
292 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

Model-Driven Development of Control Software for
Distributed Automation: A Survey and an Approach

Chia-Han Yang, Valeriy Vyatkin, and Cheng Pang, Member, IEEE

Abstract—This paper presents a survey on model-driven design
and validation approaches for distributed automation and control
systems with essentially decentralized logic. Driven by the goals
of flexibility and performance improvement, researchers have
explored several approaches to distributed systems design, includ-
ing multiagent systems, middleware, and distributed component
architectures. This also results in several international standards
and reference architectures, such as IEC 61499, OpenRTM, IEC
61804, etc. Verification and validation of distributed systems is
another grand challenge. This survey presents methods of using
traditional and novel modeling and simulation tools in the context
of distributed systems. In particular, this paper then focuses on
the developments related to IEC 61499 standard, which displays
a range of research directions that aim to fill the gaps in the
distributed systems modeling, implementation, and validation.

Index Terms—Distributed systems, function blocks, IEC 61499,
modelling, simulation.

I. Introduction

THE EVER increasing demand for flexibility and reconfig-
urability of control system in manufacturing and process

industries is undisputable, as indicated in many publications,
for example [1]–[3]. The requirement to react on the ever
changing market demands by producing small quantities of
many customized products rather than mass production of
a single product [2], [4], and [5] implies modularity and
reconfigurability of production machinery and the correspond-
ing modularity and distribution of automation hardware and
software.

These trends have been seen in the past but on a limited
scale. For instance, the concept of distributed control systems
(DCS) has been known in process industries for a few decades.
It was influenced by the spatial distribution of the plants.
This approach requires the use of field area networks (i.e.,
fieldbuses) to connect sensors, actuators, and local regulators
with a centralized control unit implementing a control algo-
rithm. However, while increasing the flexibility of hardware
maintenance, this traditional DCS approach has little to do
with flexibility of production.

Manuscript received December 6, 2011; revised June 12, 2012 and March
31, 2013; accepted May 13, 2013. Date of publication November 13, 2013;
date of current version February 12, 2014. This paper was recommended by
Associate Editor T. I. Strasser.

C.-H. Yang is with the Centre for Autonomous System (CAS), Uni-
versity of Technology Sydney, Sydney, NSW 2007, Australia (e-mail:
yang.ch.john@gmail.com).

V. Vyatkin and C. Pang are with the Luleå University of Technology, Luleå
SE-971 87, Sweden.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2013.2266914

In the meantime, the discrete manufacturing industries are
facing similar market challenges. There was a substantial body
of research on the use of so called “intelligent mechatronic
components (IMC)” in order to improve the flexibility of the
production systems [6]–[12]. Such components, possessing
individual functionality or services and equipped with em-
bedded control devices, can be aggregated into automated
machines and systems, arguably easier than traditional me-
chanical and mechatronic components, also enabling easier
reconfiguration of systems composed thereof. The use of such
intelligent components promises essential benefits for design
and reconfiguration of automated production systems thanks to
encapsulation and reuse of a good deal of intellectual property
relevant to a particular mechanical component, machine or
system.

Combination of the decentralized control logic with its
distributed deployment results in a new approach to automa-
tion that is often referred to as distributed intelligence (DI).
In the Webster’s dictionary, “intelligence” is defined as “the
ability to learn or understand or to deal with new or trying
situations.” However, in the industrial automation and control
context (e.g., in [13]) this word is often used to describe
any system with decentralized logic, as opposed to another
kind of distributed architecture, where logic is executed on
one computer device, but sources of data are distributed (e.g.,
a programmable controller with remote I/Os connected via
a fieldbus). The DI approach relies on decentralized control
hardware architecture with multiple controllers in charge of
individual mechatronic devices or assemblies thereof. These
controllers may communicate and collaborate with each other
through common communication channels such as Ethernet
and field area networks.

The existing design paradigms have shown their severe
limitations when it comes to implementation of the DI con-
cept in industry. The limitations pertain to all phases of
system engineering, from requirements formalization, software
construction, verification and validation (V&V), dependable
execution, and maintenance.

This paper provides a summary of various design and
validation concepts that are related to distributed control or
can help in achieving it. To this end, it also surveys modeling
frameworks that are used for V&V of complex automation and
control systems (ACS).

The rest of this paper is structured as follows. Section II
summarized the various sources of DI in automation systems.
This discussion is followed by surveys in three major streams

2168-2216 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 293

related to distributed systems (Section III), model-driven
software engineering (Section IV), and model-driven V&V
(Section V). Section VI examines how the trends from all these
streams have been addressed in the international standard IEC
61499. Section VII presented the elements of IMC architecture
that used IEC 61499 as an enabling technology and attempted
to combine best practices from the surveyed engineering and
control validation streams.

II. Sources of Distributed Intelligence and

Model-Driven Design and Validation

Even traditional centralized automation systems may in-
clude at least four data processing device types communicating
via networks: engineering station with simulation, database
and programming software, human–machine interface (HMI)
device with visualization and human interface software, pro-
grammable logic controller (PLC) with control software and
intelligent sensors or actuators, e.g., motor drives implement-
ing motion control functionality. Ensuring correct operation
of these components requires addressing the issues of correct
coordination, synchronization, and access to shared resources.
The situation aggravates when several controllers need to be
integrated. There is vast theory of distributed computing which
addresses these issues. To mask the complexity of distributed
systems development [14], many distributed programming
languages [15] have been developed by computer scientists;
however none of these is implemented on the existing PLC
platforms. Methods interconnecting PLCs using middleware,
for example [16], or DCOM based PROFInet-CBA [17] lack
system-level view that is needed to validate properties of
entire systems rather than parts thereof. The fact that control
hardware and software in a distributed system may come
from different vendors implies portability and interoperability
requirements. These and other reasons motivate the need
of higher level software models similar to those used in
general purpose software development, e.g., unified modeling
language (UML) [18] and its derivative, SysML [19].

With the growing complexity of PLC controlled systems, the
software complexity is growing as well. To keep up with the
timing requirements, it is often needed to distribute software
across several concurrently running PLCs. It would make
sense to design automation applications as logically distributed
modular software systems with components coordinating their
actions only via message passing. The next step would be
to convert transparently modular organization of automation
software to virtually and physically distributed configurations.
However, the existing PLC programming architecture (stan-
dardized in the form of IEC 61131-3 standard [20]) does not
provide such mechanisms.

The International Electrotechnical Commission (IEC) has
addressed these issues in the IEC 61499 standard [21] by
defining a reference architecture for DCS design using event-
driven modules called function blocks (FBs). This architec-
ture enables application-centric and vendor-independent de-
sign while achieving flexibility in terms of both software
and hardware. According to [22], there is a misconcep-
tion about IEC 61499 that it lacks higher level constructs

convenient for distributed logic design, such as synchronous
and asynchronous messages of UML, but these can be easily
implemented as design-time structures in the corresponding
tools.

Along with the software construction challenges, another
main challenge of distributed systems design is their V&V.
When controllers are independent of each other and distributed
across the system network, the communication intensity be-
tween the controllers would certainly increase. This compli-
cates their testing. Even though the control design is more
manageable through the software module concept, it is still
challenging to grasp the overall behavior of the distributed
system without computer-aided verification process, especially
when each controller in the system network is designed by
a different developer. The software design environment with
advanced validation and verification capabilities that can tackle
challenges of distributed systems design is essential for the
successful implementation of systems with DI.

Closed-loop modeling and simulation is standard in control
engineering. The plant model describes the behavior of the
physical system. The controller sets control inputs of the
plant based on the control algorithms and readings of the
plant’s sensors. According to [23], the benefit of V&V using
closed-loop models is as follows: “The validation of controller
design by itself has no meaning and does not guarantee the
correct behavior of the systems. This simple truth has often
(and is still) misunderstood or even neglected. In fact, from
verification perspective, for example, no liveness property can
be proven by open-loop model.”

Formal V&V are techniques complementary to manual
debugging and simulation based verification. The idea of
formal verification is to prove rigorously (with the help of
software tools) that certain properties hold in the execution of
a control system. In several recent works [24]–[29], the closed-
loop concept has been also brought into the formal verification.

