
Empirical Studies of Pair Programming
for CS/SE Teaching in Higher Education:

A Systematic Literature Review
Norsaremah Salleh, Emilia Mendes, and John C. Grundy, Member, IEEE

Abstract—The objective of this paper is to present the current evidence relative to the effectiveness of pair programming (PP) as a

pedagogical tool in higher education CS/SE courses. We performed a systematic literature review (SLR) of empirical studies that

investigated factors affecting the effectiveness of PP for CS/SE students and studies that measured the effectiveness of PP for CS/SE

students. Seventy-four papers were used in our synthesis of evidence, and 14 compatibility factors that can potentially affect PP’s

effectiveness as a pedagogical tool were identified. Results showed that students’ skill level was the factor that affected PP’s

effectiveness the most. The most common measure used to gauge PP’s effectiveness was time spent on programming. In addition,

students’ satisfaction when using PP was overall higher than when working solo. Our meta-analyses showed that PP was effective in

improving students’ grades on assignments. Finally, in the studies that used quality as a measure of effectiveness, the number of test

cases succeeded, academic performance, and expert opinion were the quality measures mostly applied. The results of this SLR show

two clear gaps in this research field: 1) a lack of studies focusing on pair compatibility factors aimed at making PP an effective

pedagogical tool and 2) a lack of studies investigating PP for software design/modeling tasks in conjunction with programming tasks.

Index Terms—Empirical studies, pair programming, systematic review.

Ç

1 INTRODUCTION

PAIR programming (PP) involves two people sitting side
by side, using only one computer and working

collaboratively on the same design, algorithm, code, or test
[4]. One is the “driver,” who is responsible for designing,
typing the code, and having control over the shared
resource (e.g., computer, mouse, and keyboard). The second
is the “navigator” or “observer,” who has responsibility for
observing how the driver works in order to detect errors
and offer ideas in solving a problem. Throughout their
work, pairs typically alternate their roles after a certain
duration [70].

PP’s popularity has drawn the attention of many
researchers, thus causing an increase in the number of
studies conducted in both industrial as well as in
educational contexts [1]. A survey of organizations from
a software process improvement user group showed that
72 percent of the organizations from a variety of industries
have implemented the PP practice [41]. Some studies have

investigated PP’s usefulness and effectiveness as a
Computer Science/Software Engineering (CS/SE) pedago-
gical tool, e.g., [46], [47], [53], [18], [59], some with
promising results.

Early research on the use of PP as a pedagogical tool
focused mainly on its ability to benefit students in terms of
productivity and quality of work produced [69]. For
example, evidence suggests that PP could enhance enjoy-
ment [46], [47], [69], [73], increase students’ confidence
level [5], [46], [28], reduce workload [9], improve course
completion rate [46], [53], increase homework submission
rate [28], improve exam performance [47], [49], [53], and
facilitate working more efficiently on programming tasks
[11], [67].

In 2000, Cockburn and Williams [12] investigated the cost
and benefit of PP based on empirical evidence [71], [68],
[55]. They concluded that with an increase of only 15 percent
in the cost of development time, PP offers significant
benefits such as improving design quality (fewer defects),
team communication, and rapid solutions to problems,
enhancing the learning process, and increasing enjoyment
in learning. They suggest that PP is a promising approach to
use as a pedagogical tool due to its capability of increasing
learning capacity [12].

Dyba et al. [19] conducted a systematic literature review
(SLR) investigating whether existing empirical evidence
supports the claims that PP is more advantageous than solo
programming. They reviewed 15 studies comparing solo and
pair programming, and involving both students and software
practitioners as subjects. The general aspects investigated
were related to PP’s effectiveness, including “duration” (time
spent to produce the system), “effort” (person-hours spent),
and “quality of the final product.” Their meta-analysis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011 509

. N. Salleh is with the Department of Computer Science, International
Islamic University Malaysia, PO Box 10, 50728 Kuala Lumpur, Malaysia,
and the Department of Computer Science, University of Auckland, Private
Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
E-mail: nsal017@ec.auckland.ac.nz, norsaremah@iium.edu.my.

. E. Mendes is with the Department of Computer Science, University of
Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142,
New Zealand. E-mail: emilia@cs.auckland.ac.nz.

. J.C. Grundy is with the Faculty of Information and Communication
Technologies, Swinburne University of Technology, PO Box 218,
Hawthorn, Victoria 3122, Australia. E-mail: jgrundy@swin.edu.au.

Manuscript received 20 Oct. 2008; revised 13 July 2009; accepted 30 Apr.
2010; published online 26 May 2010.
Recommended for acceptance by P. Strooper.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-10-0357.
Digital Object Identifier no. 10.1109/TSE.2010.59.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

suggests that PP is more effective than solo programming

when quality and the time to complete the tasks are the

concern, but PP overall requires more effort (i.e., more person

hours). However, it is likely that participants’ expertise and

task complexity might have affected the accuracy of their

findings. This SLR is related to ours, but is different in terms of

its purpose and population. Our SLR investigated the

potential of PP as a pedagogical tool, specifically focusing

on existing evidence regarding PP’s effectiveness in the

context of higher education institutions.
Also in 2007, Dyba and Dingsoyr [20] carried out an SLR

of Agile Software Development empirical studies examin-

ing benefits, limitations, and strength of evidence for agile

methods. PP was not the focus of this SLR that found a low

strength of evidence supporting agile techniques.
As PP inherently involves a social interaction between

two people, investigating compatibility aspects is, in our

view, very important. Previous studies reported that

students who experienced PP with an incompatible partner

disliked the collaborative work [38], [64]. For example,

Muller and Padberg [51] show that the performance of a

pair is correlated with how comfortable the pairs feel

during a pair session (“feel-good” factor). Since students’

performance may be largely affected by the pair’s compat-

ibility, it seems relevant and applicable to examine

compatibility factors of paired students and its effect on

learning. Our goal is not only to contribute to the body of

knowledge of PP but also to improve the use of PP as an

effective pedagogical tool.
In order to realize how PP can significantly contribute as

an effective pedagogical tool, a proper investigation of its

implementation needs to be carried out. Chaparro et al. [9]

suggest that the potential to effectively use PP is highly

connected with the compatibility factors relative to the paired

subjects. Thus, one important aspect is to understand the

underlying factors that contribute to a successful pairing

formation, i.e., factors that make pairs highly compatible.

Our research aims to improve the practice of PP as a

pedagogical tool in CS/SE education by investigating pair

compatibility and its effect on PP’s effectiveness. We

applied a systematic literature review (see Section 2) in

assessing existing PP literature. The key contribution of

this paper is the findings from our SLR of empirical studies

of PP in higher education settings.
We present our SLR results by integrating evidence into

patterns that can be used to understand the current state of the

art of research in PP when applied to a higher education

context. We believe that this can better inform educators

wanting to incorporate PP into a CS/SE curriculum.

Additionally, conflicting findings from the analysis are

presented and gaps in the existing body of knowledge are

highlighted. These suggest key areas of focus for future PP

research. Section 2 describes the method we used in our SLR.

Section 3 reports the results of our SLR based on the

synthesis of evidence. Section 4 presents a discussion of our

key findings, implications, threats to the validity of this

review, and future work. Section 5 presents conclusions from

the review.

2 THE REVIEW METHOD

2.1 Introduction

An SLR is defined as a process of identifying, assessing, and
interpreting all available research evidence with the
purpose to provide answers for specific research questions
[35]. It is a tool that aims to produce a scientific summary of
the evidence in a particular area, in contrast to “traditional”
narrative review [56]. We followed the procedures of
Kitchenham and Charters [35].

2.2 Research Questions

Table 1 shows the Population, Intervention, Comparison,
Outcomes, and Context (PICOC) structure of our research
questions. In our SLR, we included all empirical studies that
investigated PP within a higher education setting, regard-
less of whether or not they compare PP to solo students.
Therefore, we could not include a specific comparison in
our PICOC.

The primary focus of our SLR was to understand and
identify the factors that influence the effectiveness of the PP
practice for CS/SE in higher education. While the primary
reason for using PP in industry is to gain benefits in terms
of economic advantage (i.e., time to market, development
effort, quality, etc.) [12], [19], the type of outcomes that can
benefit students’ learning is what motivates educators [46].
We organized the measurement of PP’s effectiveness into
four broad categories: academic performance, technical
productivity, program/design quality, and satisfaction
[46]. Therefore, our SLR aimed to answer the following
primary research question (RQ):

Primary question. What evidence is there of PP studies
conducted in higher education settings that investigated PP’s
effectiveness and/or pair compatibility for CS/SE education?

Our SLR also aimed to answer the following secondary
subquestions:

Subquestion 1. What evidence is there regarding compat-
ibility factors that affect pair compatibility and/or PP’s
effectiveness as a CS/SE pedagogical tool and which
pairing configurations are considered as most effective?

Subquestion 2. How was PP’s effectiveness measured in
PP studies and how effective has PP been when used within
higher education settings?

Subquestion 3. How was quality measured in the PP
studies that used software quality as a measure of
effectiveness?1

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

TABLE 1
Summary of PICOC

1. The choice to focus on quality was due to the fact that most studies we
already knew about measured PP’s effectiveness using quality metrics.

2.3 Identification of Relevant Literature

The strategy we used to construct the search strings was as
follows [35], [48]:

. Derive major terms used in the review questions
(i.e., based on the population, intervention, outcome,
and context).

. List the keywords mentioned in the articles (primary
studies) we already knew about.

. Search for synonyms and alternative words. We
have also consulted a subject librarian to seek further
advice in the proper use of the terms.

. Use the Boolean OR to incorporate alternative
spellings and synonyms.

. Use the Boolean AND to link the major terms from
population, intervention, and outcome.

The complete search string initially used for the search-
ing of the literature was as follows:

(student OR undergraduate) AND (pair programming OR pair-
programming) AND (experiment OR measurement OR evaluation
OR assessment) AND (effective OR efficient OR successful).

