object-oriented paradigm. And
Sis is identified and refined objects (OBJ) from tentative object (OBJt), as the final result of object
identification’s process.

][tis SCLOEIS ⇒∈∀ … (13)

][OBJSEIS is =∈∀ … (14)
The IS syntax rules are listed as follows．

ization ofis general
SateIhSBPredicOBB

 ofializationof|is spesis a kind
OateIhSAPredicS

isis

isis

=〉〈

〉〈=〉〈
=〉〈

〉〈=〉〈

::
::

::
::

ateIhSBPredic
)(IhSeSentenceInheritanc

ateIhSAPredic
(IhSA)eSentenceAInheritanc

 632

Object Identification and Refinement Process

Figure 1 shows our strategy for the object identification process. We use collaborative
statements (CS) from OBFS to guide end-users in describing their problem, especially for
collaborative process in the system that end-users want to build. The first step in the object
identification process is to extract S and O written in the collaborative statements to be tentative
objects (OBJt) (4).

Object Identification
TaskCollaborative

Statements
(S V O)

Extract
S and O

Tentative
Objects

Objects
Rules of Spurious
O bject Elim ination

Redundant Objects
Attributes
Behaviors
Not Nouns

C ases of Relation
and Solution

Human Expert Solution

Problem Domain Relation

Eliminate
Spurious
Objects

Propose
Relevant
Objetcs

Figure 1: Object Ident ification Process

The next step is to eliminate spurious objects and propose relevant objects using Rule-Based

Reasoning (RBR) and Case-Based Reasoning (CBR) paradigms. In RBR, the system will discard
unnecessary and incorrect objects according to the following criteria: redundant objects (OBJred),
not noun objects (OBJnon), attributes (OBJatt), behaviors (OBJbeh), and associations (OBJass).

][OBJOBJOBJOBJOBJEOBJ nonbehattred ⇒¬∧¬∧¬∧¬∈∀ … (15)

Other identification and refinement processes are similar, although use different rule for their
processes. The summary of object identification and refinement processes are shown in Figure 2.

OOExpert Design and Implementation

In our approach, object model creation process is viewed as a society of software agents that
interact and negotiate with each other. We have devised six types of agents (OOExpert Agents):

Object
Model

Creation
Process

Pre-Input
(OBFS)

Extract
(S V O) Input Rules for Reasoning Output

 Rules for Elimination
Object

Identification
Collaborative

Statements S and O Tentative
Object

Redundant
Object

Not
Noun Attribute Behavior Association Object

Association
Identification

Collaborative
Statements V Tentative

Association
Redundant
Association Not Verb Behavior Object Attribute Association

Attribute
Identification

Attributive
Statements O Tentative

Attribute
Redundant
Attribute

Not
Noun Object Association Behavior Attribute

Behavior Behavioral
Statements O Tentative

Behavior
Redundant
Behavior Not Verb Association Attribute Object Behavior

Inheritance
Statements S and O Object

Hierarchy Class
Hierarchy

Rules for Similarity
Searching Rules for Superclass Naming

Object
Refinement

with
Inheritance

Identified
Object from

Object
Identification

Process
Attribute Behavior Similar Object’s

Name
Given Name from

User

Class
Hierarchy

Figure 2. Summary of the Proposed Approach for Object Model Creation Process

 633

requirement acquisition agent, object identification agent, attribute identification agent,
association identification agent, behavior identification agent, and object refinement agent (Figure
3, 4, 5).

The responsibility of each agent is as follows. Firstly, the requirements acquisition agent
manages the task concerning the requirements acquisition from object-based formal specification
(OBFS). The object identification agent manages the task concerning the identification of objects.
The attribute identification agent manages the task concerning the identification of object
attributes. The association identification agent manages the task concerning the identification of
associations between the identified objects. The behavior identification agent manages the task
concerning the identification of object behaviors. And finally, the object refinement agent manages
the task concerning to refine objects and organize classes by using inheritance to share common
structure.

Conclusions

This paper presented the methodology for object identification and refinement, and also the use
of multi-agent system approach for collaborative object-oriented analysis and design. We propose
an agent based system called OOExpert for solving problems on object model creation process by
identifying and refining objects from software requirements based on object based formal
specification.

References

[1] Celesta G. Ball and Rebecca L. Kim, An Object Oriented Analysis Of Air Traffic Control,

WP-90W00542, the MITRE Corporation, McLean, Virginia, August 1991.

