
Evaluation and Measurement
of Software Process Improvement—

A Systematic Literature Review
Michael Unterkalmsteiner, Student Member, IEEE, Tony Gorschek, Member, IEEE,

A.K.M. Moinul Islam, Chow Kian Cheng, Rahadian Bayu Permadi, and Robert Feldt, Member, IEEE

Abstract—BACKGROUND—Software Process Improvement (SPI) is a systematic approach to increase the efficiency and

effectiveness of a software development organization and to enhance software products. OBJECTIVE—This paper aims to identify

and characterize evaluation strategies and measurements used to assess the impact of different SPI initiatives. METHOD—The

systematic literature review includes 148 papers published between 1991 and 2008. The selected papers were classified according to

SPI initiative, applied evaluation strategies, and measurement perspectives. Potential confounding factors interfering with the

evaluation of the improvement effort were assessed. RESULTS—Seven distinct evaluation strategies were identified, wherein the

most common one, “Pre-Post Comparison,” was applied in 49 percent of the inspected papers. Quality was the most measured

attribute (62 percent), followed by Cost (41 percent), and Schedule (18 percent). Looking at measurement perspectives, “Project”

represents the majority with 66 percent. CONCLUSION—The evaluation validity of SPI initiatives is challenged by the scarce

consideration of potential confounding factors, particularly given that “Pre-Post Comparison” was identified as the most common

evaluation strategy, and the inaccurate descriptions of the evaluation context. Measurements to assess the short and mid-term impact

of SPI initiatives prevail, whereas long-term measurements in terms of customer satisfaction and return on investment tend to be less

used.

Index Terms—Process implementation and change, process measurement, metrics/measurement, systematic literature review.

Ç

1 INTRODUCTION

WITH the increasing importance of software products in
industry as well as in our everyday life [62], the process

of developing software has gained major attention by
software engineering researchers and practitioners in the
last three decades [93], [97], [98], [106]. Software processes are
human-centered activities and as such are prone to un-
expected or undesired performance and behaviors [44]. It is
generally accepted that software processes need to be
continuously assessed and improved in order to fulfill
the requirements of the customers and stakeholders of the
organization [44]. Software Process Improvement (SPI)
encompasses the assessment and improvement of the
processes and practices involved in software development

[25]. SPI initiatives henceforth refer to activities aimed at
improving the software development process (see Sec-
tion 3.4.3 for a definition of the different types of initiatives).

The measurement of the software process is a substantial
component in the endeavor to reach predictable perfor-
mance and high capability, and to ensure that process
artifacts meet their specified quality requirements [41], [219].
As such, software measurement is acknowledged as essen-
tial in the improvement of software processes and products
since, if the process (or the result) is not measured and
evaluated, the SPI effort could address the wrong issue [52].

Software measurement is a necessary component of every
SPI program or change effort, and empirical results indicate
that measurement is an important factor for the initiatives’
success [33], [47]. The feedback gathered by software
measurement and the evaluation of the effects of the
improvement provide at least two benefits. By making the
outcome visible, it motivates and justifies the effort put into
the initiative. Furthermore, it enables assessment of SPI
strategies and tactics [67]. However, at the same time, it is
difficult to establish and implement a measurement program
which provides relevant and valid information on which
decisions can be based [17], [67]. There is little agreement on
what should be measured, and the absence of a systematic
and reliable measurement approach is regarded as a factor
that contributes to the high failure rate of improvement
initiatives [186]. Regardless of these problems in evaluating
SPI initiatives, a plethora of evidence exists to show that
improvement efforts provide the expected benefits [46], [71],
[121], [137], [161], [184], [213], [224], [240], [248].

398 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

. M. Unterkalmsteiner, T. Gorschek, and R. Feldt are with the Software
Engineering Research Lab, School of Computing, Blekinge Institute of
Technology, Karlskrona SE-371 79, Sweden.
E-mail: {mun, tgo, rfd}@bth.se.

. A.K.M.M. Islam is with the Software Engineering: Process and Measure-
ment Research Group, Department of Computer Science, University of
Kaiserslautern, PO Box 3049, Kaiserslautern 67653, Germany.
E-mail: moinul.islam@cs.uni-kl.de.

. C.K. Cheng is with General Electrics Healthcare, Healthcare IT,
Munzinger Straße 5, Freiburg 79111, Germany.
E-mail: ChowKian.Cheng@ge.com.

. R.B. Permadi is with Amadeus S.A.S., Product Marketing and Develop-
ment, 485 Route du Pin Montard, Boite Postale 69, Sophia Antipolis Cedex
06902, France. E-mail: rahadian-bayu.permadi@amadeus.com.

Manuscript received 11 May 2010; revised 17 Nov. 2010; accepted 13 Feb.
2011; published online 2 Mar. 2011.
Recommended for acceptance by L. Osterweil.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-05-0147.
Digital Object Identifier no. 10.1109/TSE.2011.26.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

An interesting question that arises from that is how these
benefits are actually assessed. A similar question was raised
by Gorschek and Davis [167], where how changes/improve-
ments in requirements engineering processes are evaluated
for their success was criticized. Inspired by the search for
dependent variables [167], we conducted a Systematic
Literature Review (SLR) to explore how the success of SPI
initiatives is determined and if the approach is different
depending on the particular initiative. Furthermore, we
investigated which types of measures are used and, based on
the categorization by Gorschek and Davis [167], which
perspectives (project, product, or organization) are used to
assess improvement initiatives. Following the idea of
Evidence-Based Software Engineering (EBSE) [33] we collect
and analyze knowledge from both research and practical
experience. To this end we adopted the approach for
conducting SLR’s proposed by Kitchenham and Pfleeger [61].

This paper is organized as follows: Background and
related work is presented in Section 2 and our research
methodology is presented in Section 3. In Section 4, we
describe the results and answer our four major research
questions. We present our conclusions in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 Software Process Improvement

Software process research is motivated by the common
assumption that process quality is directly related to the
quality of the developed software [28], [44], [62]. The aim of
software process improvement is therefore to increase
product quality, but also to reduce time-to-market and
production costs [28]. The mantra of many software process
improvement frameworks and models originates in the
Shewhart-Deming cycle [31]: establish an improvement
plan, implement the new process, measure the changed
process, and analyze the effect of the implemented changes
[43], [49], [56], [80].

The Capability Maturity Model (CMM) [76] is an early
attempt to guide organizations to increase their software
development capability and process maturity [15].
Although software and process measurement is an integral
part of the lower maturity levels (repeatable and defined)
and central for the managed level [75], the model only
suggests concrete measurements since the diversity of
project environments may evoke varying measurement
needs [74]. Similarly, the Capability Maturity Model
Integration (CMMI) [2], [113], [114] and ISO/IEC 15504
[35], [111] (also known as SPICE) propose various measure-
ments. The CMMI reference documentation, both for the
staged and the continuous representation [113], [114],
provides measurement suggestions for each process area
as an informative supplement to the required components
of the model. The ISO/IEC 15504 standard documentation
[112], on the other hand, prescribes that the process
improvement has to be confirmed and defines a process
measurement framework. The informative part of the ISO
standard provides some rather limited examples of process
measures without showing how the measurement frame-
work is applied in practice.

A common characteristic of the above-mentioned im-
provement initiatives is their approach to identify the to-
be-improved processes: The actual processes are compared

against a set of “best practice” processes. In case of
significant divergences, improvement opportunities are
identified and the elimination of the differences constitutes
the actual process improvement [102]. This approach is
commonly referred to as top-down [102] or prescriptive
[80] improvement. In conceptual opposition to this idea are
the bottom-up [102] or inductive [80] approaches to
process improvement. The main principle of bottom-up
improvement is a process change driven by the knowledge
of the development organization and not by a set of
generalized “best practices” [102]. The Quality Improve-
ment Paradigm (QIP)/Experience Factory [7], [8] is one
instance in this category of improvement initiatives. As in
the prescriptive approaches, measurement to control
process change and to confirm goal achievement is a
central part of QIP.

2.2 Related Work

Gorschek and Davis present a conceptual framework for
assessing the impact of requirements process changes [167].
Their central idea is that the effect of a change in the
requirements process can be observed and measured at
different levels:

1. effort and quality of requirements related activities
and artifacts in the requirements phase,

2. project success in terms of meeting time, budget, and
scope constraints,

3. product success in terms of meeting both the
customers’ and the company’s expectations,

4. company success in terms of product portfolio and
market strategies, and

5. the influence on society.

Although these concepts are described from the per-
spective of requirements engineering, the essence of
evaluating a process change on different levels to under-
stand its impact more thoroughly is conveyable to software
process improvement in general.

By looking at the recent literature one can find several
endeavors to systematically collect and analyze the current
knowledge in software measurement.

Gomez et al. [48] conducted a SLR on measurement in
software engineering. The study considered, in total,
78 publications and tried to answer three questions: “What
to measure?” “How to Measure?” and “When to Measure?”
The criteria for inclusion in the review were that the
publication presents current and useful measurements. To
answer the first question, the study accumulated the
metrics based on entities where the measures are collected
and the measured attributes. The most measured entity was
“Product” (79 percent), followed by “Project” (12 percent)
and “Process” (9 percent), and the most measured attributes
were “Complexity” (19 percent), “Size” (16 percent), and
“Inheritance” (8 percent). The second question is answered
by identifying metrics that have been validated empirically
(46 percent), theoretically (26 percent), and both empiri-
cally/theoretically (28 percent). Furthermore, the measure-
ment focus, e.g., object-orientation, process, quality, was
analyzed. The answer for the third question, when to
measure, is presented by mapping the metrics onto the
waterfall lifecycle phases. The identified product metrics

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 399

are found in the design (42 percent), development
(27 percent), maintenance (14 percent), testing (12 percent),
and analysis (5 percent) phases.

Bellini et al. [10] systematically reviewed the literature in
20 software engineering and information systems journals
with the aim of describing current and future trends in
software measurement. The study identifies and discusses
five key software measurement topics in the reviewed
literature: measurement theory, software metrics, develop-
ment and identification of metrics, measure collection, and
evaluation and analysis of measures. The authors conclude
that, besides traditional software measures like code
complexity and developer productivity, developments from
organizational studies, marketing, and human resources
management are gaining interest in the area of software
engineering/information systems due to the human-inten-
sive nature of software development. Measures used in
practice should be developed based upon a common
agreement on the relationship between the empirical object
of interest and its mathematical representation. Further-
more, for the practical analysis of measures, a more flexible
interpretation of the admissible transformations of mea-
surement scales is advocated.

Kitchenham and Charters [60] conducted a systematic
mapping study to describe the state-of-the-art in software
metrics research. The study assesses 103 papers published
between 2000 and 2005 and includes an analysis on their
influence (in terms of citation counts) on research. Kitchen-
ham concludes that papers presenting empirical validations
of metrics have the highest impact on metrics research
although she has also identified several issues with this
type of studies. For example, 5 out of 7 papers which
empirically validated the object-oriented metrics proposed
by Chidamber and Kemerer [26] included Lack of Cohesion
(LCOM) in the validation. Kitchenham and Charters [60]
pointed out that LCOM has been demonstrated to be
theoretically invalid [53] and that continuous attempts to
validate LCOM empirically therefore seem futile.

The aim of this SLR differs from the above reviews in
two aspects. First, the focus of this review is on measure-
ment of software process improvement initiatives, i.e., what
to measure, and is therefore more specific than the reviews
of Bellini et al. and Gomez et al. Second, this review also
investigates how the measures are used to evaluate and
analyze the process improvement. Given our different
focus, only 1 ([185]) of our 148 reviewed papers was also
covered by Bellini et al. [10]. Gomez et al. [48] did not report
the reviewed papers, which impedes a coverage assessment
with our SLR.

3 RESEARCH METHODOLOGY

In this section, we describe the design and the execution of
the SLR. Furthermore, we discuss threats to the validity of
this review. Fig. 1 outlines the research process we have used
and its steps are described in detail in the following sections.

The need for this systematic review (Step 1, Fig. 1) was
motivated in the introduction of this paper. In order to
determine if similar work had already been performed, we
searched the Compendex, Inspec, and Google Scholar digital
libraries.1 We used the following search string to search

within keywords, title and abstracts, using synonyms for
“systematic review” defined by Biolchini et al. [30]:

((SPI OR “Software process improvement”) AND (“systema-
tic review” OR “research review” OR “research synthesis”
OR “research integration” OR “systematic overview” OR
“systematic research synthesis” OR “integrative research
review” OR “integrative review”))

None of the retrieved publications (see [104]) were
related to our objectives which are expressed in the research
questions (Step 2). The research questions (Table 1) define
what should be extracted from the selected publications
(see Section 3.4). For example, RQ1 pertains to how the
success (or failure) of SPI initiatives is evaluated, that is, to
methods which show the impact of the initiative. Note that
with “evaluation strategy” we do not refer to SPI appraisals
such as CBA-IPI [32], SCE [21], or SCAMPI [116], where the
organization’s maturity is assessed by its conformity to a
certain industrial standard [47]. We rather aim to identify
the evaluation strategies which are used to effectively show
the impact of a process change.

RQ3 investigates the measurement perspectives from
which SPI initiatives are evaluated. The perspectives (project,
product, and organization) are an abstraction based on the
identified metrics from RQ2. Finally, RQ4 aims to elicit factors
which may impede an accurate evaluation of the initiative.

The aim of the review protocol (Step 3) is to reduce
potential researcher bias and to permit a replication of the

400 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

Fig. 1. Systematic review steps (adapted from [61]).

1. Performed on 20 November 2008.

review in the future [61]. The protocol was evaluated (Step 4)
by an independent researcher with experience in conduct-
ing systematic reviews. According to his feedback and our
own gathered experiences during the process, we iteratively
improved the design of the review. A summary of the final
protocol is given in Sections 3.1 to 3.5.

3.1 Search Strategy

We followed the process depicted in Fig. 2 for the
identification of papers. Fig. 3 shows the selected databases
and the respective number of publications that we retrieved
from each.

From our research questions we derived the keywords
for the search. The search string is composed by the terms
representing the population AND intervention (Table 2).

In order to verify the quality of the search string, we
conducted a trial search on Inspec and Compendex. We
manually identified relevant publications from the journal
“Software Process: Improvement and Practice” (SPIP) and
compared them with the result-set of the trial search. The
search string captured 24 out of 31 reference publications.
Three papers were not in the result-set because Inspec and
Compendex did not index, at the time of the search,2 issues
of SPIP prior to 1998. In order to capture the remaining four
publications we added the term “result*” to the search string.

Due to the high number of publications we had to handle
(10,817, see Fig. 3) we decided to use a reference manage-
ment system. We opted for Zotero,3 mainly due to its
integrated capability to share and synchronize references.

3.2 Study Selection Criteria

The main criterion for inclusion as primary study is the
presentation of empirical data showing how the discussed
SPI initiative is assessed and therefore answering the
research questions (Table 1). Both studies conducted in
industry and in an academic environment are included.
Since the focus of this review is the measurement and
evaluation of SPI (see our research questions in Table 1),
general discussions on improvement approaches and
comparisons of frameworks or models were excluded. For
the same reason, descriptions of practices or tools without
empirical evaluation of their application were also not
considered. Furthermore, we excluded reports of “lessons

learned” and anecdotal evidence of SPI benefits, books,
presentations, posters, and non-English texts.

3.3 Study Selection Procedure

The systematic review procedure was first piloted (Step 5) in
order to establish a homogeneous interpretation of the
selection criteria among the four researchers which con-
ducted the review. The selection criteria were applied on
the title and abstract, and if necessary, on the introduction
and conclusion of the publication. For the pilot, we
individually assessed 50 randomly selected publications
from a search conducted in Inspec and Compendex. The
Fleiss’ Kappa [40] value showed a very low agreement (0.2)
among the review team. We conducted a postmortem
analysis to unveil the causes for the poor result. As a main
reason we identified the imprecise definition of the
selection criteria and research questions on which the
decision for inclusion was mainly based. After a refinement
of these definitions, we conducted a second pilot on
30 randomly selected publications from a search in

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 401

TABLE 1
Research Questions for the Systematic Review

Fig. 2. Search strategy.
2. Performed on 28 November 2008.
3. http://www.zotero.org.