Petticrew and Roberts [56] highlight that the two major
issues in conducting an SLR search are the sensitivity and
specificity of the search. The sensitivity refers to a search
that retrieves a high number of relevant studies. Specificity
causes the search to retrieve a minimum number of
irrelevant studies. In our preliminary search, we retrieved
a very small number of articles when using the complete
search string defined above. For instance, IEEEXplore,
Inspec, and ProQuest each retrieved only five, three, and
four articles, respectively. Therefore, we sought the opinion
of a subject librarian regarding the appropriate use of our
search string and her advice was that we should use a much
simpler string than the one defined in the protocol to enable
the retrieval of more results. We used the keywords “pair
programming” OR “pair-programming” which resulted in
a higher number of studies retrieved from various online
databases. The primary search process involved the use of
12 online databases: ACM Digital library, Current Contents,
EBSCOhost, IEEEXplore, ISI Web of Science, INSPEC, ISI
Proceedings, ProQuest, Sage Full Text Collections, Science-
Direct, SpringerLink, and Scopus. The selection of online
databases was based on our knowledge of databases that
index PP primary studies we were aware of and the list of
available online databases subscribed by the University of
Auckland’s library under the “Computer Science” subject
category. Khan et al. [34] recommend searching multiple
databases to obtain as many citations as possible to avoid
bias to the review. Thus, we also searched the citeseer
website using similar keywords (i.e., “pair programming”
OR “pair-programming”); from the Agile alliance website we
looked for articles under two categories: “pair program-
ming” and “Extreme programming”; and online Google
scholar was used to search for full text of articles. Our
experience in literature search supports the suggestion by
Kitchenham and Charters [35] that it is important for SE
researchers to identify a list of relevant online databases to
facilitate the search process.

Upon completion of the primary search phase, the
identification of relevant literature continued with the

secondary search phase. During this search phase, all of
the references in the papers identified from the primary
sources were reviewed. If a paper was found to be
suitable, it was added to the existing list of studies
qualified for the synthesis.

2.4 Selection of Studies

Our inclusion criteria aimed to only include PP empirical
studies that targeted CS/SE education and used PP as a
practice defined by the XP creators in 1999 [4]. As such, the
literature search only covered studies published within the
period of 1999-2007. The detailed inclusion criteria was
comprised of 1) studies that investigated factors affecting
the effectiveness of PP for CS/SE students and 2) studies
that measured the effectiveness of PP for CS/SE students.

The main exclusion criterion was comprised of PP
papers not targeted at CS/SE education. In addition, the
following criteria were also applied:

1. papers presenting claims by the author(s) with no
supporting evidence;

2. papers about Agile/XP describing development
practices other than PP, such as test-first program-
ming, refactoring, etc.;

3. papers that only described tools (i.e., software or
hardware) that could support PP;

4. papers involving students but outside higher
education;

5. papers that solely investigated distributed PP;
6. papers not written in English.

2.5 Data Extraction and Study Quality Assessment

To facilitate the data extraction process, a form was
designed2 that was used to gather evidence relating to our
research questions and measure the quality of the primary
studies. When designing the studies’ quality checklist, we
reused some of the questions proposed in the literature [39],
[56], [62], [17], [24], [27]. Our checklist was comprised of
seven general questions (see Table 2) to measure the quality
of both quantitative and qualitative studies according to the
following ratio scale: Yes ¼ 1 point, No ¼ 0 points, and
Partially ¼ 0:5 point. The resulting total quality score for
each study ranged between 0 (very poor) and 7 (very good).

One of the authors (Salleh) was responsible for reading
and completing the extraction form for each of the primary
studies. In order to validate the data extraction process, a
random sample comprised of 20 percent of the total number
of primary studies had their data extracted by the first and
second authors, and then compared in a review meeting.
Whenever the data extracted differed, where differences
never surpassed more than 10-15 percent, such differences
were discussed until consensus was reached. We did not
measure inter-rater agreement since our review aimed to
reach an absolute consensus on the sample used [36]. For
the remaining 80 percent of primary studies, we hoped that
lessons learned from the review meeting would minimize
the bias with their data extraction. If information in a study
was unclear, we contacted the author(s) for clarification.

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 511

2. The data extraction form is available at http://www.cs.auckland.
ac.nz/~norsaremah/Form.pdf.

3 RESULTS

3.1 Introduction

In this section, we present the synthesis of evidence of our
SLR, beginning with the analysis from the literature search
results. During the selection process, the Scopus database
was chosen as the baseline database due to its reputation as
the largest abstract and citation database [21]. In addition,
each article retrieved from the other databases was
compared with the existing list of papers accumulated
from Scopus’ screening process in order to avoid duplica-
tion. The initial phase of our search process identified
379 empirical studies using the “pair programming OR pair-
programming” search term. Of these, only 153 were
potentially relevant based on the screening of titles and
abstracts. Each of these studies was filtered according to the
inclusion and exclusion criteria before being accepted for
the synthesis of evidence. If titles and abstracts were not
sufficient to identify the relevance of a paper, full articles
were used. We also carefully checked if there were any
duplicate studies or if very similar studies were published

in more than one paper. Inclusion of duplicate studies
would inevitably bias the result of the synthesis [34].

Based on the primary searches, 73 studies (48 percent of
153 studies) were accepted for the synthesis of evidence
after a detailed assessment of abstracts and full text and
exclusion of duplicates (see Fig. 1). The secondary search
phase further identified another five studies; however, after
their detailed assessment, only one was found relevant for
the SLR. Therefore, in total, 74 studies were included for the
synthesis of evidence (see Appendix A for the list of
included studies). Based on the research classification by
Wohlin et al. [74] and Creswell [16], an analysis of the type
of research approach used in these studies is shown in
Fig. 2. Formal experiments were found to be the most
popular research approach used (59 percent).

Table 3 shows the quality scores for all primary studies.
Most achieved above average quality: 20 studies (27 percent)
and 36 studies (49 percent) were deemed very good and
good quality, respectively. One study attained very poor
quality; it did not detail its research methodology and we
could not ensure that its results were reliable and useful as
evidence. This study was removed from the analysis phase.
Thus, in the end, only 73 studies were included in the
analysis of evidence.

In the following section, we present the results for the
SLR’s main research question and three subquestions.
Each study is identified as Sm, where m represents the
study’s number (see Appendix A for the list of studies
used in this SLR).

3.2 Research Question

Question: “What evidence is there of PP studies conducted
in higher education settings that investigated PP’s effec-

tiveness and/or pair compatibility for CS/SE education?”

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

TABLE 3
Quality Scores

TABLE 2
Study Quality Checklist

Fig. 1. Identifying relevant literature.

Fig 2. Studies by research approach.

The SLR identified 73 PP studies conducted in higher
education settings that investigated the use of PP by
undergraduate and graduate CS/SE students. The context
of investigation varied via the comparison of PP to other
practices, such as solo programming, side-by-side program-
ming, peer-review inspection, and application of the
practice to design tasks (i.e., pair designing). Studies
investigating PP’s effectiveness also covered other aspects
of PP such as pair formation.

The SLR’s ultimate goal was to understand how PP
affects students’ learning outcomes in order to improve
academic achievement, technical productivity, program
quality, and learning satisfaction. Of the 73 studies
analyzed, 17 (23 percent) investigated factors believed to
have a bearing on pair compatibility and PP’s effectiveness.
Seventy (96 percent) investigated PP’s effectiveness using a
quantitative or qualitative approach and 32 (44 percent)
investigated quality aspects as a measure of PP’s effective-
ness. The following subquestions detail the SLR’s synthesis
of evidence.

3.3 Subquestion 1—Compatibility Factors

“What evidence is there regarding compatibility factors

that affect pair compatibility and/or PP’s effectiveness as a

CS/SE pedagogical tool, and which pairing configurations

are considered as most effective?”
Compatibility factors are factors believed to influence

the affinity of students when working in pairs. Altogether,
14 factors were identified by a total of 17 studies which
investigated how these factors affected or correlated with
PP’s effectiveness and/or pair compatibility. Table 4 lists
the compatibility factors, studies that looked into each
factor and whether a factor had a positive, negative, no
effect, or mixed effect. The summary of findings used to
answer this research question is available at: www.cs.
auckland.ac.nz/~norsaremah/summary.pdf.

Table 4 shows that personality type and actual skill level
were the two factors most commonly investigated in PP

studies. In terms of personality, the two studies with
positive findings reported that paired students of different
personality types performed better when compared with
paired students of similar type [S50], [S73]. While most
studies that investigated the effects of personality type did
not produce significant findings, there was agreement that
paired students of different personalities tended to perform
better than pairs of similar personalities [S28], [S32], [S63].

Six out of the nine PP studies that investigated personality
type employed the Myers-Briggs Type Indicator (MBTI) [52]
as a personality assessment method [S13], [S28], [S29], [S32],
[S63], [S73]. Only one study applied NEO-PI [15] to
investigate the relationship between programmers’ person-
ality and PP’s effectiveness [S23]. The study found that the
personality of an individual programmer does not have a
significant effect on PP’s effectiveness, but this may not be
the case when looking at the combination of personalities in a
single pair. Other than MBTI and NEO-PI, the Keirsey
Temperament Sorter [33] and Revised Eysenck Personality
Questionnaire (EPQ-R) were used in two studies to measure
the personality [S50] and temperament types [S74] of pair
developers. Sfetsos et al. [S50] report that pairs of mixed
personalities and temperaments achieve better scores than
pairs of similar personality. On the contrary, Gevaert [S74]
found no significant correlation between personality type
and PP’s effectiveness.