Another major challenge comes from the system engi-
neering side. In order to be used in industry, the perceived
switching cost to the new distributed architectures needs to be
less than the perceived benefit. The costs of the change can
be very substantial especially in restructuring and retraining to
familiarize with the new design approach and new design tools
[30]. This problem also leads to an idea of linking existing
tools and languages with the new ones.

One can conclude that there are three sources of knowledge
used to address inherited complexity of distributed automa-
tion systems design. These include theory and practice of
distributed systems design, model-driven software engineering
and traditional control-engineering approaches that imply soft-
ware and hardware “in the loop” validation and block-diagram
model and code organization. The developments related to
these streams will be surveyed in the three subsequent sections.

III. Distributed Control

A. Challenges of Distributed Implementations

The idea of the truly DCSs originates from the control
implementation in process industry. This is where each phys-
ical element such as heater, motor, pump, or valve is directly



294 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

connected in closed-loop to its own automatic control unit with
possible start/stop activation from a central controller. There is
a belief that the role of central controller can be minimized and
distributed control nodes can achieve the same control goal
communicating in a peer-to-peer manner, making the entire
system more flexible and reliable. In [1], the reconfigurability
was considered as the motivation of distributed control.

Although various applications have been deployed based on
the distributed logic concept and the approach is confirmed to
be useful, the widespread adoption of this concept by industry
is still low. The following challenges have been identified as
the main reasons for that:

1) the risks that accompany every new technology that has
not been proven in large scale industrial applications
[31];

2) lack of mature enough design and development tools for
industrial development [31];

3) paradigm misunderstanding due to the small number of
successful industrial applications [32];

4) increased complexity of the software structure. This
is due to the fact that distributed architecture requires
each distributed node to have accurate status of the
environment and corresponding mechanisms have to be
introduced to guarantee the correct functionality and
reliability of the system [33];

5) lack of industrial recognition of the potentials of the new
technology, due to insufficient publicity of successful
industrial projects [21].

According to [34], early implementations of distributed
automation systems involved splitting the control program into
separate pieces while keeping essentially the same code struc-
ture. This code can be distributed physically throughout the
hardware linked in a communication network. Custom joining
code would then be written to knit the smaller components
into a complete system. While this approach allowed certain
degree of physical distribution, there was no notion of logical
separation of system’s functionality. Thus this would give the
same result as a tightly-coupled computer cluster [35] that runs
a single process.

The complexity of distributed systems design made the
researchers looking for self-organization mechanisms, that has
given rise to the agent-based control concept [36] discussed
in the following section.

B. Multiagent Systems (MAS)

Therefore more modern techniques have been investigated,
describing the notion of an intelligent, autonomous and goal-
oriented agent in a MAS [37] and how this agent-based
concept is used in production or manufacturing systems [38]–
[40]. An agent is a concept that represents an autonomous
combination of software and hardware interacting with the
environment. A MAS is composed of multiple agents commu-
nicating and working together in order to achieve a common
goal. An agent-based architecture provides robustness and flex-
ibility and is proven to be specifically appropriate for dynamic
distributed systems [41]. An agent-based system may include
both local and global controller agents that collaboratively

process the information obtained from sensors and generate
control reactions. As an example in process industry, this
approach is proven to be useful when dealing with a system
of networks of interconnected continuous stirred tank reactors
(CSTRs) [36]. A framework for modeling agent-based control
of service-enabled manufacturing systems is presented in [42].

In a MAS, each single agent exchanges information with
others in order to achieve its own objectives. The functionality
of agents is usually distinguished as high level control or low
level control such as controlling subjacent physical machines.
There are some successfully adopted applications based on
MAS in various industries, for example, steel rod bar mill of
BHP Billiton in Melbourne [43], distributed control of ship
equipment in U.S. Navy shipboard systems [44] and produc-
tion control of semiconductor wafer fabrication facilities called
FABMAS [45]. The low level of those systems comprises
device-specific implementations with IEC 61131-3 compliant
PLCs communicating via technologies such as distributed
component object model (DCOM) and Ethernet. Works [32]
and [46] present examples of modeling distributed agents
communicating through a network for simulation purposes.

Another research stream has been dealing with making
MAS more intelligent based on biological principles, for
example, the holonic manufacturing concept [41], [47]. The
work [41] presents some case studies of MAS applications
in process industry, including an intelligent search system
to provide a knowledge management platform and a system
to provide concurrent process design to ease communication
between system engineers.

C. Summary of Findings

In summary, one can conclude that existing PLC-based
architecture is not sufficient to achieve distributed automation
as it is insufficiently addresses various design transparencies
and introduces too much overhead in execution and design.
The attempts to address the coordination and self-organization
issues via multiagent architectures are promising, but require
the corresponding support in the lower level architecture, i.e.,
an agent-ready next generation PLC.

IV. Software Models and Architectures

A. Model-Driven Software Development

Model-driven design (MDD) is a dominating technology in
general software engineering. In control and automation, the
specific of this approach is that software objects are often
associated with some components of the controlled plant.

Bonfe and Fantuzzi [48] have introduced the use of UML
in automation and Thramboulidis [49] in particular in the
IEC 61499 context. The latter work proposed generation of
FB from UML diagrams, while Dubinin et al. [50] proposed
the UML-FB architecture supporting round-trip engineering of
UML diagrams generation from FB designs and vice versa.

One characteristic concept in the mentioned works is en-
capsulation of hardware and software models of an ACS
into a single design artifact, which can be further reused
by composition to more complex artifacts. In particular, the



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 295

software model can be structured following the mechanical
and functional structure of the hardware model.

For example, the concept of automation object was proposed
in [7] as an abstraction unifying a mechatronic component, an
embedded control device, and a software component. When
designing a new ACS, the automation objects modeling the
components are selected from a repository and then hierarchi-
cally composed following the desired physical structure. The
resultant automation object becomes the central knowledge
base for subsequent MDD phases. The automation object
notion has been subsequently extended and referred to as
IMC in [23], where the closed-loop modeling methodology
and corresponding model transformation approaches are in-
troduced. Each IMC is internally organized following the
model-view-controller (MVC) design pattern [51]. Different
languages and formalisms are employed to develop the domain
specific models. For instance, MATLAB/Simulink can be used
to create the hybrid model capturing both continuous and
discrete dynamics of the IMC while IEC 61499 is used to
model the executable behavior, which can be deployed to the
controllers directly. The net condition/event system formalism
[52] was adopted to define the IMC’s formal model for the
purposes of formal verification.

Sünder et al. [53] presented a similar idea, where the au-
tomation component concept as a variant of automation object
is proposed. The concept includes a universal component
interface and unified hierarchical architecture allowing flexible
reconfiguration of ACSs. This model was later adopted and
extended in the MEDEIA project [54]–[56], which developed a
meta-design architecture allowing domain specific knowledge
to be expressed in its native form and then unified into the
generic automation component model. Thus, model transfor-
mation is reduced to the bidirectional transformation between
the domain specific models and the automation component
model.

Thramboulidis [57] introduced the model-integrated mecha-
tronics paradigm for the model-driven concurrent engineering
of ACSs. The core of this paradigm is the mechatronic
component construct, which is the composition of a mechan-
ical part, an electronic part, and a software part. The MDD
process following this paradigm starts with the modeling of
mechatronic components in the mechatronic layer, which is
vertically projected to the application layer for modeling the
control software; the resource layer for modeling the control
system infrastructure; and finally the mechanical process layer
for modeling the mechanical composition. The UML profile
introduced in [58], [59] is used to support this MDD process
to generate the control application developed in IEC 61499
FB.

A similar MDD idea has also been implemented in the
AUKOTON research project [60]–[62]. In AUKOTON, the
proposed UML automation profile is used to unify the domain
knowledge into a platform independent functional model, from
which PLCopen control code is generated.

SysML is a UML derivative for engineering applications
that is getting increasingly popular. In particular, SysML
supports such design phases as requirements capturing and
formalization of specifications. Hirsch and Hanisch [63] and

Fig. 1. Proposed architecture of RT-component model [67].

Fig. 2. 3-D recognition and tracking using the proposed OpenRTM devel-
opment tools [67].

Hirsch [64] provide a pathway for linking FB technology with
SysML. Thoma et al. [65] use SysML to model fault centric
system for reliability testing.

