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Abstract—Background: The accurate prediction of where faults are likely to occur in code can help direct test effort, reduce costs, and

improve the quality of software. Objective: We investigate how the context of models, the independent variables used, and the

modeling techniques applied influence the performance of fault prediction models. Method: We used a systematic literature review to

identify 208 fault prediction studies published from January 2000 to December 2010. We synthesize the quantitative and qualitative

results of 36 studies which report sufficient contextual and methodological information according to the criteria we develop and apply.

Results: The models that perform well tend to be based on simple modeling techniques such as Naive Bayes or Logistic Regression.

Combinations of independent variables have been used by models that perform well. Feature selection has been applied to these

combinations when models are performing particularly well. Conclusion: The methodology used to build models seems to be influential

to predictive performance. Although there are a set of fault prediction studies in which confidence is possible, more studies are needed

that use a reliable methodology and which report their context, methodology, and performance comprehensively.

Index Terms—Systematic literature review, software fault prediction
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1 INTRODUCTION

THIS Systematic Literature Review (SLR) aims to identify
and analyze the models used to predict faults in source

code in 208 studies published between January 2000 and
December 2010. Our analysis investigates how model
performance is affected by the context in which the model
was developed, the independent variables used in the
model, and the technique on which the model was built.
Our results enable researchers to develop prediction models
based on best knowledge and practice across many
previous studies. Our results also help practitioners to
make effective decisions on prediction models most suited
to their context.

Fault1 prediction modeling is an important area of

research and the subject of many previous studies. These

studies typically produce fault prediction models which

allow software engineers to focus development activities on

fault-prone code, thereby improving software quality and

making better use of resources. The many fault prediction
models published are complex and disparate and no up-to-
date comprehensive picture of the current state of fault
prediction exists. Two previous reviews of the area have
been performed in [1] and [2].2 Our review differs from
these reviews in the following ways:

. Timeframes. Our review is the most contemporary
because it includes studies published from 2000-
2010. Fenton and Neil conducted a critical review of
software fault prediction research up to 1999 [1].
Catal and Diri’s [2] review covers work published
between 1990 and 2007.

. Systematic approach. We follow Kitchenham and
Charters [3] original and rigorous procedures for
conducting systematic reviews. Catal and Diri did
not report on how they sourced their studies, stating
that they adapted Jørgensen and Shepperd’s [4]
methodology. Fenton and Neil did not apply the
systematic approach introduced by Kitchenham and
Charters [3] as their study was published well before
these guidelines were produced.

. Comprehensiveness. We do not rely on search engines
alone and, unlike Catal and Diri, we read through
relevant journals and conferences paper-by-paper.
As a result, we analyzed many more papers.

. Analysis. We provide a more detailed analysis of
each paper. Catal and Diri focused on the context of
studies, including: where papers were published,
year of publication, types of metrics used, datasets
used, and modeling approach. In addition, we report
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on the performance of models and synthesize the
findings of studies.

We make four significant contributions by presenting:

1. A set of 208 studies addressing fault prediction in
software engineering from January 2000 to December
2010. Researchers can use these studies as the basis of
future investigations into fault prediction.

2. A subset of 36 fault prediction studies which report
sufficient contextual and methodological detail to
enable these studies to be reliably analyzed by other
researchers and evaluated by model users planning
to select an appropriate model for their context.

3. A set of criteria to assess that sufficient contextual
and methodological detail is reported in fault
prediction studies. We have used these criteria to
identify the 36 studies mentioned above. They can
also be used to guide other researchers to build
credible new models that are understandable,
usable, replicable, and in which researchers and
users can have a basic level of confidence. These
criteria could also be used to guide journal and
conference reviewers in determining that a fault
prediction paper has adequately reported a study.

4. A synthesis of the current state of the art in software
fault prediction as reported in the 36 studies
satisfying our assessment criteria. This synthesis is
based on extracting and combining: qualitative
information on the main findings reported by
studies, quantitative data on the performance of
these studies, detailed quantitative analysis of the
206 models (or model variants) reported in 19 studies
which report (or we can calculate from what is
reported) precision, recall, and f-measure perfor-
mance data.

This paper is organized as follows: In the next section, we
present our systematic literature review methodology. In
Section 3, we present our criteria developed to assess
whether or not a study reports sufficient contextual and
methodological detail to enable us to synthesize a particular
study. Section 4 shows the results of applying our
assessment criteria to 208 studies. Section 5 reports the
results of extracting data from the 36 studies which satisfy

our assessment criteria. Section 6 synthesizes our results
and Section 7 discusses the methodological issues asso-
ciated with fault prediction studies. Section 8 identifies the
threats to validity of this study. Finally, in Section 9 we
summarize and present our conclusions.

2 METHODOLOGY

We take a systematic approach to reviewing the literature
on the prediction of faults in code. Systematic literature
reviews are well established in medical research and
increasingly in software engineering. We follow the
systematic literature review approach identified by Kitch-
enham and Charters [3].

2.1 Research Questions

The aim of this systematic literature review is to analyze the

models used to predict faults in source code. Our analysis is

based on the research questions in Table 1.

2.2 Inclusion Criteria

To be included in this review, a study must be reported in a

paper published in English as either a journal paper or

conference proceedings. The criteria for studies to be

included in our SLR are based on the inclusion and

exclusion criteria presented in Table 2.
Before accepting a paper into the review, we excluded

repeated studies. If the same study appeared in several

publications, we included only the most comprehensive or

most recent.

2.3 Identification of Papers

Included papers were published between January 2000 and

December 2010. Our searches for papers were completed at

the end of May 2011 and it is therefore unlikely that we

missed any papers published in our time period as a result

of publication time lags. There were four elements to our

searches:

1. Key word searching using the search engines: ACM
Digital Library, IEEExplore, and the ISI Web of
Science. These search engines covered the vast
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majority of software engineering publications and
the search string we used is given in Appendix A.

2. An issue-by-issue manual reading of paper titles in
relevant journals and conferences. The journals and
conferences searched are shown in Appendix B.
These were chosen as highly relevant software
engineering publications found previously to be
good sources of software engineering research [4].

3. A manual search for publications from key authors
using DBLP.3 These authors were selected as appear-
ing most frequently in our list of papers: Khoshgof-
taar, Menzies, Nagappan, Ostrand, and Weyuker.

4. The identification of papers using references from
included studies.

Table 3 shows that our initial searches elicited 2,073 papers.
The title and abstract of each was evaluated and 1,762 were
rejected as not relevant to fault prediction. This process was
validated using a randomly selected 80 papers from the initial
set of 2,073. Three researchers separately interpreted and
applied the inclusion and exclusion criteria to the 80 papers.
Pairwise interrater reliability was measured across the three
sets of decisions to get a fair/good agreement on the first
iteration of this process. Based on the disagreements, we
clarified our inclusion and exclusion criteria. A second
iteration resulted in 100 percent agreement between the three
researchers.

We read the remaining 311 papers in full. This resulted
in a further 178 papers being rejected. An additional
80 secondary papers were identified from references and,
after being read in full, accepted into the included set. We
also included two extra papers from Catal and Diri’s [2]
review which overlapped our timeframe. Our initial
searches omitted these two of Catal and Diri’s papers as
their search terms included the word “quality.” We did not
include this word in our searches as it generates a very high
false positive rate. This process resulted in the 208 papers
included in this review.

3 ASSESSING THE SUITABILITY OF PAPERS FOR

SYNTHESIS

The previous section explained how we included papers
which both answered our research questions and satisfied
our inclusion criteria. This section describes how we
identified a subset of those papers as suitable from which
to extract data and synthesize an overall picture of fault
prediction in software engineering. We then describe the
extraction and synthesis process.

