

IECI Chapter Japan Series Vol. 5 No. 2, 2003 ISSN 1344-7491

PPrroocceeeeddiinnggss ooff tthhee IIEECCII JJaappaann WWoorrkksshhoopp 22000033

IIJJWW--22000033

AApprriill 2200tthh,, 22000033
CChhooffuu BBuunnkkaa--KKaaiikkaann TTaazzuukkuurrii

TTookkyyoo,, JJaappaann

Organized by
Indonesian Society on Electrical, Electronics, Communication and Information

(IECI) chapter Japan

Supported by
Institute for Science and Technology Studies (ISTECS) chapter Japan

Indonesian Students Association in Japan (ISAJ/PPI)

Proceedings of the IECI Japan Workshop 2003 ISSN 1344-7491
Chofu Bunka Kaikan Tazukuri, Japan pp. 55 - 58

ANALYZING REQUIREMENTS ENGINEERING PROBLEMS

Romi Satria Wahono
Department of Information and Computer Sciences, Saitama University

Lembaga Ilmu Pengetahuan Indonesia (LIPI)- Pusat Dokumentasi Informasi Ilmiah (PDII)
E-mail: romi@romisatriawahono.net
URL: http://romisatriawahono.net

Abstract. The requirements engineering is the first phase of software engineering process, in
which user requirements are collected, understood, and specified. Requirements engineering is
recognized as a critical task, since many software failures originate from inconsistent,
incomplete or simply incorrect requirements specifications. In this paper we analyze the root
problems of the requirements engineering from several viewpoints.

Keyword: software engineering, requirements engineering

1. Introduction

The requirements engineering is the first phase of
software engineering process, in which user
requirements are collected, understood, and
specified. Requirements engineering is recognized as
a critical task, since many software failures originate
from inconsistent, incomplete or simply incorrect
requirements specifications.

Many of the most common, most serious
problems associated with software development are
related to requirement. The Standish Group study
noted that three most commonly cited factors that
caused projects to be challenged [Leffingwell-00]:

• Lack of user input: 13 percent of all projects

• Incomplete requirements and specifications:
12 percent of projects

• Changing requirements and specifications:
12 percent of all projects

However, a correct, consistent and complete way
to collect, understand, specify and verify user
requirements is important and necessary.

We can summarize the issues discussed in the
requirements engineering as the “rock” problem. The
requirements that describes “bring me a rock”, will be
actually “bring me a small blue rock”, or “bring me a
spherical small blue rock.” All the people can become
frustrated by the problems of specifying an
acceptable “rock”. We have got to get it right the
first time yet also provide for iterative process in
which the customer ultimately discovers what kind of
rock he wants.

In this paper we try to analyze the root problems
of the requirements engineering from several
viewpoints.

2. Concepts and Term Definitions

2.1. Requirement

The definitions of a requirement according to [IEEE-
610.12] [IEEE-830] [IEEE-729] are:

1. A condition or capability needed by a user to
solve a problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification, or
other formally imposed documents.

3. A documented representation of a condition or
capability as in 1 or 2.

The term user alluded to in this definition may be
an end user of the system or a person behind the
screen. However, it may also denote several classes
of indirect users, such as people who do not
themselves turn the knobs but rather use the
information that the system delivers. It may also
denote the customer (client) who pays the bill.
During requirements engineering, different types of
user may be the source of different types of
requirement. The term user is used to denote both
direct (end) users and other stakeholders involved in
the requirements engineering process [Vliet-00].

The definitions of terms used in the requirements
engineering that corresponds to the persons are as
follows [IEEE-610.12].

Customer: The person, or persons who pay for the
product and usually (but not necessarily) decide the
requirements. In the context of this recommended
practice the customer and the supplier may be
members of the same organization.

Supplier: The person, or persons who produce a
product for a customer. In the context of this
recommended practice, the customer and the supplier

Proceedings of the IECI Japan Workshop 2003

 56

may be members of the same organization.

User: The person, or persons who operate or interact
directly with the product. The user(s) and the
customer(s) are often not the same person(s).

2.2. Requirements Engineering

The term requirements engineering is used to
describe a systematic process of developing
requirements through an iterative co-operative
process of analyzing problem, documenting the
resulting observation in a variety of representation
formats, and checking the accuracy of the
understanding gained. Requirements engineering is a
transformation of business concerns into the
information system requirements.

Therefore, we can define requirements
engineering as:

A systematic approach to eliciting, organizing, and
documenting the requirements of the system, and a
process that establishes and maintains agreement
between the customer and the project team on the
changing requirements of the system.