B. Block-Diagram Design Languages

The block-diagram way of thinking is traditional in control
engineering, and there are a number of languages and tools
that support it. For example, OpenRTM (Robotic Technology
Middleware) is proposed for component-based robot system
integration [66]. The component’s model is shown in Fig. 1

The functionality of the RT component (RTC) is as follows:

1) component metadata for dynamic component assembly;
2) component action and execution context for business

logic execution;
3) data ports for data exchange between RTCs.

There are already various industrial application built based
on this framework, including 3-D recognition, tracking, dy-
namic simulation, learning systems, etc. Fig. 2 shows the 3-D
recognition and tracking implementation example based on
OpenRTM. However, despite a number of applications, this
concept has not been formally standardized and is so far only
applied in the robotics related research projects.

The IEC 61804 standard draft [68], describes the specifi-
cation and requirements of distributed process control sys-
tems based on FB [69]. The electronic device description
language (EDDL) is the language that is stated in part 2
of IEC 61804 specification and describes the properties of
automation system component [68], such as vendor informa-
tion, version of firmware/hardware, data format, etc. Through
this language, all the information will be carried between



296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

Fig. 3. Block-diagram design in SCADE.

the devices (controllers, sensors, actuators and engineering
stations, etc.) by a fieldbus. This language fills in the gap
between the FB specification and product implementation by
allowing manufacturers to use the same description method
for devices of different technologies and platforms. The FB
design of a process control system for example, is only an
abstract representation which may be implemented differently
with different device types [69], such as field devices (FD),
PLCs, visualization stations, and device description (DD).

There are also other popular modeling and simulation tools
such as LabView [70] and SCADE . These tools all follow
the block-diagram based modeling approach. For example,
SCADE is a model based environment mainly used for de-
velopment of safety critical embedded software, a product
of Esterel technologies. With native integration of the syn-
chronous Scade language and its unified formal notation,
SCADE combines unique features for integrated design of
safety critical applications. It covers requirements manage-
ment, MDD, simulation, verification, certified code generation,
and provides interoperability with other development tools and
platforms. SCADE combines a number of models, such as
hierarchical state charts and block diagrams as seen in Fig. 3.

However, despite strong marketing efforts of LabView and
Esterel technologies, their presence in the industrial automa-
tion domain is marginal, partially due to the lack of support
for automation legacy ways of design.

C. IEC 61499 Function Blocks

The IEC established the international standard IEC 61499
[21] to provide a reference software and system architecture
for truly distributed control design. This architecture enhances
the interoperability and reusability of components, aiming

at increasing flexibility and reconfigurability of the control
systems.

The IEC 61499 standard introduces the concept of event-
driven modules, known as FB, to address the increasing
demand of flexibility, reusability, reconfigurability, and dis-
tributed control applications [72]. The standard provides a
graphical method for control flow design, and allows reuse of
algorithms written in the legacy PLC languages. With such
distributable modules, it enables application-driven design,
i.e., full specification of behavior to be completed before
considering hardware layout. This is very different from the
traditional device-driven design approach with PLC where
hardware layout needs to be considered prior to the control
software implementation.

A number of works explored implementation of multiagent
control with IEC 61499 distributed architecture. The fully
distributed approach to baggage handling systems (BHS) au-
tomation was demonstrated in [73] and [74]. A hierarchical
multiagent architecture based on IEC 61499 which enables
elements of self-configuration in manufacturing systems was
developed in [75], and [76] investigates the use of IEC 61499
to implement multiagent control in material handling systems.
The work [77] discusses the architectural solutions for joining
IEC 61499 lower-level agents into upper multiagent manu-
facturing platform. In [78] multiagent control for SmartGrid
automation was reported.

V. Concepts and Environments for Modeling

and Simulation

A. Concepts

This section presents some concepts for modeling of dis-
tributed ACSs. This discussion is followed by a survey of
several modeling tools.



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 297

In general, many automation systems cannot be classified as
purely discrete or purely continuous. For example, in process
industry, it may contain discrete operations such as sequences
of valves openings along a pipeline, as well as continuous
control of flows or of some chemical reactions. Such systems
are also known as hybrid [79]. In process industries, a batch
processing is one example of such a system. The process
in the batch process reactor, for example, can be described
by both continuous variables (e.g., temperature) and discrete
variables (e.g., switches). Batch processing was introduced
first in the production of high value, low volume products,
such as pharmaceutical, cosmetics, and perfume products, and
spread gradually to the food processing and other industries.
Modeling, verification, and validation of systems with hybrid,
i.e., continuous and discrete dynamics, executing intelligent
control algorithms in decentralized nodes, are highly sophis-
ticated. A big challenge will be incurred when introducing
truly distributed control approach into such process control
systems.

Another emerging modeling and design concept is called
cyber physical system (CPS) [80]. A CPS is a class of systems
with a tight coupling and coordination between the physical
and computational elements. Thus the physical processes of
the system are monitored and controlled by their correspond-
ing computational processes. The abstractions available in
modern computing and software engineering require signif-
icant advancement before they allow for full description of
a CPS. One example is lack of capabilities of modeling
adequately concurrent physical processes.

One more trend in modeling complex systems is represented
by the system of systems (SoS) concept. SoS are differenti-
ated from large, complex, but monolithic systems in several
properties, which were first introduced in [81] and [82], and
they are stated as follows:

1) operational independence of the constituent systems;
2) managerial independence of the constituent systems;
3) geographic distribution;
4) emergent behaviors;
5) evolutionary and adaptive development.
Zhou et al. [82] introduced the SoS concept to the domain

of industrial automation, having demonstrated its value for
system-level parameters estimation.

B. Modeling Tools

MATLAB is a numerical modeling environment developed
by MathWorks [83]. It allows matrix manipulations, plotting of
functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs written in other
languages, including C, C+ +, and Fortran. Although MAT-
LAB is intended primarily for numerical modeling, there are
toolboxes available, allowing accesses to symbolic computing
capabilities. An additional package, Simulink, adds graphical
multidomain simulation and MDD for dynamic and embedded
systems. Stateflow is a package provided within Simulink,
providing customizable block described in a form of finite
state machine (FSM).

MATLAB provides a well-developed environment for vali-
dation and verification of models. For example, CHECKMATE

is a MATLAB-based tool for simulation and verification of
hybrid systems with nonlinear continuous dynamics in
Simulink environment [84].

The hybrid system modeling language (HSML) is created
specifically for modeling hybrid systems using state/event and
discrete time modules in MATLAB and SIMULINK [85],
[86]. In [86], it is indicated that HSML is particularly useful
for time and state-event handling. There are also some other
software tools for simulation and verification of different types
of hybrid systems, such as HyTech [87] which uses symbolic
model checking techniques in continuous state space to verify
systems modeled with linear hybrid automata (LHA), and
VERDICT [88] that provides an environment for modular
modeling and simulation for timed and hybrid systems.

The Ptolemy II modeling environment also aims at modeling
and simulation of hybrid systems [89]. Here, a hybrid system
can be modeled by a FSM with continuous time (CT) models.
Ptolemy II is very similar to Simulink as it is also a graphical
tool and can build system models by using a network of block-
diagram representation. Another claim of Ptolemy II is its
ability to model cyber-physical systems.

Modelica is an object-oriented, equation based language
for modeling physical systems (e.g., mechanical, electrical,
electronics, thermal, etc.) [90]. The free Modelica Standard
Library, developed by The Modelica Association, contains
approximately 1280 generic model components and 910 func-
tions in various domains (Version 3.2). This language is
used in various modeling and simulation environments and
software tools, such as OpenModelica [91], MapleSim [92],
MathModelica [93], etc. In these modeling environments,
visual component modeling is also supported.

C. Simulation Environments for Distributed Systems

Santos et al. [94] present an industrial case study of a dis-
tributed continuous process simulation of a beet sugar factory.
This simulation work is done by using DCOM components
written with a modeling language called EcosimPro.

Another example is distributed simulation (DS) toolbox for
MATLAB [95]. The DS Toolbox for Simulink and State-
flow enables the realization and simulation of distributed
Simulink or Stateflow models. It provides blocks with the
same structuring functionality but with additional features
for parallel and DS: subsystems are handled as black-boxes
in the master model and are implemented and simulated in
separate Simulink instances (slave models) on the same or
even on distant computers. The user can create their models
in the common way and distribute these on several computers
which are interconnected via a standard network. During the
simulation all connected models on all computers run truly in
parallel (co-simulation).

