
Object-Oriented Analysis and
Design Methodology

Romi Satria Wahono
Email : romi@romisatriawahono.net
HP : http://romisatriawahono.net
Department of Information and Computer Sciences
Graduate School of Science and Engineering
Saitama University

1

Contents
An Introduction to the Object-Orientation
An Introduction to the Object-Oriented
Methodology
Object-Oriented Notation Guide
Object-Oriented Analysis and Design
Object-Oriented Implementation

2

An Introduction to the
Object-Orientation

3

What is Object-Orientation

A new technology based on objects and classes
A way of thingking to organizing software as a
collection of discrete objects that incorporate
both data structure and behaviour
An abstraction of the real world based on
objects and their interactions with other objects

4

Three Characteristics of OO

Abstraction and Classification :
Focusing on essential, inherent aspects of an entity and
ignoring its accidental.
The idea of grouping software ideas into classes of things

Encapsulation and Information Hiding :
Separating the external aspects of an object, which are
accessible to other objects, from the internal implementation
details of object, which are hidden from other objects

Polymorphism and Inheritance :

Abstraction and Classification :
Focusing on essential, inherent aspects of an entity and
ignoring its accidental.
The idea of grouping software ideas into classes of things

Encapsulation and Information Hiding :
Separating the external aspects of an object, which are
accessible to other objects, from the internal implementation
details of object, which are hidden from other objects

Polymorphism and Inheritance :

Object-Oriented
System

Object-Oriented
System

AbstractionAbstractionAbility of abstractions to share
properties by inheritance
hierarchy

Ability of abstractions to share
properties by inheritance
hierarchy

PolymorphismPolymorphismEncapsulationEncapsulation 5

Object and Classes

Object
An object is a thing or concept. It can be a real-world thing or
concept, or an abstraction of a thing or concept expressed as a
software representation.
An object has state (attributes) and behavior (method)
Individual objects, also called instances, have identity and are
distinct things, and can be distinguished from other objects.

Classes
A class is a description of a collection of objects with common
attributes and behavior.
In practice, the definition or specification of a class includes the
definitions of the attributes comprising the state, the methods
implementing the behavior, and how to handle creation and
destruction of an object.

Object
An object is a thing or concept. It can be a real-world thing or
concept, or an abstraction of a thing or concept expressed as a
software representation.
An object has state (attributes) and behavior (method)
Individual objects, also called instances, have identity and are
distinct things, and can be distinguished from other objects.

Classes
A class is a description of a collection of objects with common
attributes and behavior.
In practice, the definition or specification of a class includes the
definitions of the attributes comprising the state, the methods
implementing the behavior, and how to handle creation and
destruction of an object.

6

An Introduction to the Object-
Oriented Methodology

7

What Are Analysis and Design For

Testing a physical entity before building
system
Communicating with Customers
Visualization
Reduction of Complexity

8

Various Type of Methodologies

Shlaer/Mellor Method [Shlaer-1988]
Coad/Yourdon Method [Coad-1991]
Booch Method [Booch-1991]
OMT Method [Rumbaugh-1991]
Wirfs-Brock Method [Wirfs-Brock-1990]
OOSE Objectory Method [Jacobson-1992]
UML (Unified Modeling Language) [UML-1997]

9

Development Process

Object-Oriented Analysis

Object-Oriented Design

Object-Oriented Implementation

10

Object-Oriented Notation Guide

11

Class and Object
Class Object Instances

Class Name

Attribute

Operation

Class Name

Attribute

Operation

Instantiation RelationshipInstantiation Relationship

Class NameClass Name
12

Generalization and Inheritance

Superclass

Subclass 1 Subclass 2

13

Aggregation
Aggregation 1 Aggregation 2

Assembly Class Assembly Class

Part 1 Class Part 2 Class Part 1 Class Part 2 Class

14

Association
Association

Association Name
Class 1 Class 2

Role 1 Role 2

Qualified Association
Association Name

Class 1 Class 2qualifier
Role 1 Role 2

Multiplicity of AssociationsMultiplicity of Associations

Class Class Class
1+

One or MoreExactly One Many 15

Ternary Association

Association Name

Class 1 Class 2
Role 1 Role 2

Role 3

Class 3

16

Object-Oriented Analysis and
Design

17

Analysis and Design Process
Problem Statement
System Architecture
Object Modeling