SCOPUS. Furthermore, we introduced an “Unsure” cate-
gory to classify publications that should be assessed by all
researchers until a consensus was reached. Fleiss’ Kappa
increased to a moderate agreement (0.5), and, after that, the
“Unsure” publications were discussed, the interrater
agreement improved to 0.7 (substantial agreement accord-
ing to Landis and Koch [65]), which we considered an
acceptable level to start the selection procedure. Fig. 3
illustrates in detail how the publications retrieved from the
databases were reduced to the final primary studies (Step 6) on
which we applied the data extraction.

As can be seen in Fig. 3, from the 10,817 retrieved papers,
we first discarded duplicates (by ordering them alphabeti-
cally by their title and authors) and studies not published in
the English language. After applying the inclusion/exclu-
sion criteria, a total of 6,321 papers were found not to be
relevant and for 234 publications we were not able to obtain
a copy of the text. This diminished the pool of papers for
full-text reading to 362 papers. In the final pool of primary
studies, 148 papers remained after filtering out studies that
we found to be irrelevant after assessing the full-text and
those that reported on the same industry case studies.

3.4 Data Extraction

Similarly to the study selection, we distributed the work-
load among four researchers. The 148 publications accepted
for data extraction (Step 7) were randomly assigned to the
extraction team (37 publications for each member).

We performed the data extraction in an iterative manner.
Based on the experiences reported by Staples and Niazi
[99], we expected that it would be difficult to establish a
priori an exhaustive set of values for all the properties. We

therefore prepared an initial extraction form with the
properties listed in Table 3, which shows also the mapping
to the respective research questions answered by the
property. For properties P1, P2, P3, and P5 a list of expected
values was established, whereas properties P4, P6, and P7
should be extracted from the studies. Before starting the
second iteration, we reviewed the compiled extraction
forms in joint meetings and consolidated the extracted data
into the categorization given in Sections 3.4.1 to 3.4.7. In a
second data extraction iteration, we confirmed the estab-
lished categorization and used it for data synthesis (Step 9)
and drawing conclusions (Step 10).

3.4.1 Research Method (P1)

We categorized the studies according to the applied
research method. Our initial strategy for the categorization
was simple and straightforward: extract the mentioned
research method without interpreting the content of the
study. However, we discovered two issues with this
approach. First, the mentioned research methods were
inconsistent, i.e., one study fulfilled our understanding of a
“Case study” while another did not. Second, the research
method was not mentioned at all in the paper.

Therefore, we defined the following categories and
criteria to classify the studies consistently:

. Case study if one of the following criteria applies:

- The study declares one or more research
questions which are answered (completely or
partially) by applying a case study [34], [109].

- The study empirically evaluates a theoretical
concept by applying it in a case study (without
necessarily explicitly stating research questions,
but having a clearly defined goal [109]).

. Industry report if the focus of the study is directed
toward reporting industrial experiences without
stating research questions or a theoretical concept
which is then evaluated empirically. Usually these
studies do not mention any research method
explicitly. Therefore, instead of creating a category
“N/A” (research method is not applicable), we
added this category as it complies with the “Project
monitoring” method described by Zelkowitz and
Wallace [109].

. Experiment if the study conducts an experiment
[34], [109] and clearly defines its design.

402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

Fig. 3. Primary studies selection.

TABLE 2
Search Keywords

TABLE 3
Extracted Properties

. Survey if the study collects quantitative and/or
qualitative data by means of a questionnaire or
interviews [34], [82], [94].

. Action research if the study states this research
method explicitly [29], [34].

. Not stated if the study does not define the applied
research method and it cannot be derived or
interpreted from reading the paper.

3.4.2 Context (P2)

We categorized the studies into industry and nonindustry

cases. The industry category contains studies in which the

research was performed in collaboration or embedded

within industry. The nonindustry category is comprised of

studies which were performed in an academic setting or for
which the research environment was not properly described.

For industrial studies we extracted the company size

following the European Recommendation 2003/361/EC

[118], the customer type (internal or external to the

company) of the developed product, the product type

(pure software or embedded), and the application domain.

Furthermore, the number of projects in which the SPI
initiative was implemented and the staff-size was recorded.

Based on this information, we assessed the study quality
from the perspective of the presented research context (see

QA4 in Table 5 in Section 3.5).

3.4.3 SPI Initiative (P3)

We categorized the studies according to the presented SPI

initiative as follows:

. Framework. This group contains frameworks/mod-
els like CMM, international standards like ISO/IEC
15504 (SPICE) and business management strategies
like Six Sigma. For the analysis, we further broke
down this category into:

- Established frameworks—CMM, CMMI, ISO/
IEC 15504 (SPICE), Six-Sigma, PSP, TSP, QIP,
TQM, IDEAL, PDCA.

- Combined frameworks—two or more estab-
lished frameworks are used in combination to
implement the SPI initiative.

- Derived frameworks—an established frame-
work is extended or refined to fulfill the specific
needs.

- Own framework—the study proposes a new
framework without reference to one of the
established frameworks.

- Limited framework—the framework targets
only a specific process area.

. Practices. Software engineering practices which can
be applied in one or more phases of the software
development life-cycle (e.g., inspections, test-driven
development, etc.).

. Tools. Software applications that support software
engineering practices.

3.4.4 Success Indicator and Metric (P4)

From the inspected studies, we extracted the metrics which

were used to measure the described SPI initiative. In order

to get an overview of what is actually measured, the metrics
were categorized according to “success indicators.” We did
not define the classification scheme a priori but it emerged
and evolved during the data extraction (it was stabilized
after the first iteration of the data extraction).

We use the term “success indicator” in order to describe
the improvement context in which the measurement takes
place. Therefore, a “success indicator” is an attribute of an
entity (e.g., process, product, organization) which can be
used to evaluate the improvement of that entity. The
categories of success indicators are shown in Section 4.3
(Table 8). The identified metrics were categorized as in the
following example: 1) The metric “Number of defects found
in peer reviews” is mapped to the “Process quality”
category as it describes the effectiveness of the peer review
process (e.g., [143], [160], [228]). 2) The metric “Number of
defects identified after shipment / KLOC” (e.g., [140], [143],
[229]) is mapped to the “Product quality” category as the
object of study is the product itself and not the processes
from which the product originates.

The categorization of the metric is dependent on the
context of the study. The use of the metric is interpreted by
understanding which attribute is actually measured and
with which intention. In some cases, this was not possible
due to missing information in the description of the metric.
For example, the “Defects” category contains those defect
metrics for which the given information could not be used
to justify a classification into one of the predefined quality
categories (neither product nor process).

3.4.5 Measurement Perspective (P5)

We use the concept of “measurement perspective” to define
and categorize how the improvement is being assessed.
Concretely, a measurement perspective describes the view
on the improvement, i.e., which entities are measured in
order to make the change visible in either a quantitative or
qualitative manner. We derived from which measurement
perspective an initiative is evaluated by interpreting the
metrics which were described in the study and from
the attributes they are supposed to measure. We defined
the following measurement perspectives based on the five
software entity types proposed by Buglione and Abran [20]
(the entity types process, project, and resources were
bundled under the project perspective due to the difficulty
in consistently interpreting the measures identified in the
reviewed studies and to avoid miscategorization):

. Project perspective. The measurement is conducted
during the project where the SPI initiative takes
place. Examples of metrics that are used to measure
from this perspective are productivity during the
development phase, defect rates per development
phase, etc. These measures assess the entity types
process, project, and resources.

. Product perspective. The evaluation of the SPI
initiatives’ impact is conducted by measuring the
effect on the delivered products. An example of a
metric that is used to measure from this perspec-
tive is the number of customer complaints after
product release.

. Organization perspective. The measurement and
evaluation of the SPI initiatives’ impact is conducted

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 403

organization-wide. An example of a metric that is
used to measure from this perspective is return on
investment. Other qualitative measurements such as
employee satisfaction and improved business op-
portunities are also measured from this perspective.

3.4.6 Evaluation Strategy (P6)

During the first iteration of the data extraction, we
discovered that many publications do not describe or
define the adopted evaluation strategy explicitly. To solve
this problem, we established a categorization of evaluation
strategies based on their common characteristics (see
Section 4.2, Table 7). The categorization grew while
extracting the data from the studies and was consolidated
after the first iteration of the process. In some cases, we
could not identify an evaluation strategy and the publica-
tion was categorized as “Not Stated.”

3.4.7 Confounding Factors (P7)

In the context of experimental design, Wohlin et al. [108]
defined confounding factors as “variables that may affect the
dependent variables without the knowledge of the research-
er.” They represent a threat to the internal validity of the
experiment and to the causal inferences that could be drawn
since the effect of the treatment cannot be attributed solely to
the independent variable. As shown in Fig. 4, both

independent variables (treatments) and confounding factors
represent the input to the experiment and the assessment
validity of the dependent variables (effects) is threatened [77].

Assuming that in the evaluation of software process
improvements the change is assessed by comparing in-
dicators which represent an attribute before and after the
initiative has taken place, it is apparent that the problem of
confounding factors, as it is encountered in an experimental
setting, is also an issue in the evaluation of SPI initiatives.
We argue therefore that it is of paramount importance to
identify potential confounding factors in the field of
software process improvement.

Kitchenham et al. [63] identified several confounding
factors in the context of the evaluation of software
engineering methods and tools through case studies (see
Table 4). Similarly, we extracted from the reviewed
publications any discussion that addresses the concept of
confounding factors in the context of SPI initiatives and, if
given, the chosen remedies to control the issues.

3.5 Study Quality Assessment

The study quality assessment (Step 8) can be used to guide the
interpretation of the synthesis findings and to determine
the strength of the elaborated inferences [61]. However, as
also experienced by Staples and Niazi [99], we found it
difficult to assess to which extent the authors of the studies
were actually able to address validity threats. Indeed, the
quality assessment we have performed is a judgment of
reporting rather than study quality. We answered the
questions given in Table 5 for each publication during the
data extraction process.

With QA1, we assessed if the authors of the study clearly
state the aims and objectives of the carried out research.
This question could be answered positively for all of the
reviewed publications. With QA2, we asked if the study
provides enough information (either directly or by referen-
cing to the relevant literature) to give the presented research

404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

Fig. 4. The influence of confounding factors.

TABLE 4
Confounding Factors and Remedies (Adapted from [63])

TABLE 5
Quality Assessment

the appropriate context and background. For almost all
publications (98 percent) this could be answered positively.
QA3 was checked with “Yes” if validity threats were
explicitly discussed, adopting the categorization proposed
by Wohlin et al. [107]. The discussion on validity threats of
an empirical study increases its credibility [78]. A conscious
reflection on potential threats and an explicit reporting of
validity threats from the researcher increases the trust-
worthiness of and the confidence in the reported results.
Therefore, if the study just mentioned validity threats
without properly explaining how they are identified or
addressed, the question was answered with “Partially.” The
result of QA3 confirms the observation in [98] that in
empirical studies the scope of validity is scarcely discussed.
QA4 was answered with “Yes” if we could compile the data
in the context property of the data extraction form to a
major degree (see Section 3.4.2). As was pointed out by
Petersen and Wohlin [79], context has a large impact on the
conclusions that are drawn from the evidence in industrial
studies. However, 51.7 percent of the reviewed studies did
not, or only partially, describe the context of the research.
With QA5, we assessed if the outcome of the research was
properly documented. As with QA1, this questions could be
answered positively for all (except one) study.

3.6 Validity Threats

We identified three potential threats to the validity (Step 11) of
the systematic review and its results.

3.6.1 Publication Bias

Publication bias refers to the general problem that positive
research outcomes are more likely to be published than
negative ones [61]. We regard this threat as moderate since
the research questions in this review are not geared toward
the performance of a specific software process improve-
ment initiative for the purpose of a comparison. The same
reasoning applies to the threat of sponsoring in which
certain methods are promoted by influential organizations
[61] and negative research outcomes regarding this method
are not published. We did not restrict the sources of
information to a certain publisher, journal, or conference
such that it can be assumed that the breadth of the field is
covered sufficiently. However, we had to consider the
tradeoff of considering as much literature as possible and,
at the same time, accumulating reliable information. There-
fore, we decided not to include gray literature (technical
reports, work in progress, unpublished, or not peer-
reviewed publications) [61].

3.6.2 Threats to the Identification of Primary Studies

The strategy to construct the search string aimed to retrieve
as many documents as possible related to measurement and
evaluation of software process improvements. Therefore,
the main metric to decide about the quality of the search
string should be the recall of the search result. Recall is
expressed as the ratio of the retrieved relevant items and all
existing relevant items [92]. Since it is impossible to know all
existing relevant items, the recall of the search string was
estimated by conducting a pilot search as described in
Section 3.1. This showed an initial recall of 88 percent, and
after a refinement of the search string, a recall of 100 percent.

Although the search string was exercised on a journal (SPIP)
of high relevance for this systematic review, the threat of
missing relevant articles still exists. Inconsistent terminol-
ogy, in particular in software measurement research [45], or
use of different terminology with respect to the exercised
search string (see Table 2) may have biased the identification
of primary studies.

Precision, on the other hand, expresses how well the
search identifies only relevant items. Precision is defined as
the ratio of retrieved relevant items and all retrieved items
[92]. We did not attempt to optimize the search string for
precision. This is clearly reflected by the final, very low,
precision of 2.2 percent (considering 6,683 documents after
the removal of duplicates and 148 selected primary studies).
This is, however, an expected result since recall and
precision are adversary goals, i.e., the optimization to
retrieve more relevant items (increase recall) implies
usually a retrieval of more irrelevant items too (decrease
precision) [86]. The low precision itself represents a
moderate threat to the validity of the systematic review
since it induced a considerably higher effort in selecting the
final primary studies. We addressed this threat as explained
in Section 3.6.3.

We followed two additional strategies in order to further
decrease the probability of missing relevant papers. First,
during the testing of the search string (see Section 3.1), we
discovered that the bibliographic databases (Inspec and
Compendex) did not index studies published in Software
Process: Improvement and Practice prior to 1998. Therefore, we
decided to include a third bibliographic database (SCOPUS)
and also individual publishers in the data sources (IEEE
Explore and ACM Digital Library). This led to a high
number of duplicates (3,893), which we could, however,
reliably identify by sorting the documents alphabetically by
their title and authors. Second, the systematic review design
was assessed for completeness and soundness by an
independent researcher with experience in conducting
systematic literature reviews.

We could not retrieve the full-text for 234 studies within
the scheduled time-frame for the systematic review. This,
however, represents a minor threat since this set, recalling
the retrieval precision of 2.2 percent, would have contained
approximately only five relevant studies.

3.6.3 Threats to Selection and Data Extraction

Consistency

Due to the scope of the systematic review, we had to
develop efficient (in terms of execution time) and effective
(in terms of selection and data extraction consistency)
strategies. One of the main aims of defining a review
protocol is to reduce researcher bias [61] by defining explicit
inclusion/exclusion criteria and a data extraction strategy.
A well-defined protocol increases the consistency in
selection of primary studies and in the following data
extraction if the review is conducted by multiple research-
ers. One approach to further increase the validity of the
review results is to conduct selection and data extraction in
parallel by several researchers and cross-check the outcome
after each phase. In the case of disagreements they should
be discussed until a final decision is achieved. Due to the

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 405

large amount of initially identified studies (10,817) we
found this strategy impossible to implement within the
given time-frame. Therefore, as proposed by Brereton et al.
[16] and illustrated in Sections 3.3 and 3.4, we piloted the
paper selection and data extraction and improved the
consensus iteratively. By piloting we addressed two issues:
First, the selection criteria and the data extraction form were
tested for appropriateness, e.g., are the inclusion/exclusion
criteria too restrictive or liberal, should fields be added or
removed, are the provided options in the fields exhaustive?
Second, the agreement between the researchers could be
assessed and discrepancies streamlined, e.g., by increasing
the precision of the definitions of terms. Although it can be
argued that this strategy is weaker in terms of consistency
than the previously mentioned cross-checking approach, it
was a necessary tradeoff in order to fulfill the schedule and
the targeted breadth of the systematic review.

In order to assess data extraction consistency, we
performed a second extraction on a randomly selected
sample of the included primary studies. Each researcher
extracted data from 15 papers, which is slightly more than
10 percent of the total number of included studies and
approximately 50 percent of the studies each researcher was
assigned in the first extraction.