Seven out of the 10 PP studies regarded paired skill level
as one of the determinant factors of PP’s effectiveness [S8],
[S11], [S15], [S28], [S29], [S58], [S63]. The two categories of
skill level used were actual and perceived skill. The actual
skill level was determined based on programming experi-
ence, academic background, and students’ academic per-
formance. Perceived skill level was measured subjectively
according to the skill of a student’s partner relative to their
own perceived skill (i.e., “better,” “about the same,” or
“weaker”). The consensus from these studies is that PP
works best when the pair has a similar skill level. However,
two correlation studies show contradictory findings on the

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 513

TABLE 4
List of Factors Investigated in PP Studies

association between students’ skill level and PP’s effective-
ness [S42], [S68]. Muller and Padberg [S42] report that there
is no correlation between the two variables, and Madeyski
[S68] refutes this finding.

The two studies that investigated the effect of gender
differences on pair compatibility produced contradictory
findings [S29], [S73]: Choi [S73] reports that gender is not a
significant factor in influencing pair compatibility, whereas
Katira et al. [S29] found that gender is a factor likely to
determine pair compatibility. S29’s findings suggest that
pairing students of different gender would lead to
incompatible pairs and that pairing female students would
very likely result in a compatible pair. Three studies that
investigated the effect of self-esteem discovered that paired
students’ self-esteem did not influence pair compatibility
[S28], [S29], [S63].

Katira et al. [S29] investigated ethnicity as a compatibility
factor by classifying students as either belonging to a majority
or minority ethnic group. Their results show that students
from minority ethnic groups are more likely to pair with
students who are also from minority ethnic groups, but not
necessarily the same group. In this study, the effects on pair
compatibility when pairing students belonging to the same
ethnicity group were not investigated. The study does not
report the results of pair compatibility on male students and
majority ethnic groups due to its focus on the issue of low
representation of minority and female students in CS.

The two studies that investigated the effect of Felder-
Silverman learning style reported that learning style did not
significantly affect pair compatibility or the perception of
students toward pairing [S32], [S63]. In terms of work ethic,
Williams et al. [S63] report that pairing students of similar
work ethic enhances pair compatibility, and Layman [S32]
reports that students’ perception toward pairing is not
affected by their work ethic. Williams et al. [S63] also
investigated students’ time management ability and found
that it has no effect on pair compatibility.

In 2004, Muller and Padberg [S42] coined the term “feel-
good,” which refers to how comfortable pairs feel during
the PP session. They report that the feel-good factor is
correlated with a pair’s performance. Madeyski [S68] had
similar findings where a positive correlation between the
feel-good factor and pair performance (quality of software)
was found.

Very few PP studies have investigated confidence,
communication level, type of role, and tasks. Thomas et al.
[S54] report that performance increased when pairing
students of similar confidence. Nevertheless, students who
consider themselves “code warriors” (i.e., high confidence
level students) prefer to work alone and enjoy PP less. This
contradicts the findings reported by Hanks [S22]. Chapparo
et al. [S14] show that task type significantly affects PP’s
perceived effectiveness: Paired students prefer program
comprehension, refactoring, and coding to debugging tasks.
Choi [S73] reports that communication skills have no impact
on pair compatibility.

A two-phased study conducted between 2002 and 2005
investigated factors believed to influence pair compatibil-
ity. Table 5 (see Appendix B) summarizes the findings. In
these studies [S28], [S29], [S63], experiments involved

undergraduate and graduate CS students in three courses:
Introduction to Programming (CS1), Sw. Eng. (SE), and
OO Languages and Systems. Our analysis showed some
divergence in the findings. For instance, results were
contradictory between CS1 and SE courses when pairing
students according to different personality types, similar
actual skill level, and self-esteem [S63]. The perceived skill
level was the most influential factor in determining pair
compatibility. These studies, however, did not provide
evidence stressing pair compatibility as an important
criterion determining PP’s effectiveness.

The second part of subquestion 1 investigated the most
effective ways of pairing formation from the viewpoint of
pair compatibility or pair effectiveness. We presented our
evidence based on the ranking of the number of studies
with corroborating findings relating to pairing formation
(see Table 6 in Appendix B). The actual skill level was ranked
highest (seven studies) [S8], [S11], [S15], [S28], [S29], [S58],
[S63], followed by perceived skill level (four studies) [S14],
[S28], [S29], [S63]: The skill level between the partners
should be similar in order to achieve greater pair compat-
ibility or pair effectiveness. Next was personality type, where
two studies report that students should be paired with a
partner of different personality [S50], [S73].

In terms of quality assessment, the average quality score
obtained for the studies used to answer subquestion 1 was
5.1, with the highest quality score being 6.5. Of 17 studies,
we rated 12 as having good quality of experimental design
and analysis.

3.4 Subquestion 2—Measure of Effectiveness

“How was PP’s effectiveness measured in PP studies and
how effective has PP been when used within higher
education settings?”

PP’s effectiveness was measured using various factors,
organized in four categories: technical productivity, pro-
gram/design quality, academic performance, and satisfac-
tion. Technical productivity, measured by 31 (44 percent) of
the 70 studies, was the most common method used to assess
PP’s effectiveness, followed by program/design quality
(30 studies, 43 percent). A subset of 16 studies (23 percent)
evaluated PP’s effectiveness based on students’ academic
performance in final exams, midterms, assignments, pro-
jects, and course grades. Besides the objective measurements,
PP’s effectiveness was evaluated subjectively in 22 studies
(31 percent) using students’ perceived satisfaction experien-
cing PP sessions (see Table 7 in Appendix B).

Of the 31 “technical productivity” studies, 19 studies [S4],
[S7], [S9], [S19], [S25], [S30], [S31], [S33], [S38], [S42], [S44],
[S46], [S47], [S49], [S51], [S52], [S53], [S60], [S65] used “time
spent” as a measure of PP’s effectiveness. Of these, 11 studies
[S4], [S7], [S9], [S30], [S31], [S33], [S49], [S51], [S52], [S53],
[S60] report that paired students complete tasks in shorter
duration than solo students. However, seven studies report
that PP incurs additional cost or requires more effort (in
person hours) because it takes two on a task [S25], [S65], [S60],
[S52], [S53], [S46], [S47]. Some studies do not report the total
effort as they included only the time taken to solve the task.

PP studies that measured PP’s effectiveness using quality
attributes (30 studies) focused on either internal or external
code quality; lines of code and the number of test cases

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

passed were the two methods most commonly employed.
PP’s effectiveness was investigated subjectively by means of
students’ perception of their satisfaction using PP. Findings
showed a positive attitude toward working collaboratively
with another student. Scheduling conflicts and incompa-
tible partners were the major problems highlighted [S24],
[S32], [S66], [S69], [S56], [S16].

Of the 45 studies that compared PP to solo program-
ming, 31 report that PP led to an improved performance in
technical productivity and satisfaction. Although the
findings regarding PP’s effectiveness in program/design
quality and academic performance varied considerably
(see Table 8 in Appendix B), the majority of studies (8 out
of 16) report a significant positive effect of PP toward
academic performance.

Fig. 3 suggests that PP was a more effective technique
compared with solo programming. In terms of satisfaction,
almost all studies reported similar findings, with students
presenting greater satisfaction and enjoyment when using
PP. Pickard et al. [57] suggest that only studies that have
comparable quantitative measures are eligible to be included
in a meta-analysis. We found that PP’s effectiveness was
measured using various types of metrics. Thus, in order to

perform a meta-analysis, we would need to select a specific
subset (e.g., final exam score, success rate of paired, and solo
students) to measure the effects on academic performance.

In our SLR, only six studies that reported their statistical
results were applicable for a meta-analysis [S38], [S39],
[S40], [S41], [S61], [S62]. We used their data to conduct two
meta-analyses: one of PP’s effectiveness on final exam
scores of paired and solo students (MA1), and another of
PP’s effectiveness on assignments’ scores (MA2). MA1
showed a standardized effect size of 0.16, calculated using
Hedges’s g statistic. Here, we used the standardized mean
difference under the fixed effects model as the effect size
measure. Effect size was calculated based on the difference
between two means (final exam scores of paired and solo
students) divided by the pooled standard deviation,
adjusted for small sample bias [31].

The forest plot in Fig. 4 shows MA1 results. The small box
indicates the point estimates of effect size in a single study,
whereas the horizontal line that crosses each study represents
the confidence interval for a study’s estimate. The diamond at
the bottom of the plot represents the pooled effect or the
average effect size after pooling all studies. The pooled result
from this meta-analysis suggests that the effects of PP were
small (i.e., effect size of 0.16) in terms of its practical
significance or meaningfulness in improving students’
performance in final exams, compared with solo program-
ming. We employed the effect size category from Kampenes
et al. [31]: small (effect size of 0.000-0.376), medium (effect size
of 0.378-1), or large (effect size of 1.002-3.40). Note that some
of the studies reported their statistical results for several
experiments conducted throughout various academic seme-
sters, so we treated each as a separate study in the meta-
analysis (e.g., the three experiments in McDowell et al. [S38]
are denoted as S38a, S38b, and S38c, respectively).

The second meta-analysis MA2 showed a medium effect
size (see Fig. 5). The pooled effect size of 0.67 suggests that
PP was beneficial and effective in helping students get
better scores in assignments. We used the software MIX
version 1.7 [2], [3] for performing both meta-analyses and
generating the forest plots, a good tool for meta-analysis
according to Bax et al. [2].

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 515

Fig. 4. Meta-analysis of PP’s effectiveness on students’ final exam scores.

Fig. 3. Studies’ findings on PP effectiveness.

3.5 Subquestion 3—Measure of Quality

“How was quality measured in the PP studies that used

software quality as a measure of effectiveness?”
PP is reported to benefit users by improving software

design quality [12]. Of the 73 studies, 32 (44 percent)
investigated the quality of the work produced by paired
students, and employed various quality metrics, and
arranged into four different categories: Internal code quality
[44], External code quality [44], Standard Quality Model,
and General category (see Table 9 in Appendix B).