Identifying Object Classes
Preparing a Data Dictionary for Classes
Identifying Associations
Identifying Attributes
Refining with Inheritance
Grouping Classes into Modules

Dynamic Modeling
Functional Modeling

Problem Statement
System Architecture
Object Modeling

Identifying Object Classes
Preparing a Data Dictionary for Classes
Identifying Associations
Identifying Attributes
Refining with Inheritance
Grouping Classes into Modules

Dynamic Modeling
Functional Modeling

18

Problem Statement

Requirements Statement
Problem Scope
What is needed
Application Context
Assumptions
Performance Needs

19

Example : ATM Network

Cashier
Station

20

ATM

ATM

ATM

Central
Computer

Bank
Computer

Bank
Computer

Account

Account

Account

Account

System Architecture

ATM

Consortium
Computer

Bank Computer

Cash
Card

Transaction

Consortium

Cashier

Cashier
Station

Account

Customer

Card
Authorization

Database

Transaction Transaction

User
Interface

Station
Code

Bank
Code

ATM Station

Phone
Lines

Phone
LinesUser

21

Identifying Object Classes

22

Extract nouns Eliminate spurious
Classes

Requirements

Statement

Object

Classes

Tentative

Object Classes

Redundant classes
Irrelevant classes
Vague classes
Attributes
Operations
Roles
Implementation constructs

Discard
Unnecessary
and Incorrect
Classes

Discard
Unnecessary
and Incorrect
Classes

Example: IOC for ATM Network
Bad Classes

CostUser

Access
Transaction

Log

Software
Comm
Line

Receipt
Transaction

Data

Cash
Account

Data

System
Security
Provision

Record Keeping
Provision

Banking Network

Vague Attribute Implementation

Redundant Irrelevant

Good Classes

Account ATM Bank Consortium Customer Cashier
Cashier
Station

Central
Computer

Bank
Computer Cash Card Transaction

23

Preparing a Data Dictionary

Isolated word have many interpretations,
so prepare a data dictionary for all
modeling entities
Describe the scope of the class within the
current problem, including assumptions or
restrictions on its membership or use
The data dictionary also describes
associations, attributes, and operation

Isolated word have many interpretations,
so prepare a data dictionary for all
modeling entities
Describe the scope of the class within the
current problem, including assumptions or
restrictions on its membership or use
The data dictionary also describes
associations, attributes, and operation

24

Example: DD for ATM Network
Account : a single account in a bank against which
transactions can be applied. Account may be of various
types, at least checking or savings. A customer can hold
more than one account.
Bank : A financial institution that holds accounts for
customers and that issues cash cards authorizing access
to accounts over the ATM network.
ATM : …
Bank Computer : …
Cash Card : …
Cashier : ...
etc.

Account : a single account in a bank against which
transactions can be applied. Account may be of various
types, at least checking or savings. A customer can hold
more than one account.
Bank : A financial institution that holds accounts for
customers and that issues cash cards authorizing access
to accounts over the ATM network.
ATM : …
Bank Computer : …
Cash Card : …
Cashier : ...
etc.

25

Identifying Associations

26

Extract verbs Eliminate spurious
associations

Object

Classes

Tentative

associations

Associations

Associations between
eliminated classes
Irrelevant or implementation
associations
Actions
Ternary associations
Derived associations
Misnamed associations
Multiplicity

Discard
Unnecessary
and Incorrect
Associations

Discard
Unnecessary
and Incorrect
Associations

Example: IAs for ATM Network
HasHas

27

Consortium Ban

Central
Computer

Bank
Computer

Remote
Transaction

Cashier
Transaction

Cashier

Cashier
Station

Owns

Communicates
with

Communicates
with

Entered onEntered on

Entered onEntered on

Entered byEntered by

Owns

Owns

Authorized byAuthorized by

ConcernsConcerns

EmploysEmploys
ConcernsConcerns

ATM

k
Code

Consists of Holds
Bank Account

Cash
Card

Holds
Customer

Communicates
with

AccessesAccesses

HasHas

Identifying Attributes
Tentative
attributes

28

Extract object
properties

Eliminate spurious
attributes

Object

Classes

Attributes

Objects
Qualifiers
Names
Identifiers
Link attributes
Internal values
Fine detail
Discordant attributes

