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Abstract—This paper is the second part of a two-part paper,
which is a survey of multiobjective evolutionary algorithms for
data mining problems. In Part I [1], multiobjective evolutionary
algorithms used for feature selection and classification have
been reviewed. In this part, different multiobjective evolutionary
algorithms used for clustering, association rule mining, and other
data mining tasks are surveyed. Moreover, a general discussion
is provided along with scopes for future research in the domain
of multiobjective evolutionary algorithms for data mining.

Index Terms—Association rule mining, biclustering, clustering,
ensemble learning, multiobjective evolutionary algorithms.

I. Introduction

AS MENTIONED in Part I of this paper [1], multiobjec-
tive evolutionary algorithms (MOEAs) [2] have become

increasingly popular in the domain of data mining. In this
two-part paper, we survey several MOEAs for different data
mining tasks. In [1], we introduced the basic concepts of
multiobjective optimization and data mining and reviewed
different MOEAs designed for addressing two important data
mining tasks, namely feature selection and classification.

Here, MOEAs used for two other major data mining tasks
such as clustering [3] and association rule mining [4] are
surveyed. Both of these data mining tasks are unsupervised in
nature and can be easily posed as multiobjective optimization
problems. In recent years, several MOEAs have been proposed
in the literature to accomplish these tasks. We review many
of these approaches with a focus on chromosome representa-
tion, objective functions, evolutionary operators, and methods
for obtaining the final solution from the non-dominated set.
Besides this, here we also review MOEAs employed for
several other data mining tasks such as, ensemble learning,
biclustering, feature extraction, sub-group discovery, and so

Manuscript received November 3, 2013; accepted November 3, 2013. Date
of publication November 8, 2013; date of current version January 27, 2014.
This work was supported by the Indo-Mexico Grant DST/INT/MEX/RPO-
04/2008, from the Department of Science and Technology, India.

A. Mukhopadhyay is with the Department of Computer Science
and Engineering, University of Kalyani, Kalyani 741235, India (email:
anirban@klyuniv.ac.in).

U. Maulik is with the Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700032, India (email: umaulik@cse.jdvu.ac.in).

S. Bandyopadhyay is with the Machine Intelligence Unit, Indian Statistical
Institute, Kolkata 700108, India (email: sanghami@isical.ac.in).

C. A. Coello Coello is with CINVESTAV-IPN, Departamento de Com-
putación (Evolutionary Computation Group), Mexico City 07360, Mexico
(email: ccoello@cs.cinvestav.mx).

Digital Object Identifier 10.1109/TEVC.2013.2290082

on. Fig. 1 shows the different MOEAs-based data mining
tasks reviewed in this part of the paper along with the
corresponding references. A general discussion on the future
scope of research in this area of multiobjective data mining is
also provided.

II. MOEAs for Clustering

Clustering techniques aim to find a suitable grouping of
the input dataset so that some criteria are optimized. A
straightforward way to pose clustering as an optimization
problem is to optimize some cluster validity index [5] that
reflects the goodness of the clustering solutions. All possible
partitionings of the dataset and the corresponding values of
the validity index define the complete search space. Under
this context, genetic and other evolutionary algorithms have
been widely used to reach the global optimum value of the
chosen validity measure. Conventional evolutionary clustering
techniques [6] use some validity measure as the fitness value.
However, no single validity measure works equally well for
different kinds of datasets. Thus, it is natural to simultaneously
optimize multiple of such measures for capturing different
characteristics of the data. Hence, it is useful to utilize MOEAs
for clustering. Multiobjective clustering techniques optimize
more than one cluster validity index simultaneously, leading
to high-quality results. The resultant set of near-Pareto-optimal
solutions contains a number of non-dominated solutions, from
which the user has to select the most appropriate one based
on his/her own preferences. A number of multiobjective evo-
lutionary clustering algorithms are available in the literature.
They vary in different aspects, including the type of MOEA,
the chromosome encoding, the objective functions optimized,
the evolutionary operators adopted and the mechanism used
to select the final solution from the non-dominated front.

A. Underlying MOEAs

There are mainly four MOEAs that have been used as
the underlying optimization tool for multiobjective clustering.
Pareto envelope-based selection algorithm-II (PESA-II) [7]
has been used in the algorithms Voronoi initialized evolution-
ary nearest-neighbor algorithm (VIENNA) [8], multiobjective
clustering with automatic k determination around medoids
(MOCK-AM) [9], MOCK [10], and multiobjective evolu-
tionary clustering ensemble algorithm (MECEA) [11]. Non-
dominated sorting genetic algorithm-II (NSGA-II) [12] has
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Fig. 1. MOEAs for clustering, association rule mining, and other data mining tasks surveyed in Part II.

been employed in many multiobjective clustering approaches
such as MOEA (dynamic) [13], variable-length real jump-
ing genes genetic algorithms (VRJGGA) [14], MOGA [15],
MOGA (medoid) [16], multiobjective evolutionary strategy
[MOES (hybrid)] [17], multiobjective GA with support vec-
tor machine (MOGA-SVM) [18], [19], evolutionary multi-
objective clustering for overlapping clusters detection (EM-
COC) [20], MOGA (mode) [21], dynamic MOGA (DYN-
MOGA) [22], multiobjective variable-length genetic algorithm
(MOVGA) [23], and multiobjective clustering algorithms
(MOCA) [24]. In [25] and [26], strength Pareto evolutionary
algorithm-2 (SPEA2) [27] has been used as the underlying op-
timization tool. The Niched Pareto genetic algorithm (NPGA)
[28] has been employed in multiobjective k-means genetic
algorithm (MOKGA) [29].

B. Chromosome Representation

The choromosome representation approaches can broadly
be classified into two major classes, that is, prototype-based
approaches and point-based approaches. In the prototype-
based approach, cluster representatives or prototypes, such
as cluster centroids, medoids, and modes are encoded in the
chromosome. On the other hand, in the point-based approach,
a complete clustering solution is encoded in the chromosome.

In a prototype (cluster center)-based approach, the chro-
mosomes are made up of real numbers, which represent
the coordinates of the cluster centers. If a chromosome en-
codes the centers of K clusters in d-dimensional space, then
its length l will be d × K. In the case of multiobjective
clustering, this encoding scheme was first utilized in [30],
and the authors have used this encoding policy in a series
of multiobjective clustering algorithms such as MOGA [15],

significant multiclass membership (two-stage) (SiMM-TS)
[31], MOGA-SVM [18], [19], and MOVGA [23]. Besides
Mukhopadhyay et al., several other researchers have adopted
this encoding policy in different multiobjective clustering
algorithms such as VRJGGA [14], MOES (Hybrid) [17], and
MOCA [24]. In some algorithms, instead of using cluster cen-
ters as cluster prototypes, cluster medoids have been encoded
in the chromosome. A cluster medoid is the point of the cluster
from which the sum of the distances to the other points of
the cluster is the minimum. There are some approaches that
encode the cluster medoids, or the indices of the points repre-
senting the cluster medoids in the chromosomes. Examples of
such multiobjective evolutionary clustering algorithms include
MOGA (medoid) [16] and EMCOC [20]. Another approach is
to encode cluster modes in the chromosomes. Cluster modes
are suitable for categorical attributes where the mean centroid
of the cluster cannot be computed. Given a set of categorical
points, their mode is defined as a vector of the attributes
where each component value of the vector represents the most
frequent value occurring in the corresponding attribute over all
the points. MOGA (mode) [21] is a multiobjective clustering
algorithm where cluster modes are encoded in the chromo-
somes. The advantage of prototype-based encoding is that
here the length of the chromosomes is small and, therefore,
it takes less time to apply the evolutionary operators such as
crossover and mutation. Also, this encoding policy is good
for capturing overlapping and fuzzy clusters. However, these
algorithms have a tendency to capture round-shaped clusters
only. Also, if the chromosomes encode different number of
clusters, they have variable lengths that are to be handled while
applying the evolutionary operators. Moreover, in this type
encoding, the chromosomes may be very large if the number of
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attributes is large. Therefore, for higher dimensional datasets,
this encoding strategy may not work very well.