3. The Three Dimensions of Requirements
Engineering

The result of the requirements engineering phase
is documented in the requirements specification. The
requirements specification reflects the mutual
understanding of the problem to be solved between
the analyst and the client. The requirements
specification serves as a starting point for the next
phase, the design phase. To achieve well-defined
document containing the user requirements that
satisfies these prerequisites, we can distinguish
three processes in requirements engineering
[Loucopoulos-95]. These processes involve iteration
and feedback (Figure 1).

3.1. Requirements Elicitation

Requirements elicitation is about understanding

the problem. In general, the requirements analyst is
not an expert in the domain being modeled. Through
interaction with domain specialists, he has to build
himself a sufficiently rich model of that domain. The
fact that different disciplines are involved in this
process complicates matters. In many cases, the
analyst is not a mere outside observer of the domain
modeled, simply eliciting facts from domain
specialists.

3.2. Requirements Specification

Once the problem is understood, it has to be
described in the requirements specification
document. This document describes the product to
be delivered, not the process of how it is developed.

3.3. Requirements Validation and Verification

Once the problem is described, the different
parties involved have to agree upon its nature. We
have to ascertain that the correct requirements are
stated (validation) and that these requirements are
stated correctly (verification).

4. The Problems of Requirements Elicitation

Problems of requirements elicitation can be
grouped and classified into three categories
[Christel-91]. These are problems of scope, problems
of understanding, and problems of volatility.
Leffingwell [Leffingwell-00] used another terms for
this three scopes by the problems on “analyzing the
problem” and “understanding the user needs”.

4.1. The Categories

• Problems of scope
Ø The requirements may address too little or

too much information.
Ø The boundary of the system is ill-defined
Ø Unnecessary design information may be

given
• Problems of understanding

Ø Problems of understanding within groups
as well as between groups such as users
and developers.

Figure 1: Requirements Engineering Process

Elicitation Specification Validation and
Verification

User

user requirements
requirements
specification

models to be
validated by

user

user feedback

knowledge

request more
knowledge

requirements
model

validation
results

Proceedings of the IECI Japan Workshop 2003

 57

Ø Users have incomplete understanding of
their needs

Ø Users have poor understanding of
computer capabilities and limitations

Ø Analysts have poor knowledge of problem
domain

Ø User and analyst speak different
languages

Ø Ease of omitting “obvious” information
Ø Conflicting views of different users
Ø Requirements are often vague and

untestable, e.g., “user friendly” and
“robust”

• Problems of volatility
Ø The changing nature of requirements.
Ø Requirements evolve over time

Requirements elicitation is complicated by three

endemic syndromes [Leffingwell-00].
1. The “yes but” syndrome stems from human

nature and the users’ inability to experience
the software as they might a physical device.

2. Searching for requirements is like searching
for “undiscovered ruin”; the more you find,
the more you know remain.

3. The “user and the developer” syndrome
reflect the profound differences between the
two, making communication difficult.

4.2. The Techniques

These facts and problems give the researchers a
place for discussing and proposing the requirements
elicitation techniques. Some techniques are shown in
the following:

• Interviewing and questionnaires
• Requirements workshop
• Brainstorming and idea reduction
• Storyboards
• Use cases
• Role playing
• Prototyping

5. The Problems of Requirements Specification

The previous Section was focused on the
process of analyzing the problem, eliciting user
needs, and collecting, documenting, and managing
the desired product features. We have now arrived at
the center of the requirements engineering dimension,
the “specification process”. A complete set of
requirements can be determined by defining the
system inputs, outputs, functions, attributes, and
attributes of the system environment.

One of the most difficult challenges we face in
the requirements specification process is making the
requirements detailed enough to be well understood
without overconstraining the system and predefining
a whole host of things that may be better off left to

others downstream in the process. The goal is to find
the “sweet spot” or the balance point wherein the
investment in requirement provides “just the right
amount” of specificity and leaves just the “right
amount of ambiguity” for others to resolve further
downstream (see Figure 2).

Sweet Spot

Understandability

Ambiguity
Figure 2: Ambiguity versus Specificity

Some specification techniques are proposed to

solve this ambiguity problem. Use Case [Booch-99]
[Rumbaugh-99] has achieved a degree of popularity
and common use for expressing requirements for a
system. Well implemented to the system that using
the UML and object-oriented methods.

However, the most popular technique for
documenting requirements was to use natural
language and to simply write them all down in an
organized fashion. This technique was revised and
improved over the course of many projects, and
eventually a number of standards developed for
these documents, including IEEE (Institute of
Electrical and Electronics Engineers) 830: Standard
for Software Requirements Specification [IEEE-830].