Table 6 shows the Fleiss’ Kappa [40] value of each
property that was extracted from the primary studies. The
interrater agreement denotes thereby the data extraction
consistency between the researchers. The intrarater agree-
ment gives an indication of the repeatability of the process
(the second extraction was performed 18 months after the
original one).

Landis and Koch [65] propose the following interpreta-
tion for Fleiss’ Kappa: Almost excellent (1.0-0.81), Sub-
stantial (0.80-0.61), Moderate (0.60-0.41), Fair (0.40-0.21),
Slight (0.20-0), and Poor (<0).

The analysis shown in Table 6 indicates that in properties
P5 and P7 we achieved only slight, respectively, poor
agreement in the data extraction validation. A potential
reason for this result on property P7 may be that
confounding factors are not explicitly mentioned in the
selected primary studies and are therefore difficult to
identify. In rare cases, confounding factors are mentioned
in the validity threats of the study (e.g., [140]) or, more
frequently, in the results discussion (e.g., [146], [219]). A
consistent extraction of property P7 is therefore rather
challenging and may be biased.

We agreed, however, on the identified confounding
factors (P7) and the measurement perspective (P5) categor-
ization as, after the original data extraction, all involved
researchers jointly discussed the results until a consensus
was reached. Hence, we are confident that the reported
results in Sections 4.4 and 4.5 are internally consistent.

4 RESULTS AND ANALYSIS

A total of 148 studies discuss the measurement and
evaluation of SPI initiatives. Prior to presenting the results
and analysis for each research question we give a short
overview of the general characteristics of the studies.

4.1 Overview of the Studies

4.1.1 Publication Year

The reviewed papers were published between 1991 and
2008. A first increased interest in evaluating SPI initiatives
appears in the period between 1998 and 2000 (35, 24 percent).
A second spike can be observed between 2005 and 2008 (55,
37 percent). This seems to indicate an increased interest in
SPI and success measurement, pointing to the relevance of
the area. In addition, as a substantial part of the publications
fall within a period of four years before this review was
conducted (2008), it increases the likelihood for the results of
the studies being relevant, elevating the potential value
obtained in this systematic review.

4.1.2 Research Method

The inspected publications were classified according to the
applied research methods as defined in Section 3.4.1. Case
studies (66, 45 percent) and industry reports (53, 36 percent)
constitute a clear majority of the studies, followed by
experiments (8, 5 percent), surveys (7, 4 percent), action
research (1, 1 percent), and a combination of action
research and experiment (1, 1 percent). Also interesting
to observe is that the lack of an adequate description of the
applied research methodology prevented a categorization
(12, 8 percent).

4.1.3 Study Context

The study settings were categorized in industry and
nonindustry cases (see Section 3.4.2). The majority of the
papers (126, 85 percent) are situated in the industry
category, indicating that the results obtained from this
review are based on realistic settings.

Remarkably about 50 percent of the industry studies do
not provide any information on the size of the organization
where the research was carried out. The fact that consider-
able research effort exists to explore how to introduce
software process improvement into small and medium
sized companies [91], [115], suggests that company size and
the available resources should be taken into account when
choosing and embarking on an SPI initiative. Omitting that
information therefore debilitates the judgment if such an
initiative is feasible in a different setting [79]. In those
studies which reported the organizations size, large
(> 250 employees) organizations dominate (34, 27 percent)
over medium (13, 10 percent), or small (< 50 employees)
organizations (13, 10 percent). Many publications provide
the name of the company, but they seldom provide its size

406 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

TABLE 6
Inter and Intrarater Agreement

in terms of the number of employees. For well-known
organizations, this could be due to the fact that the authors
consider this information as obvious. Another reason could
be that the information was not considered as important to
report. Furthermore, confidentiality concerns are not a
valid argument for omitting context information since it is
possible to anonymize the published data [90]. Indeed,
there are several reasons why context information such as
size, not only of the organization, but also of the unit under
study can be considered as crucial. Consider, for example,
“A Practical View of Software Measurement and Imple-
mentation Experiences within Motorola” [143]. The paper
does not mention the size of the company. Since Motorola
is a well-known company, it is possible to get the
information about Motorola’s size (at the end of 2008 it
had 64,000 employees [117]). Even if the organizations’ size
at the publication date of the study (1992) would be known,
it is still difficult to judge the scope of SPI implementation
since the paper does not specify the size of nor in which
business units the SPI initiative was implemented.

In order to improve context documentation, future SPI
research should consider to adopt the guidelines developed
by Petersen and Wohlin [79].

4.1.4 Identified SPI Initiatives

Fig. 5 shows the distribution of the SPI initiatives according
to the definition given in Section 3.4.3. A detailed list of all
identified initiatives can be found in the extended material
of the systematic review (see [104]). Combinations of SPI
initiatives (e.g., a certain practice was applied in the context
of a framework) are recorded explicitly. The “Framework”
category is predominant (91, 61 percent), followed by
“Practices” (29, 20 percent) and “Tools” (9, 6 percent).

The scope of this systematic review is to capture any
kind of process improvement initiative and their respective
approaches to evaluate it. The holistic approach is
captured by the “Framework” category, while the initia-
tives targeted at a limited or specific area of software
development are represented by the “Practices” and
“Tools” categories. Adding up the latter categories (i.e.,

the categories “Practices”, “Tools,” and “Practices+Tool”
sum up to 42) shows that compared to frameworks
(91 studies), they are underrepresented. This suggests that
it is less common to measure and evaluate the impact of
practices and tools in the context of software process
improvement research.

Fig. 6 shows the distribution of the established frame-
works. It is of no surprise that CMM is the most reported
framework (42, 44 percent) since it was introduced almost
20 years ago. The influence of the Software Engineering
Institute (SEI) can be seen here, which is also the sponsor of
the CMMI, Team and Personal Software Process (TSP/PSP),
and IDEAL. SPICE (ISO/IEC 15504) and BOOTSTRAP,
software process improvement and assessment proposals
originating in Europe are rather underrepresented. We
extracted the geographic location from the papers where the
authors explicitly stated the study was conducted. Looking
at the studies on CMM, North America is represented 15
and Europe 9 times. On the other hand, none of the studies
on SPICE were conducted in North America. Considering
that of all the 27 identified SPI initiatives studies were
located in North America and 38 in Europe, this may
indicate the existence of a locality principle, i.e., that
companies adopt SPI initiatives developed in their geo-
graphic vicinity.

However, since the focus of the research questions is to
elicit evaluation strategies and measurements in SPI
initiatives, the conclusion that SPICE is generally less
commonly used in industry cannot be drawn from the
picture; it rather means that the evaluation strategies and
measurements used in SPICE are less frequently reported
by the scientific literature.

In the following sections, we answer the research
questions stated in Table 1, Section 3.

4.2 Types of Evaluation Strategies Used to Evaluate
SPI zinitiatives (RQ1)

4.2.1 Results

The purpose of this research question was to identify the
evaluation strategies that are applied to assess the impact of

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 407

Fig. 5. SPI initiative distribution of the publications. Fig. 6. Established framework distribution of the publications.

an SPI initiative. As stated in Section 3.4.6, we categorized
the strategies according to their common characteristics and
established seven categories (see Table 7). The strategies are
discussed in more detail in Section 4.2.2. The predominant
evaluation strategy that we identified was “Pre-Post Com-
parison” (72, 49 percent), followed by “Statistical Analysis”
(23, 15 percent). We encountered also papers where we could
not identify an evaluation strategy (21, 14 percent). They
were, however, included in the review as they provided data
points relevant to the other research questions.

4.2.2 Analysis and Discussion

“Pre-Post Comparison” is the most common evaluation
strategy. However, the validity of this strategy, in terms of
whether the assessed results are in causal relationship with
the SPI initiative, is rarely discussed (see Section 3.4.7 for a
more detailed discussion).

Most of the identified evaluation strategies are not
specifically designed for evaluating the outcome of SPI
initiatives. However, an exception is given by the Philip
Crosby Associates’ Approach, which explicitly suggests what
to evaluate [27]. The majority of the evaluation strategies
found are very generic in nature and different organizations
applied those methods for measuring different success
indicators based on the organizational needs and contexts.
This indicates that there is a shortcoming in the used methods
to evaluate the outcome of SPI initiative in a consistent and
appropriate way, and supports the demand [186] for a
comprehensive measurement framework for SPI.

Pre-Post Comparison. The outcome of SPI initiatives is
evaluated by comparing the success indicators’ values

before and after the SPI initiatives took place. Hence, for
the “Pre-Post Comparison” of success indicators it is
necessary to set up a baseline from which the improve-
ments can be measured [89]. The major difficulty here is to
identify reasonable baseline values. One strategy could be
to use the values from a very successful project or product
(either internal or external to the organization) and bench-
mark the improvement against those. Accordingly, the
baseline would represent the target that is aimed for in the
improvement. Benchmarking in this way is useful if no
historical data of successful projects or products are
available. However, the performance of the improvement
initiative cannot be deduced by comparing against a target
baseline since the previous status is unknown and therefore
the target may merely serve as an indication. Therefore, for
evaluating the effect of improvement initiatives, historical
data against which the actual performance can be compared
is essential. An example that illustrates how a baseline for
organizational performance can be constructed is given by
Paulish and Carleton [219]. Organizations with an estab-
lished measurement program will have less difficulty in
establishing a baseline than organizations with a newly
instantiated or even a not-yet-started program [219].

Baselines are also essential in statistical process control
(SPC) where the variation of a specific process attribute
relative to a baseline is interpreted as instability and
therefore a possible cause of quality issues of the resulting
product. Hollenbach and Smith [178] exemplify the estab-
lishment of baselines for SPC. Furthermore, the statistical
techniques presented by Henry et al. [176] can be used to
create baselines of quality and productivity measurements.

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

TABLE 7
Evaluation Strategies

Statistical Analysis and Statistical Process Control.

Statistical analysis includes descriptive statistics where data
are summarized numerically (e.g., mean, median, mode) or
graphically (e.g., charts and graphs). Statistical analysis can
also be done by inferential statistics by drawing inferences
about the larger population through hypothesis testing,
estimates of numerical characteristics (estimation), descrip-
tions of association (correlation), or modeling of relation-
ships (regression). One application of statistical techniques
is to strengthen the validity of the collected measurements
[88]. Another common application is found in SPC which
aims at measuring and analyzing the variation in processes.
Time series analysis, as promoted by SPC, can provide
information when an improvement should be carried out
and determine the efficacy of the process changes [22].

As proposed by Henry et al. [176], several statistical
techniques can be applied to evaluate the effectiveness of
software process improvement in terms of increased
estimation accuracy, product quality, and customer satis-
faction. The described methods are multiple regression,
rank correlation, and chi-square tests of independence in
two-way contingency tables, which, when applied repeat-
edly over time, can show the effectiveness of process
improvements statistically [176]. However, care must be
taken when applying these techniques since a single
method alone may not show the true impact of the initiative
and wrong conclusions could be drawn [176]. Furthermore,
Henry et al. [176] objected that in some cases the process
improvement must be very effective in order to show
significant alterations in the statistical evaluation results.
Statistical methods are also used to assess process stability,
which is regarded as an important aspect of organizational
capability [234]. In order to evaluate stability, the authors
propose trend, change, and shape metrics which can be
used in the short and long term and are analyzed by visual
inspection of the data summarized by descriptive statistics
(e.g., histograms and trend diagrams).

Ramil and Lehman [223] discuss the assessment of
process improvement from the viewpoint of software
evolution. The authors propose a statistical technique to
determine whether productivity (or any other process or
product attribute) changes significantly over a long period
of time. The aim of the presented CUSUM (cumulative sum)
test is to systematically explore data points which highlight
changes in the evolutionary behavior. Although this can
also be done by visual inspection of trends (as was
proposed by Schneidewind [234]), a change detection
algorithm is considered as less error-prone and is particu-
larly useful when assessing the impact of process improve-
ment initiatives and when analyzing whether the
performance of processes has changed [223].

An interesting approach to address the issue of certain
confounding factors using statistical techniques is presented
by Schalken et al. [233]. The authors illustrate how Cost-
Model Comparison, based on a linear regression equation,
can account for the factor of project size when evaluating
the effect of a process improvement on productivity (the
same method is also proposed by Alagarsamy et al. [124]).
A second issue, namely, the comparison of projects from
different departments to assess productivity improvement,
is addressed by the Hierarchical Model Approach. Projects

originating from different departments in an organization
are not directly comparable since they are either specialized
on a group of products, a specific technology, or have
employees with different skills [233]. Both the Cost-Model
Comparison and the Hierarchical Model Approach can be
used to prevent erroneous conclusions about the impact of
the process improvement initiative by considering context.
Unfortunately, as we have shown in Section 4.1.3, the
context in which the improvement initiatives are evaluated,
is seldom presented completely. It is therefore difficult to
judge in such cases if the reported improvement can be
attributed to the initiative.

Survey. In the context of this work, a survey is defined as
any method to collect, compare, and evaluate quantitative or
qualitative data from human subjects. A survey can be
conducted by interviews or questionnaires, targeting em-
ployees affected by the process improvement initiative or
customers of the organization. Surveys can be an effective
mean to assess the changes introduced in an improvement
effort since, after all, the development of software is a
human-intensive task. The feedback provided by employees
can therefore be used to improve understanding of the
effects caused by the introduced changes and to steer future
improvements. Gathering information from customers, on
the other hand, can provide insight on how the improve-
ment affects the quality of products or services as perceived
by their respective users. This can be valuable to assess
external quality characteristics, such as integrity, reliability,
usability, correctness, efficiency, and interoperability [39],
which otherwise would be difficult to evaluate. The analysis
of the improvement participants’ feedback can be valuable if
historical data for comparison is not available or if its
quality/completeness limits the evaluability of the improve-
ment. A systematic method to assess the effects caused by an
improvement initiative is described by Pettersson et al. [80].
The approach can be useful if no or only limited historical
data are available to construct a baseline which can serve as
a reference point for the improvement evaluation. The
postevaluation is based on the expert opinion of the directly
involved personnel which compares the improved process
with the previous one. This lightweight process improves
the visibility on the effects of the undertaken improvement
initiative and also provides information on how the change
was experienced by the involved roles. The method could be
enhanced by integrating the concept of “contribution
percentages,” as was proposed by van Solingen [252]. The
idea is to let the experts assess how much the initiative
actually contributed to the improvement, i.e., provide the
possibility to express that only a fraction of the change is
attributable to the initiative and other factors have also
contributed to the enhancement. Such an approach could
also support the identification of potential confounding
factors (see Section 4.5).

Besides by the expert opinion of employees, it is also
possible to evaluate the effects of the improvement by
querying customers. Quality of service surveys could be sent
periodically to customers, illustrating the effects of the
adapted or new process from the customer perspective [207].

Cost-Benefit Analysis. Evaluating an improvement
initiative with a cost-benefit measure is important since

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 409

the allocated budget for the program must be justifiable in
order not to risk its continuation [62], [252]. Furthermore, it
is necessary to avoid loss of money and to identify the most
efficient investment opportunities [252]. When assessing
cost, organizations should also consider other resources
than pure effort (which can be relatively easily measured),
e.g., office space, travel, computer infrastructure [252],
training, coaching, additional metrics, additional manage-
ment activities, process maintenance [151]. Activity Based
Costing helps to relate certain activities with the actual
spent effort [151]. Since cost and effort data can be collected
in projects, they must not be estimated [151]. On the other
hand, the values obtained thereby are still an approxima-
tion and estimations of both costs and benefits are
inevitable [252]. Since it is usually enough to know the
ROI’s relative value (positive, balanced, or negative),
perfect accuracy is not required as long as the involved
stakeholders agree on the procedure how to assess it [252].
Direct benefits and especially indirect and intangible
benefits are best assessed by multiple stakeholders [252];
some of the difficult to quantify benefits are: customer
satisfaction, improved market share due to improved
quality, reduced time-to-deliver and accuracy, feature-cost
reduction, opportunity costs, reduced maintenance in
follow-up projects, better reusability, employee satisfaction,
increased resource availability [151]. A useful technique to
support the estimation is the so-called “what-if-not”
analysis [252]. Project managers could be asked to estimate
how much effort was saved due to the implemented
improvement in follow-up projects. The saved effort would
then be accounted as a benefit. Another strategy would be
to estimate the “worth” of a certain improvement, e.g.,
asking managers how many training days would they
invest to increase employee motivation and quantify the
cost of such a training program [252].