Another popular encoding approach is point-based encod-
ing, where the complete clustering of the data points are
encoded instead of only the representatives/prototypes of the
clusters. Under this scheme, there are two main approaches,
the cluster label-based approach and locus-based adjacency
representation. The cluster label-based approach is the most
common form of point-based encoding. Here, the chromo-
some lengths are equal to the number of points in the input
dataset, and each position represents the cluster label of the
corresponding points. If position i of the chromosome contains
a value k, then the ith data point is assigned to cluster k.
Obviously, the chromosomes can contain only integer values
drawn from the set {1, 2, . . . , K}, where K is the maximum
number of clusters. The multiobjective clustering algorithms
that use this encoding policy include VIENNA [8], MOKGA
[29], and graph-based sequence clustering (GraSC) [25], [32].
In MOCK, Handl and Knowles [9], [10] used a variant of the
cluster label-based encoding strategy. Here, each chromosome
consists of n genes (n is the number of data points) and each
gene can have integer values in {1, . . . , n}. If the gene i is
assigned a value j, it represents a link between the data points i

and j, and, in the resulting clustering solution, these two points
will belong to the same cluster. Thus, a graph is formed with
the data points as the vertices and the links between two data
points as the edges. Therefore, for decoding a chromosome,
it is required that we identify all the connected components
of the graph. This can be done in linear time [10]. The data
points in the same connected component are then assigned
to the same cluster. Hence, this representation encodes the
clustering as well as the number of clusters (number of con-
nected components). Many algorithms besides MOCK, such as
MECEA [11], AI-NSGA-II [33], and DYN-MOGA [22] have
adopted this encoding policy. Although point-based encoding
techniques are not biased toward convex-shaped clusters, they
suffer from the large length of chromosomes when the number
of data points n is large. Thus, the algorithms using this
encoding approach require more time to converge. However,
unlike prototype-based encoding, here the chromosome length
is independent of the encoded number of clusters.

C. Objective Functions

For the clustering problem, usually cluster validity indices
[34] are used as the objective functions. Most of such multi-
objective clustering algorithms have used two validity indices
to be simultaneously optimized. In [8], [10], and [35], the
MOCK clustering algorithm minimizes two validity indices:
overall cluster deviation [Dev(C)] and cluster connectedness
[Conn(C)]. Some other multiobjective clustering works have
also used these two objectives [11], [13], [32]. References [15],
[18], and [19], used two validity indices, Jm [36] and XB [37],
which are minimized simultaneously to obtain compact and
well-separated clusters. In [29], [38], and [39], the two validity
indices to be minimized are total within-cluster variance
(TWCV ) and the number of clusters K. In [16], a multiobjec-
tive categorical data clustering algorithm is used to optimize
overall deviation Dev(C) (with respect to medoids instead of

centroids) and silhouette index [40]. In [41] and [20], the
intracluster entropy H and cluster separation Sep(C) are used
as the two objective functions. The index I [34] and XB are
simultaneously optimized in [42]. In [25], [32], and [33], the
objectives adopted are min-max cut and the silhouette index
[40]. In [26], the aim is to obtain compact and well-separated
clusters and for that sake, the objectives to be minimized are
the validity indices overall deviation Dev(C) and the Edge
index Edge(C). In [21], [23], and [43], the objective functions
are chosen to be the normalized Jm index (J ) and the fuzzy
cluster separation S, which are simultaneously minimized. It
is to be noted that instead of cluster centroids, cluster modes
have been used for computing the validity index values in
[21] and [43], since these algorithms have been applied on
categorical data. In [44], out of several combinations, DB

[45] and Dunn [46] indices have also been chosen as the
two objectives to be simultaneously optimized. The indices
Jm and cluster separation have been used in [47]. There are
also a few multiobjective clustering techniques which use more
than two objective functions. For example, in [42] and [48],
three cluster validity measures, that is, XB index, I index
and Jm index have been simultaneously optimized. In [24],
three objective functions have been simultaneously optimized
as well: average cluster variance, average between group sum
of squares (ABGSS) and cluster connectedness. In [49], four
objective functions are considered: overall cluster deviation,
cluster separation, cluster dominance and the diameter of
the biggest cluster. It is known that MOEAs usually do not
perform very well when the number of objective functions
increases to four or more [50]. However, in [49], Özyer et al.
did not address this issue. It should be noted that the choice
of a suitable set of objective functions is not a trivial problem
and the clustering output may heavily depend on this choice
[51]. In view of this, recently, an interactive multiobjective
clustering algorithm was proposed in [52]. In this approach,
the algorithm interacts with a human decision maker to learn
the suitable set of objective functions along with evolving the
clustering solution. However, a detailed study that compares
the effects of different objective functions is still not available.

D. Evolutionary Operators

Evolutionary operators, such as crossover and mutation,
depend on the adopted chromosome representation scheme.
Many of the algorithms employing prototype-based repre-
sentation have adopted single-point crossover. Examples of
such multiobjective clustering algorithms include MOGA [15],
MOGA-SVM [18], [19], and MOVGA [23]. In [13], two-point
crossover has been used. Ripon et al. [14], [20] have employed
jumping gene crossover in their multiobjective clustering al-
gorithms. Won et al. [17] have used a centroid-pool based
crossover approach where the centroids encoded in the parent
chromosomes are first combined to build a centroid-pool.
Thereafter, an offspring solution is generated by randomly
selecting a number of chromosomes from the centroid pool.
The algorithms that employ a point-based encoding policy
have used uniform crossover in most cases [8], [10], [11],
[22], [25], [33]. Following the crossover operators, a variety of
mutation operators are also employed. Mutation refers to small
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changes in the chromosomes and is used for maintaining the
diversity of the population. In prototype-based encoding, the
predominant mutation operator found is centroid perturbation
[13]–[15], [17]–[19], [23]. The basic idea of this mutation
operator is to shift a randomly selected centroid slightly
from its current position. For medoid-based encoding and
mode-based encoding, the mutation operators random medoid
replacement [16] and mode perturbation [21] have been used,
respectively. In [24], a mutation operator is employed in
which either random cluster centers of the chromosomes are
perturbed or cluster centers are added/deleted to/from the
chromosome with equal probability. For the cluster label-based
encoding, the common approach for mutation is to replace the
class label of the selected point by a random class label. This
mutation operator has been adopted in [32] and [53]. To tackle
the problem of dealing with a large chromosome length, a
special mutation operator, called directed neighborhood-biased
mutation, was proposed in [10]. In this mutation, each point
i is linked to its L nearest neighbors {nni1, nni2, . . . , nniL},
and thus the effective search space is reduced to Ln. Thus,
changing the class label of point i induces the change to all its
L nearest neighbors. The mutation probability is also decided
adaptively. The same mutation operator has been used in many
other algorithms [11], [22], [26], [33].