Mahalik and Kim [96] address specification of requirement,
design, and development of a hardware-in-the-loop simula-
tion (HILS)-based tool for the configuration, validation, and
management of DCSs. The tool supports modularity, flexibil-
ity, user-friendliness, and multiuser capability. The utility of
the developed tool is tested through case studies with two
exemplar platforms such as a printed circuit board drilling
machine and semiautonomous mobile robotic systems. In [97],



298 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

this paper is extended by support of virtual DCSs capturing
specification, methodology, and prototype design and capable
of providing services to the proposed management layer that
integrates simulation platform, a top-level ware, by using
which distributed control network design can be achieved.

D. Common Problems and Challenges

According to what has been described above, there is still no
single validation tool that for both simulation and formal veri-
fication of DCSs. It would be beneficial if a software package
contained preset models specifically for process control (i.e.,
models for pipe-line, valve, etc.). The tools handling hybrid
systems only work with their own modeling language and do
not support code generation for implementation on distributed
hardware. A possible way of achieving this is suggested in
[23].

Most of the tools described above can handle hybrid sys-
tems, but they are not intended to deal with systems with
decentralized intelligence. The FB architecture of the IEC
61499 standard, discussed in the next section, can possibly
fill this gap, as it was established specifically to handle
decentralized design with direct deployment functionality.

VI. IEC 61499 Distributed FB Architecture

A. Requirements

As a conclusion from the previous review, one can state
that development frameworks for distributed systems have to
support their efficient design and validation by providing the
following transparencies:

1) description, coordination, and deployment of distributed
processes;

2) easy conversion of component organization to dis-
tributed organization (i.e., from virtually distributed to
physically distributed systems);

3) support of model-driven software engineering;
4) support of legacy design approaches;
5) ability to implement various functionalities of automa-

tion systems;
6) description of plant-controller closed loop systems re-

quired for implementation of Hardware in the Loop
(HiL) or Software in the Loop (SiL) simulation con-
figurations.

In the following parts of this section it will be shown how
these requirements are addressed in the IEC 61499 architecture
as compared to the traditional PLC architecture.

B. Addressing Requirements and Comparison with State of the
Art

IEC 61499 is an open standard aimed at supplementing IEC
61131-3 [20] standard by adding modern design features and
hardware abstraction.

It is possible to build distributed systems with IEC
61131-3 PLCs, but with much increased performance and
design penalties and overheads [98]. These include longer
engineering time to work out the ownership of the output

modules and heavily increased communication overhead time
between PLCs for data exchange over field bus, etc.

Other advantages of IEC 61499 over PLCs include the
following.

1) Transparent mapping of IEC 61499 FB applications to
different devices is enhanced by event-driven control
flow definition and supported by tools which insert
the required communication code as required. Therefore
hardware configuration of controllers may be selected at
the end of development process. In the case of typical
PLC development, knowing the exact layout of PLCs
and connected I/Os is mandatory at the beginning of
development.

2) The existence of global variables in PLC programming
languages hinders reuse of components.

3) The order of components invocation within a PLC scan
is implicit. There are mechanisms to explicitly define
the order, but these require manual change of the order
in case if a new component is inserted or deleted,
increasing the risk of introducing errors.

4) HMI elements can be encapsulated into software com-
ponents along with control logic, making the generation
of the entire system HMI simpler. This opportunity has
been demonstrated in the nxtStudio tool [99].

C. Pilot Applications of IEC 61499

The benefits of the FB architecture are being explored
by researchers both in discrete manufacturing systems and
in the process industry [100]. For example in [101], spe-
cific distributed process control programming tools for FB
description were developed, and the problems occurring when
introducing this new standard into the process control domain
were investigated. As a starting point, researchers integrated
models to a lab-scale model of batch process such as the
FESTO mini pulp process (MPP) model. From the results, the
authors of [101] are seeking a migration path to this recently
developed standard for the distributed batch process industry
and are attempting to exploit the IEC 61499 model in the
batch process. Here, a hybrid approach of integration IEC
61499 with UML is explored to address the current trends
in software engineering such as component based and model
driven development [102]. This approach aims to transform
and reduce switching cost from the ISA SP88 [103], an
industrially accepted family of standards in batch control, to
IEC 61499.

Also, the work [30] has specifically exploited the possible
migration path to IEC 61499 standard for the distributed pro-
cess industry by considering switching cost. It stated that the
adoption of this new standard is only possible if the perceived
switching cost is less than the perceived benefits. From their
previous experiments with professionals, the switching cost is
very high due to the bewildering range of design decisions.
Therefore direct adoption in the context of IEC 61499 cannot
be applied successfully. Their proposed solution is to use SP88
standard as a specification and set up formal rules or general
guidelines to construct corresponding IEC 61499 blocks [30],
104]. It is also suggested the component based approach for
the batch process industry presented in [105] may ease the



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 299

adoption. Even though switching cost is highly reduced as
a result, this approach introduces retraining cost. Therefore
improving the industrial acceptance of IEC 61499 in industry
still remains to be a challenge.

D. Tools

This section describes some design environments and design
approaches developed for IEC 61499 FB. Over the years,
several development tools and systems complying with IEC
61499 were already presented to and even introduced into the
market. These tools include:

1) FB Development Kit (FBDK) [106];
2) Engineering Support System CORFU [107];
3) 4DIAC IDE [108];
4) ISaGRAF workbench [109];
5) nxtStudio [99];
6) Synchronous Compiler [110];
7) Cyclic run-time [111].
FBDK is one of the earliest well-developed tools for FB de-

velopment. Even though it is considered mainly as a research
tool, it is capable for demonstrating various benefits of FB in
practice, such as system-level modeling of distributed systems
and code deployment. The tool is Java-based and relies on a
Java-based run-time called FB run time (FBRT) in execution.

CORFU is an Engineering Support System that extends the
IEC 61499 model to cover requirements specifications using
UML. Thus CORFU adopts a hybrid model-based approach
for the development of automation control systems that inte-
grates UML with the FB concept.

4DIAC is another pioneering open-source tool in FB de-
velopment that compiles FB applications for execution on a
C-based run-time called FORTE. Both FBRT and FORTE can
be used in this tool for code deployment.

ISaGRAF [109] is tool based on a combination of IEC
61131-3 and IEC 61499 standards. Due to this fact, the
specification of the FB execution model is based on cyclic
execution, similar to that the IEC 61131-3 PLC programming
environments.

The NxtStudio tool is developed by NxtControl [99]. The
tool uses a customized FORTE run-time. The tool introduces a
novel composite automation type (CAT) that is a FB including
visualization functionality for visualized simulation purposes,
by directly following the MVC concept.

The Synchronous Compiler compiles FB applications into
C code. This compiler is based on the synchronous execution
model [110] and is proven to be very efficient in terms of the
target code performance [112]. It can be very useful in the
context of distributed control where the model can sometimes
be big in size and resource consuming in simulation. Such
models can be transformed to the open IEC 61499 form to
be run efficiently on distributed or centralized platforms, as
proposed by Yang and Vyatkin [113].

E. Gaps

Great expectations for the IEC 61499 technology have
been partially cooled down by its slow adoption in industry
and a number of technical issues discovered through pilot
implementation and related research.

The slow adoption can be explained by such factors, as
relatively small share of systems requiring essentially decen-
tralized logic, as compared to traditionally centralized control.
Changing the design paradigm from centralized to distributed
is a way to handle the design complexity, but requires over-
coming quite steep educational curve. Tools supporting the
new standard have to be mature enough to compete with PLC
tools that have been refined through decades. This creates
a classic “chicken and egg” situation; there is insufficient
investment to polish the tools, which is possible only in real-
life large scale development activities.

The implementation of the interoperability promise of IEC
61499 tools depends on the availability of libraries of com-
munication FB for particular protocols. The tools existing on
the market support communication via TCP/IP protocol, along
with Profibus, EtherCAT, Modbus, and CIP. These libraries are
usually platform dependent, but can have uniform interfaces
across different platforms.

The portability of IEC 61499 applications is secured through
a number of measures, such as XML based representation
format, as well as run-time environments with standardized
services and interfaces which mask platform dependencies
like virtual machines. Nevertheless, 100% portability between
existing tools has not been achieved yet, mainly due to the
fact that real need for portability has not yet been demanded
by the customers due to low market penetration.