Internal code quality was divided into two subgroups:
program size and Object-Oriented (OO) design quality.
Three PP studies applied program size (e.g., LOC) as a
quality metric and found that shorter programs led to
higher quality and more maintainable software [S25], [S47],
[S21]. However, Vanhanen and Lassenius [S57] argue that
LOC is not a reliable metric because fewer lines of code do
not guarantee better quality. Thus, rather than using LOC
as an indicator, they analyzed design quality based on a
method’s size and complexity metrics. There was no
significant difference in the performance between pair
and solo students when effectiveness was measured using
program size. In terms of OO design quality, program
quality is rated higher for pair programmers when design
quality is measured at the class level (i.e., depth of
inheritance, coupling, and cohesion level) [S5]. However,
there is no significant difference between paired and solo
students in OO design quality at the method and package
levels [S21], [S35], [S57]. Hanks et al. [S21] mention that the
mixture in the studies’ findings was due to the various
levels of task complexities. Vanhanen and Lassenius [S57]
report that differences in design quality between pair and
solo groups depend on the metric used and may have been
affected by the size of the system analyzed.

External code quality (ECQ) was investigated by 16
(22 percent) of the 73 primary studies. Of these, nine studies
(56 percent) report that the ECQ produced by paired
students is significantly better compared with soloists’.
Only one study measured the quality of design diagrams
(e.g., Data Flow Diagrams, Relational Databases, and
Functional Interface Diagram) using the ISO IEC 9126
quality model, presenting mixed findings about the impact
of pair work on the quality of design products [S1]. No

study measured the quality of design artifacts using UML
diagrams.

The general category, comprised of expert opinion and
academic performance measures such as programming
score or project grade, was applied in 14 of the 73 studies
(19 percent). Studies that relied upon expert opinion
measured quality using criteria such as the significance of
identifiers, how well-organized methods were, use of
appropriate indentation and whitespace [S21], functionality
and style [S38], output correctness, required documentation,
correct use of objects and interface design [S13], and number
of defects in specification, expression, and algorithm [S45].
In five out of seven studies, the quality of the program
produced by pairs was superior to the quality of the program
produced by solo students when quality was measured
using the course assignment’s score or the project’s grade
[S2], [S9], [S30], [S39], [S59]. Four out of seven studies that
employed professional judges (expert opinion) to evaluate
the quality of work produced by pair and solo programmers’
reported that PP had a positive effect on the quality of work
[S5], [S16], [S38], [S73].

4 DISCUSSION

4.1 Pair Compatibility Issues

Some studies used a mixture of subjects (undergraduate
and graduate students) as a representative sample popula-
tion [S28], [S29], [S63]. Thus, experience and academic
background may have varied widely. The nature of courses,
instructors, and instruments used may also have affected
the studies’ outcome. For instance, the instruments used in
two studies that measured confidence level [S22], [S54]
were different and this may have contributed to the
contradictory findings.

The two compatibility factors investigated most were
skill level and personality type. Our synthesis suggested
that pairing works effectively when pairing students
according to their skill level, supporting previous work by
Comrey and Staats [13], who found that group productivity
is highly correlated with the ability or competency level of
group members.

Regarding the effect of personality type on pair compat-
ibility, studies’ findings are mixed. We believe that these
mixed results could have been caused by the diversity of

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

Fig. 5. Meta-analysis of PP’s effectiveness on programming assignments.

types of instruments used, studies’ duration, and the nature
of the tasks carried out. Bowers et al. [6] and Mohammed
and Angell [50] show that the relationship between
personality composition and team performance is highly
dependent on the type of task, which supports our view.

There was very little evidence of studies looking at
gender and ethnicity issues in relation to improving PP’s
effectiveness as a pedagogical tool. Two studies investi-
gated whether gender affected PP’s effectiveness [S29],
[S73]; however, their findings are contradictory. Perhaps
one of the reasons for such contradictory findings was the
duration of each study: The experiments carried out by
Choi [S73] had a shorter duration (90 minutes) compared to
the three experiments conducted by Katira et al. [S29], each
lasting for a full semester.

We found a lack of studies investigating PP’s effective-
ness focused on software modeling or methodologies. As
our search terms included “programming,” this was
perhaps not an unexpected result. However, some studies
applied PP to a software design phase to investigate
whether pair programming was effective at enforcing or
diffusing designs’ knowledge among the project team
members [S3], [S6], [S8], [S9]. Pairing was beneficial in
terms of knowledge transfer among pair designers, suggest-
ing that PP should not be restricted to coding-related tasks.

4.2 Evidence on PP’s Effectiveness

Of the 70 studies, 19 (27 percent) measured pair productiv-
ity using the time spent in completing the tasks, where most
findings (11 studies) indicated that pair programmers
effectively completed the assigned tasks in a shorter time.
One of the more significant findings from this review was
that students perceived greater satisfaction and enjoyment
from using PP.

The relatively small overall effect on final exam scores
shown in our meta-analyses indicates that PP did not
directly improve students’ course grades, but the medium
effect size on students’ assignment scores suggests that PP
was useful on assignments. Thus, evidence suggests that PP
is an effective pedagogical tool that not only benefits
students in terms of learning, but also increases their
satisfaction and enjoyment. These findings corroborated the
results of a meta-analysis on small group and individual
learning with technology by Lou et al. [42], who found that
students learning in pairs resulted in better cognitive and
affective outcomes.

The cognitive theories of cooperative learning research
emphasize two major benefits of students working together.
First, the interaction that occurs while working together
helps students increase their “mastery of critical concepts”
[61]. When peers engage in a discussion, cognitive conflicts
and reasoning are more likely to happen, and this type of
interaction helps improve students’ achievement. Second,
the ability to elaborate or explain will consequently help
students in retaining knowledge. PP exhibits these elements
of interaction and elaboration.

A review of research in education shows that cooperative
learning can be beneficial in accelerating students’ achieve-
ment when the emphasis is placed upon the group’s goals
and individual accountability factors [60]. By default, PP
incorporates those factors and students are also accountable
for their own individual achievement in exams.

4.3 Measuring Quality

The work produced by paired students was of high quality
when measured using expert opinion and academic
performance. Thirty-two studies investigated PP’s quality
aspects, and results in general report significant findings
showing that quality of design/code developed by paired
students is considerably superior to soloists, corroborating
meta-analysis results reported by Dyba et al. [19].

Although results were, in general, supportive of PP, the
effects of PP toward internal code quality seem to be
unclear/contradictory. Most studies either provide a
mixture of findings or report that PP had no impact on
the internal code quality (Table 9 in Appendix B). For
example, Madeyski [S35] reports that package dependen-
cies in an OO design were not significantly affected by the
pair or solo development. Since no other evidence was, as
far as we know, available regarding this issue, a replication
study needs to be carried out to support or refute this. We
believe that the unclear evidence as to whether PP improves
internal code quality can be attributed to several reasons
such as the types of tasks, level of task complexity, size of
the analyzed system, and studies’ context.

Steiner’s theories emphasized that the potential perfor-
mance of a group is very much dependent on the type of
task at hand and whether the group members have
adequate resources (i.e., skills, tools, and effort) in order
to carry out the task [63]. Our SLR showed that the tasks
given to paired students varied from simple programming
assignments to complex J2EE distributed applications. We
believe that given this range in task complexity, internal
code quality is likely to be affected by application size and
the choice of metrics used to measure the quality of code
design. Vanhanen and Lassenius [65] comment that
measuring code design quality can be unreliable due to
the varying amount of functionality in different applica-
tions. Our review supports their findings and we suggest
that measuring quality based on external metrics (i.e., test
cases passed, number of defects, etc.) would be a better
mechanism to evaluate code quality. Finally, while the
majority of studies investigated code quality, only three
looked at the quality of design documents using an ISO
model [S1] and/or design scores [S9], [S30].

4.4 Implications for Research

Our SLR found that personality was one of the most
common factors investigated in PP studies. However, the
results from existing studies are inconsistent in terms of the
effects of personality toward PP’s effectiveness. Existing
literature in psychology shows that students’ personality
traits play an important role in predicting their academic
success and are also considered as one of the critical success
factors in determining teamwork success [8], [22]. In one of
the meta-analytic studies, Bowers et al. [6] investigated
whether homogeneous personality teams outperformed
heterogeneous personality teams; their findings show a
partial support for the latter. Because these studies were
conducted mostly in the psychology domain, further
research should be done in other fields too (e.g., CS/SE)
to investigate whether personality composition can affect
PP’s effectiveness as a pedagogical tool. In addition, the
issue of whether homogeneity or heterogeneity of person-
ality is good for PP is not yet clearly understood. We also

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 517

identified that most PP studies investigated personality
type using the Myer-Briggs Type Indicator. We suggest that
further research should be undertaken using other credible
personality measurement frameworks such as the Five-
Factor Model [45].

We also observed that in many of the PP experiments,
confounding effects were not controlled, leading to results
that could very likely be biased [37]. For example, the
validity of some of the results might have been confounded
by the method of pair formation. For instance, instead of
randomly assigning students to treatment and control,
some studies let the students decide whether to pair or not
[S20], [S28], [S63]. This means that it is possible that most of
the students who paired were enthusiastic about using PP,
thus biasing the results. In order to improve the quality of
empirical research, researchers can refer to available guide-
lines for conducting empirical research in SE [37] and for
reporting controlled experiments in SE [30].

Our SLR showed that only 17 studies (23 percent)
investigated factors that may affect PP’s effectiveness,
including pair compatibility. However, there was no clear
relationship determined between pair compatibility and
PP’s effectiveness. Some studies investigated the perceived
compatibility of students toward their partners, but no
evidence was available on whether pair compatibility
improved PP’s effectiveness. Research in psychology has
investigated the effects of interpersonal compatibility on
group productivity using Schutz’s FIRO theory. Results
suggest that the productivity of compatible groups was
greater than that of incompatible groups [40]. We suggest
that the association of these factors be investigated in future
PP studies.