E. Obtaining the Final Solution

MOEAs-based clustering algorithms also differ in the
method for obtaining the final solution from the non-
dominated set of solutions yielded by the MOEA. These
methods can be broadly classified into three categories, that
is, the independent objective-based approach, the knee-based
approach, and the cluster ensemble-based approach.

In the independent objective-based approach, an indepen-
dent cluster validity index, other than those optimized during
the clustering process, is used to select a single solution from
the non-dominated front. Many of the currently available mul-
tiobjective clustering techniques have adopted this approach
because of its simplicity. In [15] and [30], the authors used
the Jm and XB indices as the objective functions, whereas
the final solution was selected using index I. In a similar
approach [23], fuzzy cluster compactness and separation were
adopted as the two objectives whereas the I index was used
as the selection criterion. In [54], the XB and I indices have
been used as the objective functions whereas the silhouette
index was used for selecting the final solution. In [38], the
two objective functions are TWCV and the number of clusters,
whereas the authors used the DB index and the SD index
[55], [56] for selecting the final solution from the Pareto front.
In [29], the two objective functions used are TWCV and the
number of clusters, and various other validity indices, such
as the Dunn index, the DB index, and the silhouette index
are adopted for selecting the final solution. The authors also
presented a comparative study of their results. Demir et al., in
their GraSC algorithm [32], optimized the silhouette index and
the min-max cut index, and used the DB index for selecting
the final solution. In [24], the authors optimized three objective
functions, that is, average cluster variance, average between
group sum of squares (ABGSS) and cluster connectedness,

and they used the Rand index (R) [5] for selecting the final
solution from the Pareto front. Note that computation of R
requires knowing about the true clustering of the dataset.
Hence, this method is not applicable when the true clustering
information is unknown. Although this approach for selecting
the final solution is simple to implement and has low time
requirement, the final result may be biased depending on the
validity index chosen for selecting the final solution. Moreover,
one may criticize this approach by questioning why this
independent validity measure is not optimized directly, and
the question does not have a very suitable answer.

The second approach is the knee-based approach, where
the objective is to select the knee solution from the non-
dominated front. A knee solution refers to an interesting
solution for which the change of one objective value induces
the maximum change in the other one. Handl and Knowles
have used this knee-based approach in their MOCK algorithm
[9], [10], [57]. This approach is motivated by the GAP statistic
[58]. This is done by comparing the generated Pareto front
with control fronts generated by applying MOCK on random
control data. The solution that corresponds to the maximum
distance between the generated Pareto front and the control
fronts is selected as the final solution. However, there is no
well-formed motivation behind choosing a knee solution as
the final solution. It is not well explained why the user should
be most interested in this solution. Another major problem is
that it is a time consuming approach, because the algorithm
has to be executed multiple times with random datasets to
generate the control front. Therefore, a few variants of this
technique have been proposed in [26], [59], and [60], primarily
for improving its scalability for larger datasets.

The third approach is the cluster ensemble-based approach
where it is assumed that all the non-dominated solutions
contain some information about the clustering structure of
the dataset. Therefore, the motivation is to combine this
information to obtain a single clustering solution. In [48],
some well-known cluster ensemble techniques, such as the
cluster-based similarity partitioning algorithm (CSPA), the
hypergraph partitioning algorithm (HGPA), and the meta-
clustering algorithm (MCLA) [61] have been used to combine
the non-dominated front solutions to obtain the final clustering
and their performance is compared by the authors. In a similar
approach [11], MCLA has been used for ensembling purposes.
In [18], [19], and [21], Mukhopadhyay et al. proposed a
novel approach for combining the nondominated solutions.
Here, the points that are put in the same class by most
of the non-dominated solutions are first identified. These
points are considered to be highly confident and then, some
classifier such as SVM or k-nn, is trained using these points.
Thereafter, the remaining points are classified by the trained
classifier. In this way, the class labels for all the points are
generated. It has been shown that ensemble-based techniques
work better than the independent objective-based techniques
[15] for both satellite image segmentation [18] and microarray
data clustering [19]. Although these methods are promising
and motivating, the ensemble method takes reasonable time
and the final solution depends on the choice of the ensemble
technique. Also, sometimes it is necessary to map one non-
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TABLE I

Comparison of Different MOEAs for Clustering

dominated solution to another [21] to ensure that cluster label
i means the same cluster in all the solutions. Therefore, the
final solution also depends on the mapping technique utilized.

F. Relative Comparison and Applications

We have summarized the approaches of several well-known
MOEA-based clustering algorithms in Table I. A total of
nineteen different algorithms are considered here. The algo-
rithms are categorized based on the data types considered,
that is, continuous data, categorical data and graph data. In
each category, we have reported the underlying MOEAs, the
encoding strategies, the objective functions, the evolutionary
operators, and the final solution selection methods used by
the different clustering methods. The algorithms have been
arranged in ascending order of their time of publication to
illustrate how they have evolved over time. Out of the 19
algorithms, ten used different versions of prototype-based
encoding, and the rest used point-based encoding strategies.
NSGA-II has been found again to be the most commonly used

approach. However, other MOEAs have also been adopted,
including PESA-II, NPGA, and SPEA2.

MOEA-based clustering algorithms have found several ap-
plications in real-life domains such as image segmentation,
bioinformatics, web mining, and social networks. Usually, the
problem of image segmentation can be posed as the problem
of clustering the pixels of the images in the intensity space. If
the image has multiple bands, then they serve as the different
attributes of the dataset. In [26], a few benchmark color
images have been segmented. Maulik et al. [15], [18], [30]
have applied multiobjective fuzzy clustering for segmentation
of remote sensing imagery of multispectral satellite images.
Besides this, the application of multiobjective evolutionary
clustering can also be found in the segmentation of MRI
medical imagery [23], [48]. Multiobjective clustering has also
been applied in texture image segmentation [11]. Another
important application area of multiobjective evolutionary clus-
tering algorithms is bioinformatics, where microarray gene
expression data sets are clustered to identify co-expressed
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genes. There have been various studies in this area [19],
[31], [54], [62], [63]. Multiobjective clustering has also found
application in finding gene markers [64], [65] from expression
data. Recently, multiobjective clustering has been used in clus-
tering protein-protein interaction networks [66]. Multiobjective
clustering algorithms have also been applied in web data
mining. For example, in [25], a web-recommender system
has been built using multiobjective clustering by extracting
web usage patterns. An extension of that is presented in [32],
where different multiobjective clustering approaches have been
compared for determining a suitable approach for clustering
web user sessions, which consist of sequences of web pages
visited by the users. In recent times, clustering social networks
have gained in popularity and a number of recent studies have
applied multiobjective clustering techniques to detect strong
communities within social networks [22], [33].

III. MOEAs for Association Rule Mining

An association rule can be considered a general case of
classification rule. The consequent of a classification rule
consists of the class attribute only, whereas, in association
rules, the consequent may consist of a set attributes. There-
fore, the number of association rules for a given dataset is
much greater than that of classification rules. Most of the
classical association rule mining (ARM) algorithms, such as
the a priori algorithm [4], first generate all frequent itemsets
(i.e., itemsets having a support greater than the minimum
support threshold), and thereafter, from the frequent itemsets,
the association rules that surpass the minimum confidence
threshold. Generating all the frequent itemsets is in itself
a time consuming task when the number of items is large,
because it needs at least a number k of scans of the dataset
for k items. Therefore, it would be beneficial if one could
generate the association rules in a direct way, skipping the
frequent itemset generation step. For this purpose, evolutionary
algorithms have been used widely for generating association
rules by maximizing the support/confidence of the rules [67].
However, the goodness of an association rule cannot only be
represented by its support or confidence. There are many other
metrics available to measure the goodness of an association
rule [68]. Therefore, the problem of ARM can be posed as a
multiobjective optimization problem where the goal is to find
association rules while optimizing several such goodness cri-
teria simultaneously. In the past decade, several MOEAs have
been proposed for ARM. These techniques can broadly be
classified into three categories, namely categorical association
rules, numeric association rules, and fuzzy association rules.
Here, we discuss several multiobjective evolutionary ARM
algorithms from these three categories.