3.1 The Assessment Criteria

Our approach to identifying papers suitable for synthesis is
motivated by Kitchenham and Charter’s [3] notion of a
quality check. Our assessment is focused specifically on
identifying only papers reporting sufficient information to
allow synthesis across studies in terms of answering our
research questions. To allow this, a basic set of information
must be reported in papers. Without this it is difficult to
properly understand what has been done in a study and
equally difficult to adequately contextualize the findings
reported by a study. We have developed and applied a set
of criteria focused on ensuring sufficient contextual and
methodological information is reported in fault prediction
studies. Our criteria are organized into four phases
described below.

Phase 1: Establishing that the study is a prediction study.
In this SLR it is important that we consider only models

which actually do some form of prediction. Some studies
which seem to be reporting prediction models actually turn
out to be doing very little prediction. Many of these types of
studies report correlations between metrics and faults. Such
studies only indicate the propensity for building a prediction
model. Furthermore, a model is only doing any prediction if
it is tested on unseen data (i.e., data that were not used
during the training process) [S112]. To be considered a
prediction model it must be trained and tested on different
data [6]. Table 4 shows the criteria we apply to assess
whether a study is actually a prediction study.
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Table 4 shows that a study can pass this criterion as long
as they have separated their training and testing data. There
are many ways in which this separation can be done.
Holdout is probably the simplest approach, where the
original dataset is split into two groups comprising:
{training set, test set}. The model is developed using the
training set and its performance is then assessed on the test
set. The weakness of this approach is that results can be
biased because of the way the data have been split. A safer
approach is often n-fold cross validation, where the data are
split into n groups fg1 . . . gng. Ten-fold cross validation is
very common, where the data are randomly split into
10 groups, and 10 experiments carried out. For each of these
experiments, one of the groups is used as the testing set,
and all others combined are used as the training set.
Performance is then typically reported as an average across
all 10 experiments. M-N fold cross validation adds another
step by generating M different N-fold cross validations,
which increases the reliability of the results and reduces
problems due to the order of items in the training set.

Stratified cross validation is an improvement to this
process, and keeps the distribution of faulty and nonfaulty
data points approximately equal to the overall class
distribution in each of the n bins. Although there are
stronger and weaker techniques available to separate
training and testing data, we have not made a judgment
on this and have accepted any form of separation in this
phase of assessment.

Phase 2: Ensuring sufficient contextual information is
reported.

We check that basic contextual information is presented
by studies to enable appropriate interpretation of findings.
A lack of contextual data limits the user’s ability to:
interpret a model’s performance, apply the model appro-
priately, or repeat the study. For example, a model may
have been built using legacy systems with many releases
over a long time period and has been demonstrated to
perform well on these systems. It may not then make sense
to rely on this model for a new system where the code has
only recently been developed. This is because the number
and type of faults in a system are thought to change as a
system evolves [S83]. If the maturity of the system on which
the model was built is not reported, this severely limits a
model user’s ability to understand the conditions in which
the model performed well and to select this model
specifically for legacy systems. In this situation the model
could be applied to newly developed systems with
disappointing predictive performance.

The contextual criteria we applied are shown in Table 5
and are adapted from the context checklist developed by
Petersen and Wohlin [7]. Our context checklist also overlaps
with the 40 project characteristics proposed by Zimmermann
et al. [S208] as being relevant to understanding a project
sufficiently for cross project model building (it was
impractical for us to implement all 40 characteristics as none
of our included studies report all 40).

Context data are particularly important in this SLR as it
is used to answer Research Question 1 and interpret our
overall findings on model performance. We only synthesize
papers that report all the required context information as
listed in Table 5. Note that studies reporting several models
based on different datasets can pass the criteria in this
phase if sufficient contextual data are reported for one or
more of these models. In this case, data will only be
extracted from the paper based on the properly contextua-
lized model.

Phase 3: Establishing that sufficient model building informa-
tion is reported.

For a study to be able to help us to answer our research
questions it must report its basic model building elements.
Without clear information about the independent and
dependent variables used as well as the modeling techni-
que, we cannot extract sufficient data to allow synthesis.
Table 6 describes the criteria we apply.

Phase 4: Checking the model building data.
Data used are fundamental to the reliability of models.

Table 7 presents the criteria we apply to ensure that studies
report basic information on the data they used.

In addition to the criteria we applied in Phases 1 to 4, we
also developed more stringent criteria that we did not
apply. These additional criteria relate to the quality of the
data used and the way in which predictive performance is
measured. Although we initially intended to apply these,
this was not tenable because the area is not sufficiently
mature. Applying these criteria would have resulted in only
a handful of studies being synthesized. We include these
criteria in Appendix C as they identify further important
criteria that future researchers should consider when
building models.

3.2 Applying the Assessment Criteria

Our criteria have been applied to our included set of
208 fault prediction studies. This identified a subset of
36 finally included studies from which we extracted data
and on which our synthesis is based. The initial set of
208 included papers was divided between the five authors.
Each paper was assessed by two authors independently
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(with each author being paired with at least three other
authors). Each author applied the assessment criteria to
between 70 and 80 papers. Any disagreements on the
assessment outcome of a paper were discussed between
the two authors and, where possible, agreement estab-
lished between them. Agreement could not be reached by
the two authors in 15 cases. These papers were then given
to another member of the author team for moderation. The
moderator made a final decision on the assessment
outcome of that paper.

We applied our four phase assessment to all 208 included
studies. The phases are applied sequentially. If a study does
not satisfy all of the criteria in a phase, then the evaluation
is stopped and no subsequent phases are applied to the
study. This is to improve the efficiency of the process as
there is no point in assessing subsequent criteria if the study
has already failed the assessment. This does have the
limitation that we did not collect information on how a
paper performed in relation to all assessment criteria. So if
a paper fails Phase 1, we have no information on how that
paper would have performed in Phase 4.

This assessment process was piloted four times. Each
pilot involved three of the authors applying the assessment
to 10 included papers. The assessment process was refined
as a result of each pilot.

We developed our own MySQL database system to
manage this SLR. The system recorded full reference details

and references to pdfs for all papers we identified as

needing to be read in full. The system maintained the status

of those papers as well as providing an online process to

support our assessments of 208 papers. The system

collected data from all authors performing assessments. It

also provided a moderation process to facilitate identifying

and resolving disagreements between pairs of assessors.

The system eased the administration of the assessment

process and the analysis of assessment outcomes. All data

that were extracted from the 36 papers which passed the

assessment is also recorded on our system. An overview of

the system is available from [9] and full details are available

from the third author.

3.3 Extracting Data from Papers

Data addressing our three research questions was extracted

from each of the 36 finally included studies which passed

all assessment criteria. Our aim was to gather data that

would allow us to analyze predictive performance within

individual studies and across all studies. To facilitate this,

three sets of data were extracted from each study:

1. Context data. Data showing the context of each
study were extracted by one of the authors. This data
give the context in terms of: the source of data
studied and the maturity, size, application area, and
programming language of the system(s) studied.
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2. Qualitative data. Data related to our research
questions were extracted from the findings and
conclusions of each study. This was in terms of what
the papers reported rather than on our own
interpretation of their study. This data supplemen-
ted our quantitative data to generate a rich picture of
results within individual studies.

Two authors extracted qualitative data from all
36 studies. Each author extracted data indepen-
dently and compared their findings to those of the
other author. Disagreements and omissions were
discussed within the pair and a final set of data
agreed upon.

3. Quantitative data. Predictive performance data
were extracted for every individual model (or model
variant) reported in a study. The performance data
we extracted varied according to whether the study
reported their results via categorical or continuous
dependent variables. Some studies reported both
categorical and continuous results. We extracted
only one of these sets of results, depending on the
way in which the majority of results were presented
by those studies. The following is an overview of
how we extracted data from categorical and con-
tinuous studies.