There have been certain semantic gaps in the first edition of
IEC 61499 standard as a consequence of the way of finding
compromise between several industrial players. For example,
the message passing communication in distributed systems
creates a fundamental determinism challenge. It is modeled
in IEC 61499 by using the event abstraction. However, its
implementation at the low level can be done in different ways.
In the second edition of IEC 61499 the semantic gaps have
been substantially reduced.

Detailed discussion of the gaps is clearly outside the scope
of this survey. They are being discussed in the research
publications [114]–[116] and solutions get implemented in the
newer generation of tools [117]. Therefore, in the authors’
opinion, the IEC 61499 architecture represents a sound base
for bringing the MDD to the distributed automation practice.

VII. Synergy of Model-driven Concepts

As it can be concluded from the previous discussion, there
are attempts to address design complexity of automation
systems both in terms of model-driven software design, and in
terms of their model-driven V&V. In this section, an attempt
of synergy of these activities is presented that results in the
concept of IMC architecture. An IMC is composed according
to the MVC pattern described in the following subsection.

A. MVC Design Pattern

MVC design pattern [118] is adapted by Christensen in [51]
to the domain of industrial automation and integrated with
the IEC 61499 standard architecture. According to the MVC
pattern as indicated in Fig. 4, software is organized from two



300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

Fig. 4. MVC design pattern architecture [23].

Fig. 5. Sketch of the IMC-based engineering framework supporting the
integrated validation [23].

core interconnected components and several auxiliary ones.
The core components are:

1) Autonomous (low-level) Controller: implements a set of
operations, published as services to be used directly or
by higher level controller-coordinator, and

2) Object: provides an interface to the input/output signals
of the IMC, or to one of the behavioral models included
in its IP repository.

The behavioral models, provided in a repository, can be used
for verification of the IMC’s behavior, or as building blocks for
creating the behavioral model of the composite system. Iden-
tical interface makes the model component interchangeable
with the object component, thus providing an easy pathway
from simulation to deployment. The combination of these two
functions enables simulation of the system in closed-loop with
the actual, ready for deployment control code. Moreover, the
simulation model is created with a high degree of components’
reuse.

Additionally, the view component supports interactive simu-
lation by rendering the system’s status based on the parameters
provided by the model. It also can be reused in different
deployment scenarios. Being connected to the real object
instead of the model, the view component will render the
object’s status in real time. Other functional components, such

Fig. 6. Visualization of distributed control implemented with nxtControl
[99].

as diagnostics and database logger are also fed by the data
from the object or the model. In contrast, the HMI component
is connected in the closed-loop with the controller.

B. Intelligent Mechatronic Components Architecture

The intelligent mechatronics component (IMC) architecture
was proposed in [23] as an attempt to address both design
and validation challenges of distributed systems. The idea is
to allow the developer thinking in terms of machines or their
autonomous parts thereof by increasing the level of abstrac-
tion. IMCs are structured according to the MVC pattern. As
a result, distributed controller and simulation model can be
automatically generated for a system composed of independent
modules in a drag-and-drop design environment.

The MVC pattern allows precise closed-loop simulation
and formal verification of complex mechatronic systems by
reusing models of their constituent parts. Vendors of devices,
machines, or components following the IMC architecture will
provide not just the controller program code but also the model
of the components. The component models will be capable
of communicating and exchanging data with one another.
This allows end users to immediately establish a model of
the system built from the collection of such components, for
validation and verification purpose. An overview of the design
flow can be seen in Fig. 5.

As a result of using this framework, the model of the
system’s behavior can be designed with high degree reuse of
the component models.

C. Use Case Examples

Distributed controls of BHS have been implemented in the
authors’ research group. This include a simulation for real-
time tracking based on time prediction [73] and also using
ISaGRAF tool with an OPC server (see Fig. 7) [74]. Both
examples shown here are the representations of small airport
BHSs.



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 301

Fig. 7. BHS visualization communicating via OPC server with ISaGRAF distributed control [74].

The nxtControl company has also demonstrated some visu-
alized simulation examples with the development of their IEC
61499 compliant development tool called nxtStudio [99]. They
implement the view component by using the CAT concept
where a FB model is linked with a visualized element. Fig. 6
shows one of the examples from the building management
systems sector.

Here a set of controls and displays in a room is represented
by FB connected to a FB implementing PID controller. The
network of FB is encapsulated to a composite FB “Room,”
which can be assembled to floors and buildings. A remarkable
feature of the CAT concept is ability to combine control logic
with HMI elements and faceplates. This eliminates the need
in third party SCADA design tools. NxtStudio automatically
splits these functionalities and deploys them onto HMI panels
versus embedded control devices.

D. Verification and Validation

V&V are software quality control procedures. Verification
is ensuring that the product has been built according to the
requirements and design specifications. Validation ensures that
the product meets the user’s needs, and that the specifications
were correct in the first place. There are numerous works on
V&V of IEC 61499 based systems, which can be classified in
three categories: simulation, formal verification, and specifica-
tion compliance. The specification compliance at an abstract
level before actual design and implementation can be done by
bridging FB with UML or SysML, for example [8], [50], [51],
[64], [102], and [115].

Simulation and model-checking are both verification tech-
niques used in industrial automation, e.g., as exemplified in
[119]. The use of simulation in a FB integrated develop-
ment environment was demonstrated in [51]. A simulation
run helps to check system’s correctness for one specific
behavior scenario (i.e., with a fixed set of input param-

eters). Formal verification via model-checking [120]–[122]
proves the system’s correctness for all scenarios. The use of
model-checking in industrial automation was exemplified in
[119]. The formal verification of FB is done through their
modeling in various formal languages, such as NCES, Timed
automata, State charts, etc., which can be verified using model-
checkers such as SESA, ViVe, and SMV [123]–[127].

Both model-checking and simulation can take an important
role in the design flow of distributed systems, especially the
complex ones. Particularly with the tool chain and the design
flow suggested in [23], because of the benefits of modular
design (the software reusability with encapsulated models and
programming codes for validation and deployment purpose),
simulation, and validation can be implemented in parallel
with the system design to check the system’s correctness. If
there is any issue of violating specifications, a change made
to the system validation model will also correspond to a
change in the code for deployment. Once the validation is
completed, the software program is ready to be deployed into
the real hardware.

One idea, proposed in [113], is to link FB design envi-
ronments with popular tools such as MATLAB where proper
validation and verification can already be performed. This
can immediately show benefits by saving time and cost
for redeveloping the model for validation and verification
purpose.

The problem for wider adoption of the closed-loop verifi-
cation in the broader area of industrial automation is the lack
of model design methods, which can transform this activity
from a form of art to a systematic routine well integrated into
usual activities of control engineers. It has been demonstrated
in a number of publications [51], [72], and [73], that using
FB as a modeling language is feasible and beneficial. Another
possible use of models is implementation of model-predictive
control in a FB-compliant embedded controller.



302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

TABLE I

Comparative Analysis of Several Model-Driven Control Design and Validation Concepts

VIII. Conclusion

This paper surveyed the developments related to MDD
and validation of distributed automation systems. Various
engineering concepts and software tools were evaluated and
discussed, including IEC 61131, MATLAB Simulink, SCADE,
OpenRTM, and IEC 61499. Engineering approaches such as
block-diagram programming language and MVC concept are
considered valuable to the design and validation process for
distributed systems. Table I summarized the capabilities of
each model-driven control design and validation concepts,
and an attempt to quantify differences between some of
the surveyed was made. The technologies were evaluated
against their capabilities to support design models and features
using a simple 0–2 scale, where 0 means “not supported,”
1 is “partially supported” and 2 is “can support.” The IEC
61499 technology scores the highest among the surveyed list,
attributed to the fact it is a new generation development that
aims at combining “best of many worlds” features.

One of the conclusions that can be drawn from this paper
is that there is inherent intertwining between modeling in the
control sense and model-driven software engineering. It has
been shown that the FB architecture of IEC 61499 incorporates
several trends from both domains and allows for most natural
implementation of DCSs, where validation capabilities are
built in along with the features addressing classic distributed
systems design challenges. The IMC architecture, built “on
top” of IEC 61499, aims at filling the gap in validation and
verification environment for distributed automation systems.