A. Categorical Association Rules

Categorical association rules are generated from a binary or
categorical dataset. In a binary dataset, a rule like ABC ⇒ DE

can be interpreted as follows: if items A, B, and C are
purchased, then items D and E are also purchased. Thus,
these rules do not say anything about the number of items
that are to be purchased; they simply imply the presence

or absence of items. For categorical data, if some item has
multiple categorical values, then each attribute-value pair is
treated as a separate item. In this way the dataset is converted
into a binary dataset.

1) Underlying MOEAs: Different standard and non-
standard MOEAs have been used in various works on cat-
egorical ARM. We call a MOEA non-standard if it does
not follow any of the standard MOEA approaches directly,
but uses instead some combination of operators. In [69], a
multiobjective GA (MOGA) is used. In [70], the authors used
a multiobjective co-evolutionary algorithm for this purpose.
In [71] and [72], some non-standard MOEAs are used for the
ARM problem. NSGA-II has been used in [73] for ARM.

2) Chromosome Representation: There are mainly two
chromosome representation techniques for categorical ARM,
similar to the ones available for classification rule mining
[1]. In the first approach (Pittsburgh approach), a set of
possible association rules are encoded in each chromosome.
This approach is more suitable for classification rule mining,
where the objective is to identify a good set of rules. However,
in ARM, the objective is to find a set of rules each of which
is good. Therefore, for this case, the Michigan approach, in
which each chromosome represents exactly one rule, is more
suitable [69]. Most of the MOEA-based categorical ARM
techniques use this chromosome representation. In an early
work [69], the authors adopted the Michigan approach as
follows: each chromosome has length 2k, where k is the
number of items. The chromosomes are binary strings where
each attribute is given two bits. If these two bits are 00 or
11, then the attribute appears in the antecedent or consequent
parts of the rule, respectively; otherwise, the attribute is absent
from the rule. In a similar approach [70], the presence of an
attribute in the antecedent and consequent part are represented
by bits 10 and 01, whereas other bit combinations represent
the absence of the attribute from the rule.

The above encoding schemes [69], [70] can only be adopted
for binary datasets, that is, when an item is either present
or absent in a transaction. If someone wants to use this
encoding for more general categorical data, where an item may
be present in a transaction with certain value (a categorical
state), the dataset will first need to be transformed into a
binary one by considering each attribute-value pair as an
item. In view of this, an alternative encoding strategy is
presented in [73], which can be used for a categorical dataset
directly. Here, each attribute has two parts. The first part
represents the position of the attribute in the rule and the
second part represents the categorical value it takes. The
first part contains two bits and the attribute appears in the
antecedent and the consequent of the rule if the bits are 10
and 11, respectively; otherwise, it is absent from the rule. The
second part represents categorical values taken by attributes
in binary form. However, the authors did not explain how a
binary value in the second part represents a categorical state if
the number of states for an attribute is not an exact power of
two.

The main disadvantage of using a binary encoding scheme
is that it gives rise to a large chromosome length when the
number of attributes is large, since at least two bits are
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needed for each attribute. An integer encoding may come
handy in this respect. Such an integer encoding scheme has
been proposed in association rule mining using multiobjective
genetic algorithm (ARMMGA) [72], where the chromosomes
encode the index of the attributes. A chromosome encoding
a k-rule, k being the total number of items in the antecedent
and the consequent, has k + 1 genes. The first gene position
indicates the separating position of the chromosome where
the antecedent and the consequent attributes are separated. For
example, if Ai represents the ith item, then the chromosome
{3 | 2 5 4 1 3} represents the rule A2A5A4 ⇒ A1A3.
This representation significantly reduces the length of the
chromosome, but not effectively the search space, because now
for each position, a large number of alternative indices are to
be searched. Moreover, this representation scheme gives rise
to a variable chromosome length, thus requiring a specialized
crossover operator. Also, there remains a possibility of finding
duplicate indices in a chromosome after crossover/mutation,
which must be taken care of during the evolutionary process.

3) Objective Functions: Although support and confidence
are two popular objectives that are to be maximized, there are
several other metrics to measure the interestingness of associ-
ation rules. These metrics, which have been used by different
algorithms for optimization in a multiobjective framework,
include coverage, lift, comprehensibility, cosine, prevalence,
recall, Laplace, conviction, surprise, Jaccard, J-measure, and
so on [68]. In [69], the rule mining problem has been modeled
as a three-objective optimization problem where confidence,
comprehensibility, and interestingness have been optimized
simultaneously. They defined the comprehensibility of a rule
as log(1 + |C|)/log(1 + |A ∪ C|), where |C| and |A ∪ C|
denote the number of attributes in the consequent part and
total rule, respectively. They considered that the lower value
of comprehensibility, that is, less number of attributes in the
consequent of the rule, leads to better understandability of the
rule. The interestingness measure, on the other hand, is defined
as a product of three probabilities, namely, the probability of
generating the rule given the antecedent (ratio of the support
of the rule to the support of the antecedent), the probability
of generating the rule given the consequent (ratio of the
support of the rule to the support of the consequent), and
the probability of generating the rule given both antecedent
and consequent (ratio of the support of the rule to the total
number of transactions). A rule becomes more interesting if
it has a high interestingness value. In [70], two objective
functions, statistical correlation and comprehensibility, have
been simultaneously optimized in a co-evolutionary frame-
work. The statistical correlation measure indicates a better
association of the rule. In [71], five objective functions,
that is, support, confidence, J-measure, interest, and surprise
[68] have been simultaneously optimized. They found five
different groups of correlated measures. To make the objective
functions contradictory and uncorrelated, they selected these
five measures from five different groups. In [73], six differ-
ent measures (support, confidence, interest, comprehensibility,
cosine and attribute frequency) have been considered. Three
of these measures have been taken at a time and optimized
simultaneously. Measures such as support, confidence, interest

and comprehensibility tend to be better if the rule-length is
smaller. To counter this bias, they also maximized attribute
frequency, which is the ratio of the rule-length to the total
number of items. The reason behind taking three objective
functions at a time is that NSGA-II, the underlying MOEA, is
known to perform well when the number of objective functions
is at most three. Second, due to correlation of the measures,
it is unnecessary to use correlated measures for optimization.
In [72], the classical measures (support and confidence of the
rules) are simultaneously optimized. Thus, it is apparent from
the above discussion that different sets of rule-interestingness
measures have been chosen by various authors as their objec-
tive functions. However, a systematic comparison among the
chosen objective functions is still missing in the literature.

4) Evolutionary Operators: When binary encoding has
been adopted, standard crossover and mutation operators have
been used. For example, in [69], multipoint crossover and
bit-flip mutation have been used. In [73] bit-flip mutation
has been adopted, however, the authors did not specifically
mention which crossover operator is used. In [70], the authors
proposed Pareto neighborhood crossover, a combination op-
erator and an annexing operator. However, the way in which
these operators work is not explained. There is no mention
about the motivation for defining these operators, as well
as no experimental results have been provided showing their
improved effectiveness with respect to the standard operators.