Most of the PP studies we reviewed (85 percent) required
students to engage in tasks only related to coding or
application development, thus suggesting that PP had rarely
been employed in courses where students were exposed to
software design/modeling tasks. This clearly indicates that
further research needs to be conducted to investigate whether
PP can be an effective pedagogical tool to learn CS/SE in
topics other than coding. There is also a need to increase the
number of studies investigating factors potentially affecting
PP’s effectiveness in order to aggregate results.

4.5 Implications for CS/SE Educators

One of the key repercussions for CS/SE educators relates to
how to implement PP. The results of this SLR suggest that
the most effective pairing configuration is to pair students
of similar competency level using as a basis their exam
scores/GRE/GPA or programming experience. We suggest
that educators who are willing to practice PP in their
classroom should pair students according to their skill or
competency level to achieve greater pair compatibility.

The SLR suggests that students perceive higher satisfac-
tion when working in pairs. According to the Vygotskian
theory known as “zone of proximal development” [66],
students are capable of achieving higher intellectual level
when collaborating with other students rather than working
alone. Students who pair programmed were satisfied with
the pairing experience mainly because PP helped them
increase their knowledge and gain greater confidence,
besides improving their social interaction skills. PP can

also assist instructors and educators in reducing their own
workload as there will be a smaller number of assignments
or projects to be graded.

4.6 Threats to the Validity of the Results

Several factors need to be taken into account when
generalizing the results of this SLR. During the process of
identifying the relevant literature, we only considered as
primary sources articles published electronically, thus
neglecting studies that might have appeared in conference
proceedings or journals that were not published online.
This was particularly applicable to material published
before 1987. However, since the PP practice, as considered
in our SLR, was proposed in 1999 [4], we feel that it is
unlikely that PP studies are not available online. Further-
more, we used an extensive list of search databases and
included in our search all of the databases we were aware of
where PP primary sources had been published.

Another threat relates to the issue of handling the review.
The first author was responsible for developing the protocol
and carrying out the major tasks involved in each of the SLR
stages, which may have unwittingly had some influence on
the SLR results. However, the other authors provided
detailed feedback during all of the stages that were part of
the SLR (e.g., protocol’s preparation, primary studies’
selection, data extraction’s quality assurance, and compiling
of results), which we believe should have minimized, if not
removed, any possible bias in the results presented herein. In
addition, we very closely followed the recommendations
suggested in the SLR guidelines [35] in order to avoid bias.
Publication bias is also considered as a common issue in SLRs
[35]. In dealing with publication bias, we make used the
following strategy: 1) develop and continuously refine the
SLR protocol, in particular during the search process and
2) include searching of gray literature such as theses,
dissertations, and technical reports so that the search process
covers as many studies as possible.

4.7 Future Work

As part of our future work, we are currently conducting an
experiment investigating personality and gender aspects
toward PP’s effectiveness where students are involved in
software-design-related tasks. Since existing PP studies
heavily relied upon MBTI to measure personality, and
MBTI has been widely criticized as a good personality
framework to employ [58], [75], we are using IPIP-NEO as
an instrument to measure personality. IPIP-NEO was
proposed based on the Five-Factor Model personality,
which is currently considered the predominant taxonomy
of personality by personality-focused psychologists [7], [26],
[14], [22]. In addition, we are also looking into under-
standing the relationship between pair compatibility and its
effect on pair effectiveness.

5 CONCLUSIONS

This paper described an SLR targeted at empirical studies of
PP’s effectiveness and/or pair compatibility conducted in
higher education settings. A total of 73 primary studies
were used in our SLR, from which 14 compatibility factors
potentially affecting PP’s effectiveness were identified. Of
these, personality type, actual, and perceived skill level
were the three factors investigated the most in PP studies.

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

However, the effects of personality type toward pair
compatibility and/or PP’s effectiveness were inconclusive.
PP studies that investigated actual and perceived skill levels
achieved a consensus suggesting that students prefer to pair
with someone of similar skills to themselves. Results also
showed that a pair works well when both students have
similar abilities and motivation to succeed in a course.

Evidence showed that various metrics were employed to
measure PP’s effectiveness, classified into technical produc-
tivity, program/design quality, academic performance, and
satisfaction. We also found out that the metric used most
often to measure pair productivity was the time spent in
completing the tasks. Paired students usually completed the
assigned tasks in less time than solo students. Almost all
studies’ findings reported that students’ satisfaction was
higher when using PP compared with working individually.
In terms of academic performance, the results of our meta-
analysis of PP’s effectiveness indicated that PP had no
significant advantage in improving students’ performance in
final exams over solo programming (effect size = 0.16).
However, in the second meta-analysis, the pooled results
suggested that PP was effective in helping students obtaining
better scores in their assignments (effect size = 0.67).

There were numerous methods employed when con-
sidering quality as a measure of PP’s effectiveness. Based on
our review, research on quality aspects was classified into
internal and external code quality, standard quality model, and
general categories. Of all categories, external code quality
and general category were the two researched the most.
Findings indicated that when quality was measured
according to academic performance and expert opinion,
students who pair-programmed produced a better quality
program compared to students who programmed alone.
However, when the quality of the work produced by pair
and solo students was measured using metrics at the
internal code level, results were contradictory.

We also discussed a number of implications of the SLR
results for research and practice, including the need to
replicate PP studies in areas where findings were incon-
sistent, or to conduct studies in areas where there is scarcity
of or no evidence regarding the effect of certain compatibility
factors toward PP’s effectiveness as a pedagogical tool.

The results of the SLR suggest that PP was rarely
employed in courses where students were exposed to
software design/modeling tasks; thus, we believe that this
is a fruitful area for future work. The review results suggest
that paired students achieve productivity similar or better
than solo students; and indicate that implementing PP in
the classroom or lab does not lead to any detrimental effect
on students’ academic performance. This is in line with
research evidence in education that clearly supports
collaborative learning as an effective instructional method
in higher education [54].

APPENDIX A

LIST OF INCLUDED STUDIES

The references listed below correspond to those prefaced
with the letter “S” throughout the paper.

[1] H. Al-Kilidar, P. Parkin, A. Aurum, and R. Jeffery, “Evaluation of
Effects of Pair Work on Quality of Designs,” Proc. 2005 Australian
Software Eng. Conf., pp. 78-87, 2005.

[2] V. Balijepally, “Task Complexity and Effectiveness of Pair
Programming: An Experimental Study,” PhD dissertation, The
Univ. of Texas at Arlington, 2006.

[3] E. Bellini, G. Canfora, F. Garcia, M. Piattini, and C.A. Visaggio,
“Pair Designing as Practice for Enforcing and Diffusing Design
Knowledge,” J. Software Maintenance and Evolution-Research and
Practice, vol. 17, pp. 401-423, 2005.

[4] S.B. Berenson, K.M. Slaten, L. Williams, and C.-W. Ho, “Voices of
Women in a Software Engineering Course: Reflections on
Collaboration,” J. Educational Resources in Computing, vol. 4,
no. 1, 2004.

[5] T. Bipp, A. Lepper, and D. Schmedding, “Pair Programming in
Software Development Teams—An Empirical Study of Its
Benefits,” Information and Software Technology, vol. 50, pp. 231-
240, 2008.

[6] G. Canfora, A. Cimitile, and C.A. Visaggio, “Working in Pairs as a
Means for Design Knowledge Building: An Empirical Study,”
Proc. 12th IEEE Int’l Workshop Program Comprehension, pp. 62-68,
2004.

[7] G. Canfora, A. Cimitile, and C.A. Visaggio, “Empirical Study on
the Productivity of the Pair Programming,” Proc. Sixth Int’l Conf.
Extreme Programming and Agile Processes in Software Eng., pp. 92-99,
2005.

[8] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C.A. Visaggio,
“Confirming the Influence of Educational Background in Pair-
Design Knowledge through Experiments,” Proc. ACM Symp.
Applied Computing, pp. 1478-1484, 2005.

[9] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C.A. Visaggio,
“Performances of Pair Designing on Software Evolution: A
Controlled Experiment,” Proc. 10th European Conf. Software
Maintenance and Reeng., pp. 195-202, 2006.

[10] H. Srikanth, L. Williams, E. Wiebe, C. Miller, and S. Balik, “On
Pair Rotation in the Computer Science Course,” Proc. 17th Conf.
Software Eng. Education and Training, pp. 144-149, 2004.

[11] C. Lan and B. Ramesh, “An Exploratory Study on the Effects of
Pair Programming,” Proc. Eighth Int’l Conf. Empirical Assessment in
Software Eng. Workshop—26th Int’l Conf. Software Eng., pp. 21-28,
2004.

[12] J.C. Carver, L. Henderson, L. He, J. Hodges, and D. Reese,
“Increased Retention of Early Computer Science and Software
Engineering Students Using Pair Programming,” Proc. 20th Conf.
Software Eng. Education and Training, pp. 115-122, 2007.

[13] J. Chao and G. Atli, “Critical Personality Traits in Successful Pair
Programming,” Proc. AGILE ’06, pp. 89-93, 2006.

[14] E.A. Chaparro, A. Yuksel, P. Romero, and S. Bryant, “Factors
Affecting the Perceived Effectiveness of Pair Programming in
Higher Education,” Proc. 17th Workshop Psychology of Programming
Interest Group, pp. 5-18, 2005.

[15] D.C. Cliburn, “Experiences with Pair Programming at a Small
College,” J. Computing Sciences in Colleges, vol. 19, pp. 20-29, 2003.

[16] T.H. DeClue, “Pair Programming and Pair Trading: Effects on
Learning and Motivation in a CS2 Courses,” J. Computing Sciences
in Colleges, vol. 18, no. 5, pp. 49-56, 2003.

[17] M.A. Domino, R.W. Collins, A.R. Hevner, and C.F. Cohen,
“Conflict in Collaborative Software Development,” Proc. 2003
Conf. Computer Personnel Research: Freedom in Philadelphia-Lever-
aging Differences and Diversity in the IT Workforce, pp. 44-51, 2003.