Categorical studies. There are 23 studies reporting catego-
rical dependent variables. Categorical studies report their
results in terms of predicting whether a code unit is likely to
be fault prone or not fault prone. Where possible we report
the predictive performance of these studies using precision,
recall, and f-measure (as many studies report both precision
and recall, from which an f-measure can be calculated).
F-measure is commonly defined as the harmonic mean of
precision and recall, and generally gives a good overall
picture of predictive performance.4 We used these three
measures to compare results across studies and, where
necessary, we calculate and derive these measures from
those reported (Appendix E explains how we did this
conversion and shows how we calculated f-measure).
Standardizing on the performance measures reported
allows comparison of predictive performances across
studies. Lessmann et al. [S97] recommend the use of
consistent performance measures for cross-study compar-
ison; in particular, they recommend use of Area Under the
Curve (AUC). We also extract AUC where studies report
this. Appendix D summarizes the measurement of pre-
dictive performance.

We present the performance of categorical models in
boxplots. Box plots are useful for graphically showing the
differences between populations. They are useful for our
results as they make no assumptions about the distribution
of the data presented. These boxplots present the precision,
recall, and f-measure of studies according to a range of
model factors. These factors are related to the research
questions presented at the beginning of Section 2; an
example is a boxplot showing model performance relative
to the modeling technique used.

Continuous studies. There are 13 studies reporting con-
tinuous dependent variables. These studies report their
results in terms of the number of faults predicted in a unit
of code. It was not possible to convert the data presented in
these studies into a common comparative measure; we
report the individual measures that they use. Most
measures reported by continuous studies are based on
reporting an error measure (e.g., Mean Standard Error
(MSE)), or measures of difference between expected and
observed results (e.g., Chi Square). Some continuous studies
report their results in ranking form (e.g., top 20 percent of
faulty units). We extract the performance of models using
whatever measure each study used.

Two authors extracted quantitative data from all
36 studies. A pair approach was taken to extracting this
data since it was a complex and detailed task. This meant
that the pair of authors sat together identifying and
extracting data from the same paper simultaneously.

3.4 Synthesizing Data across Studies

Synthesizing findings across studies is notoriously difficult
and many software engineering SLRs have been shown to
present no synthesis [13]. In this paper, we have also found
synthesizing across a set of disparate studies very challen-
ging. We extracted both quantitative and qualitative data
from studies. We intended to meta-analyze our quantitative
data across studies by combining precision and recall
performance data. However, the studies are highly dis-
parate in terms of both context and models. Meta-analyzing
this quantitative data may generate unsafe results. Such a
meta-analysis would suffer from many of the limitations in
SLRs published in other disciplines [14].

We combined our qualitative and quantitative data to
generate a rich picture of fault prediction. We did this by
organizing our data into themes based around our three
research questions (i.e., context, independent variables, and
modeling techniques). We then combined the data on each
theme to answer our research questions. This synthesis is
presented in Section 6.

4 RESULTS OF OUR ASSESSMENT

This section presents the results from applying our
assessment criteria (detailed in Tables 4, 5, 6, and 7) to
establish whether or not a paper reports sufficient con-
textual and methodological detail to be synthesized. The
assessment outcome for each study is shown at the end of
its reference in the list of included studies.

Table 8 shows that only 36 of our initially included
208 studies passed all assessment criteria.5 Of these 36
finally included studies, three are relatively short [S116],
[S110], and [S164]. This means that it is possible to report
necessary contextual and methodological detail concisely
without a significant overhead in paper length. Table 8 also
shows that 41 papers failed at phase 1 of the assessment
because they did not report prediction models as such. This
includes studies that only present correlation studies or
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models that were not tested on data unseen during
training. This is an important finding as it suggests that a
relatively high number of papers reporting fault prediction
are not really doing any prediction (this finding is also
reported by [6]).

Table 8 also shows that 13 studies provided insufficient
information about their data. Without this it is difficult to
establish the reliability of the data on which the model is
based. Table 8 also shows that a very high number of
studies (114) reported insufficient information on the
context of their study. This makes it difficult to interpret
the results reported in these studies and to select an
appropriate model for a particular context. Several studies
passing all of our criteria anonymized their contextual data,
for example, [S109] and [S110]. Although these studies gave
full contextual details of the systems they used, the results
associated with each were anonymized. This meant that it
was impossible to relate specific fault information to
specific systems. While a degree of commercial confidenti-
ality was maintained, this limited our ability to analyze the
performance of these models.

Of the 114 studies which did not report sufficient context
information, 58 were based on NASA data (located in NASA
MDP or PROMISE). This is because we could find no
information about the maturity of the systems on which the
NASA data are based. Maturity information is not given in
either the MDP or PROMISE repository documentation and
no included paper provided any maturity information.
Turham et al. [15] report that the NASA data are from
numerous NASA contractors for an array of projects with a
wide range of reuse. This suggests that a range of maturities
might also be represented in these datasets. No clear insight
is given into whether particular datasets are based on
systems developed from untested, newly released, or legacy
code based on many releases. The only three studies using
NASA data which passed the context phase of the assess-
ment were those which also used other datasets for which
full context data are available (the NASA-based models were
not extracted from these studies). Whether a study uses
NASA data (sourced from MDP or PROMISE) is shown at the
end of its reference in the list of included studies.

Table 8 also shows that two studies failed the assessment
due to the “other” reasons reported in Table 9.

5 RESULTS EXTRACTED FROM PAPERS

This section presents the results we extracted from the
36 papers that passed all of our assessment criteria. The full
set of data extracted from those papers are contained in our

online Appendix (https://bugcatcher.stca.herts.ac.uk/
slr2011/). This online Appendix consists of the following.

1. Context of study table. For each of the 36 studies,
the context of the study is given in terms of: the aim
of the study together with details of the system(s)
used in the study (the application area(s), the
system(s), maturity, and size(s)).

2. Categorical models table. For each study reporting
categorical results, each model is described in terms
of the: independent variable(s), the granularity of the
dependent variable, the modeling technique(s), and
the dataset(s) used. This table also reports the
performances of each model using precision, recall,
f-measure, and (where given by studies) AUC. Some
studies present many models or model variants, all
of which are reported in this table.

3. Continuous models table. For each study reporting
continuous results (including those reporting rank-
ing results) the same information describing their
model(s) is presented as for categorical models.
However, the performance of each continuous
model is reported in terms of either: the error
measure, the measure of variance, or the ranked
results (as reported by a study).

4. Qualitative data table. For each study a short
summary of the main findings reported by authors
is presented.

The remainder of this section contains boxplots illustrat-
ing the performance of the models in relation to various

model factors (e.g., modeling technique used, independent
variable used, etc.). These factors are related to the research
questions that we posed at the beginning of Section 2. The
boxplots in this section set performance against individual

model factors (e.g., modeling technique used). This is a
simplistic analysis, as a range of interacting factors are likely
to underpin the performance of a model. However, our

results indicate areas of promising future research.
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The boxplots represent models reporting only categorical
results for which precision, recall, and f-measure were
either reported or could be calculated by us. Such models
are reported in 19 of the 23 categorical studies (of the
remaining four, three report AUC). We are unable to
present boxplots for the 13 studies using continuous data as
the measures used are not comparable or convertible to
comparable measures.

Each boxplot includes data only where at least three
models have used a particular factor (e.g., a particular
independent variable like LOC). This means that the
numbers (n) at the top of the boxplots will not add up to
the same number on every plot, as factors used in less than
three studies will not appear; the total of ns will therefore
vary from one boxplot to the next. The boxplots contain
performance data based on precision, recall, and f-measure.
This is for all categorical models and model variants
presented by each study (206 models or model variants).
Some studies present many model variants while others
present only one model. We also created boxplots of only
the best results from each study. These boxplots did not
change the pattern of good performances but only pre-
sented limited information about poor performances. For
that reason, we do not include these “best only” boxplots.

