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1. INTRODUCTION

Software-product-line engineering aims at providing techniques for efficient develop-
ment of software product lines [Czarnecki and Eisenecker 2000; Clements and Northrop
2001; Pohl et al. 2005; Apel et al. 2013a]. A software product line (or program family
[Parnas 1976]) consists of a set of similar software products that rely on a common code
base. The software products of a product line are distinguished in terms of the features
they provide. A feature is a prominent or distinctive user-visible behavior, aspect, qual-
ity, or characteristic of a software system [Kang et al. 1990]. Ideally, products can be
generated automatically based on a selection of features [Czarnecki and Eisenecker
2000; Batory et al. 2004; Apel et al. 2013a].

Software-product-line engineering has gained considerable momentum in recent
years, both in industry and in academia. Companies such as Boeing, Bosch, General
Motors, Hewlett Packard, Philips, Siemens, and Toshiba apply product-line technology
to broaden their software portfolio, increase return on investment, shorten time to
market, and improve software quality [van der Linden et al. 2007; Weiss 2008; Lutz
2007]. Software product lines have been used successfully to build automotive gasoline
systems, televisions, medical devices, and even power plants [Weiss 2008]. A prominent
example from the open-source community that can be considered as a software product
line is the Linux kernel with more than 11.000 features [Tartler et al. 2012].

Software-product-line engineering is increasingly used in safety- and mission-critical
systems, including embedded, medical, automotive, and avionic systems [Weiss 2008].
Hence, proper quality assurance that provides correctness and reliability guarantees is
imperative for success. The underlying assumption of this survey is that every software
analysis known from single-system engineering, such as type checking, static analy-
sis, model checking, and theorem proving, can and needs to be applied to software
product lines to obtain reliable software products. A simple strategy is to generate all
software products of a product line and to apply the analysis method or tool to each
product individually. Unfortunately, this strategy often involves highly redundant com-
putations and may even require repeated user assistance (e.g., for interactive theorem
proving), since the products of a software product line typically have similarities. This
inefficiency is especially a problem if products can be generated automatically from a
common code base, because such product lines often contain a large set of products.
Already for a product line with 33 independent, optional features, we can generate
more products than people on earth; even if the analysis runs automatically and takes
only 1 second for each product, the sequential analysis of the whole product line would
take more than 272 years. Fisler and Krishnamurthi [2005] argue that the analysis
effort should be proportional to the implementation effort. Even if this goal may not
be reachable in general, analyses of software product lines need to scale better than
exhaustively analyzing every single product.

Recently, researchers began developing analysis techniques that take the distin-
guishing properties of software product lines into account. In particular, they adapted
existing standard methods, such as type checking and model checking, to make them
aware of the variability and the features of a product line. The emerging field of product-
line analysis is both broad and diverse. Hence, it is difficult for researchers and prac-
titioners to understand the similarities and differences of available techniques. For
example, some approaches reduce the set of products to analyze, others apply a divide-
and-conquer strategy to reduce analysis effort, while still others analyze the product
line’s code base as a whole. This breadth and diversity hinder systematic research and
application.

We classify existing and ongoing work in the field of product-line analyses, compare
techniques based on our classification, and infer a research agenda to guide further
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research in this direction. Our long-term vision is to empower developers to assess and
predict the analysis effort based on static characteristics of a software product line,
such as the number of features, the number of products, or the complexity of feature
implementations. Our short-term goals are (a) making research more systematic and
efficient, (b) enabling tool developers to create new tools based on existing research
results and combine them on demand for more powerful analyses, and (c) empowering
product-line developers to choose the right analysis technique for their needs out of a
pool of techniques with different strengths and weaknesses.

While our classification applies to a wide variety of software analyses, we focus on
particular analyses in our survey for clarity: we concentrate on development tech-
niques, with which products are generated automatically based on a feature selection.
In contrast to the typically low number of products when manual assembly is required,
automatic generation often leads to a huge number of products and thus is especially
challenging for product-line analyses. Furthermore, we survey analysis approaches
that operate statically, such as type checking, model checking, and theorem proving.
Analyses that focus exclusively on requirements engineering and domain analysis (e.g.,
feature-model analysis) or that focus only on testing are outside the scope of this article;
we refer the reader to dedicated surveys on feature-model analysis [Janota et al. 2008;
Benavides et al. 2010] and on product-line testing [Tevanlinna et al. 2004; Engström
and Runeson 2011; Da Mota Silveira Neto et al. 2011; Oster et al. 2011; Lee et al. 2012].

In summary, we make the following contributions.

—We propose a classification of product-line analyses.
—We survey and classify 123 existing approaches for the analysis of product lines.
—We infer a research agenda based on our insights with classification and survey.
—We offer and maintain a website to support the continuous community effort of

classifying new approaches.1

2. PRELIMINARIES

In this section, we briefly introduce the necessary background for the following discus-
sions. In Section 2.1, we present basic concepts of software product lines. In Section 2.2,
we review software analyses that are crucial to build reliable software and that have
been applied to product lines, as identified in our survey. In Section 2.3, we briefly
discuss how specifications can be defined for software product lines as a basis for
product-line analyses. Finally, we discuss the methodology of our survey in Section 2.4.

2.1. Software Product Lines

The products of a software product line differ in the features they provide, but typically
some features are shared among multiple products. For example, features of a product
line of database management systems are multiuser support, transaction manage-
ment, and recovery; features of a product line of operating systems are multithreading,
interrupt handling, and paging.

There is a broad variety of implementation mechanisms used in product-line engi-
neering. For example, the developers of the Linux kernel combine build scripts with con-
ditional compilation [Tartler et al. 2011]. In addition, a multitude of sophisticated com-
position and generation mechanisms have been developed [Czarnecki and Eisenecker
2000; Svahnberg et al. 2005; Apel et al. 2013a]; all establish and maintain a map-
ping between features and implementation artifacts (such as models, code, test cases,
and documentation). Apel et al. [2013a] distinguish between annotation-based imple-
mentation approaches, such as preprocessors, and composition-based implementation

1Project website: http://fosd.net/spl-strategies/.
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Fig. 1. A feature-oriented implementation of an object store: the implementation is separated into multiple
composition units.

approaches, such as black-box frameworks with plug-ins. In our running example,
we use feature-oriented programming as a composition-based generation mechanism.
However, the analysis strategies presented in this article are largely independent of
the implementation approach.

A Running Example. We use the running example of a simple object store consisting
of three features. Feature SingleStore implements a simple object store that can hold a
single object, including functions for read and write access. Feature MultiStore imple-
ments a more sophisticated object store that can hold multiple objects, again including
corresponding functions for read and write access. Feature AccessControl provides a
basic access-control mechanism that allows a client to seal and unseal the store and
thus to control access to stored objects.

In Figure 1, we show the implementation of the three features of the object store
using feature-oriented programming. In feature-oriented programming, each feature
is implemented in a separate module called a feature module [Prehofer 1997; Batory
et al. 2004]. A feature module is a set of classes and class refinements implementing a
certain feature. Feature module SingleStore introduces a class Store that implements
the simple object store. Analogously, feature module MultiStore introduces an alter-
native class Store that implements a more sophisticated object store. Feature module
AccessControl refines class Store by introducing a field sealed, which represents the
accessibility status of a store, and by overriding the methods read and set to control
access (Super is used to refer from the overriding method to the overridden method).

Once a user has selected a list of desired features, a composer generates the final
product. In our example, we use the AHEAD tool suite [Batory et al. 2004] for the
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Fig. 2. An object store composed from the feature modules MultiStore and AccessControl.

Fig. 3. The variability model of the object store in three alternative representations.

composition of the feature modules that correspond to the selected features. Essen-
tially, the composer assembles all classes and all class refinements of the features mod-
ules being composed. The semantics of class refinement (denoted with refines class)
is that a given class is extended with new methods and fields. Similar to subclass-
ing, class refinement allows the programmer to override or extend existing methods.
While the features SingleStore and MultiStore introduce only regular Java classes, fea-
ture AccessControl refines an existing class by adding new members. The result of the
composition of the feature modules MultiStore and AccessControl is shown in Figure 2.

Variability Models. Decomposing the object store along its features gives rise to com-
positional flexibility; features can be composed in any combination. However, often not
all feature combinations are desired; in our example, we must not select SingleStore and
MultiStore in the same product. Product-line engineers typically specify constraints on
feature combinations (a.k.a., configurations) in a variability model. In Figure 3(a), we
specify the valid combinations of our object store in a feature diagram. A feature dia-
gram is a graphical representation of a variability model defining a hierarchy between
features, in which each child feature depends on its parent feature [Kang et al. 1990].
We distinguish between concrete features, which are mapped to implementation ar-
tifacts, such as feature modules, and abstract features, which are only used to group
other features [Thüm et al. 2011a]. In our example, each object store stores either
a single object (feature SingleStore) or several (feature MultiStore). Furthermore, an
object store may have the optional feature AccessControl. Valid feature combinations
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Fig. 4. In domain engineering, variability models and domain artifacts are created, which are used in
application engineering to automatically generate software products based on feature selections.

can alternatively be specified using propositional formulas [Batory 2005], as shown in
Figure 3(b); each variable encodes the absence or presence of a particular feature in
the final product, and the overall formula yields true for all valid configurations. In our
example, there are four configurations that are valid according to the variability model;
they are enumerated in Figure 3(c)—yet another representation of a variability model,
in which abstract features are usually omitted as they have no influence on generated
products [Thüm et al. 2011a].

Automatic Product Generation from Domain Artifacts. In Figure 4, we illustrate the
processes of domain engineering and application engineering (in a simplified form),
both central to the development of software product lines. In domain engineering, a
developer creates a variability model describing the valid combinations of features.
Furthermore, a developer creates reusable software artifacts (i.e., domain artifacts)
that implement each feature. For example, the feature modules of the object store are
domain artifacts. In application engineering, the developer determines a selection of
features that serves the needs of the user best and that is valid according to the vari-
ability model. Based on this selection and the domain artifacts created during domain
engineering, the software product containing the selected features is generated auto-
matically. For example, composing the feature modules SingleStore and AccessControl
results in a store tailored for a particular user.

In our survey, we focus on implementation techniques for software product lines that
support the automatic generation of products based on a selection of features. Once
a user selects a valid subset of features, a generator derives the corresponding prod-
uct, without further user assistance, such as manual assembly or providing glue code.
Examples of such implementation techniques are preprocessors [Liebig et al. 2010],
generative programming [Czarnecki and Eisenecker 2000], feature-oriented program-
ming [Prehofer 1997; Batory et al. 2004], and aspect-oriented programming [Kiczales
et al. 1997]. The overall goal is to minimize the effort to tailor software products to the
needs of the user.

Correctness of Software Product Lines. An interesting issue in our running example
(introduced deliberately) is that one of the four valid products misbehaves. The purpose
of feature AccessControl is to prohibit access to sealed stores. We could specify this
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intended behavior formally, for example, using temporal logic:

|= G AccessControl ⇒ (state access (Store s) ⇒ ¬ s.sealed)

The formula states, given that feature AccessControl is selected, whenever the object
store s is accessed, the object store is not sealed. If we select feature AccessControl
in combination with MultiStore as illustrated in Figure 2, the specification of feature
AccessControl is violated; a client can access a store using method readAll even though
the store is sealed.

There are several solutions to solve this misbehavior. We could modify the variability
model to forbid the critical feature combination P4, we could change the specification, or
we could resolve the problem with alternative implementation patterns. For instance,
we can alter the implementation of feature AccessControl by refining method readAll
in analogy to methods read and set . While this change resolves the misbehavior when
combining MultiStore and AccessControl, it introduces a new problem: the changed
implementation of AccessControl no longer composes with SingleStore, because it at-
tempts to override method readAll, which is not present in this configuration. The
illustrated problem is called the optional feature problem [Liu et al. 2006; Kästner
et al. 2009]: the implementation of a certain feature may rely on the implementation
of another feature (e.g., caused by method references), and thus the former feature
cannot be selected independently, even if it is desired by the user.

The point of our example is to illustrate how products can misbehave or cause type
errors even though they are valid according to the variability model. Even worse,
such problems may occur only in specific feature combinations (e.g., only in P4), out of
potentially millions of combinations that are valid according to the variability model;
hence, they are hard to find and may show up only late in the software life cycle.
Inconsistencies between the variability model and the implementation have repeatedly
been observed in real product lines and are certainly not an exception [Thaker et al.
2007; Kästner et al. 2012a; Tartler et al. 2011; Kolesnikov et al. 2013; Medeiros et al.
2013]. Ideally, analysis strategies for software product lines are applied in domain
engineering rather than application engineering to detect faults as early as possible.