Philip Crosby Associates’ Approach. This method is
derived from Philip Crosby’s Cost of Quality idea [27]. It is
based on distinguishing the cost of doing it right the first
time (performance costs) from the cost of rework (non-
conformance costs). The cost of quality is determined by the
sum of appraisal, prevention, and rework costs [148]. The
improvement is evaluated by a reduction of rework costs
over a longer period of time (several years, as shown in
[148] and [149]). This method is similar to Cost-Benefit
Analysis but particularly tailored to software process
improvement evaluation.

Software Productivity Analysis Method (SPAM).

SPAM provides a way of defining productivity models
and evaluation algorithms to calculate the productivity of
all possible combinations of an observed phenomenon
(process, project size, technology, etc.) [18], [134].

4.3 Reported Metrics for Evaluating the SPI
Initiatives (RQ2)

4.3.1 Results

The purpose of this research was to identify the used metrics
and success indicators (see Section 3.4.4) in SPI evaluations.

Table 8 and Table 9 show the frequency of the identified
success indicators in the inspected studies. “Process
Quality” (57, 39 percent) was the most observed success

indicator, followed by “Estimation Accuracy” (56, 38 per-
cent), “Productivity” (52, 35 percent), and “Product Qual-
ity” (in total 47 papers, 32 percent, also considering those
from Table 10).

We differentiated the “Product Quality” success indica-
tors based on the ISO 9126-1 standard. The identified
studies are shown in Table 10. Two points have to be noted.
First, we added “Reusability,” which is not defined as a
product quality attribute by ISO 9126-1, to the quality
attributes. Furthermore, if the study did not explicitly state,
or sufficiently describe, which quality attribute is measured,
we mapped the study to the general “Product Quality”
category (see Table 8).

“Reliability” was the most observed success indicator for
the product quality characteristics, followed by “Maintain-
ability” and “Reusability.”

Table 11 shows the categorization of estimation accuracy
indicators. The “Others” category again contains estimation
accuracy metrics which could not be mapped to the specific
categories. “Schedule” (37, 25 percent) is by far the most
observed success indicator for estimation accuracy. On the
other hand, assuming that “Cost” can be expressed in terms
of “Effort” and vice versa, combining them shows that their
number of observations (35, 24 percent) is comparable to
that one of “Schedule.” “Size” (10, 7 percent), “Productiv-
ity,” and “Quality” (2 papers each, 1 percent) fall behind.

We also distinguished how customer satisfaction is
assessed (Table 9). Qualitative customer satisfaction is
largely assessed by questionnaires, while quantitative
customer satisfaction is recorded by objective measures
(e.g., New open problems = total new postrelease problems
opened during the month).

The “Other Qualitative/Quantitative Success Indicator”
categories contain indicators such as “Team morale,”
“Employee motivation,” or “Innovation” which were ex-
plicitly mentioned in the studies as indicators for improve-
ment but could not be mapped into the classification.

4.3.2 Analysis and Discussion

The main incentive behind the embarkment of an SPI
initiative is to increase quality and to decrease cost and
schedule [85], [100], [105]. In order to evaluate the success of
such an initiative, it is crucial to assess the improvement’s
effects. Table 8 and Table 9 list the success indicators we
identified in this systematic review. We mapped the
improvement goals of quality, cost, and schedule with
these success indicators:

. Quality (“Process Quality” & “Product Quality” &
“Other Quality Attributes”) was found in 92 papers,
62 percent.

. Cost (“Effort” & “Cost”) was found in 61 papers,
41 percent.

. Schedule (“Time-to-market”) was found in 27 papers,
18 percent.

This shows that quality is the most measured attribute,
followed by cost and schedule. Drawing an analogy with
the time-cost-performance triangle [4], [59], which reflects
that the three properties are interrelated and it is not
possible to optimize all three at the same time, the
unbalanced number in the identified success indicators

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

suggests that this is also true for what is actually measured
in SPI initiatives.

Furthermore, in order to accurately calculate the finan-
cial benefits of an SPI initiative, it is necessary to take all
three attributes into account [85]. The low occurrence of
“return-on-investment” (22, 15 percent) as success indicator
suggests that it is seldom used to increase the visibility of
the improvement efforts. It has been shown, however, that
“return-on-investment” can be used to communicate the
results of an SPI initiative to the various stakeholders [87]
(see Section 4.2.2, Cost-Benefit Analysis for more in-depth
discussion about “return-on-investment”).

Product Quality. As shown in Table 10, we categorized
success indicators according to ISO 9126-1 product quality
attributes. The main incentive to analyze the success
indicators from this perspective is that those attributes
may have a different weight, depending on the stakeholder.
A developer may rate “Maintainability,” “Reusability,” and
“Portability” (internal quality attributes) higher than the
product’s customer. “Reliability,” “Usability,” “Functional-
ity,” and “Efficiency,” on the other hand, are the external
quality attributes of the product which are potentially more
important to the customer [12], [101]. The measurement of
internal quality attributes can be applied efficiently, with a

low error frequency and cost [101]. It is therefore of no
surprise that internal attributes are measured more fre-
quently than external ones (see Table 10). Interestingly,
“Reliability” is measured far more often as compared to the
other three external attributes. This is explained by looking
at the measures used in these studies to express “Relia-
bility,” which in the majority are based on product failures
reported by the customer and therefore relatively easy to
collect and evaluate. On the other hand, “Usability,” which
is considered as difficult to measure [13], [69], [95], is also
seldom assessed in the context of process improvement (see
Table 10).

Customer Satisfaction. Customer satisfaction can be
used to determine software quality [84] since it is commonly
considered as an accomplishment of quality management
[54]. An increased product quality could therefore also be
assessed by examining customer satisfaction. Nevertheless,
we identified only few papers (20, 14 percent) which use
qualitative means, and even fewer papers (7, 5 percent) in
which quantitative means are described to determine a
change in customer satisfaction (see Table 9). Although
measuring customer satisfaction by a questionnaire can
provide a more complete view on software quality, it is an
intrusive measurement that needs the involvement and
cooperation of the customer [68]. On the other hand,

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 411

TABLE 8
Success Indicators

quantitative measurements as the number of customer
reported failures need to be put into relation with other,
possibly unknown, variables in order to be a valid measure
for software quality. A decrease in product sales, increased
knowledge of the customer on how to circumvent problems
or a shift in the user base can all cause a reduction in
reported failures, making the measurement of software
quality from this angle more complex [70].

Estimation accuracy. In Table 11 the success indicators
for estimation accuracy are shown. It is interesting that

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

TABLE 10
ISO-9126-1 Product Quality Attributes

TABLE 11
Estimation Accuracy Success Indicators

TABLE 9
Success Indicators (Continued)

estimating quality seems very uncommon, although the
improvement of quality is one of the main interests of SPI
initiatives [50], [62], where quality is found to be the most
measured success indicator (Table 8). The identified quality
estimation metric instances cover process quality, e.g.,
actual/estimated number of Quality Assurance reviews
[205] and actual/estimated number of defects removed per
development phase [237]. Quality estimation metrics
should be given equal importance as the other estimation
metrics as they can be used to assess the stability of the
software process. On the other hand, “Schedule” (37,
25 percent) and “Cost and Effort” (34, 24 percent) represent
the bulk of the estimation accuracy measures. These two
factors may be presumed as important constraints during
the project planning [59] and are therefore preferably
selected for estimation.

Validity of measurements. Overall we extracted an
overwhelming list of metric instances from the publications.
However, many of the metric instances are actually
measuring the same attribute but in different measurement
units, e.g., defect density which is measured by taking the
number of defects over size, where size can be expressed in
either LOC, FP, etc. Even more interesting is that the
definition of basic measures deviates considerably. For the
success indicator “Productivity” there are examples where
the metric was defined as the ratio of effort over size [206],
[220], and conversely, as the ratio of size over effort [170],
[262]. Another example can be found for the metric “Defect
Density,” that is interpreted as “Process Quality” ([261]) but
classified as “Defect” in [227] and [231].

A potential reason for these inconsistencies can be the lack
of an acknowledged reference terminology for software
measurement by researchers and practitioners [45]. Impre-
cise terminology can lead to inadequate assessment, com-
parison, and reporting of measurement results and impede
learning [51] and therefore improvement. Besides the lack of
agreement on measurement terminology and concepts, there
exist doubts on the validity of certain measures. The poor
definition of measures leads to broad margins of interpreta-
tion as, for example, shown by Kaner and Bond [58] for the
reliability metric mean time to failure (MTTF). As pointed
out by Carbone et al. [24], it is necessary to better understand
the abstract concepts behind the measured quantities and to
construct precise operational definitions in order to improve
the validity of measurements.

4.4 Identified Measurement Perspectives in the
Evaluation of SPI Initiatives (RQ3)

4.4.1 Results

The purpose of this research question was to assess from
which measurement perspective (project, product, or orga-
nization) SPI initiatives are evaluated (see Section 3.4.5 for
the definition of the perspectives). Fig. 7 shows the
frequencies of the identified measurement perspectives.
The “Project” perspective (98, 66 percent) represents the
majority, followed by the “Project and Product” perspective
(30, 20 percent) and the “Project, Product, and Organization”
perspective (8, 5 percent). These numbers show that
measurement and evaluation at the project level is the most
common approach to assess SPI initiatives

The SPI initiatives and the corresponding measurement
perspectives are mapped in Table 12 and Table 13,
respectively.

We identified the organizational measurement perspec-
tive mostly in studies with a CMM-based initiative (row A
in Table 12). We did not identify any study with the
product perspective alone within the established SPI
framework category; however, rows A, B, E, F, and G in
Table 12 show that it is common to combine the project and
product perspectives.

4.4.2 Analysis and Discussion

A considerable amount (98, 66 percent) of the total
148 papers in this review reported only measurements for
the project perspective. This indicates that the measurement
perspective to evaluate the SPI initiatives’ outcome is
strongly biased toward the project perspective. The dom-
inance of project perspective and the very low number of
organization perspective may indicate a potential problem
in communicating the evaluation results of the SPI
initiatives to all the organization’s stakeholders, assuming
that they have different information needs. On the other
hand, it can be argued that measuring the project is easier as
probably less confounding factors are involved [167].

At the corporate level, business benefits realized by the
improvement initiative need to be visible, whereas the
initiatives’ impact on a certain project is of more relevance
for the developers, project, or product managers involved
[1]. Hence, it may be beneficial to consider and assess
information quality of software measurements in terms of
their fitness of purpose [11].

It can also be observed that, whenever the product
perspective is considered it is often accompanied by the
project perspective. The combination of these measurement
perspectives seems reasonable, especially when considering
the project success definition by Baccarini [6]: Overall
project success is the combination of project management
success and project product success.

Relying exclusively on the project perspective can raise the
difficulty to spanning the evaluation over several projects,
thus not only focusing on attaining goals of a single project
[167]. For example, Babar and Gorton [5] have observed in a
survey among practitioners that software architecture re-
views are often performed in an ad-hoc manner, without a
dedicated role or team responsible for the review. As such,

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 413

Fig. 7. Measurement perspective.

this initiative may be beneficial for the current project, but fail
to provide the expected financial benefits in the long-term [5].
That would, however, stay unobserved if the improvement
initiative is only evaluated from the project perspective. It is
therefore important to assess the effect of SPI initiatives from
perspectives beyond the project, that is, also consider the
impact on the product and the organization [167].

Looking at Table 12 and rows K to N in Table 13, it can be
seen that 77 out of 91 (85 percent) initiatives that are
supported by a framework are evaluated from the project
and/or product perspective. This indicates a discrepancy of
the initiatives aim, i.e., to establish an organization-wide
improvement (e.g., at CMM level 3 the improvement is
extended to organizational issues [38]), and how the
achievement of this aim is assessed. From the indications
gathered in this review, the organizational measurement
perspective is the least reported one.

SPI initiatives that involve Six Sigma are mostly focused
on the “Project” and “Project & Product” perspective. In 9
out of 10 studies ([164], [203], [224], [263] from Table 12 and
[143], [172], [212], [213], [264] from Table 13) these
perspectives are considered, while only [166] from Table 13
covers the organizational measurement perspective. This
could be ascribed to the emphasis given by Six Sigma on
product quality [14] and the implied focus on evaluating the
impact on the project and on the produced goods.

Finally, if we look at the measurement perspectives
identified in the tools and practices category (Table 13,
rows Q, R, and S), we can identify some interesting
patterns. Only [133], [226], [239] consider the organizational

measurement perspective. In particular, SPI initiatives in
the “Tools” and “Practices+Tools” categories do not
consider the organization perspective in the measurement.
A potential explanation can be that tools and practices are
mostly applied on project or product levels and not on the
organization level. For the “Practice” category, the most
prominent measurement perspective is the project perspec-
tive. The reason is that these initiatives are mostly
addressing the project level. The introduction of a tool as
an SPI initiative can, however, have far-reaching conse-
quences, that is, for the project [42], [134], but also for both
the product quality [57], [63], [66], [73] and the organization
[55], [72], [83], [96].

4.5 Confounding Factors in Evaluating SPI
Initiatives (RQ4)

4.5.1 Result

The purpose of this research question was to determine
which confounding factors (see Section 3.4.7) need to be
taken into consideration when evaluating SPI initiatives. As
Table 14 shows, we could identify only a few hints
regarding these factors. This might indicate that confound-
ing factors are seldom explicitly taken into consideration
when evaluating process improvement.

4.5.2 Analysis and Discussion

From the results presented above we can identify several
issues regarding confounding factors and their role in
evaluating SPI initiatives. The first is that we could only

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

TABLE 12
Measurement Perspectives Identified in Established Frameworks

identify 19 studies (out of 148) which discuss potential
validity problems when evaluating SPI initiatives. It is
therefore difficult to generalize assumptions or to relate a
finding to a certain evaluation strategy. Second, the authors
of the publications seldom use the term “confounding
factor” or “confounding variable”; often we had to interpret
the descriptions of study designs, executions, and results to
discover if the authors considered confounding factors. We
identified several synonyms instead: “influencing factors”
[161], “influences” [169], “state variables” [165], “uncon-
trolled independent variables” [156], and “environmental
influences” [197], [219].

What can be learned from the identified studies is that the
identification, characterization, and control of confounding
factors is a challenging endeavor. In [186], [197], [243], and
[248] they are described in an abstract and general way
without discussing remedies to overcome them. The authors
in [248] pointed out that it is possible to measure product
quality improvement effected by specific process actions.
They also cautioned that it is necessary to study the
conditions under which the relationship between process
action and improvement is observed in order to increase the
knowledge on these relationships. Unfortunately, in many
cases the context in which the improvement is evaluated is
described unsatisfactorily (see Section 4.1.3), and an identi-
fication of confounding factors is therefore aggravated.

Generally, the effect of confounding factors on the
dependent variable can be controlled by designing the

study appropriately, e.g., by a random allocation of the
treatment and control groups [3]. The fundamental assump-
tion by such a design is that the confounding variables are
equally distributed in each group, i.e., that the probability is
high that the groups have similar properties. Therefore, if
the distribution of the dependent variable is similar in both
the control and treatment group, it can be concluded that
the treatment has no effect.

The concept of randomization is also discussed in [64],
[81], and [108] in the context of software engineering
experiments. Pfleeger [81] points out that the major
difference between experiments and case studies is the
degree of control. In order to control a potential confound-
ing variable, the experiment can be designed in such a way
that the experimental units within the distinct groups are
homogeneous (blocking). Additionally, if the number of
experimental units is the same in each group, the design is
balanced.