[18] M.A. Domino, R.W. Collins, and A.R. Hevner, “Controlled
Experimentation on Adaptations of Pair Programming,” Informa-
tion Technology and Management, vol. 8, pp. 297-312, 2007.

[19] S.F. Freeman, B.K. Jaeger, and J.C. Brougham, “Pair Programming:
More Learning and Less Anxiety in a First Programming Course,”
Proc. ASEE Ann. Conf., pp. 8885-8893, 2003.

[20] E.F. Gehringer, “A Pair-Programming Experiment in a Non-
Programming Courses,” Proc. 18th Ann. ACM SIGPLAN Conf.
Object Oriented Programming Systems, Languages and Applications,
pp. 187-190, 2003.

[21] B. Hanks, C. McDowell, D. Draper, and M. Krnjajic, “Program
Quality with Pair Programming in CS1,” ACM SIGCSE Bull.,
vol. 36, pp. 176-180, 2004.

[22] B. Hanks, “Student Attitudes toward Pair Programming,” Proc.
11th Ann. Proc. SIGCSE Conf. Innovation and Technology in Computer
Science Education, pp. 113-117, 2006.

[23] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, “Pair-Program-
ming Effect on Developers Productivity,” Proc. Fourth Int’l Conf.
Extreme Programming and Agile Processes in Software Eng., pp. 215-
224, 2003.

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 519

[24] C.-W. Ho, “Examining Impact of Pair Programming on Female
Students,” Technical Report TR-2004-20, Dept. of Computer
Science, North Carolina State Univ., 2004.

[25] M. Ciolkowski and M. Schlemmer, “Experiencing with a Case
Study on Pair Programming,” Proc. First Int’l Workshop Empirical
Studies in Software Eng., 2002.

[26] S.D. James and J.C. Hansen, “Student-Based Pair Programming:
An Examination,” Proc. Sixth World Multiconf. Systemics, vol. 8,
pp. 485-489, 2002.

[27] A. Janes, B. Russo, P. Zuliani, and G. Succi, “An Empirical
Analysis on the Discontinuous Use of Pair Programming,” Proc.
Fourth Int’l Conf. Extreme Programming and Agile Processes in
Software Eng., pp. 205-214, 2003.

[28] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and E.
Gehringer, “On Understanding Compatibility of Student Pair
Programmers,” ACM SIGCSE Bull., vol. 36, pp. 7-11, 2004.

[29] N. Katira, L. Williams, and J. Osborne, “Towards Increasing the
Compatibility of Student Pair Programmers,” Proc. 27th Int’l Conf.
Software Eng., pp. 625-626, 2005.

[30] S. Kuppuswami and K. Vivekanandan, “The Effects of Pair
Programming on Learning Efficiency in Short Programming
Assignments,” Informatics in Education, vol. 3, pp. 251-266, 2004.

[31] L. Layman, L. Williams, J. Osborne, S. Berenson, K. Slaten, and M.
Vouk, “How and Why Collaborative Software Development
Impacts the Software Engineering Course,” Proc. 35th Ann. Conf.
Frontiers in Education, pp. T4C-9-T4C-14, 2005.

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

TABLE 5
Compatibility of Student Pair Programmers

TABLE 6
Summary of Effective Pairing Formation

[32] L. Layman, “Changing Students’ Perceptions: An Analysis of the
Supplementary Benefits of Collaborative Software Development,”
Proc. 19th IEEE Conf. Software Eng. Education and Training, pp. 159-
166, 2006.

[33] K.M. Lui and K.C.C. Chan, “Pair Programming Productivity:
Novice-Novice versus Expert-Expert,” Int’l J. Human-Computer
Studies, vol. 64, pp. 915-925, 2006.

[34] L. Madeyski, “Preliminary Analysis of the Effects of Pair
Programming and Test-Driven Development on the External Code
Quality,” Software Eng. Evolution and Emerging Technologies, K.
Zieli�nski and T. Szmuc, eds., pp. 113-123, IOS Press, 2005.

[35] L. Madeyski, “The Impact of Pair Programming and Test-Driven
Development on Package Dependencies in Object-oriented
Design—An Experiment,” Proc. Seventh Int’l Conf. Product-Focused
Software Process Improvement, pp. 278-289, 2006.

[36] L. Madeyski, “On the Effects of Pair Programming on Thorough-
ness and Fault-Finding Effectiveness of Unit Tests,” Proc. Int’l
Conf. Product-Focused Software Process Improvement, pp. 207-221,
2007.

[37] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The Effects
of Pair-Programming on Performance in an Introductory Pro-
gramming Course,” ACM SIGCSE Bull., vol. 34, pp. 38-42, 2002.

[38] C. McDowell, B. Hanks, and L. Werner, “Experimenting with Pair
Programming in the Classroom,” ACM SIGCSE Bull., vol. 35,
pp. 60-64, 2003.

[39] C. McDowell, L. Werner, H.E. Bullock, and J. Fernald, “The
Impact of Pair Programming on Student Performance, Perception
and Persistence,” Proc. 25th Int’l Conf. Software Eng., pp. 602-607,
2003.

[40] E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “Investigating
Pair-Programming in a 2nd-Year Software Development and
Design Computer Science Course,” ACM SIGCSE Bull., vol. 37,
no. 3, pp. 296-300, 2005.

[41] E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “A Replicated
Experiment of Pair-Programming in a 2nd-Year Software Devel-
opment and Design Computer Science Course,” Proc. 11th Ann.
SIGCSE Conf. Innovation and Technology in Computer Science
Education, pp. 108-112, 2006.

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 521

TABLE 7
Categories of Metrics to Measure PP’s Effectiveness

TABLE 8
PP’s Effectiveness (PP versus Solo)

[42] M.M. Muller and F. Padberg, “An Empirical Study about the
Feelgood Factor in Pair Programming,” Proc. 10th Int’l Symp.
Software Metrics, pp. 151-158, 2004.

[43] M.M. Muller, “Are Reviews an Alternative to Pair Programming?”
Empirical Software Eng., vol. 9, pp. 335-351, 2004.

[44] M.M. Muller, “Two Controlled Experiments Concerning the
Comparison of Pair Programming to Peer Review,” J. Systems
and Software, vol. 78, pp. 166-179, 2005.

[45] M.M. Muller, “Do Programmer Pairs Make Different Mistakes
than Solo Programmers?” J. Systems and Software, vol. 80, no. 9,
pp. 1460-1471, 2006.

[46] M.M. Muller, “A Preliminary Study on the Impact of a Pair Design
Phase on Pair Programming and Solo Programming,” Information
and Software Technology, vol. 48, no. 5, pp. 335-344, 2006.

[47] J. Nawrocki and A. Wojciechowski, “Experimental Evaluation of
Pair Programming,” Proc. European Software Control and Metrics
Conf., pp. 269-276, 2001.

[48] T.C. Ahren, “Work in Progress—Effect of Instructional Design and
Pair Programming on Student Performance in an Introductory
Programming Course,” Proc. 35th Ann. Conf. Frontiers in Education,
pp. F3E-11-12, 2005.

[49] M. Phongpaibul and B. Boehm, “An Empirical Comparison
between Pair Development and Software Inspection in Thai-
land,” Proc. 2006 Fifth ACM-IEEE Int’l Symp. Empirical Software
Eng., pp. 85-94, 2006.

[50] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis, “Investigat-
ing the Impact of Personality Types on Communication and
Collaboration-Viability in Pair Programming—An Empirical
Study,” Proc. Seventh Int’l Conf. Extreme Programming and Agile
Processes in Software Eng., pp. 43-52, 2006.

[51] K.M. Slaten, M. Droujkova, S.B. Berenson, L. Williams, and L.
Layman, “Undergraduate Student Perceptions of Pair Program-
ming and Agile Software Methodologies: Verifying a Model of
Social Interaction,” Proc. Agile ’05, pp. 323-330, 2005.

[52] X. Shaochun and V. Rajlich, “Pair Programming in Graduate
Software Engineering Course Projects,” Proc. 35th Ann. Conf.
Frontiers in Education, pp. F1G-7-F1G-12, 2005.

[53] X. Shaochun and V. Rajlich, “Empirical Validation of Test-Driven
Pair Programming in Game Development,” Proc. Fifth IEEE/ACIS
Int’l Conf. Computational and Information Science—in Conjunction
with First IEEE/ACIS Workshop Component-Based Software Engineer
Architecture and Reuse, pp. 500-505, 2006.

[54] L. Thomas, M. Ratcliffe, and A. Robertson, “Code Warriors and
Code-a-Phobes: A Study in Attitude and Pair Programming,”
ACM SIGCSE Bull., vol. 35, pp. 363-367, 2003.

[55] J.E. Tomayko, “A Comparison of Pair Programming to Inspections
for Software Defect Reduction,” Computer Science Education,
vol. 12, no. 3, pp. 213-222, 2002.

[56] T. VanDeGrift, “Coupling Pair Programming and Writing:
Learning about Students’ Perceptions and Processes,” ACM
SIGCSE Bull., pp. 2-6, 2004.

[57] J. Vanhanen and C. Lassenius, “Effects of Pair Programming at the
Development Team Level: An Experiment,” Proc. Int’l Symp.
Software Eng., pp. 336-345, 2005.

[58] T. Van Toll Iii, R. Lee, and T. Ahlswede, “Evaluating the
Usefulness of Pair Programming in a Classroom Setting,” Proc.
Sixth IEEE/ACIS Int’l Conf. Computational and Information Science,
pp. 302-308, 2007.

[59] L.A. Williams and R.R. Kessler, “The Effects of ‘Pair-Pressure’ and
‘Pair-Learning’ on Software Engineering Education,” Proc. 13th
Conf. Software Eng. Education and Training , pp. 59-65, 2000.

[60] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the Case for Pair Programming,” IEEE Software,
vol. 17, no. 4, pp. 19-25, July/Aug. 2000.