2.2. Software Analyses

We briefly introduce important software analyses that have been applied and adapted
to software product lines (from lightweight to heavyweight). We focus on analyses that
operate statically; that is, we exclude runtime analyses and testing, because they are
discussed in dedicated surveys [Tevanlinna et al. 2004; Engström and Runeson 2011;
Da Mota Silveira Neto et al. 2011; Oster et al. 2011; Lee et al. 2012]. Each of the
discussed analyses has its strengths and weaknesses. We argue that a wide variety
of analyses are needed to increase the quality of software, in general, and software
product lines, in particular. We discuss type checking, static analysis, model checking,
and theorem proving. There are no clear distinctions between these analyses and gray
zones between them, depending on individual definitions. For example, arguably they
can all be defined as some form of abstract interpretation [Cousot and Cousot 1977].
We make a simple distinction based on commonly used terms.

Type Checking. A type system is a syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute
[Pierce 2002]. Type systems can be used to syntactically classify programs into well-
typed and ill-typed programs, based on a set of inference rules. Type checking refers to
the process of analyzing whether a program is well typed according to a certain type
system defined for a particular programming language. A type checker is the actual
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tool-analyzing programs written in a certain language, usually part of a compiler or
linker [Pierce 2002]. In model-driven development, type checking is essentially the
analysis of well-formedness of a model with respect to its metamodel [Atkinson and
Kühne 2003].

By means of type checking, we can detect type errors such as incompatible type
casts, dangling method references, and duplicate class names. For instance, a dangling
method reference occurs if a method with a certain signature is called that has not
been declared. For our object store, we discussed that if we would call method readAll
in feature AccessControl, then a dangling method reference would occur in product P2.
Other examples are that a programmer may have misspelled the name of a method, or
the number of arguments is not correct.

A type system can be seen as a formal specification that all programs written in a
certain language must conform to. Pierce [2002] argues that, in principle, types can be
created to check arbitrary specifications. However, in practice, type systems are limited
to properties that are efficiently statically decidable and checkable. Type checkers are
typically included in compilers and scale to large programs, and then require no user
input and can be fully automated.

Static Analysis. The term static analysis (a.k.a. program analysis) refers to analyses
that operate at compile time and approximate the set of values or behaviors arising
dynamically at runtime when executing a program [Nielson et al. 2010]. Examples
for static analyses are traditional data-flow and control-flow analyses, but also alias
analyses, program slicing, and constraint-based analyses [Weiser 1981; Muchnick 1997;
Nielson et al. 2010]. A key technique in static analysis is that the undecidability of
program termination due to loops or recursion is handled using approximation [Nielson
et al. 2010].

Originally, static analyses have been used for compiler optimizations [Muchnick
1997; Nielson et al. 2010] and debugging [Weiser 1981]; a more recent application
is program verification [Nielson et al. 2010]. For example, a static analysis is able
to find accesses to uninitialized memory regions or variables. Some static analysis
tools operate on source code (e.g., LINT for C [Darwin 1986]), others on byte code (e.g.,
FINDBUGS for Java byte code [Hovemeyer and Pugh 2004]). Static analyses are either
integrated into compilers such as CLANG or implemented in the form of dedicated tools
such as FINDBUGS [Hovemeyer and Pugh 2004].

The difference to type checking is that not every behavioral property of interest
has to be encoded with types; the difference to other verification techniques, such as
model checking or theorem proving, is that branches in programs are typically not
interpreted and values are approximated. Similar to type checking, static analyses run
automatically and often do not require user input such as providing a specification.

Model Checking. Model checking is an automatic technique for formal verification.
Essentially, it verifies that a given formal model of a system satisfies its specification
[Clarke et al. 1999]. While early work concentrated on abstract system models or models
of hardware, recently, software systems, such as C or Java programs, came into focus
in software model checking [Visser et al. 2000; Beyer and Keremoglu 2011]. Often,
specifications are concerned with safety or liveness properties, such as the absence
of deadlocks and race conditions, but also application-specific requirements can be
formulated. To solve a model-checking problem algorithmically, both the system model
and the specification must be formulated in a precise formal language.

A model checker is a tool that performs a model-checking task given to a system
to verify and its specification. Some model checkers require models with dedicated
input languages for this task (e.g., Promela in SPIN [Holzmann 1997], CMU SMV in
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NUSMV [Cimatti et al. 1999]), while others extract models directly from source code
(e.g., C in BLAST [Beyer et al. 2007] or CPACHECKER [Beyer and Keremoglu 2011], Java
in JPF[Visser et al. 2000]). After encoding a model-checking problem into the model
checker’s input language, the model-checking task is fully automated; each property
either is stated valid or a counterexample is provided. The counterexample helps the
user to identify the source of invalidity. The most severe practical limitation of model
checkers is the limited size of the state space they can handle [Schumann 2001] (e.g.,
they may run out of time or main memory).

Model checking usually requires a model of the program input, which is not needed
for type checking and static analyses. In addition, model checking usually scales only
to much smaller programs than type checking and static analyses. Avoiding the state-
space explosion requires manual effort for system abstraction or to configure heuristics
of model checkers. Nevertheless, model checking can uncover faults that type checking
and static analyses can not.

Theorem Proving. Theorem proving is a deductive approach to prove the validity of
logical formulas. A theorem prover is a tool processing logical formulas by applying
inference rules on them [Schumann 2001]; it assists the programmer in verifying the
correctness of formulas, which can be achieved interactively or automatically. Inter-
active theorem provers, such as COQ [Bertot and Castéran 2004], PVS [Owre et al.
1992], and ISABELLE/HOL [Nipkow et al. 2002], require the user to write commands ap-
plying inference rules. Instead, automated theorem provers, such as PROVER9,2 SPASS
[Weidenbach et al. 2009], and SIMPLIFY [Detlefs et al. 2005], try to evaluate the va-
lidity of theorems without further assistance by the user. Theorem provers usually
provide a language to express logical formulas (theorems). Additionally, interactive
theorem provers also need to provide a language for proof commands. Automated theo-
rem provers are often limited to first-order logic or subsets thereof, whereas interactive
theorem provers are available for higher-order logic and typed logic. Theorem provers
are able to generate proof scripts containing deductive reasoning that can be inspected
by humans.

Theorem provers are used in many applications because of their high expressive-
ness and generality. In the analysis of software products, theorem provers are used to
formally prove that a program fulfills its specification. Given a specification in some
formal language and an implementation, a verification tool generates theorems, which
are the input for the theorem prover. If a theorem cannot be proved, theorem provers
point to the part of the theorem that could not be proved.

Compared to other verification techniques, the main disadvantage of theorem proving
is that experts with an education in logical reasoning and considerable experience are
needed [Clarke et al. 1999]. Even if the verification procedure can be fully automated
in some cases, users still need experience to define formal specifications. Contrary to
type checking and static analysis, model checking and theorem proving often do not
scale to large programs.

2.3. Product-Line Specification

Many software analyses, such as model checking and theorem proving, require spec-
ifications defining the expected behavior of the programs to analyze. These analyses
check the conformance of the actual behavior of a given program with the expected
behavior. While surveying the literature, we identified different strategies to define

2http://www.cs.unm.edu/∼mccune/prover9/.
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specifications for product-line analyses. We briefly present each specification strategy
and will use them to classify approaches for product-line analyses in later sections.

Domain-Independent Specification. For some analyses, it is sufficient to define a spec-
ification independent of the analyzed product line—referred to as domain-independent
specification. A prominent example for a domain-independent specification is a type
system, which is assumed to hold for every software product line written using a par-
ticular product-line implementation technique and programming language. Further
examples for domain-independent specifications are parsers (i.e., syntax conformance)
[Kästner et al. 2011], the absence of runtime exceptions [Post and Sinz 2008; Rubanov
and Shatokhin 2011], path coverage [Shi et al. 2012], or that every program statement
in a software product line appears in, at least, one product [Tartler et al. 2011]. How-
ever, a domain-independent specification can only describe properties that are common
across product lines.

Family-Wide Specification. If a domain-independent specification is insufficient, we
can define a specification for a particular product line that is assumed to hold for all
products—called family-wide specification. For example, in a product line of pacemak-
ers, all products have to adhere to the same specification, stating that a heartbeat is
generated whenever the heart stops beating [Liu et al. 2007]. A limitation of family-
wide specifications is that we cannot express varying behavior that is common to some
but not all products of the product line.

Product-Based Specification. In principle, we could define a specification for ev-
ery software product individually—referred to as product-based specification. We can
use any specification technique from single-system engineering without adoption for
product-based specification. However, specifying the behavior for every product scales
only for software product lines with few products. Furthermore, it involves redundant
effort to define behavior that is common for two or more products.

Feature-Based Specification. In order to achieve reuse for specifications, we can spec-
ify the behavior of features instead of products—called feature-based specification [Apel
et al. 2013b]. Every feature is specified without any explicit reference to other features.
Nevertheless, they may be used to verify properties across features (e.g., for feature-
interaction detection) [Apel et al. 2013b]. For example, in our object store, we could
define a specification for feature AccessControl that objects cannot be accessed if the
store is sealed. This specification would apply to all products that contain the feature
AccessControl.

Family-Based Specification. Finally, it is also possible to define specifications that
particular subsets of all products have in common—referred to as family-based spec-
ification. In a family-based specification, we can specify properties of individual fea-
tures or feature combinations. Basically, we can provide specifications together with
a presence condition, which describes a subset of all valid configurations (e.g., by a
propositional formula). Alternatively, features can be referenced directly in the speci-
fication. For example, in our object store, we might want to specify that objects cannot
be accessed using method readAll if the store is sealed and the product contains the
features MultiStore and AccessControl. In fact, family-based specification generalizes
family-wide, product-based, and feature-based specifications, in a sense that such spec-
ifications can be expressed as special family-based specifications. With a family-based
specification, we can automatically generate specifications of individual products, sim-
ilar to product generation. Several family-based specifications require extensions to
existing specification techniques [Asirelli et al. 2012; Classen et al. 2013], as features
are referenced explicitly to model variability in properties.

ACM Computing Surveys, Vol. 47, No. 1, Article 6, Publication date: May 2014.



A Classification and Survey of Analysis Strategies for Software Product Lines 6:11

2.4. Classification and Survey Methodology

Based on the introduction of software product lines, software analyses, and strate-
gies for product-line specification, we present an overview of our classification of
product-line analyses. Then, we explain the methodology used to perform our literature
survey.

In the last decade, researchers have proposed a number of analysis approaches
tailored to software product lines. The key idea is to exploit knowledge about features
and the commonality and variability of a product line to systematically reduce analysis
effort. Existing product-line analyses are typically based on standard analysis methods,
in particular, type checking, static analysis, model checking, and theorem proving. All
these methods have been used successfully for analyzing single software products.
They have complementary strengths and weaknesses, for instance, with regard to
practicality, correctness guarantees, and complexity; so, all of them appear useful for
product-line analysis. However, in most cases, it is hard to compare these analysis
techniques regarding scalability or even to find the approach that fits a given product-
line scenario best. The reason is that the approaches are often presented using varying
nomenclatures, especially if multiple software analyses are involved.

In our survey, we classify existing product-line analyses based on how they attempt
to reduce analysis effort—the analysis strategy. We distinguish three basic strategies,
indicating whether the analysis is applied to products, features, or the whole product
line: product-based, feature-based, and family-based analyses. We explain the basic
strategies and discuss existing approaches implementing each strategy. While sur-
veying the literature, we found approaches that actually combine some of the basic
strategies. Hence, we discuss possible combinations as well. For each strategy, we pro-
vide a definition and an example, we discuss advantages and disadvantages, and we
classify existing approaches. Our main classification identifying the underlying analy-
sis strategy is presented in Sections 3–6. Besides the main classification, we distinguish
approaches also based on implementation strategies (see Section 2.1), the applied soft-
ware analysis (see Section 2.2), and specification strategies (see Section 2.3).

We reached our classification in an iterative process, in which we repeatedly drafted
a classification and classified articles accordingly. We collected relevant articles from
research literature guided by our knowledge and experience—we have all actively
worked in the field of product-line analyses for several years. In addition, we discussed
analyses for software product lines at the Dagstuhl meetings 11021 and 13091, and
we asked for contributions—several researchers tagged relevant articles in the online
repository of researchr.org.3 In our survey, we include articles independent of the
time being published and the kind of publication (e.g., article in journal, conference, or
technical report). The oldest articles we found were published in 2001 [Klaeren et al.
2001; Fisler and Krishnamurthi 2001; Plath and Ryan 2001; Nelson et al. 2001]. We
assigned each article to, at least, two of the authors, who summarized the approach and
analysis strategy; each time we sought interpersonal consensus to ensure validity. In
case of doubt, we discussed the article with all authors of this survey or contacted the
original authors of the article and refined the classification. We repeated the process
until we reached consensus.