5.1 Performances of Models Reported in Individual
Studies

Fig. 1 is a boxplot of the performances of all the models
reported by each of the 19 categorical papers (full details of
which can be found in the online Appendix). For each
individual paper, f-measure, precision, and recall is re-
ported. Fig. 1 shows that studies report on many models or
variants of models, some with a wide range of performances

(the details of these can be found in the Models Table in the
online Appendix (https://bugcatcher.stca.herts.ac.uk/
slr2011/)). For example, Schröter et al. [S154] present
20 model variants with a wide range of precision, recall,
and f-measure. Many of these variants are not particularly
competitive; the most competitive models that Schröter et al.
[S154] report are based on training the model on only the
faultiest parts of the system. This is a promising training
technique and a similar technique has also been reported to
be successful by Zhang et al. [S200]. Bird et al. [S18] report
28 model variants with a much smaller range of perfor-
mances, all of which are fairly competitive. Fig. 1 also shows
the performance tradeoffs in terms of precision and recall
made by some models. For example, Bird et al. [S18] report
consistent precision and recall, whereas Moser et al. [S118]
and Shivaji et al. [S164] report performances where precision
is much higher than recall.

Fig. 1 also shows that some models seem to be
performing better than others. The models reported by
Shivaji et al. [S164], based on Naive Bayes, performed
extremely competitively. In general Naive Bayes performed
relatively well, see Fig. 8. However, Shivaji et al. [S164] also
used a good modeling process, including feature selection
and appropriate measures derived during model training.
In addition, their dataset contained a relatively large
proportion of faulty components, making it fairly balanced.
This may improve performance by providing many exam-
ples of faults from which the modeling technique can train.
There are many good aspects of this study that mean it is
likely to produce models which perform well.

On the other hand, the performance of Arisholm et al.’s
models [S8], [S9] are low in terms of precision but
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competitive in terms of recall. The two Arisholm et al. studies
are different but use the same datasets. This low precision
is reportedly because of the sampling method used to
address the imbalance of the data used. Though the datasets
used are also small relative to those used in other studies
(148 KLOC), Arisholm et al.’s studies [S8], [S9] are interesting
as they also report many good modeling practices and in
some ways are exemplary studies. But they demonstrate how
the data used can impact significantly on the performance of
a model. It is also essential that both high and low
performances be reported, as it is only by identifying these
that our overall understanding of fault prediction will
improve. The boxplots in the rest of this section explore in
more detail aspects of models that may underpin these
performance variations. Because the performances of Aris-
holm et al.’s models [S8], [S9] are very different from those of
the other studies, we have removed them from the rest of the
boxplots. We have treated them as outliers which would
skew the results we report in other boxplots.

5.2 Performances in Relation to Context Factors

Fig. 2 shows the datasets used in the studies. It shows that
108 models reported in the studies are based on data from
Eclipse. Eclipse is very well studied, probably because the
fault data are easy to access and its utility has been well
proven in previous studies. In addition, data already
extracted from Eclipse are available from Saarland Uni-
versity (http://www.st.cs.uni-saarland.de/softevo/bug-
data/eclipse/) and PROMISE (http://promisedata.org/).
Fig. 2 shows that there is a wide variation in model
performance using Eclipse. Fig. 2 also suggests that it may
be more difficult to build models for some systems than for

others. For example, the models built for embedded
telecoms systems are not particularly competitive. This
may be because such systems have a different profile of
faults with fewer postdelivery faults relative to other
systems. Developers of such systems normally prioritize
reducing postdelivery faults as their embedded context
makes fixing them comparatively expensive [S83].

Fig. 3 shows how models have performed relative to the
size of systems on which they are based. Eclipse is the most
common system used by studies. Consequently, Fig. 3
shows only the size of versions of Eclipse in relation to
model performance. Fig. 3 suggests that as the size of a
system increases, model performance seems to improve.
This makes sense as models are likely to perform better
given more data.

Fig. 4 shows the maturity of systems used by studies
relative to the performance of models. The Context Table in
the online Appendix shows how systems have been
categorized in terms of their maturity. Fig. 4 shows that no
immature systems are used by more than two models in this
set of studies (i.e., where n � 3).6 There seems to be little
difference between the performance of models using mature
or very mature systems. This suggests that the maturity of
systems may not matter to predictive performance.7 This
finding may be linked to the finding we report on size. It
may be that what was previously believed about the
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6. An exception to this is found in studies [S11], [S133], where immature
systems are used with promising performances reported (see the online
Appendix for full details).

7. This may mean that it is not important to report maturity when studies
describe their context (many more studies would have passed our
assessment had that been the case). However, much more data on maturity
is needed before firm conclusions can be drawn.



importance of maturity was actually about size, i.e.,
maturity is a surrogate for size. Indeed, there is a significant
relationship between size and maturity in the data we report
here. However, we do not have enough data to draw firm
conclusions as the data we analyze contain no studies using
immature systems. More research is needed to test for
possible association between maturity and size and whether
data extracted from immature systems can be used as a basis
for reliable fault prediction.

Fig. 5 shows the language used in the systems studied in
relation to the performance of models. We present only
studies reporting the use of either Java or C/C++. There are

several single studies using other languages which we do
not report. Fig. 5 suggests that model performance is not
related to the language used.

Fig. 6 shows model performance relative to the granularity
of dependent variables (e.g., whether fault prediction is at the
class or file level). It shows no clear relationship between
granularity and performance. It does not seem to be the case
that higher granularity is clearly related to improved
performance. Models reporting at “other” levels of granular-
ity seem to be performing most consistently. These tend to be
high levels of granularity defined specifically by individual
studies (e.g., Nagappan et al. [S120]).
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5.3 Performance in Relation to Independent
Variables

Fig. 7 shows model performance in relation to the

independent variables used. The Categorical Models
Table in the online Appendix shows how independent

variables as expressed by individual studies have been
categorized in relation to the labels used in Fig. 7. It shows

that there is variation in performance between models using
different independent variables. Models using a wide
combination of metrics seem to be performing well. For

example, models using a combination of static code metrics
(scm), process metrics, and source code text seem to be

performing best overall (e.g., Shivaji et al. [S164]). Similarly
Bird et al.’s study [S18], which uses a wide combination of

socio-technical metrics (code dependency data together
with change data and developer data), also performs well

(though the results from Bird et al.’s study [S18] are
reported at a high level of granularity). Process metrics (i.e.,
metrics based on changes logged in repositories) have not

performed as well as expected. OO metrics seem to have
been used in studies which perform better than studies

based only on other static code metrics (e.g., complexity-
based metrics). Models using only LOC data seem to have

performed competitively compared to models using other
independent variables. Indeed, of these models using only

metrics based on static features of the code (OO or SCM),
LOC seems as good as any other metric to use. The use of

source code text seems related to good performance.
Mizuno et al.’s studies [S116], [S117] have used only source

code text within a novel spam filtering approach to

relatively good effect.

5.4 Performance in Relation to Modeling Technique

Fig. 8 shows model performance in relation to the

modeling techniques used. Models based on Naive Bayes

seem to be performing well overall. Naive Bayes is a well

understood technique that is in common use. Similarly,

models using Logistic Regression also seem to be

performing well. Models using Linear Regression perform

not so well, though this technique assumes that there is a

linear relationship between the variables. Studies using

Random Forests have not performed as well as might be

expected (many studies using NASA data use Random

Forests and report good performances [S97]). Fig. 8 also

shows that SVM (Support Vector Machine) techniques do

not seem to be related to models performing well.

Furthermore, there is a wide range of low performances

using SVMs. This may be because SVMs are difficult to

tune and the default Weka settings are not optimal. The

performance of models using the C4.5 technique is fairly

average. However, Arisholm et al.’s models [S8], [S9] used

the C4.5 technique (as previously explained, these are not

shown as their relatively poor results skew the data

presented). C4.5 is thought to struggle with imbalanced

data [16] and [17] and this may explain the performance of

Arisholm et al.’s models.
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6 SYNTHESIS OF RESULTS

This section answers our research questions by synthesizing
the qualitative and quantitative data we have collected. The
qualitative data consist of the main findings reported by

each of the individual 36 finally included studies (presented

in the Qualitative Data Table in our online Appendix). The

quantitative data consist of the predictive performance of the

individual models reported in the 36 studies (summarized in
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the Categorical and Continuous Models Tables in our online
Appendix). The quantitative data also consist of the detailed
predictive performance data from 19 studies (206 models or
model variants) comparing performance across models
(reported in Section 5). This combination of data addresses
model performance across studies and within individual
studies. This allows us to discuss model performance in two
ways. First, we discuss performance within individual
studies to identify the main influences on model perfor-
mance reported within a study. Second, we compare model
performances across the models reported in 19 studies. This
is an important approach to discussing fault prediction
models. Most studies report at least one model which
performs “well.” Though individual studies usually only
compare performance within the set of models they present
to identify their best model, we are able to then compare the
performance of the models which perform well within a
study across other studies. This allows us to report how well
these models perform across studies.