[61] L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller, “In
Support of Pair Programming in the Introductory Computer
Science Course,” Computer Science Education, vol. 12, pp. 197-212,
2002.

522 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

TABLE 9
Summary of Quality Metrics Used

[62] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L.
Werner, “Building Pair Programming Knowledge through a
Family of Experiments,” Proc. 2003 Int’l Symp. Empirical Software
Eng., pp. 143-152, 2003.

[63] L. Williams, L. Layman, J. Osborne, and N. Katira, “Examining the
Compatibility of Student Pair Programmers,” Proc. AGILE 2006
Conf., 2006.

[64] D. Winkler and S. Biffl, “An Empirical Study on Design Quality
Improvement from Best-Practice Inspection and Pair Program-
ming,” Product-Focused Software Process Improvement, pp. 319-333,
Springer, 2006.

[65] J.R. Nawrocki, M. Jasinski, L. Olek, and B. Lange, “Pair
Programming versus Side-by-Side Programming,” Proc. 12th
European Conf. Software Process Improvement, pp. 28-38, 2005.

[66] E.V. Howard, “Attitudes on Using Pair-Programming,” J. Educa-
tional Technology Systems, vol. 35, no. 1, pp. 89-103, 2006.

[67] M. Mujeeb-u-Rehman, Y. Xiaohu, D. Jinxiang, and M.A. Ghafoor,
“Heterogeneous and Homogenous Pairs in Pair Programming: An
Empirical Analysis,” Proc. Canadian Conf. Electrical and Computer
Eng., pp. 1116-1119, 2006.

[68] L. Madeyski, “Is External Code Quality Correlated with Program-
ming Experience or Feelgood Factor?” Proc. Seventh Int’l Conf.
Extreme Programming and Agile Processes in Software Eng., pp. 65-74,
2006.

[69] B. Simon and B. Hanks, “First Year Students’ Impressions of Pair
Programming in CS1,” Proc. Third Int’l Computing Education
Research Workshop, pp. 73-86, 2007.

[70] L. Williams, L. Layman, K.M. Slaten, S.B. Berenson, and C.
Seaman, “On the Impact of a Collaborative Pedagogy on African
American Millennial Students in Software Engineering,” Proc. Int’l
Conf. Software Eng., pp. 677-686, 2007.

[71] B. Hanks, “Problems Encountered by Novice Pair Programmers,”
Proc. Third Int’l Computing Education Research Workshop, pp. 159-
164, 2007.

[72] A.T. Williams, “Pair Formation in CS1: Self-Selection vs Random
Pairing,” PhD dissertation, Pace Univ., 2007.

[73] K.S. Choi, “A Discovery and Analysis of Influencing Factors of
Pair Programming,” PhD dissertation, Dept. of Information
Systems, New Jersey Inst. of Technology, 2004.

[74] H. Gevaert, “Pair Programming Unearthed,” MSc thesis, Univ. of
Manitoba, 2007.

APPENDIX B
Tables 5, 6, 7, 8, and 9 are shown earlier in the paper.

ACKNOWLEDGMENTS

This research is partially funded by the Ministry of Higher

Education Malaysia. The authors would like to thank the

reviewers and associate editor for the insightful comments

and suggestions made to this paper, and Liz Hardley for

the advice and assistance given during the literature

search process.

REFERENCES

[1] M. Ally, F. Darroch, and M. Toleman, “A Framework for
Understanding the Factors Influencing Pair Programming Suc-
cess,” Extreme Programming and Agile Processes in Software
Engineering, pp. 82-91, Springer, 2005.

[2] L. Bax, L.-M. Yu, N. Ikeda, H. Tsuruta, and K.G. Moons,
“Development and Validation of MIX: Comprehensive Free
Software for Meta-Analysis of Causal Research Data,” BMC
Medical Research Methodology, vol. 6, 2006.

[3] L. Bax, L.-M. Yu, N. Ikeda, H. Tsuruta, and K.G. Moons,
“Comprehensive Free Software for Meta-Analysis of Causal
Research Data.Version 1.7,” BMC Medical Research Methodology,
vol. 6, no. 50, http://www.biomedcentral.com/1471-2288/6/50,
Oct. 2006.

[4] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

[5] S.B. Berenson, K.M. Slaten, L. Williams, and C.-W. Ho, “Voices of
Women in a Software Engineering Course: Reflections on
collaboration,” J. Educational Resources in Computing, vol. 4, no.1,
2004.

[6] C.A. Bowers, J.A. Pharmer, and E. Salas, “When Member
Homogeneity Is Needed in Work Teams: A Meta-Analysis,” Small
Group Research, vol. 31, pp. 305-327, 2000.

[7] G. Burch and N. Anderson, “Personality as a Predictor of Work-
Related Behavior and Performance: Recent Advances and Direc-
tions for Future Research,” Int’l Rev. Industrial and Organizational
Psychology, G.P. Hodgkinson and J.K. Ford, eds., pp. 261-305, John
Wiley & Sons, Ltd., 2008.

[8] V.V. Busato, F.J. Prins, J.J. Elshout, and C. Hamaker, “Intellectual
Ability, Learning Style, Personality, Achievement Motivation and
Academic Success of Psychology Students in Higher Education,”
Personality and Individual Differences, vol. 29, no. 6, pp. 1057-1068,
2000.

[9] E.A. Chaparro, A. Yuksel, P. Romero, and S. Bryant, “Factors
Affecting the Perceived Effectiveness of Pair Programming in
Higher Education,” Proc. 17th Workshop Psychology of Programming
Interest Group, pp. 5-18, 2005.

[10] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[11] D.C. Cliburn, “Experiences with Pair Programming at a Small
College,” J. Computing Sciences in Colleges, vol. 19, no. 1, pp. 20-29,
2003.

[12] A. Cockburn and L. Williams, “The Costs and Benefits of Pair
Programming,” Proc. Second Int’l Conf. Extreme Programming and
Flexible Processes in Software Eng., 2001.

[13] A.L. Comrey and C.K. Staats, “Group Performance in a Cognitive
Task,” J. Applied Psychology, vol. 39, pp. 354-356, 1955.

[14] M.A. Conard, “Aptitude Is Not Enough: How Personality and
Behavior Predict Academic Performance,” J. Research in Person-
ality, vol. 40, pp. 449-346, 2006.

[15] P.T. Costa and R.R. McCrae, The NEO Personality Inventory
Manual, 1985.

[16] J.W. Creswell, Research Design Qualitative, Quantitative and Mixed
Method Approaches. Sage Publications, 2003.

[17] I.K. Crombie, The Pocket Guide to Appraisal. BMJ Books, 1996.
[18] T.H. DeClue, “Pair Programming and Pair Trading: Effects on

Learning and Motivation in a CS2 Courses,” J. Computing Sciences
in Colleges, vol. 18, no. 5, pp. 49-56, 2003.

[19] T. Dyba, E. Arisholm, D.I.L. Sjoberg, J.E. Hannay, and F. Shull,
“Are Two Heads Better Than One? On the Effectiveness of Pair
Programming,” IEEE Software, vol. 24, no. 6, pp. 12-15, Nov./Dec.
2007.

[20] T. Dyba and T. Dingsoyr, “Empirical Studies of Agile Software
Development: A Systematic Review,” Information and Software
Technology, vol. 50, pp. 833-859, 2008.

[21] B.V. Elsevier, “Scopus Overview: What Is It,” http://www.info.
scopus.com/about/, 2008.

[22] T. Farsides and R. Woodfield, “Individual Differences and
Undergraduate Academic Success: The Roles of Personality,
Intelligence, and Application,” Personality and Individual Differ-
ences, vol. 34, pp. 1225-1243, 2003.

[23] R.M. Felder and L.K. Silverman, “Learning and Teaching Styles
in Engineering Education,” Eng. Education, vol. 78, pp. 674-681,
1988.

[24] A. Fink, Conducting Research Literature Review: From Paper to the
Internet. Sage Publication, Inc., 2005.

[25] D.R. Forsyth, Group Dynamics, fourth ed. Thomson Wadsworth,
2006.

[26] A. Furnham, “The Big Five vs the Big Four: The Relationship
between Myers-Briggs Type Indicator (MBTI) and NEO-PI Five
Factor Model of Personality,” Personality and Individual Differences,
vol. 21, pp. 303-307, 1996.

[27] T. Greenhalgh, How to Read a Paper: The Basics of Evidence-Based
Medicine. BMJ Books, 2000.

[28] B. Hanks, C. McDowell, D. Draper, and M. Krnjajic, “Program
Quality with Pair Programming in CS1,” ACM SIGCSE Bull.,
vol. 36, pp. 176-180, 2004.

[29] E.V. Howard, “Attitudes on Using Pair-Programming,” J. Educa-
tional Technology Systems, vol. 35, pp. 89-103, 2006.

[30] A. Jedlitschka and D. Pfahl, “Reporting Guidelines for Controlled
Experiments in Software Engineering,” Proc. Int’l Symp. Empirical
Software Eng., pp. 95-104, 2005.

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 523

[31] V.B. Kampenes, T. Dyba, J.E. Hannay, and D.I.K. Sjoberg, “A
Systematic Review of Effect Size in Software Engineering,”
Information and Software Technology, vol. 49, pp. 1073-1086, 2007.

[32] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and E.
Gehringer, “On Understanding Compatibility of Student Pair
Programmers,” ACM SIGCSE Bull., vol. 36, pp. 7-11, 2004.

[33] D. Keirsey and M. Bates, Please Understand Me. Prometheus Book
Company, 1984.

[34] K.S. Khan, R. Kunz, J. Kleijnen, and G. Antes, Systematic Review to
Support Evidence-Based Medicine. The Royal Soc. of Medicine Press,
Ltd., 2003.

[35] B.A. Kitchenham and S. Charters, “Procedures for Performing
Systematic Literature Review in Software Engineering,” EBSE
Technical Report version 2.3, EBSE-2007-01, Software Eng. Group,
Keele Univ., Univ. of Durham, 2007.