For clarity, we decided to remove articles subsumed by newer articles. An article
is considered as subsumed if a follow-up article by the same authors is classified
identically and the presented analyses are similar. As a consequence, while we classified
123 articles in total, we discuss only 90 articles in our survey. We set up a website

3http://researchr.org/tag/variability-aware-analysis/.
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presenting our results including subsumed papers, and we invite other researchers to
contribute to the ongoing process of classifying research on product-line analyses.4

3. PRODUCT-BASED ANALYSES

Pursuing a product-based analysis, the products of a product line are generated and
analyzed individually, each using a standard analysis technique. The simplest approach
is to generate and analyze all products in a brute-force fashion, but this is feasible only
for product lines with few products. A typical strategy is to sample a smaller number of
products, usually based on some coverage criteria, such that still reasonable statements
on the correctness or other properties of the entire product line are possible [Oster et al.
2010; Perrouin et al. 2010; Nie and Leung 2011].

Definition 3.1 (Product-Based Analysis). An analysis of a software product line is
product based if it operates only on generated products or models thereof, whereas the
variability model may be used to generate all products or to implement optimizations.
A product-based analysis is called optimized if it operates on a subset of all products
(a.k.a. sample-based analysis) or if intermediate analysis results of some products
are reused for other products; it is called unoptimized otherwise (a.k.a. exhaustive,
comprehensive, brute-force, and feature-oblivious analysis).

3.1. Example

In our object-store example, we can generate and compile every product to detect type
errors. However, we could save analysis effort when checking whether the specification
of feature AccessControl is satisfied: First, all products that do not contain AccessCon-
trol do not need to be checked. Second, if two products differ only in features that do
not concern class Store (not shown in our example; e.g., features that are concerned
with other data structures), only one of these products needs to be checked.

3.2. Advantages and Disadvantages

The main advantage of product-based analyses is that every existing software analysis
can easily be applied in the context of software product lines. In particular, existing
off-the-shelf tools can be reused to analyze individual products. Furthermore, product-
based analyses can easily deal with changes to software product lines that alter only a
small set of products, because only changed products need to be reanalyzed.

A specific advantage of an unoptimized product-based analysis is the soundness and
completeness with respect to the analysis that is scaled from single-system engineering
(i.e., the base analysis). First, every fault detected using this strategy is a fault of a
software product that can be detected by the base analysis (soundness). Second, every
fault that can be detected using the base analysis is also detected using an unoptimized
product-based analysis (completeness). Note that while the base analysis itself might
be unsound or incomplete with regard to some specification and analysis goal, this
strategy is still sound and complete with regard to the base analysis (i.e., it will detect
the same faults).

However, there are serious disadvantages of product-based analyses. Already gen-
erating all products of a software product line is often infeasible, because the number
of products is up-to exponential in the number of features. Even if the generation of
all products is possible, separate analyses of individual products perform inefficient,
redundant computations due to similarities between the products.

The analysis results of product-based analyses refer necessarily to generated arti-
facts of products, and not to domain artifacts implemented in domain engineering,

4http://fosd.net/spl-strategies/.
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which gives rise to two difficulties. First, a programmer may need to read and under-
stand the generated code in order to understand the analysis results (e.g., the composed
class Store in Figure 2 contains all members introduced by the features of the analyzed
product). Second, if a change to the code is necessary, it must be applied to the do-
main artifacts instead of generated artifacts, and automatic mappings are not always
possible [Kuhlemann and Sturm 2010].

While an unoptimized product-based strategy is often not feasible in practice, it
serves as a baseline for other strategies in terms of soundness, completeness, and
efficiency. Ideally, an analysis strategy is sound and complete with respect to the base
analysis, and, at the same time, it is more efficient than the unoptimized product-based
strategy. However, we will also discuss strategies that are incomplete or unsound to
increase the efficiency of the overall analysis.

3.3. Unoptimized Product-Based Analyses

Product-based strategies are widely used in practice, because they are simple and
can be applied without creating and using new concepts and tools. For example,
when generating and compiling individual software products, type checking is usually
done internally by the compiler (e.g., the Java compiler). Type checking is redundant
when different products share implementation artifacts, and sharing artifacts between
products is the common case and goal in product-line engineering [Czarnecki and
Eisenecker 2000; Apel et al. 2013a].

In general, we found no proposal in the literature explicitly suggesting an unop-
timized product-based analysis. However, we found some approaches that actually
use product-based analyses for specific implementation mechanisms and do not dis-
cuss how to deal with many products; these approaches apply type checking [Apel
et al. 2008a; Buchmann and Schwägerl 2012; Istoan 2013], static analyses [Klaeren
et al. 2001; Scholz et al. 2011], model checking [Ubayashi and Tamai 2002; Kishi and
Noda 2006; Fantechi and Gnesi 2008; Apel et al. 2010b; Istoan 2013; Bessling and
Huhn 2014], and theorem proving [Harhurin and Hartmann 2008] to software product
lines. The unoptimized product-based analysis strategy has been used with domain-
independent specifications [Apel et al. 2008a; Buchmann and Schwägerl 2012; Istoan
2013], family-wide specifications [Ubayashi and Tamai 2002; Kishi and Noda 2006;
Fantechi and Gnesi 2008; Istoan 2013], and feature-based specifications [Klaeren et al.
2001; Harhurin and Hartmann 2008; Apel et al. 2010b; Scholz et al. 2011; Istoan 2013;
Bessling and Huhn 2014]. These approaches considered composition-based implemen-
tation [Klaeren et al. 2001; Ubayashi and Tamai 2002; Apel et al. 2008a; Scholz et al.
2011], composition-based design [Harhurin and Hartmann 2008; Apel et al. 2010b;
Istoan 2013; Bessling and Huhn 2014], and annotation-based design [Kishi and Noda
2006; Fantechi and Gnesi 2008; Buchmann and Schwägerl 2012] as domain artifacts.

3.4. Optimized Product-Based Analyses

One reason for the success of software product lines is that new combinations of fea-
tures can often be derived automatically. The effort for the development of new products
is smaller than developing them from scratch. However, unoptimized product-based
strategies hinder an efficient analysis of software product lines, and thus efficient de-
velopment. The overall goal of product-line engineering is to scale product-line analyses
to a similar degree of efficiency as implementation techniques, as the development of
software product lines requires both efficient implementation strategies and efficient
analysis strategies. Several optimized product-based strategies have been proposed to
improve scalability and reduce redundant computations. Optimizations proposed in
the literature focus either on detecting redundant parts in analyses or on eliminating
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products that are already covered by other analysis steps, according to certain coverage
criteria.

Optimized Product-Based Model Checking. Katz [2006] introduces aspect categories
to optimize model checking of aspect-oriented programs. According to our classification,
they discuss model checking for composition-based implementation and feature-based
specification. In the first phase, a static analysis classifies aspects into spectative, reg-
ulative, and invasive aspects.5 It is applied to individual products; Katz [2006] does not
discuss how to handle many products. However, the static analysis in the first phase
can save effort when model checking products in the second phase. He discusses which
temporal properties can be influenced by spectative and regulative aspects. When an-
alyzing certain properties using model checking, one can omit products that contain
spectative and regulative aspects. Hence, we classify the two phases of this approach as
unoptimized product-based static analysis and optimized product-based model check-
ing. Similarly, Cordy et al. [2012d] discuss the notion of conservative features, which
are features that do not remove behavior. They discuss which properties are preserved
when adding conservative features to a product line. In their approach, they do not
need to verify some properties for some products.

Optimized Product-Based Theorem Proving. Bruns et al. [2011] present a product-
based analysis strategy for formal verification of delta-oriented software product lines.
Their approach is based on contracts defined in delta modules, which we classify as
feature-based specification and composition-based implementation. Delta modules are
similar to feature modules but can also remove program elements. Bruns et al. [2011]
generate all derivable software products and verify them incrementally using inter-
active theorem proving. To this end, a base product needs to be chosen and verified
completely. For all other products, they choose the base product as a starting point,
copy all proofs to the current product, and mark those as invalid that do not hold due
to the differences to the base product. Only invalidated proofs need to be redone and
some new proof obligations need to be proved. However, in the end, still all products
need to be generated and analyzed.

Sample-Based Analyses. Other approaches improve the efficiency of the product-
based strategy by eliminating products from the set of products to analyze, because
some products may already be covered by the analysis of other products. A frequently
stated assumption is that most faults are caused by an interaction of only few features
[Nie and Leung 2011; Kuhn et al. 2013]. Hence, those approaches retrieve a minimal set
of products fulfilling a given coverage criterion and only those products are analyzed.
While sampling is sound with respect to the base analysis, it is inherently incomplete
(i.e., it may miss defects of not covered products). While most coverage criteria such as
pair-wise or t-wise coverage are often proposed for testing of single systems [Nie and
Leung 2011] and product lines [Oster et al. 2010; Perrouin et al. 2010], they have also
been applied to scale-type checking [Jayaraman et al. 2007; Liebig et al. 2013], static
analysis [Liebig et al. 2013], and model checking [Plath and Ryan 2001; Apel et al.
2013c] to software product lines.

In pair-wise coverage, for every pair of features (F, G), products must exist in the
calculated set containing F but not G, G but not F, and both features F and G, whereas
only combinations of features are considered that are valid according to the variabil-
ity model. While pair-wise coverage can only detect all pair-wise interactions, t-wise

5Aspects can be used to implement features; the difference to feature modules is discussed elsewhere [Apel
et al. 2008b].
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coverage is a generalization of pair-wise coverage to detect higher-order interactions
for up to t features. Sample-based analyses have been discussed for composition-based
implementation [Apel et al. 2013c], composition-based design [Plath and Ryan 2001;
Jayaraman et al. 2007], and annotation-based implementations [Liebig et al. 2013]. We
classify their used specification strategies as domain-independent specification [Plath
and Ryan 2001; Jayaraman et al. 2007; Liebig et al. 2013], family-wide specification
[Liebig et al. 2013], and feature-based specification [Apel et al. 2013c]. Recent evalua-
tions for type checking, static analysis, and model checking have shown that there are
more efficient strategies for product-line analysis [Liebig et al. 2013; Apel et al. 2013c],
which we discuss in the following sections.

4. FAMILY-BASED ANALYSES

The main problem with product-based analyses is redundant computations, because
the products of a software product line share code [Czarnecki and Eisenecker 2000; Apel
et al. 2013a]. Besides an optimized product-based strategy, another option to achieve a
more efficient analysis is to consider domain artifacts such as feature modules instead
of generated artifacts (i.e., products).

Family-based. analyses operate on domain artifacts and valid combinations thereof,
as specified by a variability model. The variability model is usually converted into a
logic formula to allow analysis tools to reason about all valid combinations of features
(e.g., a satisfiability solver can be used to check whether a method is defined in all
valid feature combinations, in which it is referenced). The overall idea is to analyze
domain artifacts and variability model in concert, from which we can conclude that
some intended properties hold for all products. Often, all implementation artifacts of
all features are merged into a single virtual product (a.k.a. metaproduct or product
simulator). The virtual product is not necessarily a valid product due to optional and
mutually exclusive features [Thüm et al. 2012].

Definition 4.1 (Family-Based Analysis). An analysis of a software product line is fam-
ily based if it (a) operates only on domain artifacts and (b) incorporates the knowledge
about valid feature combinations.

4.1. Example

A family-based type checker, for instance, can analyze the code base of the object store
example (i.e., all feature modules) in a single pass, although the features are combined
differently in the individual products. To this end, it takes variability into account, in
the sense that individual feature modules may be present or absent in certain products.
Regarding method invocations, it checks whether a corresponding target method is
declared in every valid product in which it is invoked. In Figure 5, we illustrate how a
family-based type system checks whether the references of a slightly modified feature
module AccessControl to the methods read and readAll are well typed in every valid
product. For method read, the type system infers that the method is introduced by the
feature modules SingleStore and MultiStore, and that one of them is always present
(checked using a satisfiability solver; green, solid arrows).6 For method readAll, it infers
that the method is introduced only by feature module MultiStore, which may be absent
when feature module AccessControl is present (red, dotted arrow). Hence, the type
system reports a fault and produces a counterexample in terms of a valid feature
selection that contains a dangling method invocation: {SingleStore, AccessControl}.