References

[1] N. N. Chokshi and D. C. McFarlane, A Distributed Coordination
Approach to Reconfigurable Process Control. London, U.K.: Springer,
2008.

[2] U. H. Felcht, R. C. Darton, R. G. H. Prince, and D. G. Wood, “The
future shape of the process industries,” in Chemical Engineering:
Visions of the World. Amsterdam, The Netherlands: Elsevier Science
B.V., 2003, pp. 41–66.

[3] C.-H. Yang and V. Vyatkin, “Design and validation of distributed
control with decentralized intelligence in process industries: A survey,”
in Proc. 6th IEEE Int. Conf. Ind. Inf., Daejeon, Korea, 2008, pp. 1395–
1400.

[4] A. Tsuchiya, Y. Ikkai, and N. Komoda, “Development of a distributed
process control programming tool for function block description,”
in Proc. 7th IEEE Int. Conf. Emerging Technol. Factory Autom.,
Barcelona, Spain, 1999, pp. 1321–1325.

[5] N. Shah, “Process industry supply chains: Advances and challenges,”
Comput. Chem. Eng., vol. 29, no. 6, pp. 1225–1236, Jan. 2005.

[6] V. Vyatkin, “Intelligent mechatronic components: Control system en-
gineering using an open distributed architecture,” in Proc. 9th IEEE
Conf. Emerging Technol. Factory Autom., Lisbon, Portugal, 2003, pp.
277–284.

[7] V. Vyatkin, J. H. Christensen, J. L. M. Lastra, and F. Auinger,
“OOONEIDA: An open, object-oriented knowledge economy for in-
telligent industrial automation,” IEEE Trans. Ind. Inform., vol. 1, no.
1, pp. 4–17, Feb. 2005.

[8] S. D. Panjaitan, Development Process for Distributed Automation
Systems Based on Elementary Mechatronic Functions. Maastricht,
Germany: Shaker Verlag GmbH, 2008.

[9] J. L. M. Lastra, Reference Mechatronic Architecture for Actor-
Based Assembly Systems. Tampere, Finland: Tampere Univ. Technol.,
2004.

[10] C. Secchi, M. Bonfe, C. Fantuzzi, R. Borsari, and D. Borghi, “Object-
oriented modeling of complex mechatronic components for the manu-
facturing industry,” IEEE/ASME Trans. Mechatron., vol. 12, no. 6, pp.
696–702, Dec. 2007.

[11] K. Thramboulidis, “Comments on object-oriented modeling of complex
mechatronic components for the manufacturing industry,” IEEE/ASME
Trans. Mechatron., vol. 13, no. 4, pp. 485–487, Aug. 2008.

[12] K. Thramboulidis, “Challenges in the development of mechatronic
systems: The mechatronic component,” in Proc. 13th IEEE Int. Conf.
Emerging Technol. Factory Autom., Hamburg, Germany, 2008, pp. 624–
631.

[13] I. Terzic, A. Zoitl, B. Favre, and T. Strasser, “A survey of distributed
intelligence in automation in European industry, research and market,”
in Proc. 13th IEEE Int. Conf. Emerging Technol. Factory Autom.,
Hamburg, Germany, 2008, pp. 221–228.

[14] A. S. Tanenbaum and M. van Steen, Distributed Systems. Reading,
MA, USA: Addison Wesley, 2004.

[15] S. Haridi, P. Van Roy, P. Brand, and C. Schulte, “Programming
languages for distributed applications,” New Generation Comput., vol.
16, no. 3, pp. 223–261, Sep. 1998.

[16] R. Tirtea, G. Deconinck, V. De Florio, and R. Belmans, “QoS monitor-
ing at middleware level for dependable distributed automation systems,”
in Proc. 13th Int. Symp. Softw. Reliab. Eng., Annapolis, MD, USA,
2002, pp. 217–218.

[17] K. Trkaj, “Users introduce component based automation solutions,”
Comput. Control Eng. J., vol. 15, no. 6, pp. 32–37, Dec.–Jan.
2004.

[18] M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Reading, MA, USA: Addison-Wesley
Longman, 2000.

[19] T. Weilkiens, Systems Engineering With SysML/UML: Modeling, Anal-
ysis, Design. San Mateo, CA, USA: Morgan Kaufmann, 2007.

[20] International Electrotechnical Commission, Programmable
Controllers—Part 3: Programming Languages, 2nd ed, IEC 61131-3
Standard, International Electrotechnical Commission, Geneva,
Switzerland, 2003.

[21] M. Pechoucek, M. Rehak, and V. Marik, “Expectations and deployment
of agent technology in manufacturing and defence: Case studies,” in
Proc. AAMAS, 2005, pp. 100–106.

[22] K. Thramboulidis, “IEC 61499: Back to the well proven practice of
IEC 61131?” in Proc. 17th IEEE Conf. Emerging Technol. Factory
Autom., Cracow, Poland, 2012, pp. 1–8.

[23] V. Vyatkin, H. M. Hanisch, C. Pang, and C.-H. Yang, “Closed-loop
modeling in future automation system engineering and validation,”
IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 39, no. 1, pp.
17–28, Jan. 2009.

[24] H.-M. Hanisch, “Closed-loop modeling and related problems of em-
bedded control systems in engineering,” in Abstract State Machines
2004. Advances in Theory and Practice, vol. 3052, W. Zimmermann
and B. Thalheim, Eds. Berlin/Heidelberg, Germany: Springer, 2004,
pp. 6–19.



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 303

[25] V. Vyatkin and H.-M. Hanisch, “Verification of distributed control
systems in intelligent manufacturing,” J. Intell. Manuf., vol. 14, no.
1, pp. 123–136, 2003.

[26] J. M. Machado, B. Denis, J. J. Lesage, J. M. Faure, and J. C. L. F. D.
Silva, “Increasing the efficiency of PLC program verification using a
plant model,” in Proc. 6th Ind. Eng. Prod. Manage., Porto, Portugal,
2003, pp. 10–16.

[27] H.-M. Hanisch and A. Lüder, “Modular modeling of closed-loop
systems,” in Proc. Colloq. Petri Net Technol. Modeling Commun. Based
Syst., Berlin, Germany, 2000, pp. 103–126.

[28] M. Perin and J.-M. Faure, “Coupling timed plant and controller models
with urgent transitions without introducing deadlocks,” in Proc. 17th
IEEE Conf. Emerging Technol. Factory Autom., Cracow, Poland, 2012,
pp. 1–9.

[29] S. Preuse, H. Lapp, and H. Hanisch, “Closed-loop system modeling,
validation, and verification,” in Proc. 17th IEEE Conf. Emerging
Technol. Factory Autom., Cracow, Poland, 2012, pp. 1–8.

[30] J. Peltola, J. Christensen, S. Sierla, and K. Koskinen, “A migration
path to IEC 61499 for the batch process industry,” in Proc. 5th IEEE
Int. Conf. Ind. Inform., Vienna, Austria, 2007, pp. 811–816.

[31] M. Pěchouček and V. Mařik, “Industrial deployment of multiagent
technologies: Review and selected case studies,” Int. J. Autonomous
Agents Multi-Agent Syst., vol. 17, no. 3, pp. 397–431, 2008.

[32] G. Cândido and J. Barata, “A multiagent control system for shop floor
assembly,” in Proc. 3rd Int. Conf. Ind. Appl. Holonic Multi-Agent Syst.
Holonic Multi-Agent Syst. Manuf., Regensburg, Germany, 2007, pp.
293–302.

[33] A. Ranganathan and R. H. Campbell, What Is the Complexity of
a Distributed System? Urbana, IL, USA: Univ. Illinois at Urbana-
Champaign, 2003.

[34] K. H. Hall, R. J. Staron, and A. Zoitl, “Challenges to indus-
try adoption of the IEC 61499 standard on event-based function
blocks,” in Proc. 5th IEEE Int. Conf. Ind. Inf., Vienna, Austria, 2007,
pp. 823–828.

[35] D. A. Bader and R. Pennington, “Cluster computing: Applications,”
Int. J. High Perform. Comput., vol. 15, no. 2, pp. 181–185, May 2001.

[36] E. Tatara, A. Cinar, and F. Teymour, “Control of complex distributed
systems with distributed intelligent agents,” J. Process Control, vol. 17,
no. 5, pp. 415–427, 2007.