Discard
Unnecessary
and Incorrect
Attributes

Discard
Unnecessary
and Incorrect
Attributes

Example: IAT for ATM Network

29

Central
Computer Bank

Computer

Remote
Transaction

Cashier
Transaction

Cash
Card

Cashier

Cashier
Station

Owns

Communicates
with

Communicates
with

Entered onEntered on

Entered onEntered on

Entered byEntered by

Owns

Owns

Authorized byAuthorized by

HasHas

EmploysEmploys
ConcernsConcerns

Bank
Code

Station
Code

name
Station
Code

Employee
Code

Balance
credit limit

type

Station
Code

Kind
date-time
amount

Kind
date-time
amount

name

password

Card
Code

Consortium

ATM

Bank
Code

Bank Account
Customer

Consists of

Communicates
with

HoldsHolds

HasHas

AccessesAccesses

ConcernsConcerns

cash on hand
dispensed

Account
Code

IssuesIssues

name
address

Refining With Inheritance

This step is to organize classes by using
inheritance to share common structure
Inheritance can be added in two directions :

Bottom Up ： By generalizing common aspect of existing
classes into a superclasses

By searching for classes with similar attributes, associations,
or operations
For each generalization, define a superclass to share
common features

Top Down ： By refining existing classes into specialized
subclasses

This step is to organize classes by using
inheritance to share common structure
Inheritance can be added in two directions :

Bottom Up ： By generalizing common aspect of existing
classes into a superclasses

By searching for classes with similar attributes, associations,
or operations
For each generalization, define a superclass to share
common features

Top Down ： By refining existing classes into specialized
subclasses

30

Example: RWI for ATM Network

31

Transaction
Kind

date-time
amount

cash on hand
dispensed

Central
Computer

Bank
Code

Station
Code

Bank
Computer

Station
Code

Bank
name

Account
Code

Station
Code

Card
Code

Employee
Code

Cashier
Station

Cashier
Transaction

Remote
Transaction

Cash
Card

password

Communicates
with

Communicates
with

Communicates
with

Communicates
with

Owns

Owns

Owns

ConcernsConcerns

Authorized byAuthorized by
Entered byEntered by

HoldsHolds

IssuesIssues
HasHas

ATM Entered onEntered on

ATM

Cashier
name

EmploysEmploys Customer
name

address AccessesAccesses

Consortium Bank
Code

Has
Account

Has

Balance
credit limit

type

Consists ofConsists of

Grouping Classes into Modules
A module is a set of classes that captures
some logical subset of entire model
For example: a model of computer
operating system might contain modules
for process control, device control, file
maintenance, and memory management

32

Example: GCIM for ATM Network

Tellers: Cashier, Entry Station, Cashier
Station, ATM
Account: Account, Cash Card, Card
Authorization, Customer, Transaction,
Update, Cashier Transaction, Remote
Transaction
Banks: Consortium, Bank

33

Dynamic Model

The dynamic model shows the time-
dependent behavior of the system and the
objects in it.
Begin dynamic analysis by looking for
event, externally visible stimuli and
responses.
The dynamic model is important for
interactive systems, but insignificant for
purely static data repository, such as
database.

The dynamic model shows the time-
dependent behavior of the system and the
objects in it.
Begin dynamic analysis by looking for
event, externally visible stimuli and
responses.
The dynamic model is important for
interactive systems, but insignificant for
purely static data repository, such as
database. 34

Dynamic Model

The following steps are performed in
constructing a dynamic model

Prepare scenarios of typical interaction
sequences
Identify events between objects
Prepare an event trace for each scenario
Build a state diagram
Match events between objects to verify
consistency

The following steps are performed in
constructing a dynamic model

Prepare scenarios of typical interaction
sequences
Identify events between objects
Prepare an event trace for each scenario
Build a state diagram
Match events between objects to verify
consistency

35

Example: DM for ATM Network
User ATM Consortium Bank

Insert card

request password

enter password
verify account

verify card with bank

account OK bank account OK

request kind

enter kind

request amount

enter amount
process transaction

process bank transaction

bank transaction succeed

36

dispense cashdispense cash
transaction succeed

request take cashrequest take cash

take cashtake cash

take cardtake card

display main screendisplay main screen

Functional Model

The functional model shows how values
are computed, without regard for
sequencing, decisions, or object structure
The functional model shows which values
depend on which other values and the
functions that relate them
Data flow diagrams are useful for showing
functional dependencies