6.1 Answering our Research Questions

RQ1: How does context affect fault prediction?
Analyzing model performance across the 19 studies in

detail suggests that some context variables may influence
the reliability of model prediction. Our results provide some
evidence to suggest that predictive performance improves
as systems get larger. This is suggested by the many models
built for the Eclipse system. As Eclipse increases in size, the
performance of models seems to improve. This makes some
sense as models are likely to perform better with more data.
We could find no evidence that this improved performance
was based on the maturing of systems. It may be that size
influences predictive performance more than system ma-
turity. However, our dataset is relatively small and
although we analyzed 206 models (or model variants) very
few were based on immature systems. Our results also
suggest that some applications may be less likely to produce
reliable prediction models. For example, the many models
built for embedded telecoms applications generally per-
formed less well relative to other applications. Our results
also show that many models have been built using Eclipse
data. This corpus of knowledge on Eclipse provides a good
opportunity for future researchers to meta-analyze across a
controlled context.

The conventional wisdom is that context determines how
transferrable a model is to other systems. Despite this, none
of the 36 finally included studies directly investigate the
impact on model performance of specific context variables
such as system size, maturity, application area, or program-
ming language. One exception is [S29], which demonstrates
that transforming project data can make a model more
comparable to other projects.

Many of the 36 finally included studies individually
test how well their model performs when transferred to
other contexts (releases, systems, application areas, data
sources, or companies). Few of these studies directly
investigate the contextual factors influencing the transfer-
ability of the model. Findings reported from individual
studies on model transferability are varied. Most studies
report that models perform poorly when transferred. In
fact, Bell et al. [S11] report that models could not be

applied to other systems. Denaro and Pezzè [S37] reported
good predictive performance only across homogenous
applications. Nagappan et al. [S122] report that different
subsets of complexity metrics relate to faults in different
projects and that no single set of metrics fits all projects.
Nagappan et al. [S122] conclude that models are only
accurate when trained on the same or similar systems.
However, other studies report more promising transfer-
ability. Weyuker et al. [S190] report good performance
when models are transferred between releases of systems
and between other systems. However, Shatnawi and Li
[S160] report that the performance of models declines
when applied to later releases of a system. Shatnawi and
Li [S160] conclude that different metrics should be used in
models used for later releases.

The context of models has not been studied extensively
in the set of studies we analyzed. Although every model has
been developed and tested within particular contexts, the
impact of that context on model performance is scarcely
studied directly. This is a significant gap in current
knowledge as it means we currently do not know what
context factors influence how well a model will transfer to
other systems. It is therefore imperative that studies at least
report their context since, in the future, this will enable a
meta-analysis of the role context plays in predictive
performance.

RQ2: Which independent variables should be included

in fault prediction models?
Many different independent variables have been used in

the 36 finally included studies. These mainly fall into
process (e.g., previous change and fault data) and product
(e.g., static code data) metrics as well as metrics relating to
developers. In addition, some studies have used the text of
the source code itself as the independent variables (e.g.,
Mizuno et al. [S116], Mizuno and Kikuno [S117]).

Model performance across the 19 studies we analyzed in
detail suggests that the spam filtering technique, based on
source code, used by Mizuno et al. [S116], Mizuno and
Kikuno [S117] performs relatively well. On the other hand,
models using only static code metrics (typically complexity-
based) perform relatively poorly. Model performance does
not seem to be improved by combining these metrics with
OO metrics. Models seem to perform better using only OO
metrics rather than only source code metrics. However,
models using only LOC seem to perform just as well as
those using only OO metrics and better than those models
only using source code metrics. Within individual studies,
Zhou et al. [S203] report that LOC data performs well.
Ostrand et al. [S133] report that there was some value in
LOC data and Hongyu [S56] reports LOC to be a useful
early general indicator of fault-proneness. Zhou et al. [S203]
report that LOC performs better than all but one of the
Chidamber and Kemerer metrics (Weighted Methods per
Class). Within other individual studies LOC data were
reported to have poor predictive power and to be out-
performed by other metrics (e.g., Bell et al. [S11]). Overall,
LOC seem to be generally useful in fault prediction.

Model performance across the 19 studies that we analyzed
suggests that the use of process data is not particularly
related to good predictive performance. However, looking at
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the findings from individual studies, several authors report
that process data, in the form of previous history data,
performs well (e.g., [S163], [S120]). D’Ambros et al. [S31]
specifically report that previous bug reports are the best
predictors. More sophisticated process measures have also
been reported to perform well. In particular, Nagappan et al.
[S120] introduce “change burst” metrics which demonstrate
good predictive performance (however, these models per-
form only moderately when we compared them against
models from other studies).

The few studies using developer information in models
report conflicting results. Ostrand et al. [S135] report that
the addition of developer information does not improve
predictive performance much. Bird et al. [S18] report better
performances when developer information is used as an
element within a socio-technical network of variables. This
study also performs well in our detailed comparison of
performances (Bird et al. [S18] report results at a high level
of granularity and so might be expected to perform better).

The models which perform best in our analysis of
19 studies seem to use a combined range of independent
variables. For example, Shivaji et al. [S164] use process-
based and SCM-based metrics together with source code.
Bird et al. [S18] combine a range of metrics. The use of
feature selection on sets of independent variables seems to
improve the performance of models (e.g., [S164], [S76],
[S18]). Optimized sets of metrics using, for example, feature
selection, make sense.

RQ3: Which modeling techniques perform best when

used in fault prediction?
While many included studies individually report the

comparative performance of the modeling techniques they
have used, no clear consensus on which perform best
emerges when individual studies are looked at separately.
Mizuno and Kikuno [S117] report that, of the techniques
they studied, Orthogonal Sparse Bigrams Markov models
(OSB) are best suited to fault prediction. Bibi et al. [S15]
report that Regression via Classification (RvC) works well.
Khoshgoftaar et al. [S86] report that modules whose fault
proneness is predicted as uncertain can be effectively
classified using the TreeDisc (TD) technique. Khoshgoftaar
and Seliya [S83] also report that Case-Based Reasoning
(CBR) does not predict well, with C4.5 also performing
poorly. Arisholm et al. [S9] report that their comprehensive
performance comparison revealed no predictive differences
between the eight modeling techniques they investigated.

A clearer picture seems to emerge from our detailed
analysis of model performance across the 19 studies. Our
findings suggest that performance may actually be linked to
the modeling technique used. Overall our comparative
analysis suggests that studies using Support Vector
Machine (SVM) techniques perform less well. These may
be underperforming as they require parameter optimization
(something rarely carried out in fault prediction studies) for
best performance [18]. Where SVMs have been used in other
prediction domains and may be better understood, they
have performed well [19]. Models based on C4.5 seem to
underperform if they use imbalanced data (e.g., Arisholm
et al. [S8], [S9]), as the technique seems to be sensitive to
this. Our comparative analysis also suggests that the models

performing comparatively well are relatively simple tech-
niques that are easy to use and well understood. Naive
Bayes and Logistic regression, in particular, seem to be the
techniques used in models that are performing relatively
well. Models seem to have performed best where the right
technique has been selected for the right set of data. And
these techniques have been tuned to the model (e.g., Shivaji
et al. [S164]), rather than relying on default tool parameters.