6A satisfiability solver can be used to check whether a propositional formula is a tautology by checking
whether the negation of the whole formula is unsatisfiable.
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Fig. 5. Checking whether references to the methods read and readAll are well typed in all products. VM
denotes the variability model of Figure 3 as propositional formula; a satisfiability solver determines whether
the formulas in the boxes are tautologies (the upper formula is, but the lower is not).

4.2. Advantages and Disadvantages

Family-based strategies have advantages and disadvantages compared to product-
based strategies; we begin with the advantages. First of all, not every individual prod-
uct must be generated and analyzed, because family-based analyses operate on domain
artifacts. Thus, family-based strategies avoid redundant computations across multiple
products, in which reasoning about variability and commonality prevents these dupli-
cate analyses.

Second, the analysis effort is not proportional to the number of valid feature combina-
tions. While the satisfiability problem is NP-complete, in practice, satisfiability solvers
perform well when reasoning about variability models [Mendonça et al. 2009; Thüm
et al. 2009]. Intuitively, the performance of family-based analyses is mainly influenced
by the number and size of feature implementations and the amount of sharing during
analysis [Brabrand et al. 2013], but largely independent of the number of valid feature
combinations. For comparison, the effort for product-based approaches increases with
every new product.

However, family-based strategies also have disadvantages. Often, known analysis
methods for single products cannot be used as they are. The reason is that the analysis
method must be aware of features and variability. Existing analysis methods and off-
the-shelf tools need to be extended, if possible, or new analysis methods need to be
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developed. For some software analyses, such as model checking and theorem proving,
there exist techniques to encode the analysis problem in an existing formalism or
language (e.g., using a metaproduct simulating all products) and reuse off-the-shelf
tools [Post and Sinz 2008; Apel et al. 2011; Thüm et al. 2012], but it is not clear
whether these techniques can be used for all kinds of software analyses.

Second, changing the domain artifacts of one feature or a small set of features usually
requires analyzing the whole product line again from scratch [Cordy et al. 2012b].
Hence, the effort for very large product lines with many features is much higher than
actually necessary, while the product line evolves over time. However, it is possible
to cache certain parts of the analysis, which may reduce the overall analysis effort
[Kästner et al. 2012a].

Third, changing the variability model usually requires analyzing the whole product
line again. For instance, if we add a new product or a small set of new products, it may
be faster to analyze these new products with a product-based strategy than analyze
the product line again using a family-based strategy. But similar to domain-artifact
changes, this depends on the analysis approach and available caching strategies. When
the variability model was specialized or refactored (i.e., no new products are added),
reanalyzing the product line could not reveal new faults [Thüm et al. 2011a].

Fourth, as family-based analyses consider all domain artifacts as a whole, the size
of the analysis problem can easily exceed physical boundaries such as the available
memory [Apel et al. 2013c]. Thus, family-based analysis may be infeasible for large
software product lines and expensive analyses.

Finally, family-based analyses assume a closed world—all features have to be known
during the analysis process (e.g., to look up all potential targets of method invocations).
In practice, this may be infeasible, for example, in multiteam development or software
ecosystems such as Eclipse. Note, whenever we want to analyze the whole software
product line, a closed world is required—independent of the chosen strategy.

4.3. Family-Based Syntax Checking

Although parsing detects only certain defects in source code (i.e., syntax conformance
with respect to a domain-independent specification), it is a necessary step for many
analyses such as type checking. While parsing is straightforward for modular product-
line implementation approaches such as feature-oriented programming or aspect-
oriented programming, it is complicated for product lines implemented with condi-
tional compilation. There are several approaches for family-based parsing of C code
with preprocessor directives that avoid preprocessing the code for each product sep-
arately by generating a variability-aware abstract syntax tree. Kästner et al. [2011]
implemented their approach in TYPECHEF, and Gazzillo and Grimm [2012] presented
SUPERC for parsing. Gazzillo and Grimm [2012] compare the efficiency of both tools.
Based on TYPECHEF, Medeiros et al. [2013] studied releases and commits of several
open-source product lines, such as BASH, CVS, and VIM. They found defects that have
remained unnoticed for years.

4.4. Family-Based Type Checking

Family-based strategies have been proposed by several authors for type checking of
software product lines. The majority of work on family-based type checking is about
creating variability-aware type systems (i.e., a domain-independent specification) and
proving that, whenever a product line is type safe according to the type system, all
derivable products are also well typed. The rules of these type systems contain reach-
ability checks (basically implications) making sure, among others, that every program
element is defined in all products where it is referenced. Variability-aware type sys-
tems have been developed for composition-based implementation [Thaker et al. 2007;

ACM Computing Surveys, Vol. 47, No. 1, Article 6, Publication date: May 2014.



6:18 T. Thüm et al.

Huang et al. 2007; Kim et al. 2008; Kuhlemann et al. 2009; Delaware et al. 2009; Apel
et al. 2010a, 2010c; Kolesnikov et al. 2013], composition-based design [Alférez et al.
2011], annotation-based implementation [Aversano et al. 2002; Kim et al. 2008; Kenner
et al. 2010; Teixeira et al. 2011; Kästner et al. 2012a, 2012b; Liebig et al. 2013; Le et al.
2013; Chen et al. 2014], and annotation-based design [Czarnecki and Pietroszek 2006;
Metzger et al. 2007; Heidenreich 2009]. For composition-based product lines, type
checking ensures safe composition [Thaker et al. 2007; Kim et al. 2008]. Post and Sinz
[2008] and Liebig et al. [2013] applied family-based type checking to parts of the Linux
kernel.

Actually, there are two approaches to family-based type checking [Apel et al. 2010c;
Huang et al. 2011]. Local approaches perform distinct reachability checks for every pro-
gram element [Kim et al. 2008; Apel et al. 2010a; Kenner et al. 2010; Huang et al. 2011;
Kästner et al. 2012a, 2012b; Liebig et al. 2013; Kolesnikov et al. 2013]. This results in
many small satisfiability problems to solve, which can be cached efficiently [Kolesnikov
et al. 2013]. Global approaches generate, based on all inferred dependencies between
program elements, a single large propositional formula that is checked for satisfiability
at the end of type checking [Thaker et al. 2007; Delaware et al. 2009; Teixeira et al.
2011; Alférez et al. 2011; Le et al. 2013]. This results in one large satisfiability problem
to solve. Apel et al. [2010c] and Huang et al. [2011] discuss strengths and weaknesses
of local and global approaches.

Type systems for product lines are often designed for explicitly typed languages,
in which the expected types are given explicitly in the product line’s implementa-
tion. However, when dealing with implicitly typed languages, instead of only checking
whether a term is of a given type, we also need to infer types for given terms. A type
system that performs type inference for an extension of the lambda calculus has been
presented by Chen et al. [2014].

4.5. Family-Based Static Analysis

Recently, researchers have proposed family-based static analyses for software product
lines, in particular, intraprocedural [Brabrand et al. 2013; Liebig et al. 2013; Midtgaard
et al. 2014] and interprocedural [Bodden et al. 2013] data-flow analyses. Furthermore,
static analyses have been proposed [Ribeiro et al. 2010; Tartler et al. 2011; Adelsberger
et al. 2014; Sabouri and Khosravi 2014] that do not scale an existing static analysis
known from single-system engineering, but rather focus on an analysis that is spe-
cific to product lines—which we refer to as family-specific analyses. Interestingly, most
approaches for family-based static analysis are designed for annotation-based imple-
mentations and domain-independent specifications. As an exception, Adelsberger et al.
[2014] focus on composition-based implementations with feature-oriented program-
ming, and Sabouri and Khosravi [2014] propose a family-wide specification. Overall,
these analyses support product lines implemented in C [Tartler et al. 2011; Liebig
et al. 2013] and Java [Ribeiro et al. 2010; Brabrand et al. 2013; Bodden et al. 2013;
Adelsberger et al. 2014]. For some of these approaches, existing tools have been ex-
tended such as SOOT [Ribeiro et al. 2010; Brabrand et al. 2013; Bodden et al. 2013] and
IFDS [Bodden et al. 2013].

Ribeiro et al. [2010] proposed the first family-based static analysis. Their goal was
not product-line verification, but rather to support product-line development and
prevent errors up-front. They show how to infer interfaces for preprocessor-based
product lines using family-based data-flow analysis. Tartler et al. [2011] propose a
family-based static analysis for defect detection in the Linux kernel. They analyze
whether code blocks surrounded by #ifdef directives are dead (i.e., not contained in
any product) or undead (i.e., contained in all products that contain the parent block).
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Adelsberger et al. [2014] propose a static analysis for dynamic software product lines
implemented with feature-oriented programming. The goal of their analysis is to assess
the complexity of a reconfiguration at runtime. All these approaches are family-specific
analyses.

In contrast, family-based analyses have also been proposed to scale existing static
analyses from single-system engineering to product lines. Brabrand et al. [2013]
demonstrate how to transform any standard intraprocedural data-flow analysis into
a family-based data-flow analysis. They discuss three family-based approaches for
this task, which differ in how they introduce variability into the underlying analysis
abstractions (control-flow graph, the lattice storing the intermediate results, and the
corresponding transfer function). Bodden et al. [2013] propose a similar data-flow
analysis, which is, however, interprocedural and requires less intrusive changes to the
internal analysis abstractions (i.e., only the control-flow graph is enriched with feature
constraints). This way, one can reuse an information-flow analysis that was designed
for regular programs also for software product lines, without having to change a single
line of analysis code. Liebig et al. [2013] report experiences with scaling family-based
data-flow analyses to real C product lines with thousands of features and millions of
lines of code. Midtgaard et al. [2014] show how to systematically lift static analyses
from single-system engineering to product lines. They propose variational abstract
interpretation to develop family-based static analyses that are correct by construction.
They exemplify their approach by means of constant propagation analysis. Sabouri
and Khosravi [2014] propose a static analysis to identify features that are irrelevant
for a given temporal property. These irrelevant features are then ignored during
family-based model checking to reduce the state space.

Family-based static analyses show significant performance speed-ups compare to
product-based static analyses. Brabrand et al. [2013] found that the family-based strat-
egy is, on average, three times faster than the unoptimized product-based approach,
without product generation and compilation, and almost eight times faster when in-
cluding product generation and compilation. While their approach is intraprocedural,
a comparison with an unoptimized product-based strategy is impractical for most other
approaches. With a huge number of products, such an experiment would take years
[Bodden et al. 2013; Liebig et al. 2013]. Nevertheless, Tartler et al. [2011] report that
they found 1,776 defects in the Linux kernel in 15 minutes, which sum up to 5,129
lines of dead code and superfluous #ifdef statements. Liebig et al. [2013] compare the
family-based strategy with several optimized product-based strategies, such as a single
configuration containing as many features as possible (i.e., allyesconfig), configuration
coverage [Tartler et al. 2012], and pair-wise sampling. They found that the family-
based strategy was slower than checking the single configuration but faster than all
other sampling strategies.

A further criterion to distinguish family-based analyses is when they consider the
variability model. A family-based analysis may use the dependencies of the variability
model already during the analysis—which we refer to as early variability-model consid-
eration. In contrast, a family-based analysis may incorporate the knowledge about valid
feature combinations only at the end of the analysis to rule out false positives—which
we refer to as late variability-model consideration. Most family-based static analyses
rely on early variability-model consideration [Ribeiro et al. 2010; Brabrand et al. 2013;
Bodden et al. 2013; Tartler et al. 2011; Adelsberger et al. 2014], whereas family-based
static analyses with late variability-model consideration have been proposed recently
[Bodden et al. 2013; Liebig et al. 2013]. Interestingly, Bodden et al. [2013] measured
that late variability-model consideration was slightly faster than early consideration
(i.e., ignoring the variability model during analysis is faster). However, it is not clear
whether this applies to static analyses in general.
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4.6. Family-Based Model Checking

Several approaches have been proposed for family-based model checking. The overall
idea is that a model of the product-line implementation is analyzed with respect to
the variability model and one or more properties. For a given property, the model
checker analyzes whether the property is fulfilled by all products. If not, the model
checker usually returns a propositional formula specifying those products that violate
the property [Gruler et al. 2008].