Unfortunately, random sampling of projects or subjects
is seldom an option in the evaluation of improvement
initiatives and therefore knowing of the existence of
potential confounding factors is, however, needed in order
to be able to apply certain techniques to compensate
confounding effects [3]. The matching technique, for
example, leads to an evaluation design that satisfies the
ceteris paribus condition by selecting groups with similar
properties with respect to confounding factors [3]. By
looking at the proposed solutions, several studies apply

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 415

TABLE 13
Measurement Perspectives Identified in Framework Variations, Practices, and Tools Initiatives

some sort of matching, e.g., by selecting similar projects in

terms of size and application domain, technology, or staff

size (see [146], [150], [156], [161], [169], [178], [183], [190] in

Table 14).
There exists no systematic way to identify confounding

variables [77] and, as shown by the examples above, their

identification depends on the context in which the study

is conducted and on the background knowledge of the

researcher. It is therefore difficult to assure that all

confounding variables are eliminated or controlled since

their determination relies on assumptions and sound

logical reasoning. An interesting discussion about the

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

TABLE 14
Identified Confounding Factors

identification of a confounding factor can be found in the
comments by Evanco [37], which refers to the validity of
the assumption by El Emam et al. that size is a confounding
variable for object oriented metrics [36]. El Emam et al.
demonstrate empirically that class size confounds the
validity of object oriented metrics as indicators of the
fault-proneness of a class. The comments [37], however,
show that the identification and recognition of certain
confounding factors is still disputed [19], [110].

5 CONCLUSION

This paper presents a systematic literature review that
investigates how the impact of software process improve-
ment initiatives (as defined in Section 3.4.3) is measured
and evaluated. The aim is to identify and characterize the
different approaches used in realistic settings, i.e., to
provide a comprehensive outline and discussion of evalua-
tion strategies and measurements used in the field to assess
improvement initiatives. The major findings of this review
and their implications for research are:

. Incomplete context descriptions. Seventy-five out
of 148 studies did not or only partially describe the
context in which the study was carried out (see
Section 3.5). In the area of process improvement it
is, however, critical to describe the process change
and its environment in order to provide results
which have the potential to be reused or to be
transferred into different settings. Since a consider-
able body of knowledge on the impact of improve-
ment initiatives is provided by industry reports (53,
36 percent), a precise and informative context
description would be beneficial for both practi-
tioners and researchers.

. Evaluation validity. In more than 50 percent of the
studies in which improvement initiatives are
evaluated, “Pre-Post Comparison” is used indivi-
dually or in combination with another method (see
Section 4.2). Considering that confounding factors
are rarely discussed (19 out of 148 studies, see
Section 4.5), the accuracy of the evaluation results
can be questioned. The severity of confounding is
even increased by unsatisfactory context descrip-
tions. A grounded judgment by the reader on the
validity of the evaluation is prohibited by the
absence of essential information.

. Measurement validity. Kaner and Bond [58] illu-
strated how important it is to define exactly the
semantics of a metric and the pitfalls that arise if it is
not commonly agreed what the metric actually
means, i.e., which attribute it actually measures.
This issue is related to farther reaching questions
than process improvement measurement and eva-
luation, and concerns fundamental problems of
software measurement validity. Nevertheless, mea-
surement definition inconsistencies, as shown in
Section 4.3.2, inhibit the process of improvement
itself since the comparison and communication of
results is aggravated. The implication for research is
that it is difficult to identify and use the appropriate

measures for improvement evaluation. A better
support for defining, selecting, and validating
measures could enable a comparable and mean-
ingful evaluation of SPI initiatives.

. Measurement scope. The analysis on what is

actually measured during or after an improvement

initiative shows a focus on process and product

quality (see Section 4.3). From the software process

improvement perspective this measurement goal

might be adequate and sufficient. It is, however,
crucial to push the event horizon of improvement

measurement beyond the level of projects (see

Section 4.4) in order to confirm the relatively short-

dated measurements at the project or product level.

Since the information needs for the different

stakeholders vary, appropriate improvement indica-

tors need to be implemented. At the corporate level,

for example, business benefits realized by projects
which encompass a wider scope than pilot improve-

ment implementations are of interest.
Indicators for these long-term effects can be

customer satisfaction, to assess quality improve-

ment, and return on investment to evaluate the

economic benefits of improvement. The data pre-

sented in this review (see Section 4.3.2) suggest that

these indicators tend to be less used in the evalua-

tion of process improvement than other, easier to

collect, indicators. The implication for research is to

integrate the success indicators into a faceted view

on process improvement which captures its short-

and long-term impact.
. Confounding factors. In a majority (129, 87 percent)

of the reviewed studies we could not identify a
discussion on confounding factors that might affect
the performance of SPI initiatives and thus their
evaluation. Since process improvement affects many
aspects of a development project, its results, and
effect on the organization, there are many potential
such confounding factors that threaten validity.
Even though study design can often be used to
limit the effects, it is often not practical to fully
control the studied context. Thus, future research on
SPI should always consider and discuss confound-
ing factors. However, we note that no good
conceptual model or framework for such a discus-
sion is currently available.

The results of this review encourage further research on the

evaluation of process improvement, particularly on the

conception of structured guidelines which support practi-

tioners in the endeavor of measuring, evaluating, and

communicating the impact of improvement initiatives.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers whose

detailed and judicious comments improved the paper

considerably. This work was partially funded by the

Industrial Excellence Center EASE—Embedded Applica-

tions Software Engineering (http://ease.cs.lth.se).

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 417

REFERENCES

[1] P. Abrahamsson, “Measuring the Success of Software Process
Improvement: The Dimensions,” Proc. European Software Process
Improvement Conf., http://www.iscn.at/select_newspaper/
measurement/oulu.html, 2000.

[2] D.M. Ahern, R. Turner, and A. Clouse, CMMI(SM) Distilled: A
Practical Introduction to Integrated Process Improvement. Addison-
Wesley, 2001.

[3] S. Anderson, A. Auquier, W.W. Hauck, D. Oakes, W. Vandaele,
and H.I. Weisberg, Statistical Methods for Comparative Studies:
Techniques for Bias Reduction. John Wiley, 1980.

[4] R. Atkinson, “Project Management: Cost, Time and Quality, Two
Best Guesses and a Phenomenon, It’s Time to Accept Other
Success Criteria,” Int’l J. Project Management, vol. 17, no. 6, pp. 337-
342, Dec. 1999.

[5] M.A. Babar and I. Gorton, “Software Architecture Review: The
State of Practice,” Computer, vol. 42, no. 7, pp. 26-32, July 2009.

[6] D. Baccarini, “The Logical Framework Method for Defining
Project Success,” Project Management J., vol. 30, no. 4, pp. 25-32,
Dec. 1999.

[7] V. Basili, “The Experience Factory and Its Relationship to Other
Improvement Paradigms,” Proc. European Software Eng. Conf.,
pp. 68-83, 1993.

[8] V. Basili and G. Caldiera, “Improve Software Quality by Reusing
Knowledge and Experience,” Sloan Management Rev., vol. 37, no. 1,
pp. 55-64, Oct. 1995.

[9] V. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Trans. Software Eng., vol. 10,
no. 6, pp. 728-738, Nov. 1984.

[10] C.G.P. Bellini, R.C.F. Pereira, and J.L. Becker, “Measurement in
Software Engineering: From the Roadmap to the Crossroads,” Int’l
J. Software Eng. and Knowledge Eng., vol. 18, no. 1, pp. 37-64, Feb.
2008.

[11] M. Berry, R. Jeffery, and A. Aurum, “Assessment of Software
Measurement: An Information Quality Study,” Proc. 10th Int’l
Symp. Software Metrics, pp. 314-325, 2004.

[12] N. Bevan, “Quality in Use: Meeting User Needs for Quality,”
J. Systems and Software, vol. 49, no. 1, pp. 89-96, Dec. 1999.

[13] N. Bevan and M. MacLeod, “Usability Measurement in Context,”
Behaviour and Information Technology, vol. 13, no. 1, pp. 132-45,
1994.

[14] R. Biehl, “Six Sigma for Software,” IEEE Software, vol. 21, no. 2,
pp. 68-70, Mar./Apr. 2004.

[15] B. Boehm, “A View of 20th and 21st Century Software Engineer-
ing,” Proc. 28th Int’l Conf. Software Eng., pp. 12-29, 2006.

[16] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M.
Khalil, “Lessons from Applying the Systematic Literature Review
Process within the Software Engineering Domain,” J. Systems and
Software, vol. 80, no. 4, pp. 571-583, Apr. 2007.

[17] M. Brown and D. Goldenson, “Measurement and Analysis: What
Can and Does Go Wrong?,” Proc. 10th Int’l Symp. Software Metrics,
pp. 131-138, 2004.

[18] T. Bruckhaus, “A Quantitative Approach for Analyzing the
Impact of Tools on Software Productivity,” PhD dissertation,
McGill Univ., 1997.

[19] M. Bruntink and A. van Deursen, “An Empirical Study into Class
Testability,” J. Systems and Software, vol. 79, no. 9, pp. 1219-1232,
Sept. 2006.

[20] L. Buglione and A. Abran, “ICEBERG: A Different Look at
Software Project Management,” Proc. 12th Int’l Workshop Software
Measurement, pp. 153-167, 2002.

[21] P. Byrnes and M. Phillips, “Software Capability Evaluation
Version 3.0 Method Description,” Technical Report CMU/SEI-
96-TR-002, Software Eng. Inst., Carnegie Mellon, ftp://ftp.sei.
cmu.edu/public/documents/96.reports/pdf/tr002.96.pdf, 1996.

[22] D. Caivano, “Continuous Software Process Improvement through
Statistical Process Control,” Proc. Ninth European Conf. Software
Maintenance and Reeng., pp. 288-293. 2005.

[23] J.P. Campbell, V.A. Maxey, and W.A. Watson, “Hawthorne Effect:
Implications for Prehospital Research,” Annals of Emergency
Medicine, vol. 26, no. 5, pp. 590-594, Nov. 1995.

[24] P. Carbone, L. Buglione, L. Mari, and D. Petri, “A Comparison
between Foundations of Metrology and Software Measure-
ment,” IEEE Trans. Instrumentation and Measurement, vol. 57,
no. 2, pp. 235-241, Feb. 2008.

[25] D.N. Card, “Research Directions in Software Process Improve-
ment,” Proc. 28th Ann. Int’l Computer Software and Applications
Conf., p. 238, 2004.

[26] S. Chidamber and C. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[27] P.B. Crosby, Quality without Tears. McGraw-Hill, 1984.
[28] G. Cugola and C. Ghezzi, “Software Processes: A Retrospective

and a Path to the Future,” Software Process: Improvement and
Practice, vol. 4, no. 3, pp. 101-123, Sept. 1998.

[29] R. Davison, M.G. Martinsons, and N. Kock, “Principles of
Canonical Action Research,” Information Systems J., vol. 14, no. 1,
pp. 65-86, Jan. 2004.

[30] J.C. de Almeida Biolchini, P.G. Mian, A.C.C. Natali, T.U. Conte,
and G.H. Travassos, “Scientific Research Ontology to Support
Systematic Review in Software Engineering,” Advanced Eng.
Informatics, vol. 21, no. 2, pp. 133-151, Apr. 2007.

[31] W.E. Deming, Out of the Crisis. MIT Press, 1986.
[32] D.K. Dunaway and S. Masters, “CMM1-Based Appraisal for

Internal Process Improvement (CBA IPI) Version 1.2 Method
Description,” Technical Report CMU/SEI-2001-TR-033, Software
Eng. Inst., Carnegie Mellon Univ., http://www.sei.cmu.edu/
reports/01tr033.pdf, 2001.

[33] T. Dyba, “An Empirical Investigation of the Key Factors for
Success in Software Process Improvement,” IEEE Trans. Software
Eng., vol. 31, no. 5, pp. 410-424, May 2005.

[34] S. Easterbrook, J. Singer, M. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” Guide to
Advanced Empirical Software Eng., pp. 285-311, Springer, 2008.

[35] K. El Emam, J. Drouin, and W. Melo, SPICE: The Theory and
Practice of Software Process Improvement and Capability Determina-
tion. IEEE CS Press, 1998.

[36] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai, “The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics,” IEEE Trans. Software Eng., vol. 27, no. 7,
pp. 630-650, July 2001.

[37] W. Evanco, “Comments on ‘The Confounding Effect of Class Size
on the Validity of Object-Oriented Metrics’,” IEEE Trans. Software
Eng., vol. 29, no. 7, pp. 670-672, July 2003.

[38] B. Fitzgerald and T. O’Kane, “A Longitudinal Study of Software
Process Improvement,” IEEE Software, vol. 16, no. 3, pp. 37-45,
May/June 1999.

[39] R. Fitzpatrick and C. Higgins, “Usable Software and Its Attributes:
A Synthesis of Software Quality,” Proc. HCI on People and
Computers XIII, pp. 3-21. 1998.

[40] J. Fleiss, “Measuring Nominal Scale Agreement among Many
Raters,” Psychological Bull., vol. 76, no. 5, pp. 378-382, Nov. 1971.

[41] W.A. Florac and A.D. Carleton, Measuring the Software Process.
Addison-Wesley, 1999.

[42] D. Flynn, J. Vagner, and O.D. Vecchio, “Is CASE Technology
Improving Quality and Productivity in Software Development?”
Logistics Information Management, vol. 8, no. 2, pp. 8-21, 1995.

[43] C. Fox and W. Frakes, “The Quality Approach: Is It Delivering?”
Comm. ACM, vol. 40, no. 6, pp. 24-29, June 1997.

[44] A. Fuggetta, “Software Process: A Roadmap,” Proc. Conf. Future of
Software Eng., pp. 25-34, 2000.

[45] F. Garcia, M.F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini,
and M. Genero, “Towards a Consistent Terminology for Software
Measurement,” Information and Software Technology, vol. 48, no. 8,
pp. 631-644, Aug. 2006.

[46] D. Goldenson and D. Gibson, “Demonstrating the Impact and
Benefits of CMMI: An Update and Preliminary Results,”
Technical Report CMU/SEI-2003-SR-009, Software Eng. Inst.,
Carnegie Mellon Univ., http://www.sei.cmu.edu/library/
abstracts/reports/03sr009.cfm, 2003.

[47] D. Goldenson, K.E. Emam, J. Herbsleb, and C. Deephouse,
“Empirical Studies of Software Process Assessment Methods,”
Technical Report ISERN-97-09, Kaiserslautern: Fraunhofer—Inst.
of Experimental Software Eng., http://www.ehealthinformation.
ca/documents/isern-97-09.pdf, 1996.

[48] O. Gómez, H. Oktaba, M. Piattini, and F. Garcia, “A Systematic
Review Measurement in Software Engineering: State-of-the-Art in
Measures,” Software and Data Technologies, vol. 10, pp. 165-176,
Springer, 2008.

[49] T. Gorschek and C. Wohlin, “Packaging Software Process
Improvement Issues: A Method and a Case Study,” Software:
Practice and Experience, vol. 34, no. 14, pp. 1311-1344, Nov. 2004.

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

[50] E. Gray and W. Smith, “On the Limitations of Software Process
Assessment and the Recognition of a Required Re-Orientation for
Global Process Improvement,” Software Quality J., vol. 7, no. 1,
pp. 21-34, Mar. 1998.

[51] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold, “Software
Effort Estimation Terminology: The Tower of Babel,” Information
and Software Technology, vol. 48, no. 4, pp. 302-310, Apr. 2006.

[52] T. Hall, N. Baddoo, and D. Wilson, “Measurement in Software
Process Improvement Programmes: An Empirical Study,” New
Approaches in Software Measurement, pp. 73-82, Springer, 2001.

[53] M. Hitz and B. Montazeri, “Chidamber and Kemerer’s Metrics
Suite: A Measurement Theory Perspective,” IEEE Trans. Software
Eng., vol. 22, no. 4, pp. 267-271, Apr. 1996.

[54] J. Ho-Won, K. Seung-Gweon, and C. Chang-Shin, “Measuring
Software Product Quality: A Survey of ISO/IEC 9126,” IEEE
Software, vol. 21, no. 5, pp. 88-92, Sept./Oct. 2004.

[55] W. Humphrey, “CASE Planning and the Software Process,”
J. Systems Integration, vol. 1, no. 3, pp. 321-337, Nov. 1991.

[56] W.S. Humphrey, “Introduction to Software Process Improve-
ment,” Technical Report CMU/SEI-92-TR7, Software Eng. Inst.,
Carnegie Mellon Univ., ftp://ftp.sei.cmu.edu/public/docu-
ments/92.reports/pdf/tr07.92.pdf, 1993.