7 METHODOLOGICAL ISSUES IN FAULT PREDICTION

The methodology used to develop, train, test, and measure
the performance of fault prediction models is complex.
However, the efficacy of the methodology used underpins
the confidence which we can have in a model. It is essential
that models use and report a rigorous methodology.
Without this, the maturity of fault prediction in software
engineering will be low. We identify methodological
problems in existing studies so that future researchers can
improve on these.

Throughout this SLR, methodological issues in the
published studies came to light. During our assessment of
the 208 initially included studies and the extraction of data
from the 36 finally included studies methodological weak-
nesses emerged. In this section, we discuss the most
significant of these methodological weaknesses. These
generally relate to the quality of data used to build models
and the approach taken to measure the predictive perfor-
mance of models.

7.1 Data Quality

The quality of the data used in fault prediction has significant
potential to undermine the efficacy of a model. Data quality is
complex and many aspects of data are important to ensure
reliable predictions. Unfortunately, it is often difficult to
assess the quality of data used in studies, especially as many
studies report very little about the data they use. Without
good quality data, clearly reported, it is difficult to have
confidence in the predictive results of studies.

The results of our assessment show that data quality is
an issue in many studies. In fact many studies failed our
synthesis assessment on the basis that they either reported
insufficient information about the context of their data or
about the collection of that data. Some studies explicitly
acknowledge the importance of data quality (e.g., Jiang
et al. [S64]).

Collecting good quality data is very hard. This is partly
reflected by the number of studies which failed our
assessment by not adequately explaining how they had
collected their independent or dependent data. Fault data
collection has been previously shown to be particularly
hard to collect, usually because fault data are either not
directly recorded or recorded poorly [20]. Collecting data is
made more challenging because large datasets are usually
necessary for reliable fault prediction. Jiang et al. [S64]
investigate the impact that the size of the training and test
dataset has on the accuracy of predictions. Tosun et al.
[S176] present a useful insight into the real challenges
associated with every aspect of fault prediction, but
particularly on the difficulties of collecting reliable metrics
and fault data. Once collected, data is usually noisy and
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often needs to be cleaned (e.g., outliers and missing values
dealt with [21]). Very few studies report any data cleaning
(even in our 36 finally included studies).

The balance of data (i.e., the number of faulty as opposed
to nonfaulty units) on which models are trained and tested
is acknowledged by a few studies as fundamental to the
reliability of models (see Appendix F for more information
on class imbalance). Indeed, across the 19 studies we
analyzed in detail, some of those performing best are based
on data with a good proportion of faulty units (e.g., [S164],
[S37], [S11], [S74]). Our analysis also suggests that data
imbalance in relation to specific modeling techniques (e.g.,
C4.5) may be related to poor performance (e.g., [S8], [S9]).
Several studies specifically investigated the impact of data
balance and propose techniques to deal with it. For
example, Khoshgoftaar et al. [S76] and Shivaji et al. [S164]
present techniques for ensuring reliable data distributions.
Schröter et al. [S154] base their training set on the faultiest
parts of the system. Similarly, Seiffert et al. [S156] present
data sampling and boosting techniques to address data
imbalance. Data imbalance is explored further in Fioravanti
and Nesi [S43] and Zhang et al. [S200]. Many studies seem
to lack awareness of the need to account for data imbalance.
As a consequence, the impact of imbalanced data on the real
performance of models can be hidden by the performance
measures selected. This is especially true where the balance
of data is not even reported. Readers are then not able to
account for the degree of imbalanced data in their
interpretation of predictive performance.

7.2 Measuring the Predictive Performance of
Models

There are many ways in which the performance of a
prediction model can be measured. Indeed, many different
categorical and continuous performance measures are used
in our 36 studies. There is no one best way to measure the
performance of a model. This depends on: the class
distribution of the training data, how the model has been
built, and how the model will be used. For example, the
importance of measuring misclassification will vary de-
pending on the application.

Performance comparison across studies is only possible if
studies report a set of uniform measures. Furthermore, any
uniform set of measures should give a full picture of correct
and incorrect classification. To make models reporting
categorical results most useful, we believe that the raw
confusion matrix on which their performance measures are
derived should be reported. This confusion matrix data
would allow other researchers and potential users to
calculate the majority of other measures. Pizzi et al. [22]
provide a very usable format for presenting a confusion
matrix. Some studies present many models and it is not
practical to report the confusion matrices for all these.
Menzies et al. [S114] suggest a useful way in which data from
multiple confusion matrices may be effectively reported.
Alternatively, Lessmann [S97] recommends that ROC curves
and AUC are most useful when comparing the ability of
modeling techniques to cope with different datasets (ROC
curves do have some limitations [23]). Either of these
approaches adopted widely would make studies more useful
in the future. Comparing across studies reporting continuous

results is currently even more difficult and is the reason we
were unable to present comparative boxplots across these
studies. To enable cross comparison we recommend that
continuous studies report Average Relative Error (ARE) in
addition to any preferred measures presented.

The impact of performance measurement has been
picked up in many studies. Zhou et al. [S203] report that
the use of some measures, in the context of a particular
model, can present a misleading picture of predictive
performance and undermine the reliability of predictions.
Arisholm et al. [S9] discuss how model performance varies
depending on how it is measured. There is an increasing
focus on identifying effective ways to measure the perfor-
mance of models. Cost and/or effort aware measurement is
now a significant strand of interest in prediction measure-
ment. This takes into account the cost/effort of falsely
identifying modules and has been increasingly reported as
useful. The concept of cost-effectiveness measurement
originated with the Simula group (e.g., Arisholm et al.
[S9]), but has more recently been taken up and developed by
other researchers, for example, Nagappan et al. [S120] and
Mende and Koschke [S109].

7.3 Fault Severity

Few studies incorporate fault severity into their measure-
ment of predictive performance. Although some faults are
more important to identify than others, few models
differentiate between the faults predicted. In fact, Shatnawi
and Li’s [S160] was the only study in the final 36 to use fault
severity in their model. They report a model which is able to
predict high and medium severity faults (these levels of
severity are based on those reported in Bugzilla by Eclipse
developers). Lamkanfi et al. [24], Singh et al. [S167], and
Zhou and Leung [S202] are other studies which have also
investigated severity. This lack of studies that consider
severity is probably because, although acknowledged to be
important, severity is considered a difficult concept to
measure. For example, Menzies et al. [S113] say that severity
is too vague to reliably investigate, Nikora and Munson
[S126] says that “without a widely agreed definition of
severity we cannot reason about it” and Ostrand et al. [S133]
state that severity levels are highly subjective and can be
inaccurate and inconsistent. These problems of how to
measure and collect reliable severity data may limit the
usefulness of fault prediction models. Companies develop-
ing noncritical systems may want to prioritize their fault
finding effort only on the most severe faults.

7.4 The Reporting of Fault Prediction Studies

Our results suggest that, overall, fault prediction studies are
reported poorly. Out of the 208 studies initially included in
our review, only 36 passed our assessment criteria. Many of
these criteria are focused on checking that studies report
basic details about the study. Without a basic level of
information reported it is hard to have confidence in a
study. Our results suggest that many studies are failing
to report information which is considered essential
when reporting empirical studies in other domains. The
poor reporting of studies has consequences for both future
researchers and potential users of models: It is difficult for
researchers to meta-analyze across studies and it is difficult
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to replicate studies; it is also difficult for users to identify
suitable models for implementation.