Figure 4: Requirements Acquisition Agent Figure 5: Object Identification Agent

Requirements
Specification

Class Model

Object Identification
Agent

Object
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Requirements Acquisition
Agent

Requirements
Acquisition

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Object Refinement
Agent

Object
Refinement

with
Inheritance

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Attribute Identification
Agent

Attribute
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Association Identification
Agent

Association
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Behavior Identification
Agent

Behavior
Identification

Communication
Engine

Reasoning
Engine

Documentation
Engine

Knowledge
Base

Figure 3: Intelligent Agent Architecturefor Object Model

 634

[2] F.P Brooks, No Silver Bullet, Essence and Accidents of Software Engineering, IEEE Computer, Vol.
20, No. 4, pp. 10-19, April 1987.

[3] Gerhard Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT
Press, 1999.

[4] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[5] Grady Booch, Object-Oriented Analysis and Design with Application, Benjamin/Cummings, 1991.
[6] Ian M. Holland and Karl J. Lieberherr, Object-Oriented Design, ACM Computing Surveys, Vol. 28,

No. 1, pp. 273-275, March 1996.
[7] James F. Peters and Witold Pedrycz, Software Engineering An Engineering Approach, John Wiley &

Sons, Inc., 2000.
[8] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Language Reference

Manual, Addison-Wesley, 1999.
[9] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorenson,

Object-Oriented Modeling and Design, Prentice Hall, 1991.
[10] J.M. Drake, W.W. Xie, and W.T. Tsai, Approach and Case Study of Requirement Analysis Where

end-users Take an Active Role, in Proceedings of the 15th International Conference on Software
Engineering, IEEE Computer Society Press, pp. 177-186, 1993.

[11] L.B. Becker, C.E. Pereira, O.P. Dias, I.M. Teixeira and J.P. Teixeira, MOSYS A Methodology for
Automatic Object Identification from System Specification, Proceedings of the Third IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, Newport Beach,
California, March 15-17, 2000.

[12] Maritta Heisel and Jeanine Souquieres, Methodological Support for Requirements Elicitation and
Formal Specification, Proceedings of the 9th International Workshop on Software Specification and
Design, Ise-Shima (Isobe), Japan, April 16-18, 1998.

[13] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge, A Roadmap of Agent Research and
Development, in Autonomous Agents and Multi-Agent Systems, pp. 7-38, Kluwer Academic
Publishers, Boston, 1998.

[14] Robert L. Chapman, Roget's International Thesaurus, HarperCollins Publishers, 1992.
[15] Romi Satria Wahono and B.H. Far, Hybrid Reasoning Architecture for Solving Object Class

Identification Problem in the OOExpert System, Proceedings of the 14th Annual Conference of
Japanese Society for Artificial Intelligence, Tokyo, Japan, July 2000.

[16] Romi Satria Wahono and B.H. Far, OOExpert: Distributed Expert System for Automatic
Object-Oriented Software Design, Proceedings of the 13th Annual Conference of Japanese Society for
Artificial Intelligence, pp.456-457, Tokyo, Japan, June 1999.

[17] Ruqian Lu and Zhi Jin, Domain Modeling-Based Software Engineering, Kluwer Academic Publishers,
2000.

[18] Seiichi Komiya, Junzo Kato, Morio Nagata, Shuichiro Yamamoto, Motoshi Saeki, Atsushi Ohnishi,
Hisayuki Horai, A Method for Implementing a System to Guide Interview-driven Software
Requirements Elicitation, The 4th Joint Conference on Knowledge-Based Software Engineering
(JCKBSE2000), Brno, Czech Republic, 2000.

[19] Software Engineering Standards Committee of the IEEE Computer Society, IEEE Guide for
Developing System Requirements Specifications, IEEE Std 1233-1998, IEEE, New York, 1998.

[20] Software Engineering Standards Committee of the IEEE Computer Society, IEEE Recommended
Practice for Software Requirements Specifications, IEEE Std 830-1998, IEEE, New York, 1998.

[21] Ying Liang, Daune West, and Frank A. Stowell, An Approach to Object Identification, Selection and
Specification in Object-Oriented Analysis, in Information Systems Journal, Vol. 8, No. 2, 1998, pp.
163-180, Blackwell Science Ltd., 1998.

[22] Romi S. Wahono and Behrouz H. Far, A Framework for Object Identification and Refinement Process
in Object-Oriented Analysis and Design, Proceedings of the First IEEE International Conference on
Cognitive Informatics (ICCI 2002), pp. 351-360, IEEE Computer Society Press, Canada, August
2002.

[23] Dong Liu, Kalaivani Subramaniam, Behrouz H. Far and Armin Eberlein, An Agent-based System for
Class Elicitation and Modeling in Object Oriented Analysis and Design, 2nd ASERC Workshop on
Software Architecture, pp. 18-19, Canada, February 2003.