[37] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[38] M. Obitko, P. Vrba, V. Marı́k, M. Radakovic, and P. Kadera, “Applica-
tions of semantics in agent-based manufacturing system,” Informatica
(Slovenia), vol. 34, no. 3, pp. 315–330, Oct. 2010.

[39] M. Vall, H. Kaindl, M. Merdan, W. Lepuschitz, E. Arnautovic, and P.
Vrba, “An automation agent architecture with a reflective world model
in manufacturing systems,” in Proc. IEEE Int. Conf. Syst. Man Cybern.,
San Antonio, TX, USA, 2009, pp. 305–310.

[40] J. Barata, L. Camarinha-Matos, and G. Cı́ndido, “A multiagent-based
control system applied to an educational shop floor,” Robot. Comput.-
Integr. Manuf., vol. 24, no. 5, pp. 597–605, Oct. 2008.

[41] A. Aldea, R. Banares-Alcantara, L. Jimenez, A. Moreno, J. Martinez,
and D. Riano, “The scope of application of multiagent systems in the
process industry: Three case studies,” Expert Syst. Appl., vol. 26, pp.
39–47, 2004.

[42] V. Villasenor Herrera, A. Vidales Ramos, and J. L. Martinez Lastra,
“A framework for modeling agent-based control of service-enabled
manufacturing systems,” in Proc. 10th IFAC Workshop Intell. Manuf.
Syst., Lisbon, Portugal, 2010, pp. 49–54.

[43] V. Mařı́k, P. Vrba, K. H. Hall, and F. P. Maturana, “Rockwell
automation agents for manufacturing,” in Proc. 4th Int. Joint Conf.
Autonomous Agents Multiagent Syst., Amsterdam, The Netherlands,
2005, pp. 107–113.

[44] F. P. Maturana, P. Tichý, P. Slechta, F. Discenzo, R. J. Staron, and
K. Hall, “Distributed multiagent architecture for automation systems,”
Expert Syst. Appl., vol. 26, no. 1, pp. 49–56, 2004.

[45] L. Mönch, M. Stehli, and J. Zimmermann, “FABMAS: An agent-
based system for production control of semiconductor manufactur-
ing processes,” in Holonic and Multi-Agent Systems for Manufactur-
ing, vol. 2744, V. Marı́k, D. McFarlane, and P. Valckenaers, Eds.
Berlin/Heidelberg, Germany: Springer, 2004, p. 1085.

[46] R. W. Brennan and W. O, “A simulation test-bed to evaluate multiagent
control of manufacturing systems,” in Proc. 32nd Conf. Winter Simul.,
Orlando, FL, USA, 2000, pp. 1747–1756.

[47] P. Vrba and V. Marik, “Simulation in agent-based manufacturing
control systems,” in Proc. IEEE Int. Conf. Syst. Man Cybern., 2005,
pp. 1718–1723.

[48] M. Bonfe and C. Fantuzzi, “Design and verification of mechatronic
object-oriented models for industrial control systems,” in Proc. 9th
IEEE Conf. Emerging Technol. Factory Autom., Lisbon, Portugal, 2003,
pp. 253–260.

[49] K. C. Thramboulidis, “Using UML in control and automation: A
model driven approach,” in Proc. 2nd IEEE Int. Conf. Ind. Inf., Berlin,
Germany, 2004, pp. 587–593.

[50] V. Dubinin, V. Vyatkin, and T. Pfeiffer, “Engineering of validatable
automation systems based on an extension of UML combined with
function blocks of IEC 61499,” in Proc. IEEE Int. Conf. Robot. Autom.,
Barcelona, Spain, 2005, pp. 3996–4001.

[51] J. H. Christensen, “Design patterns for systems engineering with IEC
61499,” in Proc. Verteilte Automatisierung—Modelle und Methoden
für Entwurf, Verifikation Engineering Instrumentierung, Magdeburg,
Germany, 2000, pp. 63–71.

[52] M. Rausch and H. M. Hanisch, “Net condition/event systems with mul-
tiple condition outputs,” in Proc. Joint IEEE/INRIA Symp. Emerging
Technol. Factory Autom., Paris, France, 1995, pp. 592–600.

[53] C. Sünder, A. Zoitl, and C. Dutzler, “Functional structure-based mod-
eling of automation systems,” Int. J. Manuf. Res., vol. 1, no. 4, pp.
405–420, 2006.

[54] T. Strasser, M. Rooker, I. Hegny, M. Wenger, A. Zoitl, L. Ferrarini,
A. Dede, and M. Colla, “A research roadmap for model-driven design
of embedded systems for automation components,” in Proc. 7th IEEE
Int. Conf. Ind. Inf., Cardiff, U.K., 2009, pp. 564–569.

[55] T. Strasser, M. Rooker, G. Ebenhofer, I. Hegny, M. Wenger, C. Sunder,
A. Martel, and A. Valentini, “Multidomain model-driven design of
industrial automation and control systems,” in Proc. 13th IEEE Int.
Conf. Emerging Technol. Factory Autom., Hamburg, Germany, 2008,
pp. 1067–1071.

[56] T. Strasser, C. Sunder, and A. Valentini, “Model-driven embedded
systems design environment for the industrial automation sector,” in
Proc. 6th IEEE Int. Conf. Ind. Inf., Daejeon, Korea, 2008, pp. 1120–
1125.

[57] K. Thramboulidis, “IEC 61499 in factory automation,” in Proc. IEEE
Int. Conf. Ind. Electron. Technol. Autom., Bridgeport, CT, USA,
2005.

[58] C. Tranoris and K. Thramboulidis, “From requirements to function
block diagrams: A new approach for the design of industrial appli-
cations,” in Proc. 10th IEEE Mediterranean Conf. Control Autom.,
Lisbon, Portugal, 2002, pp. 1–10.

[59] C. Tranoris and K. Thramboulidis, “Integrating UML and the function
block concept for the development of distributed control applications,”
in Proc. 9th IEEE Conf. Emerging Technol. Factory Autom., Lisbon,
Portugal, 2003, pp. 87–94.

[60] D. Hästbacka, T. Vepsäläinen, and S. Kuikka, “Model-driven develop-
ment of industrial process control applications,” J. Syst. Softw., vol. 84,
no. 7, pp. 1100–1113, 2011.

[61] T. Vepsalainen, S. Sierla, J. Peltola, and S. Kuikka, “Assessing the
industrial applicability and adoption potential of the AUKOTON model
driven control application engineering approach,” in Proc. 8th IEEE Int.
Conf. Ind. Inf., Osaka, Japan, 2010, pp. 883–889.

[62] J. Peltola, S. Sierla, T. Vepsalainen, and K. Koskinen, “Challenges
in industrial adoption of model-driven technologies in process control
application design,” in Proc. 9th IEEE Int. Conf. Ind. Inf., Lisbon,
Portugal, 2011, pp. 565–572.

[63] M. Hirsch and H.-M. Hanisch, “Systemspezifikation mit SysML für
eine Fertigungstechnische Laboranlage,” in Proc. Fachtagung Zum
Entwurf Komplexer Automatisierungssysteme, Magdeburg, Germany
2008, pp. 23–34.

[64] M. Hirsch, Systematic Design of Distributed Industrial Manufacturing
Conrol Systems. Berlin, Germany: Logos Verlag, 2010.

[65] A. Thoma, B. Kormann, and B. Vogel-Heuser, “Fault-centric system
modeling using SysML for reliability testing,” in Proc. IEEE 17th Conf.
Emerging Technol. Factory Autom., 2012, pp. 1–8.

[66] OpenRTM-aist. (2010). OpenRTM-aist official website [Online]. Avail-
able: http://www.openrtm.org/

[67] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for compo-
nent based RT-system development: OpenRTM-Aist,” in Simulation,
Modeling Programming Autonomous Robots, vol. 5325, S. Carpin,
I. Noda, E. Pagello, M. Reggiani, and O. von Stryk, Eds. Berlin-
Heidelberg, Germany: Springer, 2008, pp. 87–98.

[68] International Electrotechnical Commission, “International Standard
Draft IEC61804-2: Function blocks (FB) for process control,” in Part
2: Specification of FB Concept and Electronic Device Description
Language (EDDL). Geneva, Switzerland: International Electrotechnical
Commission, 2004.