7.5 NASA Data

NASA’s publicly available software metrics data have
proven very popular in developing fault prediction models.
We identify all 62 studies which use NASA data in the
reference list of the 208 included studies. The NASA data is
valuable as it enables studies using different modeling
techniques and independent variables to be compared to
others using the same dataset. It also allows studies to be
replicated. A meta-analysis of the studies using NASA data
would be valuable. However, although the repository holds
many metrics and is publicly available, it does have
limitations. It is not possible to explore the source code
and the contextual data are not comprehensive (e.g., no data
on maturity are available). It is also not always possible to
identify if any changes have been made to the extraction and
computation mechanisms over time. In addition, the data
may suffer from important anomalies [21]. It is also
questionable whether a model that works well on the NASA
data will work on a different type of system; as Menzies et al.
[S112] point out, NASA works in a unique niche market,
developing software which is not typical of the generality of
software systems. However, Turhan et al. [S181] have
demonstrated that models built on NASA data are useful
for predicting faults in software embedded in white goods.

8 THREATS TO VALIDITY

Searches. We do not include the term “quality” in our
search terms as this would have resulted in the examination
of a far wider range of irrelevant papers. This term
generates a high number of false positive results. We might
have missed some papers that use the term “quality” as a
synonym for “defect” or “fault,” etc. However, we missed
only two papers that Catal and Diri’s [2] searches found
using the term “quality.” This gives us confidence that we
have missed very few papers. We also omitted the term
“failure” from our search string as this generated papers
predominately reporting on studies of software reliability in
terms of safety critical systems. Such studies of reliability
usually examine the dynamic behavior of the system and
seldom look at the prediction of static code faults, which is
the focus of this review.

We apply our search terms to only the titles of papers.
We may miss studies that do not use these terms in the title.
Since we extend our searches to include papers cited in the
included papers, as well as key conferences, individual
journals, and key authors, we are confident that the vast
majority of key papers have been included.

Studies included for synthesis. The 36 studies which
passed our assessment criteria may still have limitations
that make their results unreliable. In the first place, the data
on which these models are built might be problematic as we
did not insist that studies report data cleaning or attribute
selection. Nor did we apply any performance measure-
based criteria. So some studies may be reporting unsafe
predictive performances. This is a particular risk in regard
to how studies have accounted for using imbalanced data.

This risk is mitigated in the categorical studies, where we
are able to report precision, recall, and f-measure.

It is also possible that we have missed studies which
should have been included in the set of 36 from which we
extracted data. Some studies may have satisfied our
assessment criteria but either failed to report what they did
or did not report it in sufficient detail for us to be confident
that they should pass the criteria. Similarly, we may have
missed the reporting of a detail and a paper that should have
passed a criterion did not. These risks are mitigated by two
authors independently assessing every study.

The boxplots. The boxplots we present set performance
against individual model factors (e.g., modeling technique
used). This is a simplistic analysis, as a number of interacting
factors are likely to underpin the performance of a model.
For example, the technique used in combination with the
dataset and the independent variables is likely to be more
important than any one factor alone. Furthermore, metho-
dological issues are also likely to impact on performance; for
example, whether feature selection has been used. Our
boxplots only present possible indicators of factors that
should be investigated within the overall context of a model.
More sophisticated analysis of a larger dataset is needed to
investigate factors influencing model performance.

Our boxplots do not indicate the direction of any
relationship between model performance and particular
model factors. For example, we do not investigate whether a
particular modeling technique performs well because it was
used in a good model or whether a model performs well
because it used a particular modeling technique. This is also
important work for the future. In addition, some studies
contribute data from many models to one boxplot, whereas
other studies contribute data from only one model. This
may skew the results. We do not calculate the statistical
significance of any differences observed in the boxplots.
This is because the data contained within them are not
normally distributed and the individual points represent
averages from different sizes of population.

9 CONCLUSIONS

Fault prediction is an important topic in software engineer-
ing. Fault prediction models have the potential to improve
the quality of systems and reduce the costs associated with
delivering those systems. As a result of this, many fault
prediction studies in software engineering have been
published. Our analysis of 208 of these studies shows that
the vast majority are less useful than they could be. Most
studies report insufficient contextual and methodological
information to enable full understanding of a model. This
makes it difficult for potential model users to select a model
to match their context and few models have transferred into
industrial practice. It also makes it difficult for other
researchers to meta-analyze across models to identify the
influences on predictive performance. A great deal of effort
has gone into models that are of limited use to either
practitioners or researchers.

The set of criteria we present identify a set of essential
contextual and methodological details that fault prediction
studies should report. These go some way toward addres-
sing the need identified by Myrtveit et al. [25] for “more

1292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012



reliable research procedures before we can have confidence
in the conclusions of comparative studies.” Our criteria
should be used by future fault prediction researchers. They
should also be used by journal and conference reviewers.
This would ensure that future studies are built reliably and
reported comparably with other such reliable studies. Of the
208 studies we reviewed, only 36 satisfied our criteria and
reported essential contextual and methodological details.

We analyzed these 36 studies to determine what impacts
on model performance in terms of the context of models, the
independent variables used by models, and the modeling
techniques on which they were built. Our results suggest
that models which perform well tend to be built in a context
where the systems are large. We found no evidence that the
maturity of systems or the language used is related to
predictive performance. But we did find some evidence to
suggest that some application domains (e.g., embedded
systems) may be more difficult to build reliable prediction
models for. The independent variables used by models
performing well seem to be sets of metrics (e.g., combina-
tions of process, product, and people-based metrics). We
found evidence that where models use KLOC as their
independent variable, they perform no worse than where
only single sets of other static code metrics are used. In
addition, models which perform well tend to use simple,
easy to use modeling techniques like Naive Bayes or
Logistic Regression. More complex modeling techniques,
such as support vector machines, tend to be used by models
which perform relatively less well.

The methodology used to build models seems to be
influential to predictive performance. The models which
performed well seemed to optimize three aspects of the
model. First, the choice of data was optimized. In particular,
successful models tend to be trained on large datasets which
contain a relatively high proportion of faulty units. Second,
the choice of independent variables was optimized. A large
range of metrics were used on which feature selection was
applied. Third, the modeling technique was optimized. The
default parameters were adjusted to ensure that the
technique would perform effectively on the data provided.

Overall we conclude that many good fault prediction
studies have been reported in software engineering (e.g.,
the 36 which passed our assessment criteria). Some of these
studies are of exceptional quality, for example, Shivaji et al.
[S164]. However, there remain many open questions about
how to build effective fault prediction models for software
systems. We need more studies which are based on a
reliable methodology and which consistently report the
context in which models are built and the methodology
used to build them. A larger set of such studies will enable
reliable cross-study metaanalysis of model performance. It
will also give practitioners the confidence to appropriately
select and apply models to their systems. Without this
increase in reliable models that are appropriately reported,
fault prediction will continue to have limited impact on the
quality and cost of industrial software systems.
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[153] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “If Your
Bug Database Could Talk,” Proc. Fifth Int’l Symp. Empirical
Software Eng., vol. 2, pp. 18-20, 2006. (Paper=153, Status=F,
Phase=1).
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APPENDIX A

SEARCH STRING

The following search string was used in our searches:
(Fault* OR bug* OR defect* OR errors OR corrections OR

corrective OR fix*) in title only
AND (Software) anywhere in study

APPENDIX B

CONFERENCES AND JOURNALS MANUALLY

SEARCHED

See Table 10

APPENDIX C

ADDITIONAL ASSESSMENT CRITERIA

Data quality criteria. The efficacy of the predictions made

by a model is determined by the quality of the data on

which the model was built. Leibchen and Shepperd [26]

report that many studies do not seem to consider the quality

of the data they use. Many fault prediction models are

based on machine learning, where it has been shown that a

lack of data cleaning may compromise the predictions

obtained [21]. The criteria shown in Table 11 are based on

[21], [S168], [S192], [S194], and [S19].
Predictive performance criteria. Measuring the predic-

tive performance of a model is an essential part of

demonstrating the usefulness of that model. Measuring

model performance is complex and there are many ways in

which the performance of a model may be measured.
Furthermore, the value of measures varies according to
context. For example, safety critical system developers may
want models that identify as many faults as possible,
accepting the cost of false alarms, whereas business system
developers may want models which do not generate many
false alarms as testing effort is short to ensure the timely
release of a product at the cost of missing some faults.
Appendix D reports the principles of predictive perfor-
mance measurement and provides the basis of our
performance measurement criteria. Table 12 shows our
predictive performance measurement criteria.