One distinguishing characteristic of approaches for family-based model checking
is whether they operate directly on source code or on an abstraction of a system.
The former is known as software model checking and the latter is referred to as
abstract model checking. The majority of approaches for family-based model check-
ing apply abstract model checking. Abstract models have been defined using I/O au-
tomata [Lauenroth et al. 2010], labeled transition systems [Gruler et al. 2008; Sabouri
and Khosravi 2012; ter Beek et al. 2013; Sabouri and Khosravi 2014], modal transi-
tion systems [Fischbein et al. 2006; Asirelli et al. 2012], featured transition systems
[Classen et al. 2010, 2013, 2014; Cordy et al. 2012a, 2012b, 2013a, 2013b; Sabouri and
Khosravi 2013a], featured timed automata [Cordy et al. 2012c], modal sequence di-
agrams [Greenyer et al. 2013], and actor models [Sabouri and Khosravi 2013b]. In
contrast, several authors proposed approaches for family-based software model check-
ing. These approaches analyze product lines written in C [Post and Sinz 2008; Apel et al.
2011, 2013c] and Java [Schaefer et al. 2010; Kästner et al. 2012c; Apel et al. 2013c].
Family-based model checking has been applied to composition-based [Apel et al. 2011,
2013c; Greenyer et al. 2013; Classen et al. 2013, 2014; Sabouri and Khosravi 2013a]
and annotation-based [Fischbein et al. 2006; Gruler et al. 2008; Post and Sinz 2008;
Lauenroth et al. 2010; Classen et al. 2010, 2013; Schaefer et al. 2010; Asirelli et al.
2012; Cordy et al. 2012a, 2012b, 2012c, 2013a, 2013b; Sabouri and Khosravi 2012,
2013b, 2014; ter Beek et al. 2013] product lines. Tool support for family-based model
checking is often built on existing tools such as CBMC [Post and Sinz 2008], PROMOVER

[Schaefer et al. 2010], CPACHECKER [Apel et al. 2011, 2013c], NUSMV [Greenyer et al.
2013; Classen et al. 2013, 2014], SPIN [Sabouri and Khosravi 2012; Classen et al. 2013;
Cordy et al. 2013b], UPPAAL [Cordy et al. 2012c], JPF [Apel et al. 2013c], AFRA [Sabouri
and Khosravi 2013a, 2014], MAUDE [ter Beek et al. 2013], and MODERE [Sabouri and
Khosravi 2013b].

Besides the product line’s source code or an abstraction thereof, family-based model
checking requires a formalism to encode properties (i.e., specifications) to be checked.
Most approaches are based on computation tree logic (CTL) [Lauenroth et al. 2010;
Greenyer et al. 2013; Classen et al. 2013, 2014; Cordy et al. 2013a] or linear temporal
logic (LTL) [Classen et al. 2010; Schaefer et al. 2010; Cordy et al. 2012b; ter Beek et al.
2013; Sabouri and Khosravi 2013b, 2014]. Gruler et al. [2008] and Sabouri and Khosravi
[2012] use the μ-calculus as a generalization of CTL and LTL. Cordy et al. [2012c] rely
on timed CTL, an extension of CTL with support for modeling real-time properties.
Asirelli et al. [2012] propose the branching-time temporal logic MHML to express
common dependencies of variability models in the product-line specification. Apel et al.
[2011] and Apel et al. [2013c] model temporal safety properties using aspect-oriented
programming and assertions. In contrast to all other approaches, Cordy et al. [2012a]
propose to model the product-line implementation and properties each as featured
transition systems, and they verify the properties by checking whether both featured
transition systems are in a simulation relation. These specification techniques have
been lifted to product lines using different strategies. The surveyed approaches use
domain-independent [Post and Sinz 2008; Sabouri and Khosravi 2013a], family-wide
[Fischbein et al. 2006; Gruler et al. 2008; Schaefer et al. 2010; Sabouri and Khosravi
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2012, 2013b, 2014; Cordy et al. 2012c; Greenyer et al. 2013; ter Beek et al. 2013],
feature-based [Lauenroth et al. 2010; Classen et al. 2010; Apel et al. 2011, 2013c],
and family-based specifications [Asirelli et al. 2012; Cordy et al. 2012a, 2012b; Classen
et al. 2013; Cordy et al. 2013a; Cordy et al. 2013b; Classen et al. 2014].

Most approaches for family-based model checking rely on early variability-model
consideration. That is, the variability model is used during analysis to ignore paths for
invalid feature combinations. In contrast, Classen et al. [2013] discuss family-based
model checking with late variability-model consideration. The variability model is ig-
nored during model checking, and the output of model checking is then combined with
the variability model to prevent false positives. False positives can occur if a property is
violated only by invalid configurations. By means of an empirical evaluation, Classen
et al. [2013] found that family-based model checking with early variability-model con-
sideration is about 7% faster than with late consideration. This is in contrast to results
for static analyses, where some experiments revealed the opposite (see Section 4.5).
It is up to future work to find the fundamental reasons for this difference between
family-based model checking and static analysis.

4.7. Family-Based Theorem Proving

When we started working on this survey, there was no approach applying the family-
based strategy to theorem proving. Based on this insight, some of the authors (Thüm,
Schaefer, and Apel) proposed family-based theorem proving for product lines imple-
mented with feature-oriented programming [Thüm et al. 2012]. Similar to approaches
for family-based model checking, all feature modules are translated into a single
metaproduct that can be passed to the off-the-shelf verification tool KeY. In addition to
the translation of feature modules, feature-based specifications given in an extension
of the Java Modeling Language are translated into a metaspecification (i.e., a family-
based specification). Instead of checking that each product fulfills its specification, it
is sufficient to check that the metaproduct conforms to the metaspecification, which
saves 85% of the calculation time for automatic verification for the product line of bank
accounts.

5. FEATURE-BASED ANALYSES

Software product lines may also be analyzed using a feature-based strategy. That is, all
domain artifacts implementing a certain feature are analyzed in isolation (in bundles
assigned to individual features) without considering other features or the variability
model. The idea of feature-based analyses is to reduce the potentially exponential num-
ber of analysis tasks (i.e., for every valid feature combination) to a linear number of
analysis tasks (i.e., for every feature) by accepting that the analysis might be incom-
plete. The assumption of feature-based analysis is that certain properties of a feature
can be analyzed modularly, without reasoning about other features and their relation-
ships. Similar to family-based strategies, feature-based strategies operate on domain
artifacts instead of generated products. Contrary to family-based strategies, no vari-
ability model is needed as every feature is analyzed only in isolation. Feature-based
analyses are sound and complete with respect to the base analysis, if the properties and
the analyses are compositional with respect to the features (i.e., the analysis results
cannot be invalidated by interactions of features).

Definition 5.1 (Feature-Based Analysis). An analysis of a software product line is
feature based if (a) it operates only on domain artifacts and (b) software artifacts
belonging to a feature are analyzed in isolation (i.e., knowledge about valid feature
combinations is not used) and feature interactions are not considered.
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Fig. 6. Feature-based type checking reasons about features in isolation. For example, references to sealed
can be checked entirely within feature AccessControl. But, references to read and readAll cut across feature
boundaries and cannot be analyzed with feature-based type checking.

5.1. Example

In the object-store example, we can analyze each of the three feature modules in
isolation to some extent. First, we can parse each feature module in isolation to make
sure that it conforms to the syntax and to create an abstract syntax tree for each feature
module. For syntax checking, it is sufficient to consider each feature module in isolation,
as syntactic correctness is independent of other features, and thus a compositional
property. Second, the type checker uses the abstract syntax tree to infer which types
and references can be resolved by a feature itself and which have to be provided by
other features. As an example, all references to field sealed are internal and can be
checked within the implementation of feature AccessControl, as illustrated in Figure 6.
That is, there is no need to check this reference for every product. However, some of
the references cut across feature boundaries and cannot be checked in a feature-based
fashion. Well-typedness is not a compositional property. For example, references to
the methods read and readAll of feature AccessControl cannot be resolved within the
feature.

5.2. Advantages and Disadvantages

Feature-based analyses have a strong disadvantage that we want to discuss first. A
feature-based analysis can only detect issues within a certain feature and cannot rea-
son about issues across features, because features are only analyzed in isolation. A
well-known problem in this context is feature interactions [Calder et al. 2003]: several
features work as expected in isolation but lead to unexpected behavior in combination.
A prominent example from telecommunication systems is that of the features Call-
Forwarding and CallWaiting [Bowen et al. 1989]. While both features may work well
in isolation, it is not clear what should happen if both features are selected and an
incoming call arrives at a busy line: forwarding the incoming call or waiting for the
other call to be finished. Hence, feature-based strategies must usually be combined
with product-based or family-based strategies to cover feature interactions and to deal
with noncompositional properties.

Nevertheless, feature-based strategies have advantages compared to product-
based and family-based strategies. First, they analyze domain artifacts (similar to
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family-based strategies) instead of operating on generated software artifacts, and thus
there are no redundant computations across products.

Second, the feature-based strategy supports open-world scenarios: it is not required
that all features are known at analysis time. Furthermore, it is not required to have
a variability model, which is typically not available in an open-world scenario. Never-
theless, a feature-based strategy can also be applied for closed-world scenarios, where
all features and their valid combinations are known at analysis time.

Third, the effort to analyze a product line is minimal, when one or a small set of
features are changed. In such cases, only changed features need to be reanalyzed in
isolation, whereas with family-based and product-based strategies, we would need to
reanalyze the whole product line or all affected products.

Fourth, the analysis of a software product line using a feature-based strategy is
divided into smaller analysis tasks. Thus, a feature-based strategy is especially useful
for software analysis with extensive resource consumption (e.g., memory) and for large
software product lines, for which some family-based analyses are not feasible.

Finally, changing only the variability model does not affect feature-based analysis at
all. Hence, when the variability model evolves, we do not need to perform any feature-
based analysis again, since features are only analyzed in isolation.

5.3. Feature-Based Approaches

As indicated previously, there are only a few strict feature-based approaches. For ex-
ample, parsing and syntax checking of software product lines with modular implemen-
tations for each feature (such as feature-oriented programs, aspect-oriented programs,
delta-oriented programs, and frameworks) are compositional analyses. While parsing
is a necessary task for any static analysis, it is only discussed for nonmodular fea-
ture implementations, such as conditional compilation [Kästner et al. 2011], for which
feature-based parsing is impossible. A further example for a simple feature-based
analysis is to compute code metrics. For most software analyses, we need to combine
feature-based analyses with other strategies.

It may seem odd that we defined a strategy that is not present in the literature
itself. Indeed, previous drafts of our classification were less restrictive for the feature-
based strategy. In particular, we also included approaches that do parts of the anal-
ysis feature-based. However, it turned out that many approaches with very different
characteristics were classified as feature based, and it was difficult to assess their
conceptual differences. Whereas many approaches claim to be modular or composi-
tional, it is unclear what happens to those parts of the analysis that concern feature
interactions (i.e., noncompositional properties). With our more strict classification, we
identify how those approaches resolve feature interactions, which we discuss in the next
section.

6. COMBINED ANALYSIS STRATEGIES

We have discussed product-based, family-based, and feature-based analyses as differ-
ent strategies to scale software analyses from single-system engineering to software
product lines. These three strategies form the basis of our classification, but they can
also be combined, resulting in four additional strategies. In this section, we discuss
possible combinations even if some of them are not yet implemented.

6.1. Feature-Product-Based Analyses

A commonly proposed combined strategy, which we identified in the literature, is the
feature-product-based strategy that consists of two phases. First, features are analyzed
in isolation, and second, all properties not checked feature based are analyzed for each
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product. The feature-based part can only analyze features locally and the product-
based part checks that features work properly in combination. The key idea is to
reduce analysis effort by checking as much as possible feature locally.

Definition 6.1 (Feature-Product-Based Analysis). An analysis of a software product
line is feature product based if (a) it consists of a feature-based analysis followed by a
product-based analysis, and (b) the analysis results of the feature-based analysis are
used in the product-based analysis.

Example. In our object store, we could start to type-check all features in isolation. As
shown in Figure 6, we can check that all intrafeature references are valid and create an
interface for every feature. The interface contains all methods, fields, and classes that
the feature provides and also those that are required. In the second step, we take these
interfaces and iterate over every valid combination of features and check whether the
interfaces are compatible for every valid configuration (i.e., everything that is required
in some interface is provided by another interface). This way, we can save redundant
checks for intrafeature references. Especially, if some features evolve, we can omit
reanalyzing unchanged features in the feature-based analysis step.