In the encoding strategies, where along with the attributes,
their values are also encoded, other types of evolutionary
operators are needed. In [71], although the authors did not
explain the encoding strategy explicitly, from the description
of the evolutionary operators, it appears that they used an
approach in which the categorical values of the attributes
participating in the rule are encoded. Here, the authors used
value exchange and insertion crossover operators. If two par-
ents have some common attributes in the antecedent part, then
a value exchange crossover is performed by exchanging the
categorical values of one of the common attributes. When the
parents do not have any common attribute, then one random
attribute selected from one parent is inserted into the other
with a probability that is inversely proportional to the length
of the latter chromosome. Four mutation operators are applied
with equal probabilities. A value mutation randomly replaces
a chosen categorical value with another random value from
the same domain. An attribute mutation randomly replaces an
attribute with another one. An insertion mutation inserts a new
attribute-value pair, and a deletion mutation deletes a randomly
chosen attribute-value pair. In [72], where integer encoding of
the attributes is used, an order-1 crossover strategy is adopted.
In this strategy, first a segment is chosen from two parent
chromosomes and these are copied to the two offspring. Next,
starting from the right side of the segment, the values of the
genes that do not exist in the selected segment of the first
parent, are copied to the first offspring. The same procedure
is repeated for the second offspring as well. The mutation
operator replaces a chosen item from the chromosome with a
random item not present in the chromosome.

5) Obtaining the Final Solution: All the works for cate-
gorical rule mining using MOEAs that have been discussed
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in this paper use a Michigan type of encoding, where each
chromosome encodes one association rule. Hence, the final
generation produces a set of non-dominated solutions each of
which are given to the user as the association rules generated
from the input dataset. Thus, in this case, there is no specific
need of selecting a single solution from the non-dominated
front.

B. Numeric Association Rules

For datasets having continuous attribute domains, the ARM
algorithms designed for categorical attributes do not work
well. This is because such algorithms need categorization of
the continuous attributes. Hence, the results of the ARM algo-
rithms depend a lot on the categorization technique adopted.
To overcome this limitation, many numeric/quantitative ARM
algorithms have been proposed and some of them adopted a
multiobjective optimization approach.

A quantitative association rule is represented as [74], [75]

(l1 ≤ A1 ≤ h1) ∧ (l2 ≤ A2 ≤ h2) ⇒ (l3 ≤ A3 ≤ h3).

Here Ai represents the ith attribute. li and hi represent the
lower and upper bound of the attribute values, respectively.
Thus, [li, hi] defines an interval of values for the attribute Ai.
Here, we discuss two different works on quantitative ARM.

1) Underlying MOEAs: In this section, we review two
multiobjective numerical/quantitative rule mining algorithms.
The first is a multiobjective differential evolution based nu-
meric association rule mining algorithm (MODENAR) [74].
In this case, a multiobjective differential evolution (MODE)
algorithm is used as the underlying optimization framework.
In another work, an NSGA-II-based quantitative association
rule mining algorithm (NSGA-II-QAR) is proposed [75].

2) Chromosome Representation: The chromosomes rep-
resenting numeric or quantitative association rules need to
encode the lower and upper bounds of the intervals of the
attributes participating in a rule. In [74], where the MOD-
ENAR algorithm has been proposed, the following encoding
technique has been adopted for the chromosomes. They used
chromosomes where each attribute has three components. The
first component indicates whether the attribute is present or
absent in the rule, and if present, in which part (antecedent or
consequent) in the rule it is. The second and third components
indicate the lower and upper bounds of the ranges of the
attribute. The first component can have integer values 0, 1, or
2, which indicate the presence of the attribute in the antecedent
of the rule, the presence of the attribute in the consequent
of the rule, and the absence of the attribute from the rule,
respectively. The second and third components can take real
values from the corresponding attribute ranges. It is to be
noted that as MODENAR uses differential evolution as an
optimizer and works on real-valued chromosomes, the authors
used a round-off operator to handle the integer part of the
chromosome. A similar encoding scheme is adopted in NSGA-
II-QAR. The only difference is that in this case, the first
part of the chromosome, instead of using the values 0, 1, 2,
adopts the values 0, 1, and −1, respectively, to denote the
same meaning. In both cases, the algorithms used a Michigan
encoding strategy, that is, each chromosome encodes one rule.

3) Objective Functions: MODENAR optimizes four crite-
ria of the rules [74]: support, confidence, comprehensibility,
and amplitude of the intervals that make up the itemset and
the rule. Comprehensibility is used to bias the search process
toward shorter rules, under the assumption that shorter rules
provide more non-redundant information. They also proposed
that the amplitude of the intervals must be smaller for interest-
ing rules, but the rationale for this is not explained. In NSGA-
II-QAR [75], three objective functions are simultaneously opti-
mized: lift, comprehensibility, and performance. Performance
is defined by the product of confidence and support. Lift is
defined as the ratio of support of the rule to the product of the
supports of the antecedent and the consequent of the rule [76].
A high value for the lift measure indicates that the rule is in-
teresting, since its support is high with respect to the supports
of its antecedent and its confidence. The comprehensibility is
defined simply as the reciprocal of the number of attributes in
the rule. In [75], an experimental comparison between NSGA-
II-QAR and MODENAR is provided.

4) Evolutionary Operators: MODENAR [74] used the
standard version of the crossover and mutation opera-
tors adopted by the version of differential evolution called
DE/rand/1. Additionally, a rounding operator is used to round-
off the first part of the attribute that requires an integer (0, 1,
2) for computing the objective function values. In NSGA-II-
QAR [75], a multipoint crossover is utilized. The two parts of
the chromosome undergo two different mutations. In the first
part, where the chromosome can have a value of -1, 0, or 1, a
random value is selected from the set {-1, 0, 1} and it replaces
the existing value. The other part of the chromosome encodes
the lower and upper bounds of the chromosome. A mutation
is applied to this part by increasing or decreasing these values
randomly. In both [74] and [75], during mutation/crossover,
it may happen that the lower bound becomes larger than the
upper bound, or they go outside the bounds. For this, some
repairing operators are also adopted to make the chromosome
a valid one.

5) Obtaining Final Solution: Both MODENAR and
NSGA-II-QAR use a Michigan approach of rule mining by
encoding one rule in one chromosome. Thus, the final non-
dominated set gives a set of numeric rules. Thus, there is
no need to select any particular solution from the final non-
dominated set. All the solutions will serve as the final selected
rule set.

C. Fuzzy Association Rules

One of the major problems of mining numeric association
rules is that these algorithms deal with sharp boundaries
between consecutive intervals. Thus, they cannot represent
smooth changes from one interval to another, which can
be easily handled by fuzzy association rules. A number of
MOEA-based fuzzy ARM techniques have been developed in
the past decade. Here, we describe several of these algorithms
and discuss different approaches that incorporate them.

The general form of a fuzzy association rule is as [77]

If X = {x1, x2, . . . , xp} is A = {f1, f2, . . . , fp}
Then Y = {y1, y2, . . . , yq} is B = {g1, g2, . . . , gq}.
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Here X and Y represent two sets of attributes, and X∩Y = φ.
A and B represent the fuzzy sets (linguistic values) of the
corresponding attributes in X and Y , respectively. Therefore,
if a rule is encoded in a chromosome, both the attributes and
their linguistic values should be encoded in it. A number of
studies have been done on the application of MOEAs for fuzzy
association rule mining. Here we review some of them.