[57] S. Jarzabek and R. Huang, “The Case for User-Centered CASE
Tools,” Comm. ACM, vol. 41, no. 8, pp. 93-99, Aug. 1998.

[58] C. Kaner and W.P. Bond, “Software Engineering Metrics: What Do
They Measure and How Do We Know,” Proc. 10th Int’l Software
Metrics Symp., 2004.

[59] H. Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 10th ed. John Wiley, 2009.

[60] B. Kitchenham, “What’s Up with Software Metrics?—A Prelimin-
ary Mapping Study,” J. Systems and Software, vol. 83, no. 1, pp. 37-
51, Jan. 2010.

[61] B. Kitchenham and S. Charters, “Guidelines for Performing
Systematic Literature Reviews in Software Engineering,” Techni-
cal Report EBSE-2007-01, Software Eng. Group, Keele Univ. and
Dept. of Computer Science, Univ. of Durham, UK, 2007.

[62] B. Kitchenham and S. Pfleeger, “Software Quality: The Elusive
Target,” IEEE Software, vol. 13, no. 1, pp. 12-21, Jan. 1996.

[63] B. Kitchenham, L. Pickard, and S. Pfleeger, “Case Studies for
Method and Tool Evaluation,” IEEE Software, vol. 12, no. 4, pp. 52-
62, July 1995.

[64] B. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K.E. Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research in Software Engineering,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[65] J.R. Landis and G.G. Koch, “The Measurement of Observer
Agreement for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159-
174, Mar. 1977.

[66] G. Low and V. Leenanuraksa, “Software Quality and CASE
Tools,” Proc. Software Technology and Eng. Practice, pp. 142-150,
1999.

[67] L. Mathiassen, O. Ngwenyama, and I. Aaen, “Managing Change
in Software Process Improvement,” IEEE Software, vol. 22, no. 6,
pp. 84-91, Nov./Dec. 2005.

[68] J. McColl-Kennedy and U. Schneider, “Measuring Customer
Satisfaction: Why, What and How,” Total Quality Management,
vol. 11, no. 7, pp. 883-896, Sept. 2000.

[69] N. McNamara and J. Kirakowski, “Functionality, Usability, and
User Experience: Three Areas of Concern,” Interactions, vol. 13,
no. 6, pp. 26-28, Nov. 2006.

[70] A. Mockus, P. Zhang, and P.L. Li, “Predictors of Customer
Perceived Software Quality,” Proc. 27th Int’l Conf. Software Eng.,
pp. 225-233, 2005.

[71] P. Mohagheghi and R. Conradi, “An Empirical Investigation of
Software Reuse Benefits in a Large Telecom Product,” ACM Trans.
Software Eng. and Methodology, vol. 17, no. 3, pp. 1-31, June 2008.

[72] W.J. Orlikowski, “CASE Tools as Organizational Change: Inves-
tigating Incremental and Radical Changes in Systems Develop-
ment,” MIS Quarterly, vol. 17, no. 3, pp. 309-340, Sept. 1993.

[73] R. Patnayakuni and A. Rai, “Development Infrastructure
Characteristics and Process Capability,” Comm. ACM, vol. 45,
no. 4, pp. 201-210, Apr. 2002.

[74] M.C. Paulk, C.V. Weber, S.M. Garcia, M.B. Chrissis, and M. Bush,
“Key Practices of the Capability Maturity Model SM, Version 1.1,”
Technical Report CMU/SEI-93-TR-025, Software Eng. Inst.,
Carnegie Mellon Univ., ftp://ftp.sei.cmu.edu/pub/documents/
93.reports/pdf/tr25.93.pdf, 1993.

[75] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability
Maturity Model for Software Version 1.1,” Technical Report
CMU/SEI-93-TR-024, Software Eng. Inst., Carnegie Mellon Univ.,
ftp://ftp.sei.cmu.edu/pub/documents/93.reports/pdf/
tr24.93.pdf, 1993.

[76] M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis, The
Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.

[77] J. Pearl, “Why There Is No Statistical Test for Confounding, Why
Many Think There Is, and Why They Are Almost Right,” Dept. of
Statistics, Univ. of California Los Angeles, July 1998.

[78] D.E. Perry, A.A. Porter, and L.G. Votta, “Empirical Studies of
Software Engineering: A Roadmap,” Proc. Conf. Future of Software
Eng., pp. 345-355, 2000.

[79] K. Petersen and C. Wohlin, “Context in Industrial Software
Engineering Research,” Proc. Third Int’l Symp. Empirical Software
Eng. and Measurement, pp. 401-404, 2009.

[80] F. Pettersson, M. Ivarsson, T. Gorschek, and P. Öhman, “A
Practitioner’s Guide to Light Weight Software Process Assessment
and Improvement Planning,” The J. Systems and Software, vol. 81,
no. 6, pp. 972-995, June 2008.

[81] S. Pfleeger, “Experimentation in Software Engineering,” Advances
in Computers, vol. 44, pp. 127-167, Academic Press, 1997.

[82] S.L. Pfleeger and B. Kitchenham, “Principles of Survey Research:
Part 1: Turning Lemons into Lemonade,” ACM SIGSOFT Software
Eng. Notes, vol. 26, no. 6, pp. 16-18, Nov. 2001.

[83] G. Premkumar and M. Potter, “Adoption of Computer Aided
Software Engineering (CASE) Technology: An Innovation Adop-
tion Perspective,” ACM SIGMIS Database, vol. 26, nos. 2/3, pp. 105-
124, May 1995.

[84] R.S. Pressman, Software Engineering: A Practitioner’s Approach, fifth
ed. McGraw-Hill, 2001.

[85] D. Raffo, “The Role of Process Improvement in Delivering
Customer and Financial Value,” Proc. Portland Int’l Conf. Manage-
ment and Technology, pp. 589-592, 1997.

[86] V. Raghavan, P. Bollmann, and G.S. Jung, “A Critical
Investigation of Recall and Precision as Measures of Retrieval
System Performance,” ACM Trans. Information Systems, vol. 7,
no. 3, pp. 205-229, July 1989.

[87] D.F. Rico, ROI of Software Process Improvement. J. Ross Publishing,
2004.

[88] D.J. Rocha, “Strengthening the Validity of Software Process
Improvement Measurements through Statistical Analysis: A Case
Study at Ericsson AB,” http://hdl.handle.net/2077/10529,
http://hdl.handle.net/2077/10529, 2011.

[89] J.A. Rozum, “Concepts on Measuring the Benefits of Software
Process Improvements,” Technical Report CMU/SEI-93-TR-009,
Software Eng. Inst., Carnegie Mellon Univ., http://www.sei.
cmu.edu/reports/93tr009.pdf, 1993.

[90] P. Runeson and M. Höst, “Guidelines for Conducting and
Reporting Case Study Research in Software Engineering,”
Empirical Software Eng., vol. 14, no. 2, pp. 131-164, Apr. 2009.

[91] G. Santos, M. Montoni, J. Vasconcellos, S. Figueiredo, R. Cabral, C.
Cerdeiral, A. Katsurayama, P. Lupo, D. Zanetti, and A. Rocha,
“Implementing Software Process Improvement Initiatives in Small
and Medium-Size Enterprises in Brazil,” Proc. Sixth Int’l Conf.
Quality of Information and Comm. Technology, pp. 187-198, 2007.

[92] T. Saracevic, “Evaluation of Evaluation in Information Retrieval,”
Proc. 18th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pp. 138-146, 1995.

[93] W. Scacchi, “Process Models in Software Engineering,” Encyclo-
pedia of Software Eng., pp. 993-1005, 2001.

[94] C. Seaman, “Qualitative Methods in Empirical Studies of Software
Engineering,” IEEE Trans. Software Eng., vol. 25, no. 4, pp. 557-72,
July/Aug. 1999.

[95] A. Seffah, M. Donyaee, R. Kline, and H. Padda, “Usability
Measurement and Metrics: A Consolidated Model,” Software
Quality J., vol. 14, no. 2, pp. 159-178, June 2006.

[96] S. Sharma and A. Rai, “CASE Deployment in IS Organizations,”
Comm. ACM, vol. 43, no. 1, pp. 80-88, Jan. 2000.

[97] M. Shaw, “Prospects for an Engineering Discipline of Software,”
IEEE Software, vol. 7, no. 6, pp. 15-24, Nov. 1990.

[98] D.I.K. Sjoberg, T. Dyba, and M. Jorgensen, “The Future of
Empirical Methods in Software Engineering Research,” Proc.
Future of Software Eng., pp. 358-378, 2007.

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 419

[99] M. Staples and M. Niazi, “Experiences Using Systematic Review
Guidelines,” J. Systems and Software, vol. 80, no. 9, pp. 1425-1437,
Sept. 2007.

[100] M. Staples and M. Niazi, “Systematic Review of Organizational
Motivations for Adopting CMM-Based SPI,” Information and
Software Technology, vol. 50, nos. 7/8, pp. 605-620, June 2008.

[101] D. Stavrinoudis and M. Xenos, “Comparing Internal and External
Software Quality Measurements,” Proc. 2008 Conf. Knowledge-
Based Software Eng., pp. 115-124, 2008.

[102] M. Thomas and F. McGarry, “Top-Down vs. Bottom-Up Process
Improvement,” IEEE Software, vol. 11, no. 4, pp. 12-13, July 1994.

[103] J. Trienekens, R. Kusters, and R. van Solingen, “Product Focused
Software Process Improvement: Concepts and Experiences from
Industry,” Software Quality J., vol. 9, no. 4, pp. 269-81, Dec. 2001.

[104] M. Unterkalmsteiner, T. Gorschek, A.K.M.M. Islam, C.K. Cheng,
R.B. Permadi, and R. Feldt, “Extended Material to ‘Evaluation and
Measurement of Software Process Improvement—A Systematic
Literature Review’,” http://www.bth.se/com/mun.nsf/pages/
spi-sysrev-material, 2010.

[105] R. van Solingen, D.F. Rico, and M.V. Zelkowitz, “Calculating
Software Process Improvement’s Return on Investment,” Advances
in Computers. vol. 66, pp. 1-41, 2006.

[106] N. Wirth, “A Brief History of Software Engineering,” IEEE Annals
of the History of Computing vol. 30, no. 3, pp. 32-39, July 2008.

[107] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

[108] C. Wohlin, M. Höst, and K. Henningsson, “Empirical Research
Methods in Software Engineering,” Empirical Methods and Studies
in Software Eng., pp. 7-23, Springer, 2003.

[109] M.V. Zelkowitz and D. Wallace, “Experimental Validation in
Software Engineering,” Information and Software Technology, vol. 39,
no. 11, pp. 735-743, 1997.

[110] Y. Zhou, H. Leung, and B. Xu, “Examining the Potentially
Confounding Effect of Class Size on the Associations between
Object-Oriented Metrics and Change-Proneness,” IEEE Trans.
Software Eng., vol. 35, no. 5, pp. 607-623, Sept./Oct. 2009.

[111] “ISO/IEC TR2 15504Software Process Assessment-Part 7: Guide
for Use in Process Improvement,” Technical Report ISO/IEC TR2
15504, ISO, Geneva, Switzerland, 1998.

[112] “ISO/IEC TR2 15504 - Software Process Assessment: Part 1-
Part 9,” Technical Report ISO/IEC TR2 15504, ISO, Geneva,
Switzerland, 1998.

[113] “Capability Maturity Model Integration (CMMI), Version 1.1
(Continuous Representation),” Technical Report CMU/SEI-2002-
TR-011, Software Eng. Inst., Carnegie Mellon Univ., http://
www.sei.cmu.edu/library/abstracts/reports/02tr011.cfm, 2002.

[114] “Capability Maturity Model Integration (CMMI), Version 1.1
(Staged Representation),”Technical Report CMU/SEI-2002-TR-
012, Software Eng. Inst., Carnegie Mellon Univ., http://
www.sei.cmu.edu/library/abstracts/reports/02tr012.cfm, 2002.

[115] “Improving Processes in Small Settings (IPSS)—a White Paper,”
technical report, Int’l Process Research Consortium (IPRC),
Pittsburgh, http://www.sei.cmu.edu/iprc/ipss-white-paper-v1-
1.pdf, 2006.

[116] “Appraisal Requirements for CMMI, Version 1.2 (ARC, v1.2),”
Technical Report CMU/SEI-2006-TR-011, Software Eng. Inst.,
Carnegie Mellon Univ., http://www.sei.cmu.edu/library/
abstracts/reports/06tr011.cfm, 2006.

[117] “2008 Annual Report,”Motorola, Inc., Ann. Report Motorola, Inc.,
2008 Form 10-K, http://investor.motorola.com/annuals.cfm, 2009.

[118] “Enterprise-SME Definition,” http://ec.europa.eu/enterprise/
enterprise_policy/sme_definition/index_en.htm, Aug. 2009.

SYSTEMATIC REVIEW REFERENCES

[119]P. Abrahamsson and K. Kautz, “The Personal Software
Process: Experiences from Denmark,” Proc. 28th Euromicro
Conf., pp. 367-74, 2002.

[120] P. Abrahamsson and K. Kautz, “Personal Software Process:
Classroom Experiences from Finland,” Proc. Software Quality-
ESCQ ’02, pp. 175-85, Springer, 2002.

[121] R. Achatz and F. Paulisch, “Industrial Strength Software and
Quality: Software and Engineering at Siemens,” Proc. Third Int’l
Conf. Quality Software, pp. 321-6, 2003.

[122] A. Ahmed, M. Fraz, and F. Zahid, “Some Results of Experimenta-
tion with Extreme Programming Paradigm,” Proc. Seventh Int’l
Multi-Topic Conf., pp. 387-90, 2004.

[123] S.A. Ajila and D. Wu, “Empirical Study of the Effects of Open
Source Adoption on Software Development Economics,”
J. Systems and Software, vol. 80, no. 9, pp. 1517-1529, Sept. 2007.

[124] K. Alagarsamy, S. Justus, and K. Iyakutti, “The Knowledge Based
Software Process Improvement Program: A Rational Analysis,”
Proc. Int’l Conf. Software Eng. Advances, p. 61, 2007.

[125] B. Anda, E. Angelvik, and K. Ribu, “Improving Estimation
Practices by Applying Use Case Models,” Product Focused Software
Process Improvement, pp. 383-397, Springer, 2002.

[126] J. Andrade, J. Ares, O. Dieste, R. Garcia, M. Lopez, S. Rodriguez,
and L. Verde, “Creation of an Automated Management Software
Requirements Environment: A Practical Experience,” Proc. 10th
Int’l Workshop Database and Expert Systems Applications, pp. 328-
335, 1999.

[127] M.T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
Industrial Case Study on Reuse Oriented Development,” Proc. 21st
Int’l Conf. Software Maintenance, pp. 283-92, 2005.

[128] V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R.
Pajerski, “SEL’s Software Process Improvement Program,” IEEE
Software, vol. 12, no. 6, pp. 83-7, Nov. 1995.

[129] J. Batista and A.D. de Figueiredo, “SPI in a Very Small Team: A
Case with CMM,” Software Process Improvement and Practice, vol. 5,
no. 4, pp. 243-50, Dec. 2000.

[130] E. Bellini and C. lo Storto, “CMM Implementation and Organiza-
tional Learning: Findings from a Case Study Analysis,” Proc.
Technology Management for the Global Future Conf., pp. 1256-71,
2006.

[131] S. Biffl and M. Halling, “Software Product Improvement with
Inspection. A Large-Scale Experiment on the Influence of
Inspection Processes on Defect Detection in Software Require-
ments Documents,” Proc. 26th Euromicro Conf., pp. 262-269, 2000.

[132] A. Birk, P. Derks, D. Hamann, J. Hirvensalo, M. Oivo, E.
Rodenbach, R. van Solingen, and J. Taramaa, “Applications of
Measurement in Product-Focused Process Improvement: A
Comparative Industrial Case Study,” Proc. Fifth Int’l Software
Metrics Symp., pp. 105-108, 1998.

[133] A. Borjesson, “Improve by Improving Software Process Impro-
vers,” Int’l J. Business Information Systems, vol. 1, no. 3, pp. 310-38,
Jan. 2006.