Advantages and Disadvantages. Feature-product-based strategies reduce redundant
computations, compared to strict product-based strategies, but redundancies still occur
for all analyses applied at the product level. For example, when some features evolve,
other features need not to be reanalyzed, but all products containing any of the affected
features need to be analyzed again whenever the feature interface changes. Considering
that strict feature-based strategies are usually not sufficient for noncompositional
properties, feature-product-based strategies seem to be a good compromise. Whether
feature-product-based strategies are better than family-based strategies depends on
the actual analysis, the number of products, how much can be checked feature based,
and whether evolution of the product line is an issue.

Feature-Product-Based Type Checking. Feature-product-based type checking has
been proposed for composition-based implementation approaches such as logic
metaprogramming [Klose and Ostermann 2010], feature modules [Apel and Hutchins
2010; Kolesnikov et al. 2013], delta modules [Bettini et al. 2013], and traits [Bettini
et al. 2014]. As explained for our running example, feature implementations (i.e., mod-
ules, feature modules, delta modules, traits) are type checked as far as possible in
isolation in the first phase. Additionally, interfaces or constraints are generated for
each feature implementation, which are used in an unoptimized product-based link-
ing step. For each approach, a type system for a core calculus has been presented;
Featherweight Record-Trait Java [Bettini et al. 2014] and Imperative Featherweight
Delta Java [Bettini et al. 2013] formalize product lines in Java, whereas gDeep [Apel
and Hutchins 2010] has been discussed for being used in the context of different lan-
guages such as Java, Haskell, Bali, and XML. Kolesnikov et al. [2013] evaluated this
strategy against family-based type checking and found that feature-product-based type
checking was significantly slower.

Feature-Product-Based Model Checking. In feature-product-based model checking,
each feature implementation is model checked in isolation and an interface is generated
specifying provided and assumed behavior of other features. Then, these interfaces are
checked for every product to make sure that features are compatible with each other.
Compared to the family-based strategy, the feature-product-based strategy was only
proposed a few times, even if most approaches for feature-product-based model check-
ing are older than first approaches for family-based model checking. In addition, the
field of feature-product-based model checking is less diverse: all surveyed approaches
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[Fisler and Krishnamurthi 2001; Nelson et al. 2001; Li et al. 2002, 2005; Blundell et al.
2004; Liu et al. 2011] (a) apply abstract model checking (i.e., we have not found a single
approach for feature-product-based software model checking), (b) are based on finite
state machines, (c) consider only product lines that are decomposed into modules (i.e.,
no annotation-based product lines), and (d) verify properties defined in CTL. However,
some approaches rely on family-wide specifications [Fisler and Krishnamurthi 2001;
Nelson et al. 2001; Blundell et al. 2004; Liu et al. 2011] and others on feature-based
specifications [Li et al. 2002, 2005]. Fisler and Krishnamurthi [2001] extended the
existing tool VIS, and others built new tools from scratch [Li et al. 2005; Liu et al.
2011]. We found only one empirical evaluation of feature-product-based model check-
ing: Liu et al. [2011] measured that this strategy is 6.7 times faster than unoptimized
product-based model checking for a product line with four products.

Feature-Product-Based Theorem Proving. Approaches classified as feature-product-
based theorem proving are diverse. They have been used for product-line verification
[Thüm et al. 2011b; Damiani et al. 2012], but also to prove type soundness for product
lines of programming languages [Batory and Börger 2008; Delaware et al. 2011, 2013].

Thüm et al. [2011b] propose feature-product-based theorem proving for verification
of feature modules. Features are implemented in feature modules based on Java and
specified using the Java Modeling Language (JML). The verification step is based on
the verification framework Why and the proof assistant COQ. A human has to provide
partial proofs in COQ along with every feature. These proofs are then automatically
checked for each product. The verification time mainly depends on writing proof
scripts in the feature-based part. For a product line with 12 products, the number
of handwritten proof commands was reduced by 88% compared to an unoptimized
product-based strategy.

Damiani et al. [2012] propose a similar approach for feature-product-based theorem
proving. They introduce a calculus representing a kind of feature module. A syntax is
presented to define method contracts with uninterpreted assertions to refer to contracts
of other methods. In their approach, deductive verification is achieved in two steps.
First, contracts of each implementation unit are verified as far as possible locally,
by only considering the uninterpreted assertions and guarantees of other methods.
Second, all remaining proof obligations are proved for each generated product. This
approach has not yet been evaluated empirically.

Besides the verification of product-line implementations, the strategy has also been
applied in the general context of theorem proving for product lines. Batory and Börger
[2008] propose feature-product-based theorem proving to prove that a given Java in-
terpreter is equivalent to the JVM interpreter for Java 1.0. They modularize the Java
grammar, theorems about correctness, and natural language proofs into feature mod-
ules. Nevertheless, a human still needs to check that every product has a valid gram-
mar, correctness theorems, and natural language proof.

Similarly, Delaware et al. [2011] and Delaware et al. [2013] propose feature-product-
based theorem proving for a product line of type-soundness proofs. They focus on a
product line of languages based on Featherweight Java, for which language features,
such as generics, interfaces, or casting, can be selected independently. All eight Feath-
erweight Java variants are proved to be type safe in a feature-product-based manner.
First, theorems are created and proved for each feature. Second, these theorems are
used to prove progress and preservation for each Featherweight Java variant. Delaware
et al. [2011] measured the time the proof assistant COQ needed to verify theorems; proof
checking for all features took about 4 minutes, whereas checking all products based on
these proofs for each feature took only about 1 minute (i.e., COQ spent most of the time
on compositional properties).
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Fig. 7. Feature-family-based type checking analyzes features in isolation and applies family-based type
checking on the deduced feature interfaces afterward. The references to read and readAll cut across feature
boundaries and are checked at composition time based on the features’ interfaces and the variability model.

6.2. Feature-Family-Based Analyses

A strategy similar to feature-product-based analysis is to combine feature-based and
family-based analyses. The idea of feature-family-based analysis is to analyze features
separately and to analyze everything that could not be analyzed in isolation based on
properties inferred from the feature-based analysis.

Definition 6.2 (Feature-Family-Based Analysis). An analysis of a software product
line is feature-family based if (a) it consists of a feature-based analysis followed by a
family-based analysis and (b) the analysis effort of the feature-based analysis is used
in the family-based analysis.

Example. In our object store, we can infer interfaces for each feature using feature-
based type checking and check these interfaces for compatibility using family-based
type checking. The interface of each feature defines the program elements it provides
and the program elements it requires (see Figure 7). For example, feature AccessCon-
trol requires a method read, which is provided either by feature SingleStore or feature
MultiStore. However, method readAll required by feature AccessControl is not available
in all products with feature AccessControl. Basically, we can create a propositional for-
mula for each reference, which can be checked using a satisfiability solver, as described
in Section 4.

Advantages and Disadvantages. Feature-family-based analysis can be seen as an
improvement of feature-product-based analysis, as redundant computations are elim-
inated entirely (i.e., redundancies are eliminated not only for feature-local analyses
but also for analyses across features). Furthermore, compared to a pure family-based
analysis, it better supports the evolution of software product lines, in which usually
only a small set of features evolves. Finally, a feature-family-based analysis combines
open-world and closed-world scenarios. That is, while the feature-based analysis does
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not require knowing all features and their valid combinations, we can postpone all
parts of the analysis requiring a closed world to the family-based analysis.

Feature-Family-Based Type Checking. The feature-family-based strategy has been
proposed for type checking of composition-based product lines implemented with
feature-oriented programming [Delaware et al. 2009] and delta-oriented programming
[Damiani and Schaefer 2012]. Both approaches rely on a constraint-based type system
that generates constraints for each module in isolation. The constraints describe type
references and dependencies that must be fulfilled by other modules. Delaware et al.
[2009] use these constraints to create a propositional formula describing the set of
well-typed feature combinations, which is then compared to the variability model to re-
trieve whether all valid feature combinations according to the variability model are well
typed (i.e., in a global approach, cp. Section 4.4). In contrast, Damiani and Schaefer
[2012] construct a product family generation tree (PFGT) representing all possible
generation orders of products. The constraints of the single deltas are then checked by
traversing the PFGT in a single pass constituting a family-based analysis step. There
are no empirical comparisons of this strategy to other strategies. However, Delaware
et al. [2009] report that their approach was even faster than generating and compiling
a single product.

Feature-Family-Based Theorem Proving. Hähnle and Schaefer [2012] present a
feature-family-based approach for deductively verifying delta-oriented product lines.
They restate the Liskov principle known from object-oriented programming to delta-
oriented product lines, which requires that method contracts introduced by deltas
occurring later in the application ordering may only be more specific than the contracts
introduced by previous deltas. The presented compositional verification principle al-
lows verifying the specification of each delta in isolation. Called methods not defined
in the delta itself are approximated by the specification of the first introduction of this
method, either in the core product or in the first delta in the application ordering. Still,
we consider this step as feature based, because only specifications of other features are
incorporated and there is no implementation artifacts of other features. In the second
step, all deltas are checked for conformance in a family-based fashion.

6.3. Family-Product-Based Analyses

A combination of family-based and product-based analyses may not seem useful at
first thought, because everything that can be analyzed product based could already
be analyzed family based. Nevertheless, family-product-based analyses can be useful
(a) if a product-based analysis is faster for particular parts of the analysis, (b) if there
is a part of the analysis (e.g., certain safety properties) that is relevant for one product
or a small set of products only, (c) if several software analyses are combined, and
(d) if the analysis problem for a family-based analysis is too large to be solved with
given resource limitations.

Definition 6.3 (Family-Product-Based Analysis). An analysis of a software product
line is family-product based if (a) it consists of a (partial) family-based analysis followed
by a product-based analysis and (b) the analysis effort of the family-based analysis is
reused in the product-based analysis.

Family-Product-Based Analyses. We have not found pure static approaches for this
strategy. However, we discuss some approaches that combine static and dynamic anal-
yses of product lines, because similar approaches could also be created that operate
only statically.
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Tartler et al. [2012] propose a heuristic for sampling that incorporates the variability
model and the preprocessor-based code base to achieve a special code coverage. This
is in contrast to approaches for sampling discussed in Section 3.4, which incorporate
only the variability model. The idea is that an analysis touches each domain artifact
and individual piece of code at least once. Hence, for each given preprocessor directive,
they ensure that it is activated in at least one product in the resulting set of sample
products. In the second step, an arbitrary software analysis can be reused in a product-
based fashion. Their approach implies rather weak guarantees toward correctness and
mainly targets bug finding.

Kim et al. [2010] propose a family-product-based analysis for feature-oriented pro-
gramming. They apply a family-based static analysis to reduce the set of products for
which safety properties need to be monitored during runtime. Safety properties are
defined in AspectJ. In the first step, the family-based static analysis rules out config-
urations that cannot violate the safety property. The result of the static analysis is
a specialized variability model representing the products that are monitored in the
second step. Kim et al. [2011] generalized this work from safety properties in AspectJ
to general test cases. For each test case, a set of products is calculated that is sufficient
to test. They extend control-flow and data-flow analyses with variability information
to trace the effect of features.

Similarly, Shi et al. [2012] propose a family-product-based analysis to analyze feature
interactions. A family-based static analysis is used to calculate test cases, which are
then used to test products individually. They create a dependency graph for the whole
software product line while considering only valid feature combinations as specified in
the variability model. Then, they use symbolic execution to compute method summaries
and test cases. The number of test cases can be influenced using a coverage criterion
as known from t-wise testing [Perrouin et al. 2010]. Finally, resulting test cases are
executed for products individually.

6.4. Feature-Family-Product-Based Analyses

It is also possible to combine all three analysis strategies. We can first analyze the
features in isolation, then check whether the features are compatible in all valid com-
binations, and finally analyze products that have specific requirements.

Definition 6.4 (Feature-Family-Product-Based Analysis). An analysis of a software
product line is feature-family-product based if (a) it consists of a feature-based analysis
followed by a family-product-based analysis, and (b) the analysis effort of the feature-
based analysis is used during family-product-based analysis.

We have not found any feature-family-product-based strategy in the literature, but
it might be useful to separate product-based from feature-based and family-based
analyses, especially if different software analysis techniques are combined. It is future
work to analyze and discuss the feasibility of this strategy in more detail.

7. RESEARCH AGENDA

Our aim is to bring the issue of systematic research on and application of product-line
analysis to the attention of a broad community of researchers and practitioners. Our
classification is intended to serve as an agenda for research on product-line analysis:

—What are the strengths and weaknesses of the individual strategies in practice?
—Is it meaningful to combine each strategy with each software analysis, and which

combinations are useful and superior in what circumstances?
—What can we learn from strategies applied to one analysis when applying them to

other analyses?
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Fig. 8. Overview of the frequency of analysis strategies addressed in the research literature (before 2014).
We found no approaches pursuing a feature-based or feature-family-product-based strategy.