1) Underlying MOEAs: Different MOEAs have been em-
ployed in various works on fuzzy ARM. Kaya et al. [77]–[79]
used a variant of SPEA for fuzzy rule mining. In [80],
a multiobjective GA (MOGA) is used for this purpose. In
another work on fuzzy association rule mining, NSGA-II
has been employed [81]. However, in none of these studies,
relative comparison among different MOEAs for fuzzy rule
mining has been addressed.

2) Chromosome Representation: There are two categories
of chromosome representations for fuzzy ARM. In the first
approach, a chromosome represents a set of fuzzy clusters
corresponding to each attribute. The objective is to find a
suitable set of fuzzy clusters that partition the range of values
in each attribute domain. This approach is adopted in a series
of works done by Kaya et al. in [77]–[79]. In these works,
each chromosome represents the base values of a variable
number of membership functions representing the fuzzy sets
for each quantitative attribute. Standard triangular membership
functions are used to represent the fuzzy sets. Real-valued
representation of the chromosomes is used for this purpose.
Here, a chromosome does not represent association rules. It
represents a suitable fuzzy clustering of the attribute domains.
The evolved fuzzy membership functions are then used as
the linguistic values of the corresponding attributes. Fuzzy
association rules are mined using standard algorithms based on
minimum support and minimum confidence criteria. A similar
encoding approach is adopted in [80].

The second approach directly encodes fuzzy association
rules in the chromosomes. This is a kind of Michigan approach
where each chromosome encodes a possible rule. In [81], such
an encoding is adopted to mine temporal fuzzy association
rules. Here, the authors used a mixed representation of chro-
mosomes combining integer and real values. The chromosome
encodes the lower and upper bounds of the temporal interval
in the rules as integers. The indices of the items participating
in the rule are also encoded as integers. Finally, the real-
valued parameters of the triangular membership functions
corresponding to each item are encoded in the chromosome.
Thus, this representation induces variable-length chromosomes
needing special evolutionary operators.

3) Objective Functions: In the works of Kaya et al.
[77]–[79], the authors optimize two criteria, that is, number
of large itemsets and time spent to obtain the large itemsets.
Thus, here the objective is to evolve a possible fuzzy cluster-
ing of the numeric attributes that maximizes the number of
large itemsets while minimizing the time required to obtain
all large itemsets given the clustering. After optimizing the
clustering, the authors then use the membership functions
as the linguistic values for the fuzzy association rules ex-
tracted based on minimum support and minimum confidence
criteria.

In [80], where a similar encoding strategy is adopted as
in [77], two objective functions are optimized simultaneously.
The first objective function is stability of the encoded mem-
bership functions, which has two components, that is, overlap
factor and coverage factor. The stability is optimized to avoid
generation of too redundant and too separated fuzzy sets for an
item. The second objective is to maximize the total number of
large 1-itemsets for given minimum support values. Although
this paper is a consequence of the works of Kaya et al.
with modifications in the objective functions and evolution-
ary operators (described later), the authors did not compare
their results with those of Kaya et al. So, it is difficult to
judge any improvement of the performance over the previous
approaches.

In [81], the authors used a direct approach to temporal fuzzy
association rule mining by adopting the Michigan form of
chromosomes. Thus, here the objective functions are related to
the optimization of the encoded rules. In this paper, four objec-
tive functions, namely temporal support, temporal confidence,
fuzzy support, and membership function widths, are optimized.
Whereas the first three objective functions are obvious, the last
objective function is used to prevent a membership function
from covering the whole range of attribute values. Without
this objective function, the solutions could evolve to cover
the complete range of attribute values, since this gives higher
support values as it includes more number of items.

4) Evolutionary Operators: References [77], [78], have
used standard multipoint crossover operations. In [79], the
authors used arithmetic crossover. Also, they employed stan-
dard real-value mutation. In [80], the authors used max-min
arithmetical crossover and one-point mutation. This crossover
operator generates four offspring at a time out of which the
two best offspring are chosen. However, the authors did not
describe the crossover process in detail, and did not discuss
its advantage over a standard crossover operator. The mutation
operator is used to slightly change the center of the fuzzy
set being mutated. It is to be noted that when mutation takes
place at the center of a fuzzy membership function, it may
disrupt the order of the resulting fuzzy membership functions.
Hence, these fuzzy membership functions need rearrangement
according to their center values after the mutation. In [81], for
a Michigan type of encoding, a modified uniform crossover
operator is adopted. For mutating the genes representing the
lower and upper bounds of the time interval, the values are
generated within the endpoint range (epr) where the midpoint
is the value of the current gene (g), such that the mutated value
is a member of the set {−epr/2, . . . , g, . . . , epr/2}. This is
done to reduce the effect of random sampling of the dataset.

5) Obtaining the Final Solution: As in [77]–[80], a chro-
mosome encodes a possible fuzzy clustering of the attribute
values. It is necessary to select a suitable solution from
the final non-dominated set, based on which of the final
association rules are extracted. However, in [77], [78], and
[80], this issue has been overlooked. In [79], the authors
presented an approach based on the lower bound of the
objective function values to identify interesting solutions. The
authors first determined a lower bound for an objective such
that the values under the located lower bound are infeasible
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TABLE II

Comparison of Different MOEAs for Association Rule Mining

solutions for us. The lower bounds are the parameters that
are varied by the optimizer to obtain multiple non-dominated
sets of solutions. Subsequently, the solution, which maximizes
the other objective in feasible space, is chosen. However,
as the author mentioned, the lower bound must be chosen
carefully and it is not a trivial task. In [81], the authors used a
Michigan type of encoding of temporal fuzzy association rules.
Therefore, all the rules encoded in the final non-dominated set
are considered as extracted rules. There is no specific need of
choosing any particular solution from the non-dominated set.

D. Relative Comparison and Applications
In Table II, we provide a comparative overview of different

approaches for MOEA-based association rule mining. The
approaches are categorized in three types as discussed, that
is, categorical rule mining, numeric rule mining and fuzzy
rule mining. Different methods are compared with respect
to the underlying MOO tool, encoding strategy, objective
functions, evolutionary operators, and method for obtaining
the final solution from the non-dominated set. It is evident
from the table that most of the methods have used a Michigan
encoding and thus all the non-dominated solutions are treated
as final solutions without needing a particular solution from
the set. Although a number of different methods have been
discussed here, very few comparative studies of these methods
are available in the literature. Only in [75], two numeric rule
mining approaches using an MOEA, namely MODENAR and
NSGA-II-QAR, have been compared in terms of different
rule-interestingness metrics. However, in all the other works,
the authors have concentrated on comparing the performance
of their approaches with respect to existing single-objective
evolutionary and other non-evolutionary methods.

Although MOEA-based ARM algorithms have gained in
popularity in recent years, their use in real-life applications

is still fairly limited. The authors have mainly preferred to
demonstrate their methods on some UCI repository datasets.
It would be interesting, however, to see applications of
these techniques in domains such as mining gene expres-
sion and other biological data, financial databases, and text
mining.

IV. MOEAs for Other Data Mining Tasks

Most MOEA-based data mining techniques have considered
the four areas (feature selection, classification, clustering and
association rule mining) as discussed in [1] and this paper.
However, besides these, MOEAs have also been applied to
many other data mining tasks. These tasks include ensemble
learning, biclustering/co-clustering, and so on. In this section,
we discuss some of the MOEA-based approaches that have
been applied in these areas.