The functional model shows how values
are computed, without regard for
sequencing, decisions, or object structure
The functional model shows which values
depend on which other values and the
functions that relate them
Data flow diagrams are useful for showing
functional dependencies

37

Example: FM for ATM Network

AccountCash
Card

38
User

read inputs

bank code,
card code
bank code,
card code balancebalance

perform
transaction

generate
outputs

Messages,
cash,
receipt

Messages,
cash,
receipt

password,
transaction kind,
amount,
account type

password,
transaction kind,
amount,
account type

Object-Oriented Implementation

39

Implementation Process
Class Definition
Creating Objects
Calling Operations
Using Inheritance
Implementing Association

40

References -1-

[Booch-1991] Grady Booch, Object-Oriented Analysis
and Design with Application, Benjamin/Cummings, 1991.
[Booch-1999] Grady Booch, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.
[Coad-1991] Peter Coad and Edward Yourdon, Object-
Oriented Analysis, Yourdon Press, 1991.
[Jacobson-1992] Ivar Jacobson, Magnus Christerson,
Patrik Jonson, and Gunnar Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

[Booch-1991] Grady Booch, Object-Oriented Analysis
and Design with Application, Benjamin/Cummings, 1991.
[Booch-1999] Grady Booch, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.
[Coad-1991] Peter Coad and Edward Yourdon, Object-
Oriented Analysis, Yourdon Press, 1991.
[Jacobson-1992] Ivar Jacobson, Magnus Christerson,
Patrik Jonson, and Gunnar Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

41

References -2-
[Jacobson-1999] Ivar Jacobson, Grady Booch, and
James Rumbaugh, The Unified Software Development
Process, Addison-Wesley, 1999.
[Rumbaugh-1991] James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, and William
Lorenson, Object-Oriented Modeling and Design,
Prentice Hall, 1991.
[Rumbaugh-1999] James Rumbaugh, Ivar Jacobson,
and Grady Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.
[Shlaer-1988] Sally Shlaer and Stephen J. Mellor,
Object-Oriented System Analysis: Modeling the World in
Data, Yourdon Press, 1988.

[Jacobson-1999] Ivar Jacobson, Grady Booch, and
James Rumbaugh, The Unified Software Development
Process, Addison-Wesley, 1999.
[Rumbaugh-1991] James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, and William
Lorenson, Object-Oriented Modeling and Design,
Prentice Hall, 1991.
[Rumbaugh-1999] James Rumbaugh, Ivar Jacobson,
and Grady Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.
[Shlaer-1988] Sally Shlaer and Stephen J. Mellor,
Object-Oriented System Analysis: Modeling the World in
Data, Yourdon Press, 1988. 42

References -3-
[UML-1999] Unified Modeling Language Specification,
Object Management Group, www.omg.org, 1999.
[Wirfs-Brock-1990] Rebecca Wirfs-Brock, Brian
Wilkerson, and Lauren Wiener, Designing Object-
Oriented Software, Prentice Hall, 1990.

43

	Object-Oriented Analysis and Design Methodology
	Contents
	An Introduction to the Object-Orientation
	What is Object-Orientation
	Three Characteristics of OO
	Object and Classes
	An Introduction to the Object-Oriented Methodology
	What Are Analysis and Design For
	Various Type of Methodologies
	Development Process
	Object-Oriented Notation Guide
	Class and Object
	Generalization and Inheritance
	Aggregation
	Association
	Ternary Association
	Object-Oriented Analysis and Design
	Analysis and Design Process
	Problem Statement
	Example : ATM Network
	System Architecture
	Identifying Object Classes
	Example: IOC for ATM Network
	Preparing a Data Dictionary
	Example: DD for ATM Network
	Identifying Associations
	Example: IAs for ATM Network
	Identifying Attributes
	Example: IAT for ATM Network
	Refining With Inheritance
	Example: RWI for ATM Network
	Grouping Classes into Modules
	Example: GCIM for ATM Network
	Dynamic Model
	Dynamic Model
	Example: DM for ATM Network
	Functional Model
	Example: FM for ATM Network
	Object-Oriented Implementation
	Implementation Process
	References -1-
	References -2-
	References -3-