—Are there further novel analysis strategies?
—What characteristics of a given product line affect the efficiency of the individual

analysis strategies?
—Is there a principle and possibly automated way to lift a given specification and

analysis technique to product lines?

Based on the classification of existing approaches in the previous sections, we discuss
underrepresented research areas and specific research questions that we uncovered in
our survey: In Section 7.1, we summarize advantages and drawbacks of each strategy
and identify underrepresented analysis strategies. We discuss how strategies have been
evaluated quantitatively and report weaknesses of existing evaluations in Section 7.2.
In Section 7.3, we discuss which analysis strategies have been combined with which
specification and implementation strategies. Finally, we describe future challenges for
type checking, static analysis, model checking, and theorem proving of software product
lines in Section 7.4–7.5.

7.1. Comparison of Analysis Strategies

In the previous sections, we have discussed three basic strategies and four combined
strategies to scale software analysis to product lines. In Figure 8, we give an overview
of how often each strategy was applied in the surveyed approaches and when. More
than half of the approaches apply a family-based strategy, suggesting that this strategy
to cope with software variability is well known. However, we also found approaches
for analysis in a product-line context that do not discuss how to cope with many, sim-
ilar products. Almost a third of all approaches rely on the generation of all products
(i.e., unoptimized product-based and feature-product-based strategy), which is infea-
sible for large product lines. None of the surveyed analysis approaches is solely fea-
ture based, because analyzing features only in isolation is usually not sufficient (i.e.,
the properties of interest are not compositional). All combined strategies except for
the feature-product-based strategy are underrepresented.
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Table I. Summary of Advantages and Disadvantages of Analysis Strategies. A Perfect Strategy would have a
“Yes” in Every Column, but There is a Tradeoff between Avoiding Redundancies in Computations and the Size

of Analysis Problems
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Product based yes no no no no — —
Family based yes yes yes yes no no no
Feature based no yes yes — yes yes —
Feature-product based yes yes/no1 yes no maybe2 yes yes
Feature-family based yes yes yes yes maybe2 yes maybe3

Family-product based yes yes/no1 yes yes no no no
Feature-family-product based yes yes/no1 yes yes maybe2 yes maybe3

1Analysis results of product-based analysis step refers to products.
2Avoids redundant computations when changed domain artifacts can be verified feature-based.
3The family-based analysis problem may be larger or smaller than verifying a single product depending
on how much feature-based part reduces the analysis problem.

In Table I, we summarize the main advantages and disadvantages of all strategies.
Each strategy enables the analysis of compositional properties. However, the feature-
based strategy is the only strategy that does not support noncompositional properties.
A further interesting characteristic is whether analysis results refer to domain arti-
facts or generated artifacts, because, for the latter, the developer needs to understand
generated artifacts. For example, each strategy incorporating a product-based part in-
herently refers to generated artifacts. As feature-based and family-based strategies
operate on domain artifacts, their results also refer to them. Nevertheless, with some
additional effort, it is possible to aggregate analysis results from products.

A key characteristic of each strategy is to what extent redundant computations are
avoided [Kolesnikov et al. 2013]. In the product-based strategy, we have redundant
computations due to the similarities between products. In contrast, when analyzing
a product line with the feature-based strategy, we avoid redundancies by considering
domain artifacts in isolation, but we can only analyze compositional properties. The
family-based strategy avoids redundancies for both, compositional and noncomposi-
tional properties. However, if some domain artifacts evolve in a product line that has
been analyzed before, the family-based strategy usually requires redundant analyses.
The redundant effort can be reduced by combining it with the feature-based strategy,
because we can omit the analysis of domain artifacts for unchanged features.

The size of the analysis problem for a given product line is influenced by the analysis
strategy. A particular strategy may conflict with resource limitations, while another
does not. For example, even if we can model check each product in isolation on a given
machine, it is possible that family-based model checking requires more main memory
than actually available and is thus infeasible. In Table I, we compare the expected
problem size for each strategy with that of the product-based strategy. In general,
we expect smaller problems for strategies incorporating a feature-based analysis step,
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because the analysis problem is split into an analysis of compositional properties for
each feature and an analysis of noncompositional properties. However, as Table I in-
dicates, avoiding redundant computations (e.g., with the family-based strategy) and
minimizing the analysis problem (e.g., with the feature-product-based strategy) are
conflicting goals. It seems that the feature-family-based strategy is a good tradeoff,
but empirical evaluations are needed to find the best strategy based on product-line
characteristics.

7.2. Quantitative Evaluation of Analysis Strategies

Ideally, we would like to recommend the best strategy for a given software analysis
based on static characteristics of a product line, such as the number of features, the
number of products, or the size and cohesion of feature implementations. However, for
such recommendations, we need reliable empirical evaluations assessing quantitative
characteristics for each strategy and analysis. Whereas there are some evaluations,
they are often not comparable to each other.

First, we found that in almost all studies, a particular strategy is compared to an un-
optimized product-based analysis [Classen et al. 2010, 2013, 2014; Schaefer et al. 2010;
Cordy et al. 2012a, 2012c; Sabouri and Khosravi 2012, 2013a, 2013b; Thüm et al. 2012;
Greenyer et al. 2013; Apel et al. 2013c; Chen et al. 2014] or to the analysis of a single
product [Post and Sinz 2008; Delaware et al. 2009; Kenner et al. 2010; Kästner et al.
2011, 2012a; Gazzillo and Grimm 2012]. The advantage of such a standard evaluation
is that we can compare different approaches more easily, even if evaluations strongly
depend on the size and kind of product line being analyzed. However, the unoptimized
product-based strategy is often not an option in practice (e.g., for large product lines).
Recently, researchers started comparing family-based with optimized product-based
[Apel et al. 2013c; Liebig et al. 2013] and feature-product-based strategies [Kolesnikov
et al. 2013]. However, there are still strategies that have not been compared with
any other strategy. For example, researchers proposed feature-family-based analyses
[Delaware et al. 2009; Hähnle and Schaefer 2012; Damiani and Schaefer 2012], but
there is no empirical comparison with a family-based or feature-product-based strategy
that assesses the potential of such a strategy.

Second, most studies only focus on time efficiency. However, memory consumption is
especially important for product lines, because analyzing all products simultaneously
may require significantly more resources than analyzing each product separately. Fur-
thermore, there are different characteristics of product lines (e.g., number of faults)
that influence time and memory efficiency of the analysis (e.g., model checking could
be faster when the product line contains more faults). Hence, when comparing strate-
gies, we should also incorporate product lines containing no faults, some faults, and
many faults in source code and specification.

Finally, there is no consensus on how to compare strategies empirically. The overall
time for product-line analysis may include several analysis steps, but it is question-
able what to compare if one strategy includes steps that the other does not include.
For example, product-based type checking requires retrieving all or a subset of all
valid configurations from the variability model, generating products, and actually type
checking each product. In contrast, family-based type checking does not require re-
trieving all valid configurations nor generating products. Brabrand et al. [2013] and
Kolesnikov et al. [2013] document the performance of each analysis step, while all other
empirical comparisons ignore variability-model analysis and product generation [Post
and Sinz 2008; Classen et al. 2010, 2013, 2014; Schaefer et al. 2010; Delaware et al.
2011; Kästner et al. 2011, 2012a; Apel et al. 2011, 2013c; Thüm et al. 2012; Gazzillo
and Grimm 2012; Cordy et al. 2012a, 2012c; Sabouri and Khosravi 2012, 2013b; Liebig
et al. 2013; Chen et al. 2014]. Especially, sampling may require a considerable amount
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Table II. Number of Surveyed Approaches for Each Combination of Analysis Strategy and
Specification Strategy as well as Analysis Strategy and Implementation Strategy
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Product based (unoptimized) 7 3 2 3 0 5 0
Product based (optimized) 6 2 3 2 0 4 0
Family based 16 37 28 12 0 5 7
Feature based 0 0 0 0 0 0 0
Feature-product based 17 0 8 5 0 6 0
Feature-family based 3 0 2 0 0 1 0
Family-product based 2 2 1 2 0 0 0
Feature-family-product based 0 0 0 0 0 0 0
Total* 49 43 42 23 0 20 7

∗The bottom row is not necessarily the sum of all above rows, because some specification
approaches are used with several analysis strategies. Furthermore, some analysis approaches
are available for both, annotation-based and composition-based implementations.

of time [Liebig et al. 2013]. In summary, for empirical evaluations, the performance of
each step should be documented to improve comparability.

7.3. Product-Line Implementation and Specification

In addition to the analysis strategy, we classified product-line analyses with respect
to the underlying implementation and specification strategy. We distinguish between
composition-based and annotation-based implementations, and between domain-
independent, family-wide, product-based, feature-based, and family-based specifica-
tions (see Section 2). In Table II, we give an overview of which analysis strategies have
been applied to which kind of implementation and specification strategy, respectively.

The majority of implementation and specification strategies discussed in our survey
have actually been applied. Both composition-based and annotation-based implemen-
tations have been used with similar frequency in the literature. In contrast, most
approaches built on domain-independent specifications. This is natural, as many ap-
proaches consider type checking or static analysis, for which specifications are often
defined independently of a particular system. In addition, many other specifications
are family-wide, which means that, while the implementation contains variability, the
specification does not. About the same number of approaches rely on feature-based
specifications, which support variability similar to composition-based implementation.
However, we found only seven approaches using family-based specification [Asirelli
et al. 2012; Cordy et al. 2012a, 2012b, 2013a, 2013b; Classen et al. 2013, 2014], and
none with product-based specification. An open research question is how much variabil-
ity is required in product-line specifications (e.g., whether feature-based specifications
are sufficient [Apel et al. 2013b]) and whether there are differences in the variabil-
ity of specifications depending on the underlying software analysis. Model checking is
the only software analysis to which all specification strategies (except product-based
specification) have already been applied (see Section 4.6). For type checking, domain-
independent specifications are sufficient, but other specification strategies shall be
explored for static analysis and theorem proving.
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Table III. Classification of Product-Line Type Checking

Composition based Annotation based
Product based
(unoptimized)

Apel et al. [2008a] Buchmann and Schwägerl [2012]

Product based
(optimized)

Jayaraman et al. [2007] Liebig et al. [2013]

Family-based Thaker et al. [2007], Kim et al. [2008],
Kuhlemann et al. [2009], Apel et al.
[2010a], Apel et al. [2010c], Alférez
et al. [2011], Kolesnikov et al. [2013]

Aversano et al. [2002], Czarnecki and
Pietroszek [2006], Huang et al. [2007],
Metzger et al. [2007], Kim et al. [2008],
Post and Sinz [2008], Heidenreich [2009],
Kenner et al. [2010], Teixeira et al. [2011],
Kästner et al. [2012a], Kästner et al.
[2012b], Le et al. [2013], Liebig et al.
[2013], Chen et al. [2014]

Feature-product
based

Apel and Hutchins [2010], Klose and
Ostermann [2010], Bettini et al.
[2013], Istoan [2013], Kolesnikov et al.
[2013], Bettini et al. [2014]

Feature-family
based

Delaware et al. [2009], Damiani and
Schaefer [2012]

While the strategies for implementation, specification, and analysis seem to be
largely independent of each other, we discuss some findings based on our classification.
First, product-based specifications are problematic not only from a reuse perspective
but also for analysis efficiency, because we can hardly reuse verification effort if specifi-
cations are not reused at all. Hence, product-based specifications should be avoided
whenever possible. Second, for annotation-based implementations or family-based
specifications, there is not a single approach including a feature-based analysis. Clearly,
we cannot analyze a feature in isolation if its implementation or specification is scat-
tered in the product line. However, future research should investigate how to extract
feature implementation and specification from an annotation-based implementation
to enable modular analysis, for which emergent interfaces [Ribeiro et al. 2010] are a
first step. Finally, product-line specifications are used in several approaches not cov-
ered in our survey (e.g., [Thüm et al. 2012; Johnsen et al. 2012; Kim et al. 2013]). The
reason is that such specification approaches have not been proposed in the context of
an analysis that operates statically. Consequently, to better understand the strategies
for product-line specification, a survey dedicated to specification rather than analysis
should be performed.

7.4. Product-Line Type Checking

In Table III, we summarize the strategies that have been applied to type checking.
We identified product-based, family-based, feature-product-based, and feature-family-
based approaches, whereas the majority of work is on family-based type checking.
While it is unclear whether any useful properties can be analyzed with feature-based
type checking, future research should propose and evaluate approaches pursuing a
family-product-based and feature-family-product-based strategy.