A. MOEAs for Ensemble Learning

Ensemble learning refers to the task of combining the
predictions of individual classifiers in some way to obtain
more robust predictions. The inherent strength of MOEAs to
produce a set of trade-off classifiers in the form of a non-
dominated set has made them popular in designing ensembles
of classifiers. The general idea is to use MOEAs to yield a
set of diverse classifiers encoded in the chromosomes of the
final non-dominated front, and then make the final prediction
by combining the predictions of these individual classifiers
through a majority vote. Integration of diverse classifiers
through ensemble learning may prevent overfitting and may
provide better classification accuracy and improved robustness
compared to the predictions based on a single classifier [82].

The general framework for ensemble classification design
is to produce a diverse set of classifiers by optimizing certain



30 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 1, FEBRUARY 2014

contradictory criteria. A popular approach in this regard is
to optimize an artificial neural network-based classifier or
MLP with respect to the complexity of the classifier and its
predictive accuracy. The complexity of an MLP refers to the
number of hidden layer units and weights of the connections.
This approach has been adopted in [83]–[87]. In [83], a
Pareto-frontier differential evolution (PDE) algorithm [88] is
used to develop the memetic Pareto artificial neural network
(MPANN) method. In MPANN, the authors performed a
comparison between two multiobjective formulations to the
formation of neuro-ensembles. In the first formulation, the
training set is split into two non-overlapping stratified subsets.
The objectives are to minimize the training error on each
subset. In the second formulation, they add random noise
to the training set to form a second objective. They also
compared there algorithm with a negative correlation learning
(NCL) algorithm for training an ensemble of ANNs using
backpropagation [89]. In [84], the problem of regularization
of neural network classifiers is addressed and as a bi-product,
a neural network ensemble is generated. They compare the
use of NSGA-II and a dynamic weighted aggregation method
in generating the ensemble by optimizing two objectives,
that is, training mean squared error and number of network
connections. A similar approach for the generation of an
ensemble of MLPs is found in [85] with different objective
functions to be optimized. Here, the authors minimized Type-
I and Type-II errors simultaneously, which refer to the number
of false positives and number of false negatives, respectively.
The algorithm, called MG-Prop, is designed based on the
single front genetic algorithm (SFGA) proposed in [90]. The
authors showed that this ensemble works well for class-
imbalanced data. In [86], an algorithm called diverse and
accurate ensemble learning algorithm (DIVACE) is proposed.
DIVACE uses ideas from NCL [89] and MPANN [83], and
formulates the ensemble learning problem as a multiobjective
problem explicitly within an evolutionary setup. The aim of
the algorithm is to find good a trade-off between diversity and
accuracy to produce an ensemble of neural network classi-
fiers. The diversity is modeled as a correlation penalty [89].
The authors showed that DIVACE performs better than the
MPANN algorithm. In a recent work, a multiobjective genetic
algorithm based artificial neural network ensemble (MANNE)
method is proposed in [87] for intrusion detection. The
authors optimized neural network classifiers using NSGA-II
with two objective functions, namely detection rate and false
positive rate to generate the ensemble. The method was
compared with a decision tree and its ensembles using bagging
and boosting methods.

Another popular approach for building MOEAs-based clas-
sifier ensembles is to encode a feature subset and other
parameters in a chromosome and use some classifier as a
wrapper to compute the objective functions (usually classifi-
cation accuracy and feature subset size). The idea is to evolve
a set of non-dominated classifiers with respect to the trade-off
between accuracy and feature subset size. Each of them works
on a specific subspace of the dataset and can be used to form
an ensemble of classifiers [91]–[93]. In [91], the authors used
MLP as the wrapper and the classification accuracy and feature

subset size as the two objective functions to be optimized.
In [92], the authors considered both the supervised and the
unsupervised cases. For the supervised case, they have used
MLP as the wrapper and as objective functions the same
defined in [91]. In the unsupervised case, they have used the
K-means clustering algorithm and used DB index and number
of features as the objective functions. Experimental studies
established performance improvement compared to classical
bagging and boosting techniques. In [93], on the other hand,
three classifiers have been used as wrappers, namely decision
tree, SVM, and MLP. Two objective functions used are av-
erage accuracy of these three classifiers and their consensus
accuracy. The authors demonstrated that the proposed method
outperforms single objective GA-based methods designed with
one of these classifiers as wrapper.

B. MOEAs for Biclustering

A variant of clustering, called biclustering or co-clustering
[94], aims to capture local structures within a dataset. A clus-
tering algorithm groups similar objects where the similarity is
computed based on all attributes. On the contrary, the goal of a
biclustering algorithm is to find a group of objects that are not
necessarily similar over all the attributes, but are similar based
on a subset of attributes. Hence, biclustering can be thought
of as the simultaneous clustering of objects and attributes.
Biclustering algorithms have several applications in different
real-life domains such as text mining [95], recommender sys-
tems [96] and collaborative filtering [97]. However, almost all
the MOEAs for biclustering are applied for mining biclusters
from microarray gene expression data [94]. Here, we review
some of these algorithms.

As the biclustering problem requires several objectives
to be optimized such as mean squared residue (MSR) (a
coherence measure) [98], volume, row variance, and so on,
this problem can be posed as a multiobjective optimization
problem in a straightforward manner. In recent years, a number
of studies have been done in solving biclustering problems
using MOEAs. In [99], a multiobjective GA-based biclustering
technique is proposed. The authors use a binary string of
length G + C, where G and C denote the number of genes
and number of conditions/samples/time points, respectively. If
a bit position is 1, then the corresponding gene or condition
is selected in the bicluster and if a bit position is 0, the
corresponding gene or condition is not selected in the bicluster.
The algorithm optimizes the MSR and volume of the biclusters
simultaneously, in order to obtain coherent and large biclusters.
The algorithm uses NSGA-II as the underlying multiobjective
optimization tool. Cheng and Church’s biclustering algorithm
[98] has been used as a local search strategy.

In [100], a different encoding policy is adopted. The algo-
rithm is termed multiobjective GA-based biclustering (MO-
GAB). Here, each string has two parts; one for clustering
the genes, and another for clustering the conditions. If M

and N denote the maximum number of gene clusters and
the maximum number of condition clusters, respectively, then
the length of each string is M + N. The first M positions
represent the M cluster centers for the genes, and the re-
maining N positions represent the N cluster centers for the
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conditions. Thus, a string, which looks like the following,
{gc1 gc2 . . . gcM cc1 cc2 . . . ccN}, where each gci,
i = 1 . . . M represents the index of a gene that acts as a cluster
center of a set of genes, and each ccj , j = 1 . . . N represents
the index of a condition that acts as a cluster center of a
set of conditions. A string that encodes M gene clusters and
N condition clusters, represents a set of M × N biclusters,
taking each pair of gene and condition clusters. Each pair
< gci, ccj >, i = 1 . . . M, j = 1 . . . N, represents a bicluster
that consists of all genes of the gene cluster centered at gene
gci, and all conditions of the condition cluster centered at
condition ccj . During the fitness computation, the gene and
condition clusters encoded in the chromosome are updated
through K-means at each iteration. Two objectives, that is,
MSR(I,J)

δ
and 1

1+VAR(I,J) are optimized simultaneously. This
approach also adopts NSGA-II for optimization. Single-point
crossover and random replacement mutation have been used
as the evolutionary operators. MOGAB also uses NSGA-II
as its underlying optimization tool. In [101], a fuzzy version
of MOGAB is proposed. Fuzzy versions of MSR and row
variance have been simultaneously optimized.