[134] T. Bruckhaus, N.H. Madhavii, I. Janssen, and J. Henshaw, “The
Impact of Tools on Software Productivity,” IEEE Software, vol. 13,
no. 5, pp. 29-38, Sept. 1996.

[135] C. Buchman, “Software Process Improvement at AlliedSignal
Aerospace,” Proc. 29th Hawaii Int’l Conf. System Sciences, pp. 673-
80, 1996.

[136] A. Calio, M. Autiero, and G. Bux, “Software Process Improvement
by Object Technology (ESSI PIE 27785-SPOT),” Proc. 22nd Int’l
Conf. Software Eng., pp. 641-647, 2000.

[137] G. Canfora, F. Garcia, M. Piattini, F. Ruiz, and C. Visaggio,
“Applying a Framework for the Improvement of Software Process
Maturity,” Software—Practice and Experience, vol. 36, no. 3, pp. 283-
304, Mar. 2006.

[138] A. Cater-Steel, M. Toleman, and T. Rout, “Process Improvement
for Small Firms: An Evaluation of the RAPID Assessment-Based
Method,” Information and Software Technology, vol. 48, no. 5, pp. 323-
334, May 2006.

[139] G. Cuevas, J.C. Manzano, T.S. Feliu, J. Mejia, M. Munoz, and S.
Bayona, “Impact of TSPi on Software Projects,” Proc. Fourth Conf.
Electronics, Robotics and Automotive Mechanics, pp. 706-711, 2007.

[140] D. Damian and J. Chisan, “An Empirical Study of the Complex
Relationships between Requirements Engineering Processes and
Other Processes that Lead to Payoffs in Productivity, Quality,
and Risk Management,” IEEE Trans. Software Eng., vol. 32, no. 7,
pp. 433-453, July/Aug. 2006.

[141] D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal, “Require-
ments Engineering and Downstream Software Development:
Findings from a Case Study,” Empirical Software Eng., vol. 10,
no. 3, pp. 255-283, July 2005.

[142] L. Damm and L. Lundberg, “Results from Introducing Compo-
nent-Level Test Automation and Test-Driven Development,”
J. Systems and Software, vol. 79, no. 7, pp. 1001-1014, July 2006.

[143] M.K. Daskalantonakis, “A Practical View of Software Measure-
ment and Implementation Experiences within Motorola,” IEEE
Trans. Software Eng., vol. 18, no. 11, pp. 998-1010, Nov. 1992.

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

[144] N. Davis, J. Mullaney, and D. Carrington, “Using Measurement
Data in a TSPSM Project,” Software Process Improvement, pp. 91-101,
Springer, 2004.

[145] C. Debou and A. Kuntzmann-Combelles, “Linking Software
Process Improvement to Business Strategies: Experiences from
Industry,” Software Process Improvement and Practice, vol. 5, no. 1,
pp. 55-64, Mar. 2000.

[146] M. Diaz and J. Sligo, “How Software Process Improvement
Helped Motorola,” IEEE Software, vol. 14, no. 5, pp. 75-80, Sept.
1997.

[147] J. Dick and E. Woods, “Lessons Learned from Rigorous System
Software Development,” Information and Software Technology,
vol. 39, no. 8, pp. 551-560, Aug. 1997.

[148] R. Dion, “Elements of a Process-Improvement Program,” IEEE
Software, vol. 9, no. 4, pp. 83-85, July 1992.

[149] R. Dion, “Process Improvement and the Corporate Balance Sheet,”
IEEE Software, vol. 10, no. 4, pp. 28-35, July 1993.

[150] F. Downey and G. Coleman, “Using SPI to Achieve Delivery
Objectives in E-Commerce Software Development,” Software
Process Improvement and Practice, vol. 13, no. 4, pp. 327-333, July
2008.

[151] C. Ebert, “The Quest for Technical Controlling,” Software Process
Improvement and Practice, vol. 4, no. 1, pp. 21-31, Mar. 1998.

[152] C. Ebert, “Technical Controlling and Software Process Improve-
ment,” J. Systems and Software, vol. 46, no. 1, pp. 25-39, Apr.
1999.

[153] C. Ebert, “Understanding the Product Life Cycle: Four Key
Requirements Engineering Techniques,” IEEE Software, vol. 23,
no. 3, pp. 19-25, May/June 2006.

[154] C. Ebert, “The Impacts of Software Product Management,” J.
Systems and Software, vol. 80, no. 6, pp. 850-861, June 2007.

[155] C. Ebert and J.D. Man, “e-R&D—Effectively Managing Process
Diversity,” Annals of Software Eng., vol. 14, nos. 1-4, pp. 73-91, Dec.
2002.

[156] C. Ebert, C.H. Parro, R. Suttels, and H. Kolarczyk, “Improving
Validation Activities in a Global Software Development,” Proc.
23rd Int’l Conf. Software Eng., pp. 545-554, 2001.

[157] K. El Emam and A. Birk, “Validating the ISO/IEC 15504 Measure
of Software Requirements Analysis Process Capability,” IEEE
Trans. Software Eng., vol. 26, no. 6, pp. 541-66, June 2000.

[158] K. El Emam and N. Madhavji, “Does Organizational Maturity
Improve Quality?” IEEE Software, vol. 13, no. 5, pp. 109-110, Sept.
1996.

[159] D. Escala and M. Morisio, “A Metric Suite for a Team PSP,” Proc.
Fifth Int’l Software Metrics Symp., pp. 89-92, 1998.

[160] A. Ferreira, G. Santos, R. Cerqueira, M. Montoni, A. Barreto, A.S.
Barreto, and A. Rocha, “Applying ISO 9001:2000, MPS.BR and
CMMI to Achieve Software Process Maturity: BL Informatica’s
Pathway,” Proc. 29th Int’l Conf. Software Eng., pp. 642-651, 2007.

[161] A.I.F. Ferreira, G. Santos, R. Cerqueira, M. Montoni, A. Barreto,
A.R. Rocha, A.O.S. Barreto, and R.C. Silva, “ROI of Software
Process Improvement at BL Informatica: SPIdex Is Really Worth
It,” Software Process Improvement and Practice, vol. 13, no. 4, pp. 311-
318, July 2008.

[162] B. Freimut, C. Denger, and M. Ketterer, “An Industrial Case Study
of Implementing and Validating Defect Classification for Process
Improvement and Quality Management,” Proc. 11th Int’l Software
Metrics Symp., pp. 165-174, 2005.

[163] V. French, “Applying Software Engineering and Process
Improvement to Legacy Defence System Maintenance: An
Experience Report,” Proc. 11th Int’l Conf. Software Maintenance,
pp. 337-43, 1995.

[164] T. Galinac and Z. Car, “Software Verification Process Improve-
ment Proposal Using Six Sigma,” Product Focused Software Process
Improvement, pp. 51-64, Springer, 2007.

[165] G. Giraudo and P. Tonella, “Designing and Conducting an
Empirical Study on Test Management Automation,” Empirical
Software Eng., vol. 8, no. 1, pp. 59-81, Mar. 2003.

[166] S. Golubic, “Influence of Software Development Process Cap-
ability on Product Quality,” Proc. Eighth Int’l Conf. Telecomm.,
pp. 457-63, 2005.

[167] T. Gorschek and A. Davis, “Requirements Engineering: In Search
of the Dependent Variables,” Information and Software Technology,
vol. 50, nos. 1/2, pp. 67-75, Jan. 2008.

[168] L. Gou, Q. Wang, J. Yuan, Y. Yang, M. Li, and N. Jiang,
“Quantitatively Managing Defects for Iterative Projects: An
Industrial Experience Report in China,” Making Globally Dis-
tributed Software Development a Success Story, pp. 369-380,
Springer, 2008.

[169] R. Grable, J. Jernigan, C. Pogue, and D. Divis, “Metrics for Small
Projects: Experiences at the SED,” IEEE Software, vol. 16, no. 2,
pp. 21-29, Mar./Apr. 1999.

[170] T.J. Haley, “Software Process Improvement at Raytheon,” IEEE
Software, vol. 13, no. 6, pp. 33-41, Nov. 1996.

[171] W. Harrison, D. Raffo, J. Settle, and N. Eicklemann, “Technol-
ogy Review: Adapting Financial Measures: Making a Business
Case for Software Process Improvement,” Software Quality J.,
vol. 8, no. 3, pp. 211-30, Nov. 1999.

[172] S.I. Hashmi and J. Baik, “Quantitative Process Improvement in XP
Using Six Sigma Tools,” Proc. Seventh Int’l Conf. Computer and
Information Science, pp. 519-524, 2008.

[173] J. Haugh, “Never Make the Same Mistake Twice-Using Config-
uration Control and Error Analysis to Improve Software Quality,”
Proc. IEEE/AIAA 10th Digital Avionics Systems Conf., pp. 220-225,
1991.

[174] J.H. Hayes, N. Mohamed, and T.H. Gao, “Observe-Mine-Adopt
(OMA): An Agile Way to Enhance Software Maintainability,”
J. Software Maintenance and Evolution, vol. 15, no. 5, pp. 297-323,
Sept. 2003.

[175] L. He and J. Carver, “PBR vs. Checklist: A Replication in the
n-Fold Inspection Context,” Proc. Fifth Int’l Symp. Empirical
Software Eng., pp. 95-104, 2006.

[176] J. Henry, A. Rossman, and J. Snyder, “Quantitative Evaluation of
Software Process Improvement,” J. Systems and Software, vol. 28,
no. 2, pp. 169-177, Feb. 1995.

[177] J.D. Herbsleb and D.R. Goldenson, “A Systematic Survey of CMM
Experience and Results,” Proc. 18th Int’l Conf. Software Eng.,
pp. 323-330, 1996.

[178] C. Hollenbach and D. Smith, “A Portrait of a CMMISM Level 4
Effort,” Systems Eng., vol. 5, no. 1, pp. 52-61, 2002.

[179] C. Hollenbach, R. Young, A. Pflugrad, and D. Smith, “Combining
Quality and Software Improvement,” Comm. ACM, vol. 40, no. 6,
pp. 41-45, June 1997.

[180] J. Hössler, O. Kath, M. Soden, M. Born, and S. Saito, “Significant
Productivity Enhancement through Model Driven Techniques: A
Success Story,” Proc. 10th Int’l Enterprise Distributed Object
Computing Conf., pp. 367-373, 2006.

[181] M. Höst and C. Johansson, “Evaluation of Code Review Methods
through Interviews and Experimentation,” J. Systems & Software,
vol. 52, nos. 2/3, pp. 113-20, June 2000.

[182] W. Humphrey, “Using a Defined and Measured Personal
Software Process,” IEEE Software, vol. 13, no. 3, pp. 77-88,
May 1996.

[183] S. Hwang and H. Kim, “A Study on Metrics for Supporting the
Software Process Improvement Based on SPICE,” Software Eng.
Research and Applications, pp. 71-80, Springer, 2005.

[184] K. Hyde and D. Wilson, “Intangible Benefits of CMM-Based
Software Process Improvement,” Software Process Improvement and
Practice, vol. 9, no. 4, pp. 217-228, Oct. 2004.

[185] J. Iversen and L. Mathiassen, “Cultivation and Engineering of a
Software Metrics Program,” Information Systems J., vol. 13, no. 1,
pp. 3-19, Jan. 2003.

[186] J. Iversen and O. Ngwenyama, “Problems in Measuring Effec-
tiveness in Software Process Improvement: A Longitudinal Study
of Organizational Change at Danske Data,” Int’l J. Information
Management, vol. 26, no. 1, pp. 30-43, Feb. 2006.

[187] J. Jarvinen and R. van Solingen, “Establishing Continuous
Assessment Using Measurements,” Proc. First Int’l Conf. Product
Focused Software Process Improvement, pp. 49-67, 1999.

[188] J. Jarvinen, D. Hamann, and R. van Solingen, “On Integrating
Assessment and Measurement: Towards Continuous Assessment
of Software Engineering Processes,” Proc. Sixth Int’l Software
Metrics Symp., pp. 22-30, 1999.

[189] A. Johnson, “Software Process Improvement Experience in the
DP/MIS Function,” Proc. 16th Int’l Conf. Software Eng., pp. 323-
329, 1994.

[190] D. Karlström, P. Runeson, and S. Norden, “A Minimal Test
Practice Framework for Emerging Software Organizations,” Soft-
ware Testing, Verification and Reliability, vol. 15, no. 3, pp. 145-166,
Sept. 2005.

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 421

[191] K. Kautz, “Making Sense of Measurement for Small Organiza-
tions,” IEEE Software, vol. 16, no. 2, pp. 14-20, Mar./Apr. 1999.

[192] H. Kihara, “Quality Assurance Activities in the Software Devel-
opment Center, Hitachi Ltd,” Proc. 16th Ann. Pacific Northwest
Software Quality Conf. Joint ASQ Software Division’s Eighth Int’l
Conf. Software Quality, pp. 372-384, 1998.

[193] H. Krasner and G. Scott, “Lessons Learned from an Initiative for
Improving Software Process, Quality and Reliability in a
Semiconductor Equipment Company,” Proc. 29th Ann. Hawaii
Int’l Conf. System Sciences, pp. 693-702, 1996.

[194] J. Kuilboer and N. Ashrafi, “Software Process Improvement
Deployment: An Empirical Perspective,” J. Information Technology
Management, vol. 10, nos. 3/4, pp. 35-47, 1999.

[195] A. Kuntzmann-Combelles, “Quantitative Approach to Software
Process Improvement,” Objective Software Quality, pp. 16-30,
Springer, 1995.

[196] J.A. Lane and D. Zubrow, “Integrating Measurement with
Improvement: An Action-Oriented Approach,” Proc. 19th Int’l
Conf. Software Eng., pp. 380-389, 1997.

[197] J. Larsen and H. Roald, “Introducing ClearCase as a Process
Improvement Experiment,” System Configuration Management,
pp. 1-12, Springer, 1998.

[198] L. Lazic and N. Mastorakis, “Cost Effective Software Test
Metrics,” WSEAS Trans. Computers, vol. 7, no. 6, pp. 599-619, June
2008.

[199] E. Lee and M. Lee, “Development System Security Process of ISO/
IEC TR 15504 and Security Considerations for Software Process
Improvement,” Computational Science and Its Applications, pp. 363-
372, Springer, 2005.

[200] J.W. Lee, S.H. Jung, S.C. Park, Y.J. Lee, and Y.C. Jang, “System
Based SQA and Implementation of SPI for Successful Projects,”
Proc. Int’l Conf. Information Reuse and Integration, pp. 494-499, 2005.

[201] H. Leung, “Improving Defect Removal Effectiveness for Software
Development,” Proc. Second Euromicro Conf. Software Maintenance
and Reeng., pp. 157-64, 1998.

[202] B. List, R. Bruckner, and J. Kapaun, “Holistic Software Process
Performance Measurement from the Stakeholders’ Perspective,”
Proc. 16th Int’l Workshop Database and Expert Systems Applications,
pp. 941-947, 2005.

[203] D. Macke and T. Galinac, “Optimized Software Process for Fault
Handling in Global Software Development,” Making Globally
Distributed Software Development a Success Story, pp. 395-406,
Springer, 2008.

[204] F. McGarry, “What Is a Level 5?,” Proc. 26th Ann. NASA Goddard
Software Eng. Workshop, pp. 83-90, 2002.

[205] F. McGarry and B. Decker, “Attaining Level 5 in CMM Process
Maturity,” IEEE Software, vol. 19, no. 6, pp. 87-96, Nov./Dec. 2002.

[206] F. McGarry, S. Burke, and B. Decker, “Measuring the Impacts
Individual Process Maturity Attributes Have on Software
Products,” Proc. Fifth Int’l Software Metrics Symp., pp. 52-60, 1998.

[207] K.A. McKeown and E.G. McGuire, “Evaluation of a Metrics
Framework for Product and Process Integrity,” Proc. 33rd Hawaii
Int’l Conf. System Sciences, p. 4046, 2000.

[208] P. Miller, “An SEI Process Improvement Path to Software
Quality,” Proc. Sixth Int’l Conf. Quality of Information and Comm.
Technology, pp. 12-18, 2007.

