
ISSN 0918-7685

PROCEEDINGS
OF

THE 9TH SCIENTIFIC MEETING
TEMU ILMIAH 2000

TI-IX PPI 2000
HAMAMATSU, September 2, 2000

Organized by

Indonesian Students Association in Japan
Persatuan Pelajar Indonesia di Jepang

在日インドネシア留学生協会在日インドネシア留学生協会在日インドネシア留学生協会在日インドネシア留学生協会

Membuka dunia untuk Indonesia

 283

Methodological Support for Object Identification from Formal
Requirement Specification

Romi Satria Wahono*

Graduate School of Sciences and Engineering, Saitama University
Indonesia Institute of Sciences (LIPI)

Abstract: The challenges of object-oriented design are to identify the objects and classes needed to implement
the software, and to define the behaviors and the attributes of the objects from requirement specification. These
are very complicated challenges because of there dependence on heuristic. Formal requirement specification
have the additional advantage over informal requirement specification because they are amenable to machine
analysis and manipulation. The greatest benefit of applying a formal requirement specification is that system
designers gain a deeper understanding of the specified system, because they have forced to be more abstract and
precise about desired properties. Another important application of formal specification is that they can be used as
a base to reason about the behavior of the desired system. Formal requirement specification will be first
important step for solving the difficulties and ill-defined tasks in the object model creation process, including
identification of objects, attributes, behaviors and organization of objects with inheritance. In this paper, we
propose methodological support for object identification from formal requirement specification.

Keywords: object-orientation, object identification, formal requirement specification

* Romi Satria Wahono, Jinde 221-1 Syato Kouyama 102,
Urawa, Saitama, Japan (338-0812). Tel./Fax: 048-856-1147
Email: romi@cit.ics.saitama-u.ac.jp
URL: http://www.cit.ics.saitama-u.ac.jp/~romi

1. INTRODUCTION
Requirement acquisition is considered one of the
most important activities in software
development. Most faults found during testing
and operation result from poor understanding or
misinterpretation of requirements. In spite of
progress in analysis techniques, CASE tools
support, prototyping, and early verification and
validation technique, software development still
suffers from poor requirements acquisition.

In the traditional approach to software analysis,
system analyst interview end users to capture
requirements. We propose an approach where
end users take an active role in analysis by
specifying requirements using structured formal
requirement specification. We use a structured

formal requirement specification to guide end
users in describing their problem. This approach
will be first important step for solving the
difficulties and ill-defined tasks in the object
model creation process, including identification
of objects, relationships, attributes, behaviors
and organization of objects with inheritance.
This approach also takes advantage of end users’
domain knowledge.

In this paper we present a structured formal
requirement specification and methodological
support for object model creation process,
especially object identification from structured
formal requirement specification.

PROCEEDINGS OF THE 9TH SCIENTIFIC MEETING
TEMU ILMIAH TI-IX PPI 2000

ISSN 0918-7685
pp. 283-286

 284

2. REQUIREMENT SPECIFICATION
A requirement is a desired relationship among
phenomena of the environment of a system, to
be brought about by the software system that
will be constructed and installed in the
environment.

A specification describes system behavior
sufficient to achieve the requirement. A
specification is a restricted kind of requirement.
All the environment phenomena mentioned in a
specification are shared with the system. The
phenomena constrained by the specification are
controlled by the system, and the specified
constraints can be determined without reference
to the future. Specifications are derived from
requirements by reasoning about the
environment, using properties that hold
independently of the behavior of the system
[Jackson et al., 1995].

In other words, we can say that the difference
between requirements and specification is that
requirements refer to the entire system to be
realized, whereas a specification refers only to
the part of the system to be implemented by
software.

Jackson and Zave [Jackson et al., 1995] consider
specifications as special kind of requirements. A
requirement is a specification if all actions
constrained by the requirement are controlled by
the software system, and all information it relies
on is shared with the software system and refers
only to the past, not the future. Requirements
(and thus specifications) do not talk about the
state of the software system. In contrast to this
view, we consider a specification to be a model
of the software system to be built in order to
satisfy the requirements.