Reference [102] proposed the sequential multiobjective bi-
clustering (SMOB) algorithm. The authors adopted binary
encoding in this case. Three objective functions, that is, mean
squared residue, volume, and row variance were optimized.
In [103], a hybrid multiobjective biclustering algorithm that
combines NSGA-II and a estimation of distribution algo-
rithm (EDA) [104] for searching biclusters was proposed.
The volume and MSR of the biclusters are simultaneously
optimized. In [105], an NSGA-II based multiobjective biclus-
tering algorithm was proposed. This approach uses integer
encoding. Here, the integers represent the indices of the rows
and the columns of the dataset. The objectives optimized are
the similarity within the biclusters and the volume of the
biclusters.

Although different biclustering approaches are proposed us-
ing MOEAs, there has been no effort to compare them system-
atically. MOEA-based biclustering algorithms have been com-
pared with respect to standard single-objective evolutionary
biclustering approaches as well as with respect to other non-
evolutionary algorithms based on several criteria. However,
comparative studies among different MOEA-based approaches
are practically non-existent. These algorithms differ in their
encoding strategies, objective functions, evolutionary operators
and underlying MOEAs. Therefore, some studies to compare
their performance would be beneficial for the users to select
the most suitable method for their applications.

C. Other MOEAs-Based Data Mining Approaches

There are a few additional areas of data mining where
MOEAs have been applied, but they are not well-studied
still now. One such area is feature extraction or construction.
Feature extraction or construction refers to the task of creation
of new features from functions of the original features. Feature
selection can be considered a special case of feature extraction.
In [106], the problem of feature extraction for recognizing
isolated handwritten symbols is posed as a multiobjective
optimization problem, and a multiobjective genetic algorithm

is proposed to solve the problem. The proposed algorithm has
been shown to outperform human experts. However, not much
progress has been noticed in this area, using MOEAs.

Subgroup discovery is another data mining problem where
the aim is to mine fuzzy rules for subgroup discovery. These
fuzzy rules help to represent the knowledge about patterns
of interest which is explanatory and understandable to the
expert. A few MOEA-based approaches have been proposed
for this purpose over the last few years [107]–[109]. The
objective is to optimize different rule-interestingness criteria as
in ARM.

MOEAs have also been used for regression. In [110], an
MOEA-based approach for obtaining linguistic fuzzy rule-
based regression models from imprecise data is proposed.
Here, each chromosome encodes one rule (Michigan ap-
proach), which competes with others in terms of maximum
coverage and fitting. The knowledge base is formed through
cooperation of individuals in the population. In a similar work
[111], the authors proposed a multiobjective genetic fuzzy
system (GFS) to learn the granularities of fuzzy partitions,
for tuning the membership functions (MFs), and for learning
the fuzzy rules for a regression problem. The proposed method
uses dynamic constraints. This enables three-parameter mem-
bership function tuning for improved accuracy and guarantees
the transparency of fuzzy partitions at the same time.

Another application of MOEAs has been found in outlier
detection. In [112], a multiobjective GA is proposed for outlier
detection. The MOEA in this case is mainly employed as an
effective search method in unsupervised learning for finding
outlying subspaces from training data. Besides this, MOEAs
have also been used in soft subspace clustering [113], [114].
However, MOEAs have been applied in these areas only very
recently and much more work is still needed.

V. Future Directions

Although MOEAs are being applied in data mining tasks
over the past decade and the literature is already quite rich,
still some important future research issues remain open. Here,
we discuss some relevant and important research topics to
be addressed in the future. First of all, most of the studies
have focused on comparing the proposed MOEA-based data
mining techniques with existing non-evolutionary or tradi-
tional single-objective evolutionary techniques. However, as
discussed before, practically none of the studies have com-
pared the performance of different MOEA-based algorithms
for different data mining tasks in a systematic way. Thus, for
a novice user, it is difficult to judge which algorithm he/she
should use for a particular task in hand. Possible reasons for
unavailability of these studies may be the lack of publicly
available softwares/codes, difficulty in reproducing the results,
use of a variety of encoding strategies, objective functions,
evolutionary operators, and final solution selection. Thus, a
systematic comparison to guide new users in choosing a
suitable method for his/her application would be very valuable
as it is still missing in the specialized literature.

In the majority of the studies on MOEA-based data mining,
the performance of the algorithms has been reported based on
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the quality of the obtained result in terms of some metrics.
However, to address large scale data mining problems using
MOEAs, such as clustering large images or selecting genes
from gene expression data containing several thousands of
genes, along with the quality measure, the efficiency of
the algorithm is also an important concern. Evolutionary
algorithms have long been criticized for consuming large
amounts of computational time as compared to other heuris-
tics. Moreover, MOEAs typically require more computational
time than single-objective evolutionary algorithms. Almost
none of the MOEA-based data mining studies reviewed here
has considered providing a systematic time complexity anal-
ysis. Therefore, it is difficult to compare different MOEAs
in terms of time usage. Computational efficiency of MOEAs
used in data mining is indeed another promising research area.
For example, one could incorporate local search strategies in
MOEAs to improve the convergence rate. Many of the MOEA-
based data mining techniques currently available have already
adopted this strategy, especially in clustering [15] and biclus-
tering [99]. Another possibility is the efficient parallelization
of MOEAs using multiple processors. A few studies in this
regard have been done for ARM [115] and clustering [116],
but more studies are needed to explore other application areas.
Another way to reduce the search time for the MOEAs used
in data mining is to use some appropriate stop criterion for
them, instead of a fixed number of generations (as traditionally
done). Some approaches are currently available for defining
stop criteria for MOEAs (see, for example, [117]), but none
of them have been adopted in data mining yet.

Most of the data mining problems have many objectives
to be optimized. For example, a rule mining problem has
objectives such as support, confidence, rule length, com-
prehensibility, interestingness, lift, etc., whereas a clustering
algorithm may optimize a number of cluster validity measures
simultaneously. However, few MOEA-based data mining prob-
lems have been posed with more than three objective functions
[49]. Traditional MOEAs such as NSGA-II, SPEA2 and PAES
are known to have difficulties solving problems with four or
more objectives, and other approaches are required to deal with
them (see [50]). The use of such approaches in data mining
is, however, still unavailable in the specialized literature.

Another research direction that deserves attention is inter-
active data mining using MOEAs. In interactive data mining,
during the execution of a data mining algorithm, it interacts
with a human decision maker to learn in a gradual way.
It might be very useful to incorporate such interactions in
MOEA-based data mining algorithms when some expert user
is available for the problem at hand. Such an approach has
been proposed in [52], where the authors have developed an
interactive MOEA-based clustering approach called interactive
multiobjective clustering (IMOC). In IMOC, the algorithm
interacts with a human decision maker during its execution
in order to learn the suitable set of cluster validity indices for
the input dataset. Thus, different sets of validity measures may
be chosen for different datasets. The method has been shown
to perform well in clustering of gene expression data. Similar
interactive MOEAs may be developed for other data mining
tasks such as feature selection, classification and rule mining.

VI. Conclusion

In this two-part paper, we surveyed several MOEAs used
for four primary data mining tasks namely feature selection
and classification (discussed in Part I [1]), and clustering
and association rule mining (discussed in Part II). The main
focus has been on the chromosome representation, objective
functions, evolutionary operators, and final solution selec-
tion from the non-dominated front. Moreover, a comparative
overview among different methods in each category along with
some real-life applications are provided. Additionally, in this
part, several other MOEA-based data mining tasks, such as
ensemble learning, biclustering, feature extraction, sub-group
discovery etc. have been reviewed. Finally, we have discussed
a number of future research areas that deserve attention from
the researchers working on the development of MOEAs-based
data mining algorithms.
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