IEEE Std 830-1998 [IEEE-830] also describes the
characteristics of a good software requirements
specification (eight quality measures). A software
requirements specification should be:

1. Correct
2. Unambiguous
3. Complete
4. Consistent
5. Ranked for importance and/or stability
6. Verifiable
7. Modifiable
8. Traceable
If the description of the requirement is too

complex for a natural language and if you can not
afford to have the specification misunderstood, you
should consider writing that portion of the
requirements with a “technical methods” approach.
Some technical specification methods are as follows:

• Pseudocode
• Finite state machines
• Decision trees
• Activity diagrams (flowcharts)
• Entity relationship models
• Object-oriented analysis
• Structured analysis

Proceedings of the IECI Japan Workshop 2003

 58

6. The Problems of Requirements Validation and
Verification

Building the right system right depends on
continually confirming that the development is on
track and that the results are correct, as well as being
able to deal with change during development.

Verification is the process of ensuring that
development activities continually conform to the
customer’s needs. IEEE [IEEE-1012] defines
verification as:
The process of evaluating a system or component to
determine whether the products of a given phase
satisfy the conditions imposed at the start of that
phase.

Verification is supported by the use of
traceability techniques to relate parts of our project
to one another. By using traceability, we can verify
that:

• All project elements are accounted for, and
• All project elements have a purpose
Validation demonstrates that the product

conforms to its requirements and gains customer
acceptance of the final result. IEEE [IEEE-1012]
defines validation as:
The process of evaluating a system or component
during or at the end of the development process to
determine whether it satisfies specified requirements.

We use the validation techniques to ensure that:
• All project elements are properly tested
• All tests have a useful purpose

7. Conclusions

Many of the most common, most serious
problems associated with software development are
related to requirement. Begin from the term definition,
we discussed the requirements engineering and its
dimension. And finally, we analyzed the root
problems of the requirements engineering from
several viewpoints.

Acknowledgements

The author would like to thank to the Ministry of
Education, Culture, Sports, Science and Technology
of Japan for its financial and scholarship support.

REFERENCES

[Booch-99] Grady Booch, James Rumbaugh, and Ivar
Jacobson, "The Unified Modeling Language
User Guide", Addison-Wesley, 1999.

[Christel-91] Michael G. Christel and Kyo C. Kang,
Issues in Requirements Elicitation, Technical
Report CMU/SEI-92-TR-12, ESC-TR-92-012,
September 1992.

[IEEE-729] Institute of Electrical and Electronics
Engineers. IEEE Standard Glossary of Software
Engineering Terminology. ANSI/IEEE Standard
729-1983, Institute of Electrical and Electronics
Engineers, New York, 1983.

[IEEE-610.12] Institute of Electrical and Electronics
Engineers, IEEE Standard Glossary of Software
Engineering Technology, IEEE Std 610.12-1990,
Institute of Electrical and Electronics Engineers,
New York, 1990.

[IEEE-830] Institute of Electrical and Electronics
Engineers, IEEE Recommended Practice for
Software Requirements Specifications, IEEE Std
830-1998, Institute of Electrical and Electronics
Engineers, New York, 1998.

[IEEE-1012] Institute of Electrical and Electronics
Engineers, IEEE Standard for Software
Verification and Validation, IEEE std 1012-1998,
Institute of Electrical and Electronics Engineers,
New York, 1998.

[Leffingwell-00] Dean Leffingwell and Don Widrig:
Managing Software Requirements – A Unified
Approach, Addison Wesley, 2000.

[Loucopoulos-95] P. Loucopoulos and V. Karakostas:
Software Requirements Engineering, McGraw-
Hill, 1995.

[Rumbaugh-99] James Rumbaugh, Ivar Jacobson,
and Grady Booch, "The Unified Modeling
Language Reference Manual", Addison-Wesley,
1999.

 [Vliet-00] Hans Van Vliet: Software Engineering -
Principles and Practice, John Wiley & Sons, 2000.

Biography of Author

Romi Satria Wahono, Received
B.E. and M.E degrees in
Information and Computer
Sciences in 1999 and 2001,
respectively, from Saitama
University, Japan. He is
currently a Ph.D. candidate at
the Department of Information

and Computer Sciences, Saitama University, Japan
and also a researcher at the Indonesian Institute of
Science (LIPI). His current research interests include
Software (Requirements) Engineering, Web
Engineering, and Object-Orientation. He is a member
of the ACM, IEEE Computer Society, The Institute of
Electronics, Information and Communication
Engineers (IEICE), Information Processing Society of
Japan (IPSJ), Japanese Society for Artificial
Intelligence (JSAI), and Indonesian Society on
Electrical, Electronics, Communication and
Information (IECI).