APPENDIX D

THE PRINCIPLES OF PREDICTIVE PERFORMANCE

MEASUREMENT

This overview of measuring predictive performance is
based on [30], [S61], and [S97]. The measurement of
predictive performance is often based on the analysis of
data in a confusion matrix (shown in Table 13 and
explained further in Table 14). This matrix reports how
the model classified the different fault categories compared
to their actual classification (predicted versus observed).
Many performance measures are related to components of
the confusion matrix shown in Table 14. Confusion matrix-
based measures are most relevant to fault prediction models
producing categorical outputs, though continuous outputs
can be converted to categorical outputs and analyzed in
terms of a confusion matrix.
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Composite performance measures can be calculated by
combining values from the confusion matrix (see Table 15).
“Recall” (otherwise known as the true positive rate,
probability of detection (pd), or sensitivity) describes the
proportion of faulty code units (usually files, modules, or
packages) correctly predicted as such, while “precision”
describes how reliable a prediction is in terms of what
proportion of code predicted as faulty actually was faulty.
Both are important when test sets are imbalanced, but there
is a tradeoff between these two measures [S61]. An
additional composite measure is the false positive rate
(pf), which describes the proportion of erroneous defective
predictions. Thus, the optimal classifier would achieve a pd
of 1, precision of 1, and a pf of 0. The performance measure
balance combines pd and pf. A high-balance value (near 1)
is achieved with a high pd and low pf. Balance can also be
adjusted to a factor in the cost of false alarms which
typically do not result in fault fixes. When the combinations
of pd and pf are plotted, they produce a Receiver Operator

Curve (ROC). This gives a range of balance figures, and it is
usual to report the area under the curve as varying between
0 and 1, with 1 being the ideal value. Table 16 shows other
ways in which the performance of a model can be
measured. Such measures are usually used in models that
produce continuous or ranking results.

APPENDIX E

CALCULATING PRECISION, RECALL, AND F-MEASURE

FOR CATEGORICAL STUDIES (REPORTED IN [31])

Many studies report precision and recall, but others report
pd and pf. If we are to compare the results we need to
convert the results of one paper into the performance
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measures reported by the other paper. In this case, we want

to report everything in terms of precision and recall. We

chose these measures as fault prediction datasets are often

highly imbalanced (Zhang and Zhang [27] and Gray et al.

[12]). When trying to compare the results of one paper with

the results of another paper, it may be necessary to

reconstruct a form of the Confusion Matrix (see Table 13

in Appendix D) where the values are not the sums of

instances, but the frequency of each instance:

1 ¼ TP þ TN þ FP þ FN: ð1Þ

This is possible in many cases when the distribution of

the classes is also reported. To do this we need to know the

frequency of the true class d, where

d ¼ TP þ FN: ð2Þ

It then becomes possible to calculate TP , FP , TN , and

FN as follows:
Given pf and d:

TN ¼ ð1� dÞð1� pfÞ; ð3Þ

FP ¼ ð1� dÞpf: ð4Þ

Given pdðRecallðrÞÞ and d:

TP ¼ d:r; ð5Þ

FN ¼ dð1� rÞ: ð6Þ

Given FNRðTypeIIðt2ÞÞ, pf and d we already have (1), (3),

and (4):

FN ¼ pfð1� dÞt2ð1� t2Þ ; ð7Þ

TP ¼ 1� FN � TN � FP: ð8Þ

Given PrecisionðpÞ, RecallðrÞ, and d we already have (1),

(5), and (6):

FP ¼ FNð1� pÞ
p

¼ dð1� rÞð1� pÞ
p

; ð9Þ

TN ¼ 1� FP � FN � TP: ð10Þ

In some cases d is not available but more performance

measures are provided.
Given ErrorrateðerÞ, FNRðTypeIIðt2ÞÞ, and pf :

d ¼ 1� erð1� t2Þ
pf

; ð11Þ

which can then be used with (3), (4), (7), and (8).
Given PrecisionðpÞ, RecallðrÞ, and AccuracyðaÞ:

d ¼ pð1� aÞ
p� 2prþ r ; ð12Þ

which can then be used with (5), (6), (9), and (10).
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Given AccuracyðaÞ, pf , and FNRðTypeIIðt2ÞÞ:

FP ¼ ð1� t2� aÞpf
pf � t2 ; ð13Þ

TN ¼ ð1� t2� aÞð1� pfÞ
pf � t2 ; ð14Þ

TP ¼ ð1� t2Þðpf � 1þ 1Þ
pf � t2 ; ð15Þ

FN ¼ 1� TP � TN � FP: ð16Þ

Given FP , FN , and d:

TP ¼ d� FP; ð17Þ

which can then be used with (10).
The following values were extracted from [S83]:

er ¼ 0:3127; pf ¼ 0:3134; t2 ¼ 0:2826:

We compute

d ¼ 0:2842:

Giving,

FN ¼ 0:0884; TN ¼ 0:4915; FP ¼ 0:2243; TP ¼ 0:1958:

Finally,

Precision ¼ 0:4661; Recall ¼ 0:6891;

F -measure ¼ 0:5561:

APPENDIX F

THE CLASS IMBALANCE PROBLEM

Substantially imbalanced datasets are commonly used in
binary fault prediction studies (i.e., there are usually many
more nonfaulty units than faulty units) [32], [27]. An
extreme example of this is seen in NASA dataset PC2,
which has only 0.4 percent of data points belonging to the
faulty class (23 out of 5,589 data points). This distribution of
faulty and nonfaulty units—known as the class distribution
—should be taken into account during any binary fault
prediction task. This is because imbalanced data can
strongly influence both the training of a classification model
and the suitability of classifier performance metrics.

When training a classifier using imbalanced data, an
algorithm can struggle to learn from the minority class. This
is typically due to an insufficient quantity of minority class
data. The most common symptom when this occurs is for a
classifier to predict all data points as belonging to the
majority class, which is of little practical worth. To avoid
this happening, various approaches can be used and are
typically based around training-set sampling and/or learn-
ing algorithm optimization. Note that these techniques are
entirely optional, and may not be necessary. This is because
learning techniques vary in their sensitivity to imbalanced
data. For example, C4.5 decision trees have been reported to
struggle with imbalanced data [16] and [17], whereas fuzzy-
based classifiers have been reported to perform robustly
regardless of class distribution [33].

Sampling methods involve the manipulation of training
data in order to reduce the level of imbalance and therefore
alleviate the problems associated with learning from
imbalanced data. Undersampling methods involve redu-
cing the size of the majority class, whereas oversampling
methods involve increasing the size of the minority class.
Such techniques have been reported to be useful [11];
however, they do suffer from drawbacks. With under-
sampling methods, the main problem is deciding which
majority class data points should be removed. With over-
sampling methods, there is a risk of the learning algorithm
overfitting the oversampled data. This will probably result
in good training data performance, but low performance
when the classifier is presented with unseen data (data
independent from that used during training) [11].

Many learning algorithms can have their various para-
meters adjusted in order to boost performance on imbal-
anced data. This can be very effective, as many algorithms
by default assume an equal class distribution during
training. By increasing the misclassification cost of the
minority class, it is possible to construct models that are
better suited to imbalanced domains. Such methods can be
difficult and/or time consuming to approximate appro-
priate misclassification costs.

Additional problems caused by imbalanced data are that
selecting appropriate classifier performance measures is
more difficult. This is because measures which favor the
majority class (such as accuracy and error rate) are no
longer sufficient [11]. More appropriate measures in
imbalanced domains include: precision, recall, f-measure
(see Appendix D), and g-mean [11].

In contrast to the training data, the balance of test data
should be representative of that which will be encountered
in the real world.

There remains significant debate on data imbalance in
fault prediction (see [12], [27], [S179], [28], [29]).
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