The software requirements specifications
process consists of three steps:
1. Requirements capture and analysis
2. Requirements definition and specification
3. Requirements validation

The origin of most software system is the need
of a client /user who desires a new software
system. The final output of this process is a
requirements document, which defines the
system to be developed [Jalote, 1997].

3. FORMAL METHOD and FORMAL
SPECIFICATION

Formal methods used in developing software
systems provide frameworks for specifying,
developing, and verifying systems in a
systematic manner rather than ad hoc manner.
Formal methods are used to reveal ambiguity,
incompleteness, and inconsistency in a software
system. System designer use formal methods to
specify desired behavioral and structural
properties [Ralston et al., 1993].Formal methods
can be used in all phases of software’s
development and present an opportunity to
develop new techniques to improve software
production. One tangible product to applying a
formal method is a formal specification.

Formal requirement specifications have the
additional advantage over informal requirement
specifications because they are amenable to
machine analysis and manipulation. The greatest
benefit of applying a formal requirement
specification is that system designers gain a
deeper understanding of the specified system,
because they have forced to be more abstract
and precise about desired properties. Another
important application of formal requirement
specification is that they can be used as a base to
reason about the behavior of system’s
components.

The usefulness of formal requirement
specification is more and more accepted by
researcher and practical software engineers. But
formal requirement specification techniques still
suffer from two drawbacks.

First, research spends more effort to develop
new languages than provide methodological
guidance for using existing ones. Often, users of
formal techniques are left alone with a
formalism for which no explicit methodology
has been developed.

Second, formal requirement specification
techniques are not well integrated with the
analysis phase of software engineering. Often,
formal requirement specifications begin with
very short description of the system to be
implemented, and detail is added during the
development of the formal requirement
specification. Such a procedure does not

 285

adequately take into account the need to
thoroughly analyze the system to be
implemented and the environment in which it
will operate before a detailed requirement
specification is developed.

4. METHODOLOGY FOR IDENTIFYING

OBJECT FROM STRUCTURED
FORMAL REQUIREMENT
SPECIFICATION

Figure 1 shows our strategy to solve the object
model creation process, including object,
behavior, association identification and also
classes’ organization by using inheritance. We
propose an approach where end users take an
active role in analysis by specifying
requirements using structured formal
requirement specification. We use a structured
formal requirement specification to guide end
users in describing their problem. This approach
will be first important step for solving the
difficulties and ill-defined tasks in the object
model creation process, including identification
of objects, relationships, attributes, behaviors
and organization of objects with inheritance.

Figure 1: Object Model Creation Process by Using

Structured Formal Requirement Specification

4.1. Collaborative Statements
Collaborative statements are used to identify
objects, and association between objects. The
first step in object model creation process is to

identify relevant object and its association from
the application domain. Objects include physical
entities and all objects must make sense in the
application domain. All objects are explicit in
the collaborative statements, and objects are
corresponding to nouns that identified from
collaborative statements.

Any dependency between two ore more objects
in the collaborative statements is an object
association. A reference from one object to
another is also an association. Associations show
dependencies between objects at the same level
of abstraction as the objects themselves.
Associations can be implemented in various
ways, but such implementation decisions should
kept out of the analysis model to preserve design
freedom. Associations often correspond to verbs
or verb phrases. These include physical location
(next to, part of, contained in), directed actions
(drives), communication (talks to), ownership
(has, part of), or satisfaction of some condition
(works for, married to, manages).

The algorithm for identifying objects and
association from collaborative statements is
shown in Figure2.

Figure 2: Object and Association Identification

from Collaborative Statements

4.2. Attributive Statements
Attributive statements are used to identify object
attributes. Attributes are properties of individual
objects. Attributes usually correspond to nouns
followed by possessive phrases, and sometimes
are characterized by adjectives or adverbs.
Attributive statement must contain properties of
each object identified at the previous step.