For type checking, there are no empirical evaluations for feature-family-based type
checking. This strategy should be compared to existing approaches for family-based
type checking to assess its potential. In particular, it is not clear how much time
is needed to analyze features in isolation compared to the overall analysis time. An
open research questions is whether the feature-family-based strategy is faster than
the family-based strategy for evolving product lines. Similarly, it is to be assessed
empirically whether the feature-family-based strategy requires more or less memory.
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Table IV. Classification of Product-Line Static Analysis

Composition
based

Annotation
based

Domain-
independent Family-wide

Feature
based

Product based
(unoptimized)

Klaeren et al.
[2001], Scholz
et al. [2011]

Klaeren
et al. [2001],
Scholz et al.
[2011]

Product based
(optimized)

Katz [2006] Liebig et al.
[2013]

Liebig et al.
[2013]

Liebig et al.
[2013]

Katz [2006]

Family based Adelsberger
et al. [2014]

Ribeiro et al.
[2010],
Bodden et al.
[2013],
Brabrand
et al. [2013],
Liebig et al.
[2013],
Midtgaard
et al. [2014],
Sabouri and
Khosravi
[2014]

Ribeiro et al.
[2010], Liebig
et al. [2013],
Midtgaard et al.
[2014]

Bodden et al.
[2013],
Brabrand
et al. [2013],
Liebig et al.
[2013],
Sabouri and
Khosravi
[2014]

Family-
product
based

Kim et al.
[2010], Kim
et al. [2011]

Kim et al.
[2011], Shi
et al. [2012]

Shi et al. [2012] Kim et al.
[2010], Kim
et al. [2011]

Furthermore, there are two competing approaches for family-based type checking,
namely, local and global approaches (see Section 4.4). The main difference is whether
the whole product line is encoded as a single or a large number of satisfiability problems.
However, empirical evaluations are missing that compare time and space efficiency of
both approaches.

7.5. Product-Line Static Analysis

In Table IV, we give an overview of static analyses for software product lines. The major-
ity of approaches have been published in the last three years. So far, only product-based,
family-based, and family-product-based strategies have been considered, which natu-
rally raises the question of whether other strategies can be applied to static analysis.
Interestingly, the family-product-based strategy has been applied exclusively to static
analysis. In particular, feature-product-based and feature-family-based strategies, as
known from other analyses, have not yet been applied. It is an open research question
whether static analyses can handle compositional properties.

All approaches for family-based static analysis are based on implementations using
preprocessors and domain-independent specifications. Thus, future research should
evaluate whether it is possible to create family-based static analysis for composition-
based implementations and how to define family-wide, feature-based, and family-based
specifications for static analysis.

Family-based static analyses have been compared empirically with optimized [Liebig
et al. 2013] and unoptimized [Brabrand et al. 2013; Bodden et al. 2013] product-based
analyses. Comparisons include time efficiency [Brabrand et al. 2013; Bodden et al.
2013; Liebig et al. 2013], memory efficiency [Brabrand et al. 2013], and soundness
[Bodden et al. 2013]. In particular, Bodden et al. [2013] measured that it is faster to
ignore than to incorporate the variability model during static analysis. Further studies
will evaluate whether this is the case for all kinds of static analysis and explore the
fundamental reasons. This is especially interesting, as opposite experience has been
noted with model checking (see Section 4.6).
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7.6. Product-Line Model Checking

In Table V, we present strategies applied to scale model checking to product lines.
In 2001, the first approach for model checking has been proposed pursuing a feature-
product-based strategy. However, since then, mainly family-based approaches have
been developed, as well as several unoptimized product-based approaches. Compared
to type checking, there is not a single approach for feature-family-based model check-
ing. Hence, the research question arises whether this strategy can be applied to model
checking, and, if so, what are the benefits of such an approach. Similar research ques-
tions can be formulated for all other “missing” strategies.

As for type checking, most empirical evaluations compare family-based model check-
ing with product-based model checking. For feature-product-based model checking,
there is only one evaluation using a product line with four products [Liu et al. 2011].
Further empirical evaluations are needed with larger product lines that also compare
feature-product-based with family-based model checking.

7.7. Product-Line Theorem Proving

In Table VI, we summarize the strategies used for theorem proving. Compared to
type checking and model checking, there are fewer approaches for theorem proving,
suggesting that this research field is underrepresented. In particular, it is surprising
that there is only one family-based approach for theorem proving [Thüm et al. 2012],
whereas this strategy has been applied often to type checking and model checking.

For theorem proving, there is a lack of reliable evaluations comparing the strate-
gies to each other. Optimized product-based and feature-family-based theorem prov-
ing have not been compared so far. Thüm et al. [2012] compare the time efficiency
of family-based strategy with that of unoptimized product-based theorem proving.
Feature-product-based theorem proving has been evaluated against an unoptimized
product-based strategy, in terms of the size of handwritten proof scripts [Thüm et al.
2011b]. Delaware et al. [2011] measured the time needed for the feature-based and the
product-based part in feature-product-based theorem proving. However, there is not
a single evaluation of memory consumption, and many strategies have not yet been
compared to each other.

8. RELATED WORK

Classifications for Quality Assurance in Software Product Lines. Pohl et al. [2005]
discuss four strategies for product-line testing. In contrast to our classification, they
discuss strategies incorporating tests at different levels including unit tests, integration
tests, and system tests. The brute force strategy is similar to unoptimized product-based
analysis, but tests are performed at all levels for all products. In contrast, for the pure
application strategy, only delivered products are tested in application engineering.
The sample application strategy is equivalent to the sample-based strategy in our
classification. Finally, with the commonality and reuse strategy, artifacts common to all
products are tested in domain engineering and then all products are tested separately.
These strategies have been defined for product-line testing and do not represent all
strategies that we identified in our survey.

Similarly, Metzger [2007] and Lauenroth et al. [2010] discuss three strategies for
quality assurance (e.g., model checking) of product lines, namely, commonality strat-
egy, sample strategy (similar to sample-based analysis), and comprehensive strategy
(similar to unoptimized product-based analysis). The idea of the commonality strat-
egy is to check artifacts that are common to all products. Similar to the family-based
strategy, the commonality strategy uses the variability model and domain artifacts to
retrieve the common artifacts. Similar to the feature-based strategy, it can only uncover
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Table VI. Classification of Product-Line Theorem Proving

Composition based Domain-independent Feature based

Product based
(unoptimized)

Harhurin and
Hartmann [2008]

Harhurin and
Hartmann [2008]

Product based (optimized) Bruns et al. [2011] Bruns et al. [2011]

Family based Thüm et al. [2012] Thüm et al. [2012]

Feature-product based Batory and Börger
[2008], Delaware et al.
[2011], Thüm et al.
[2011b], Damiani
et al. [2012], Delaware
et al. [2013]

Delaware et al. [2011],
Delaware et al. [2013]

Batory and Börger
[2008], Thüm et al.
[2011b], Damiani
et al. [2012]

Feature-family based Hähnle and Schaefer
[2012]

Hähnle and Schaefer
[2012]

certain faults for a given product line. The commonality strategy is not represented in
our classification. However, we have not found any approaches applying this strategy.

Lutz [2007] classifies approaches for product-line verification and validation with
respect to the software development life cycle. In particular, he distinguishes require-
ments, safety requirements, architecture, design, and implementation. We had the
experience that many approaches cannot uniquely be assigned to one of these classes.
For example, most approaches for model checking are applicable to architecture, design,
and implementation.

In previous work, we proposed first ideas on a classification into product-based and
feature-based verification techniques [Thüm et al. 2011b]. In this survey, we extend the
classification to family-based and combined strategies, generalize it from verification to
software analyses in general, and actually classify existing approaches. Furthermore,
we give definitions and examples and discuss advantages and disadvantages of each
strategy in detail. In contrast to our early ideas, we strengthened the notion of a
feature-based analysis to make researchers and practitioners aware that most analyses
do not solely operate on features in isolation and that combinations with product-
based or family-based analyses are usually necessary. It is worthwhile to note that von
Rhein et al. [2013] already use our classification to model combinations of product-line
analyses, but they do not survey the literature on product-line analyses.

Surveys on Quality Assurance in Software Product Lines. Benavides et al. [2010]
survey automated analyses for variability models. These analyses consider only the
variability model and can detect anomalies such as dead features or compute statistics
such as the number of products. In contrast, our focus is on approaches that operate
on source code or models thereof. However, many of the approaches in our survey
rely on techniques from this line of research to reason about variability (e.g., for the
family-based strategy).

Furthermore, several surveys on product-line testing have been conducted
[Tevanlinna et al. 2004; Engström and Runeson 2011; Da Mota Silveira Neto et al.
2011; Oster et al. 2011; Lee et al. 2012; Carmo Machado et al. 2014]. These surveys
are complementary to ours, because we focus on approaches that operate statically
and they focus on dynamic analysis and test execution. Nevertheless, our classification
could also be applied to testing. While we started to apply our classification to testing
approaches, it seems that most approaches for product-line testing are sample-based
analyses. However, researchers recently proposed approaches for family-based testing
[Kim et al. 2012, 2013; Kästner et al. 2012c; Nguyen et al. 2014].
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Montagud and Abrahão [2009] performed a systematic literature review on quality
assessment of software product lines. They distinguish between quality assessment
applied in domain engineering and application engineering. Etxeberria et al. [2008]
presented a survey that additionally incorporates variability modeling, design, archi-
tecture, implementation, and testing. In contrast to both reviews, we focus only on
product-line analysis that operates statically, our classification is more fine-grained,
and we survey more approaches. Furthermore, we derived a research agenda based on
our insights.

9. CONCLUSION

In software-product-line engineering, similar software products are built in an efficient
and coordinated manner based on reusable artifacts. While there are efficient tech-
niques to implement software product lines, current research seeks to scale software
analyses, such as type checking, static analyses, model checking, or theorem proving,
from single software products to entire software product lines. The field of product-line
analysis is broad and diverse, and different approaches are often hard to compare.

We propose a classification of product-line analyses into three main analysis strate-
gies: product-based, feature-based, and family-based analyses. These strategies indi-
cate how the analysis handles software variability and can be even combined, resulting
in four further strategies: feature-product-based, feature-family-based, family-product-
based, and feature-family-product-based analyses. Besides the analysis strategy, we
classify approaches with respect to the implementation and specification strategy. We
identified four specification strategies that have been applied in the literature: domain-
independent, family-wide, feature-based, and family-based specifications.

Overall, we classified 123 existing analysis and specification approaches, gaining
insights into the field of product-line analyses. First, whereas many approaches claim
to be compositional, we distinguish feature-product-based and feature-family-based
strategies to reveal how inherently noncompositional properties such as feature inter-
actions are analyzed. Second, not all strategies have been applied to all software anal-
yses. For example, we have not found feature-product-based static analyses, feature-
family-based static analyses, and feature-family-based model checking. Third, we
identified well-represented (e.g., family-based type checking, static analysis, and model
checking) and underrepresented research areas (e.g., optimized product-based analy-
ses, family-based theorem proving, and feature-family-based theorem proving). Finally,
there is no compositional analysis for annotation-based product lines or family-based
specifications. Based on these insights, we formulated research questions to be ad-
dressed in future work. Most notably, is there a principle and possibly automated way
to lift a given specification and analysis technique to product lines for a particular
analysis strategy?

We hope this article can raise awareness of the importance and challenges of product-
line analyses, initiate a discussion on the future of product-line analyses, motivate
researchers to explore and practitioners to use product-line analysis methods, and
help to form a community of researchers, tool builders, and users interested in product-
line analyses. We refer interested readers to our website to follow the progress of our
ongoing classification effort.
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S. Oster, A. Wübbeke, G. Engels, and A. Schürr. 2011. A survey of model-based software product lines testing.

In Model-based Testing for Embedded System. CRC Press, Boca Raton, FL, 339–381.
S. Owre, J. M. Rushby, and N. Shankar. 1992. PVS: A prototype verification system. In Proc. Int’l Conf.

Automated Deduction (CADE’92). Springer, London, 748–752.
D. L. Parnas. 1976. On the design and development of program families. IEEE Transactions on Software

Engineering SE-2, 1, 1–9.
G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon. 2010. Automated and scalable t-wise test case

generation strategies for software product lines. In Proc. Int’l Conf. Software Testing, Verification and
Validation (ICST’10). IEEE, Washington, DC, 459–468.

B. C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.
M. Plath and M. Ryan. 2001. Feature integration using a feature construct. Science of Computer Program-

ming 41, 1, 53–84.
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