[36] B.A. Kitchenham, E. Mendes, and G.H. Travassos, “Cross
versus Within-Company Cost Estimation Studies: A Systematic
Review,” IEEE Trans. Software Eng., vol. 33, no. 5, pp. 316-329,
May 2007.

[37] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research in Software Engineering,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[38] L. Layman, “Changing Students’ Perceptions: An Analysis of the
Supplementary Benefits of Collaborative Software Development,”
Proc. 19th Conf. Software Eng. Education and Training, pp. 159-166,
2006.

[39] P.D. Leedy and J.E. Ormrod, Practical Research Planning and Design,
eighth ed. Pearson/Merril/Prentice Hall, 2005.

[40] W.W. Liddel and J.J.W. Slocum, “The Effects of Individual-Role
Compatibility upon Group Performance: An Extension of Schutz’s
FIRO Theory,” The Academy of Management J., vol. 19, no. 3,
pp. 413-426, 1976.

[41] J.A. Livermore, “What Elements of XP Are Being Adopted by
Industry Practitioners?” Proc. IEEE Southeast Conf., pp. 149-152,
May 2006.

[42] Y. Lou, P.C. Abrami, and S. d’Apollonia, “Small Group and
Individual Learning with Technology: A Meta-Analysis,” Rev.
Educational Research, vol. 71, no. 3, pp. 449-521, 2001.

[43] R.C. Martin, “OO Design Quality Metrics: An Analysis of
Dependencies,” Proc. Workshop Pragmatic and Theoretical Directions
in Object-Oriented Software Metrics, 1994.

[44] S. McConnel, Code Complete: A Practical Handbook of Software
Construction. Microsoft Press, 1993.

[45] R.R. McCrae and O.P. John, “An Introduction to the Five-Factor
Model and Its Application,” J. Personality, vol. 60, no. 2, pp. 175-
215, 1992.

[46] C. McDowell, L. Werner, H.E. Bullock, and J. Fernald, “The
Impact of Pair Programming on Student Performance, Perception
and Persistence,” Proc. 25th Int’l Conf. Software Eng., pp. 602-607,
2003.

[47] E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “Investigating
Pair-Programming in a 2nd-Year Software Development and
Design Computer Science Course,” ACM SIGCSE Bull., vol. 37,
pp. 296-300, 2005.

[48] E. Mendes, “A Systematic Review of Web Engineering Research,”
Proc. Int’l Symp. Empirical Software Eng., pp. 498-507, 2005.

[49] E. Mendes, L. Al-Fakhri, and A. Luxton-Reilly, “A Replicated
Experiment of Pair-Programming in a 2nd-Year Software Devel-
opment and Design Computer Science Course,” Proc. 11th Ann.
SIGCSE Conf. Innovation and Technology in Computer Science
Education, pp. 108-112, 2006.

[50] S. Mohammed and L.C. Angell, “Personality Heterogeneity in
Teams: Which Differences Make a Difference for Team Perfor-
mance?” Small Group Research, vol. 34, pp. 651-677, 2003.

[51] M.M. Muller and F. Padberg, “An Empirical Study about the
Feelgood Factor in Pair Programming,” Proc. 10th Int’l Symp.
Software Metrics, pp. 151-158, 2004.

[52] I. Myers-Briggs, M.H. McCaulley, N.L. Quenk, and A.
Hammer, MBTI Manual (A Guide to the Development and use
of the Myers Briggs Type Indicator), third ed. Consulting
Psychologists Press, 1998.

[53] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang, C. Miller,
and S. Balik, “Improving the CS1 Experience with Pair Program-
ming,” ACM SIGCSE Bull., vol. 35, pp. 359-362, 2003.

[54] A.I. Nevin, K.A. Smith, and A. Udvari-Solner, “Cooperative
Group Learning and Higher Education,” Creativity and Collabora-
tive Learning: A Practical Guide to Empowering Students and Teachers,
J.S. Thousand, R.A. Villa, and A.I. Nevin, eds., Paul H. Brookes
Publishing Co., Inc., 1994.

[55] J.T. Nosek, “The Case for Collaborative Programming,” Comm.
ACM, vol. 41, pp. 105-108, 1998.

[56] M. Petticrew and H. Roberts, Systematic Review in the Social
Sciences: A Practical Guide. Blackwell Publishing, 2006.

[57] L.M. Pickard, B.A. Kitchenham, and P.W. Jones, “Combining
Empirical Results in Software Engineering,” Information and
Software Technology, vol. 40, no. 14, pp. 811-821, 1998.

[58] D.J. Pittenger, “Measuring the MBTI...and Coming Up Short,”
J. Career Planning and Employment, vol. 54, pp. 48-52, 1993.

[59] K.M. Slaten, M. Droujkova, S.B. Berenson, L. Williams, and L.
Layman, “Undergraduate Student Perceptions of Pair Program-
ming and Agile Software Methodologies: Verifying a Model of
Social Interaction,” Proc. Agile Conf. ’05, pp. 323-330, 2005.

[60] R.E. Slavin, “Cooperative Learning,” Rev. of Educational Research,
vol. 50, no. 2, pp. 315-342, 1980.

[61] R.E. Slavin, Cooperative Learning: Theory, Research and Practice.
Prentice Hall, 1990.

[62] L. Spencer, J. Ritchie, J. Lewis, and L. Dillon, “Quality in
Qualitative Evaluation: A Framework for Assessing Research
Evidence,” Govt. Chief Social Researcher’s Office, 2003.

[63] L.D. Steiner, Group Process and Productivity. Academic Press, 1972.
[64] L. Thomas, M. Ratcliffe, and A. Robertson, “Code Warriors and

Code-a-Phobes: A Study in Attitude and Pair Programming,”
ACM SIGCSE Bull., vol. 35, pp. 363-367, 2003.

[65] J. Vanhanen and C. Lassenius, “Effects of Pair Programming at the
Development Team Level: An Experiment,” Proc. Int’l Symp.
Software Eng., pp. 336-345, 2005.

[66] L.S. Vygotsky, Mind in Society: The Development of Higher
Psychological Processes. MIT Press, 1978.

[67] L.L. Werner, B. Hanks, and C. McDowell, “Pair-Programming
Helps Female Computer Science Students,” J. Educational Resources
in Computing, vol. 4, 2004.

[68] L.A. Williams, “The Collaborative Software Process,” PhD
dissertation, Univ. of Utah, 2000.

[69] L.A. Williams and R.R. Kessler, “The Effects of ‘Pair-Pressure’ and
‘Pair-Learning’ on Software Engineering Education,” Proc. 13th
Conf. Software Eng. Education and Training, pp. 59-65, 2000.

[70] L. Williams and R.R. Kessler, Pair Programming Iluminated.
Addision-Wesley Longman Publishing Co., Inc., 2002.

[71] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the Case for Pair Programming,” IEEE Software,
vol. 17, no. 4, pp. 19-25, July/Aug. 2000.

[72] L. Williams, L. Layman, J. Osborne, and N. Katira, “Examining the
Compatibility of Student Pair Programmers,” Proc. AGILE 2006
Conf., 2006.

[73] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L.
Werner, “Building Pair Programming Knowledge through a
Family of Experiments,” Proc. 2003 Int’l Symp. Empirical Software
Eng., pp. 143-152, 2003.

[74] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Eng.: An Introduction. Kluwer
Academic Publisher, 2000.

[75] R. Zemke, “Second Thoughts about the MBTI,” Training, vol. 29,
no. 4, pp. 43-47, 1992.

Norsaremah Salleh received the MSc degree in
computer science from the Universiti Teknologi
Malaysia. She is currently working toward the
PhD degree in the Department of Computer
Science, University of Auckland, New Zealand.
Her study is sponsored by the Ministry of Higher
Education Malaysia. She holds a lecturing
position in the Department of Computer Science,
International Islamic University Malaysia. Before
joining academia, she worked nearly five years

as an analyst programmer in the manufacturing industry. Her research
interests are empirical studies in software engineering, evidence-based
research, CS/SE education, and object-oriented software development.
More details about her research can be found at http://www.cs.auckland.
ac.nz/~norsaremah/.

524 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 4, JULY/AUGUST 2011

Emilia Mendes received the PhD degree in
computer science from the University of
Southampton, United Kingdom, in 1999. She
is an associate professor of computer science
at the University of Auckland, New Zealand.
Her research interests include the areas of
empirical web and software engineering, evi-
dence-based research, hypermedia, and com-
puter science and software engineering
education, in which areas she has published

widely, with more than 130 refereed publications, which include two
books (one edited (2005) and one authored (2007)). She is on the
editorial board of the International Journal of Web Engineering and
Technology, the Journal of Web Engineering, the Journal of Software
Measurement, the International Journal of Software Engineering and
Its Applications, the Empirical Software Engineering Journal, the
Advances in Software Engineering Journal, and the Software Quality
Journal. She worked in the software industry for 10 years. More
details about her research can be found at http://www.cs.auckland.
ac.nz/~emilia.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. Pre-
viously, he was a lecturer and senior lecturer
at the University of Waikato, New Zealand, and a
professor of software engineering and the head
of electrical and computer engineering at the
University of Auckland, New Zealand. He is
currently a professor of software engineering
and the head of computer science and software

engineering at Swinburne University of Technology, Melbourne,
Australia. He is an associate editor of the IEEE Transactions on
Software Engineering, the Automated Software Engineering Journal,
and IEEE Software. His current interests include domain-specific visual
languages, model-driven engineering, large-scale systems engineering,
and software engineering education. He is a member of the IEEE and
the IEEE Computer Society. More details about his research can be
found at http://www.ict.swin.edu.au/ictstaff/jgrundy.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SALLEH ET AL.: EMPIRICAL STUDIES OF PAIR PROGRAMMING FOR CS/SE TEACHING IN HIGHER EDUCATION: A SYSTEMATIC... 525