4.3. Behavioral Statements
Behavioral statements are used to identify object
behaviors. Behavior is how an object acts and
reacts, in terms of its state changes and message

Collaborative
Statements

Attributive
Statements

Behavioral
Statements

Inheritance
Statements

Identifying
Objects

Identifying
Associations

Identifying
Attributes

Identifying
Behaviors

Refining with
Inheritance

Object Model

 286

passing [Booch et al., 1991]. Behavioral
statement must contain behaviors of each object
identified at the previous step.

4.4. Inheritance Statements
Inheritance statements are used to organize
classes by using inheritance, to share common
object attributes and behaviors. Inheritance
provides a natural classification for kinds of
objects and allows for the commonality of
objects to be explicitly taken advantage of in
modeling and constructing object systems.
Inheritance is a relationship between classes
where one class is the parent
(base/super/ancestor/etc.) class of another.
Inheritance statement provides sentences that
have is-a-kind-of relationship. For example,
mountain bikes, racing bikes, and tandems are
all different kinds of (is-a-kind-of) bicycles.

5. CONCLUSION
We proposed an approach where end users take
an active role in analysis by specifying
requirements using structured formal
requirement specification. We use a structured
formal requirement specification to guide end
users in describing their problem. In this paper
we presented methodological support for object
model creation process, especially object
identification from structured formal
requirement specification.

REFERENCES
[Booch et al., 1991] Grady Booch,
"Object-Oriented Analysis and Design with
Application," Benjamin/Cummings, 1991.
[Booch et al., 1999] Grady Booch,
James Rumbaugh, and Ivar Jacobson, "The
Unified Modeling Language User Guide,"
Addison-Wesley, 1999.
[Iglewski et al., 1997] Michal Iglewski
and Tomasz Muldner, "Comparison of Formal
Specification Methods and Object-Oriented
Paradigms", Journal of Network and Computer
Applications, Vol. 20, No. 4, 1997, Academic
Press.
[Jackson et al., 1995] Michael Jackson
and Pamela Zave, "Deriving Specifications from
Requirements: an Example", Proceedings of the

17th International Conference on Software
Engineering, Seattle, WA USA, April 1995.
[Jalote, 1997] P. Jalote, “An Integrated
Approach to Software Engineering”,
Springler-Verlag New york Inc., 1997.
[Ralston et al., 1993] Anthony Ralston,
Edwin D. Reilly, "Encyclopedia of Computer
Science", Van Nonstrand Reinhold, IEEE Press,
1993.
[Romi et al., 2000] Romi Satria
Wahono and Behrouz H. Far, “Hybrid
Reasoning Architecture for Solving Object Class
Identification Problem in the OOExpert System”,
Proceedings of the 14th Annual Conference of
Japanese Society for Artificial Intelligence, pp.
230-231, Tokyo, Japan, July 2000.
[Rumbaugh et al., 1991] James Rumbaugh,
Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorenson, "Object-Oriented
Modeling and Design," Prentice Hall, 1991.

BIOGRAPHY of AUTHOR

Romi Satria Wahono, Was
born in Madiun-Indonesia
on October 2nd 1974,
Received B.Eng. in
Information and Computer
Sciences in 1999, from
Saitama University. He is
currently a researcher at

the Indonesian Institute of Sciences (LIPI), and a
M.Eng. candidate at the Department of
Information and Computer Sciences, Saitama
University. The research fields of his interests
are Distributed Artificial Intelligence, Multi
Agent Systems, Reasoning System, Software
Engineering, and Object-Orientation. He is a
member of the Association for Computing
Machinery (ACM), The Institute of Electrical
and Electronics Engineers (IEEE) Computer
Society, The Institute of Electronics, Information
and Communication Engineers (IEICE),
Japanese Society for Artificial Intelligence
(JSAI), and Indonesian Society on Electrical,
Electronics, Communication and Information
(IECI).