[209] J. Momoh and G. Ruhe, “Release Planning Process Improvement—
An Industrial Case Study,” Software Process Improvement and
Practice, vol. 11, no. 3, pp. 295-307, May 2006.

[210] S. Morad and T. Kuflik, “Conventional and Open Source Software
Reuse at Orbotech—An Industrial Experience,” Proc. IEEE Int’l
Conf. Software—Science, Technology and Eng., pp. 110-117, 2005.

[211] B. Moreau, C. Lassudrie, B. Nicolas, O. I’Homme, C. d’Anter-
roches, and G.L. Gall, “Software Quality Improvement in France
Telecom Research Center,” Software Process Improvement and
Practice, vol. 8, no. 3, pp. 135-144, July 2003.

[212] M. Murugappan and G. Keeni, “Quality Improvement—the Six
Sigma Way,” Proc. First Asia-Pacific Conf. Quality Software, pp. 248-
257, 2000.

[213] M. Murugappan and G. Keeni, “Blending CMM and Six Sigma to
Meet Business Goals,” IEEE Software, vol. 20, no. 2, pp. 42-48,
Mar./Apr. 2003.

[214] K. Nelson and M. Ghods, “Evaluating the Contributions of a
Structured Software Development and Maintenance Methodol-
ogy,” Information Technology & Management, vol. 3, nos. 1/2,
pp. 11-23, Jan. 2002.

[215] K. Nelson, M. Buche, and H. Nelson, “Structural Change and
Change Advocacy: A Study in Becoming a Software Engineering
Organization,” Proc. 34th Ann. Hawaii Int’l Conf. System Sciences,
p. 9, 2001.

[216] T. Nishiyama, K. Ikeda, and T. Niwa, “Technology Transfer
Macro-Process. A Practical Guide for the Effective Introduction of
Technology,” Proc. 22nd Int’l Conf. Software Eng., pp. 577-586, 2000.

[217] A. Nolan, “Learning from Success,” IEEE Software, vol. 16, no. 1,
pp. 97-105, Jan./Feb. 1999.

[218] S. Otoya and N. Cerpa, “An Experience: A Small Software
Company Attempting to Improve Its Process,” Proc. Ninth Int’l
Workshop Software Technology and Eng. Practice, pp. 153-60, 1999.

[219] D.J. Paulish and A.D. Carleton, “Case Studies of Software-Process-
Improvement Measurement,” Computer, vol. 27, no. 9, pp. 50-57,
Sept. 1994.

[220] S. Pfleeger, “Maturity, Models, and Goals: How to Build a
Metrics Plan,” J. Systems and Software, vol. 31, no. 2, pp. 143-
55, Nov. 1995.

[221] L. Pracchia, “TheAV-8B Team Learns Synergy of EVM and TSP
Accelerates Software Process Improvement,” J. CrossTalk, vol. 17,
no. 1, pp. 20-22, 2004.

[222] L. Prechelt and B. Unger, “An Experiment Measuring the Effects
of Personal Software Process (PSP) Training,” IEEE Trans. Software
Eng., vol. 27, no. 5, pp. 465-472, May 2001.

[223] J. Ramil and M. Lehman, “Defining and Applying Metrics in the
Context of Continuing Software Evolution,” Proc. Seventh Int’l
Software Metrics Symp., pp. 199-209, 2000.

[224] C. Redzic and J. Baik, “Six Sigma Approach in Software Quality
Improvement,” Proc. Fourth Int’l Conf. Software Eng. Research,
Management and Applications, pp. 396-406, 2006.

[225] B. Regnell, P. Beremark, and O. Eklundh, “A Market-Driven
Requirements Engineering Process: Results from an Industrial
Process Improvement Programme,” Requirements Eng., vol. 3,
no. 2, pp. 121-129, June 1998.

[226] A. Roan and P. Hebrard, “A PIE One Year After: APPLY,” Proc.
Int’l Conf. Product Focused Software Process Improvement, pp. 606-
619, 1999.

[227] J. Rooijmans, H. Aerts, and M. van Genuchten, “Software Quality
in Consumer Electronics Products,” IEEE Software, vol. 13, no. 1,
pp. 55-64, Jan. 1996.

[228] M. Russ and J. McGregor, “A Software Development Process
for Small Projects,” IEEE Software, vol. 17, no. 5, pp. 96-101,
Sept./Oct. 2000.

[229] K. Sakamoto, N. Niihara, T. Tanaka, K. Nakakoji, and K. Kishida,
“Analysis of Software Process Improvement Experience Using the
Project Visibility Index,” Proc. Third Asia-Pacific Software Eng.
Conf., pp. 139-48, 1996.

[230] O. Salo and P. Abrahamsson, “An Iterative Improvement Process
for Agile Software Development,” Software Process Improvement
and Practice, vol. 12, no. 1, pp. 81-100, Jan. 2007.

[231] K. Sargut and O. Demirors, “Utilization of Statistical Process
Control (SPC) in Emergent Software Organizations: Pitfalls and
Suggestions,” Software Quality J., vol. 14, no. 2, pp. 135-157, June
2006.

[232] E. Savioja and M. Tukiainen, “Measurement Practices in
Financial Software Industry,” Software Process Improvement and
Practice, vol. 12, no. 6, pp. 585-595, Nov. 2007.

[233] J. Schalken, S. Brinkkemper, and H. van Vliet, “Using Linear
Regression Models to Analyse the Effect of Software Process
Improvement,” Product-Focused Software Process Improvement,
pp. 234-248, Springer, 2006.

[234] N. Schneidewind, “Measuring and Evaluating Maintenance
Process Using Reliability, Risk, and Test Metrics,” IEEE Trans.
Software Eng., vol. 25, no. 6, pp. 769-781, Nov./Dec. 1999.

[235] L. Scott, R. Jeffery, L. Carvalho, J. D’Ambra, and P. Rutherford,
“Practical Software Process Improvement—The IMPACT Project,”
Proc. 13th Australian Software Eng. Conf., pp. 182-189, 2001.

[236] R. Seacord, J. Elm, W. Goethert, G. Lewis, D. Plakosh, J. Robert,
L. Wrage, and M. Lindvall, “Measuring Software Sustainabil-
ity,” Proc. Int’l Conf. Software Maintenance, pp. 450-459, 2003.

[237] G. Seshagiri and S. Priya, “Walking the Talk: Building Quality into
the Software Quality Management Tool,” Proc. Third Int’l Conf.
Quality Software, pp. 67-74, 2003.

[238] S. Shah and J. Sutton, “Crafting a TQM-Oriented Software
Development Lifecycle: Program Experience,” Proc. IEEE Nat’l
Aerospace and Electronics Conf., pp. 643-649, 1992.

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

[239] B. Shen and D. Ju, “On the Measurement of Agility in Software
Process,” Software Process Dynamics and Agility, pp. 25-36, Spring-
er, 2007.

[240] I. Sommerville and J. Ransom, “An Empirical Study of Industrial
Requirements Engineering Process Assessment and Improve-
ment,” ACM Trans. Software Eng. and Methodology, vol. 14, no. 1,
pp. 85-117, Jan. 2005.

[241] G. Spork and U. Pichler, “Establishment of a Performance Driven
Improvement Programme,” Software Process Improvement and
Practice, vol. 13, no. 4, pp. 371-382, July 2008.

[242] L. Suardi, “How to Manage Your Software Product Life Cycle
with MAUI,” Comm. ACM, vol. 47, no. 3, pp. 89-94, Mar. 2004.

[243] T. Lee, D. Baik, and H. In, “Cost Benefit Analysis of Personal
Software Process Training Program,” Proc. IEEE Eighth Int’l Conf.
Computer and Information Technology Workshops, pp. 631-636, 2008.

[244] T. Tanaka, K. Sakamoto, S. Kusumoto, K. Matsumoto, and T.
Kikuno, “Improvement of Software Process by Process Descrip-
tion and Benefit Estimation,” Proc. 17th Int’l Conf. Software Eng.,
pp. 123-132, 1995.

[245] K. Taneike, H. Okada, H. Ishigami, and H. Mukaiyama,
“Quality Assurance Activities for Enterprise Application Soft-
ware Packages,” Fujitsu Scientific and Technical J., vol. 44, no. 2,
pp. 106-113, Apr. 2008.

[246] C. Tischer, A. Müller, M. Ketterer, and L. Geyer, “Why Does It
Take That Long? Establishing Product Lines in the Automotive
Domain,” Proc. 11th Int’l Software Product Line Conf., pp. 269-274,
2007.

[247] F. Titze, “Improvement of a Configuration Management System,”
Proc. 22nd Int’l Conf. Software Eng., pp. 618-625, 2000.

[248] J. Trienekens, R. Kusters, and R. van Solingen, “Product Focused
Software Process Improvement: Concepts and Experiences from
Industry,” Software Quality J., vol. 9, no. 4, pp. 269-81, Dec. 2001.

[249] J. Trienekens, R. Kusters, M. van Genuchten, and H. Aerts,
“Targets, Drivers and Metrics in Software Process Improvement:
Results of a Survey in a Multinational Organization,” Software
Quality J., vol. 15, no. 2, pp. 135-53, June 2007.

[250] J.D. Valett, “Practical Use of Empirical Studies for Maintenance
Process Improvement,” Empirical Software Eng., vol. 2, no. 2,
pp. 133-142, June 1997.

[251] M. van Genuchten, C. van Dijk, H. Scholten, and D. Vogel, “Using
Group Support Systems for Software Inspections,” IEEE Software,
vol. 18, no. 3, pp. 60-65, May/June 2001.

[252] R. van Solingen, “Measuring the ROI of Software Process
Improvement,” IEEE Software, vol. 21, no. 3, pp. 32-38, May/June
2004.

[253] G. Visaggio, P. Ardimento, M. Baldassarre, and D. Caivano,
“Assessing Multiview Framework (MF) Comprehensibility and
Efficiency: A Replicated Experiment,” Information and Software
Technology, vol. 48, no. 5, pp. 313-22, May 2006.

[254] M. Visconti and L. Guzman, “A Measurement-Based Approach
for Implanting SQA and SCM Practices,” Proc. 20th Int’l Conf. the
Chilean Computer Science Soc., pp. 126-34, 2000.

[255] B.R.V. Konsky and M. Robey, “A Case Study: GQM and TSP in a
Software Engineering Capstone Project,” Proc. 18th Software Eng.
Education Conf., pp. 215-222, 2005.

[256] C. von Wangenheim, S. Weber, J. Hauck, and G. Trentin,
“Experiences on Establishing Software Processes in Small Com-
panies,” Information and Software Technology, vol. 48, no. 9, pp. 890-
900, Sept. 2006.

[257] Q. Wang and M. Li, “Measuring and Improving Software Process
in China,” Proc. Int’l Symp. Empirical Software Eng., pp. 183-192,
2005.

[258] D. Weiss, D. Bennett, J. Payseur, P. Tendick, and P. Zhang, “Goal-
Oriented Software Assessment,” Proc. 24th Int’l Conf. Software
Eng., pp. 221-231, 2002.

[259] D. Winkler, B. Thurnher, and S. Biffl, “Early Software Product
Improvement with Sequential Inspection Sessions: An Empirical
Investigation of Inspector Capability and Learning Effects,” Proc.
33rd Euromicro Conf. Software Eng. and Advanced Applications,
pp. 245-254, 2007.

[260] M. Winokur, A. Grinman, I. Yosha, and R. Gallant, “Measuring
the Effectiveness of Introducing New Methods in the Software
Development Process,” Proc. 24th EUROMICRO Conf., pp. 800-
807, 1998.

[261] C. Wohlin and A. Wesslen, “Understanding Software Defect
Detection in the Personal Software Process,” Proc. Ninth Int’l
Symp. Software Reliability Eng., pp. 49-58, 1998.

[262] H. Wohlwend and S. Rosenbaum, “Schlumberger’s Software
Improvement Program,” IEEE Trans. Software Eng., vol. 20, no. 11,
pp. 833-839, Nov. 1994.

[263] Z. Xiaosong, H. Zhen, G. Fangfang, and Z. Shenqing, “Research on
the Application of Six Sigma in Software Process Improvement,”
Proc. Fourth Int’l Conf. Intelligent Information Hiding and Multimedia
Signal Processing, pp. 937-940, 2008.

[264] Z. Xiaosong, H. Zhen ZhangMin, W. Jing, and Y. Dainuan,
“Process Integration of Six Sigma and CMMI,” Proc. Sixth Int’l
Conf. Industrial Informatics, pp. 1650-1653, 2008.

[265] R. Xu, Y. Xue, P. Nie, Y. Zhang, and D. Li, “Research on CMMI-
Based Software Process Metrics,” Proc. First Int’l Computer and
Computational Sciences, pp. 391-397, 2006.

[266] J. Zettell, F. Maurer, J. Münch, and L. Wong, “LIPE: A
Lightweight Process for E-Business Startup Companies Based
on Extreme Programming,” Product Focused Software Process
Improvement, pp. 255-70, Springer, 2001.

Michael Unterkalmsteiner received the BSc
degree in applied computer science from the
Free University of Bolzano/Bozen (FUB) in 2007
and is currently working toward the MSc degree
in software engineering at the Blekinge Institute
of Technology (BTH) and also working toward
the PhD degree at BTH where he is with the
Software Engineering Research Lab. His re-
search interests include software repository
mining, software measurement and testing,

process improvement, and requirements engineering. His current
research focuses on the co-optimization of requirements engineering
and verification and validation processes. He is a student member of the
IEEE.

Tony Gorschek is a professor of software
engineering at Blekinge Institute of Technology
(BTH) with more than 10 years industrial
experience. He also manages his own industry
consultancy company, works as a CTO, and
serves on several boards in companies devel-
oping cutting edge technology and products. His
research interests include requirements engi-
neering, technology and product management,
process assessment and improvement, quality

assurance, and innovation. Contact him at tony.gorschek@bth.se or
visit www.gorschek.com. He is a member of the IEEE.

A.K.M. Moinul Islam is a researcher at the
Technical University of Kaiserslautern, Germany.
He is with the Software Engineering: Process and
Measurement Research Group. His research
interests include global software engineering,
software process improvement and evaluation,
and empirical software engineering. He received
the double master’s degree, MSc degree in
software engineering, in 2009, jointly from the
University of Kaiserslautern, Germany, and

Blekinge Institute of Technology, Sweden within the framework of
European Union’s Erasmus Mundus Programme. Prior to his master’s
degree, he worked for three years in the IT and telecommunication
industry.

UNTERKALMSTEINER ET AL.: EVALUATION AND MEASUREMENT OF SOFTWARE PROCESS IMPROVEMENT—A SYSTEMATIC... 423

Chow Kian Cheng is a software engineer at
General Electric International, Inc., based in
Freiburg, Germany. He is responsible for the
development of clinical software in the health-
care industry. He holds a joint master’s degree,
MSc degree in software engineering, from the
Blekinge Institute of Technology, Sweden, and
the Free University of Bolzano/Bozen, Italy.
Prior to studying of his master’s degree, he
worked for four years for Motorola, Inc., and

Standard Chartered Bank.

Rahadian Bayu Permadi received the bache-
lor’s degree in Informatics from Bandung
Institute of Technology, Indonesia. In 2009
he received the double master’s degree in
software engineering from the Free University
of Bolzano/Bozen, Italy, and the Blekinge
Institute of Technology, Sweden. Currently,
he is working as a software engineer at
Amadeus S.A.S, France. His interests are
software measurements and process improve-

ment, software architecture, and software project management. He
was a Java technology researcher in Indonesia before he was
awarded the Erasmus Mundus scholarship for European Master in
Software Engineering programme.

Robert Feldt received the PhD degree (Tekn.
Dr.) in software engineering from Chalmers
University of Technology (CTH). He is an
associate professor of software engineering at
CTH as well as at Blekinge Institute of Technol-
ogy. He has also worked as an IT and software
consultant for more than 15 years. His research
interests include software testing and verification
and validation, automated software engineering,
requirements engineering, user experience, and

human-centered software engineering. Most of the research is
conducted in close collaboration with industry partners such as
Ericsson, RUAG Space, and SAAB Systems. He is a member of the
IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 2, MARCH/APRIL 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