304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 44, NO. 3, MARCH 2014

[69] C. Diedrich, F. Russo, L. Winkel, and T. Blevins, Function Block
Applications in Control Systems Based on IEC 61804. 2001.

[70] National Instruments. (2010). NI LabVIEW: The Software
That Powers Virtual Instrumentation [Online]. Available:
http://www.ni.com/labview/

[71] V. Vyatkin and H.-M. Hanisch, “Application of visual specifications for
verification of distributed controllers,” in Proc. IEEE Int. Conf. Syst.
Man Cybern., Tucson, AZ, USA, 2001, pp. 646–651.

[72] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design, ISA-Instrumentation, Systems, and Automa-
tion Society, Research Triangle Park, NC, USA, 2007.

[73] G. Black and V. Vyatkin, “Intelligent component-based automation of
baggage handling systems with IEC 61499,” IEEE Trans. Autom. Sci.
Eng., vol. 7, no. 2, pp. 337–351, Apr. 2010.

[74] J. Yan and V. Vyatkin, “Distributed software architecture enabling peer-
to-peer communicating controllers,” IEEE Trans. Ind. Inf., vol. PP, no.
99, p. 1, Apr. 2013.

[75] W. Lepuschitz, A. Zoitl, M. Valle, and M. Merdan, “Toward self-
reconfiguration of manufacturing systems using automation agents,”
IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 41, no. 1, pp.
52–69, Jan. 2011.

[76] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M. Mer-
dan, “Integrating software agents and IEC 61499 realtime control
for reconfigurable distributed manufacturing systems,” in Proc. IEEE
3rd Symp. Ind. Embedded Syst., La Grande Motte, France, 2008,
pp. 249–252.

[77] X. M. Huang, “Intelligent and reconfigurable control of automatic
production line by applying IEC61499 function blocks and software
agent,” in Proc. IEEE Int. Conf. Mechatronics Autom., Changchun,
China, 2009, pp. 1481–1486.

[78] G. Zhabelova and V. Vyatkin, “Multiagent smart grid automation
architecture based on IEC 61850/61499 intelligent logical nodes,” IEEE
Trans. Ind. Electron., vol. 59, no. 5, pp. 2351–2362, May 2011.

[79] J. Lunze, “What is a hybrid system?” in Modelling, Analysis, and
Design of Hybrid Systems, vol. 279, S. Engell, G. Frehse, and E.
Schnieder, Eds. Berlin-Heidelberg, Germany: Springer, 2002, pp. 3–14.

[80] E. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th
IEEE Int. Symp. Object Oriented Real-Time Distributed Comput.,
Orlando, FL, USA, 2008, pp. 363–369.

[81] A. Gorod, B. Sauser, and J. Boardman, “System-of-systems engineering
management: A review of modern history and a path forward,” IEEE
Syst. J., vol. 2, no. 4, pp. 484–499, Dec. 2008.

[82] B. Zhou, A. Dvoryanchikova, A. Lobov, J. Minor, and J. L. Martinez
Lastra, “Application of the generic modelling method for system of
systems to manufacturing domain,” in Proc. 37th Annu. Conf. IEEE
Ind. Electron. Soc., Melbourne, VIC, Australia, 2011, pp. 352–358.

[83] MathWorks. (2010). The MathWorks—MATLAB and Simulink for
Technical Computing [Online]. Available: http://www.mathworks.com

[84] B. I. Silva and B. H. Krogh, “Formal verification of hybrid systems
using CheckMate: A case study,” in Proc. Am. Control Conf., Chicago,
IL, USA, 2000, pp. 1679–1683.

[85] J. H. Taylor, “A modeling language for hybrid systems,” in Proc.
IEEE/IFAC Joint Symp. Computer-Aided Control Syst. Design, Tucson,
AZ, USA, 1994, pp. 339–344.

[86] J. H. Taylor and D. Kebede, “Modeling and simulation of hybrid
systems,” in Proc. 34th IEEE Conf. Decision Control, New Orleans,
LA, USA, 1995.

[87] T. A. Henzinger, H. Pei-Hsin, and H. Wong-Toi, “HYTECH: The next
generation,” in Proc. 16th IEEE Real-Time Syst. Symp., Pisa, Italy,
1995, pp. 56–65.

[88] S. Kowalewski, N. Bauer, J. Preussig, O. A. S. O. Stursberg, and
H. A. T. H. Treseler, “An environment for model-checking of logic
control systems with hybrid dynamics,” in Proc. IEEE Int. Symp.
Comput.-Aided Control Syst. Design, Kohala Coas, HI, USA, 1999,
pp. 97–102.

[89] Ptolemy II. (2013). Ptolemy II [Online]. Available: http://ptolemy.
berkeley.edu/ptolemyII/

[90] Modelica. (2013). Modelica and the Modelica Association [Online].
Available: http://www.modelica.org/

[91] OpenModelica. (2013) [Online]. Available: http://www.openmodelica.
org/

[92] MapleSim. (2013). MapleSim—High Performance Physical Modeling
and Simulation—Technical Computing Software [Online]. Available:
http://www.maplesoft.com/products/maplesim/

[93] MathModelica. (2013). MathModelica: Modeling, Simulation, Analy-
sis, and Documentation of Multiengineering and Life Science Systems
[Online]. Available: http://www.mathcore.com/products/mathmodelica/

[94] R. A. Santos, J. E. Normey-Rico, A. M. Gomez, L. F. A. Arconada,
and C. d. P. Moraga, “Distributed continuous process simulation:
An industrial case study,” Comput. Chem. Eng., vol. 32, no. 6, pp.
1195–1205, 2008.

[95] MathWorks. (2012). Distributed Simulation Toolbox [Online]. Avail-
able: http://www.mathworks.com/products/connections/product−detail/
product−35768.html

[96] N. P. Mahalik and K. Kim, “A prototype for hardware-in-the-loop
simulation of a distributed control architecture,” IEEE Trans. Syst.,
Man, Cybern., C, Appl. Rev., vol. 38, no. 2, pp. 189–200, Mar. 2008.

[97] S. Mishra and N. Mahalik, “Virtual DCS and specification,” Int. J.
Inf. Commun. Technol., vol. 3, no. 4, pp. 339–353, Nov. 2011.

[98] D. Wenbin and V. Vyatkin, “Redesign distributed IEC 61131-3 PLC
system in IEC 61499 function blocks,” in Proc. IEEE Conf. Emerging
Technol. Factory Autom., Vienna, Austria, 2010, pp. 1–8.

[99] nxtControl.com. (2010) [Online]. Available: http://www.nxtcontrol.
com/

[100] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent
automation: State of the art review,” IEEE Trans. Ind. Inf., vol. 7, no.
4, pp. 768–781, Nov. 2011.

[101] K. Thramboulidis, S. Sierla, N. Papakonstantinou, and K. Koskinen,
“An IEC61499 based approach for distributed batch process
control,” in Proc. 5th IEEE Int. Conf. Ind. Inf., Vienna, Austria,
2007, pp. 177–182.

[102] K. C. Thramboulidis, “Using UML in control and automation: A
model driven approach,” in Proc. IEEE 2nd Int. Conf. Ind. Inf., 2004,
pp. 587–593.

[103] Standard: Batch Control. Part 1: Models and Terminology, ISA-
S88.01-1995, The International Society for Measurement and Control,
1995.

[104] J. P. Peltola, S. A. Sierla, M. P. Stromman, and K. O. A. K. K. O.
Koskinen, “Process control with IEC 61499: Designers’ choices at
different levels of the application hierarchy,” in Proc. 4th IEEE Int.
Conf. Ind. Inf., Singapore, 2006, pp. 183–188.

[105] S. Kuikka, “A batch process management framework: Domain-specific,
design pattern and software component based approach,” Doctor of
Technology Dissertation, Technical Res. Centre Finland, Helsinki
Univ. Technol., Espoo, Finland, 1999.

[106] Holobloc, Inc. (2011). FBDK: The function block development kit
[Online]. Available: http://www.holobloc.com/doc/fbdk/index.htm

[107] K. Thramboulidis, “Development of distributed industrial control
applications: The CORFU framework,” in Proc. 4th IEEE Int.
Workshop Factory Commun. Syst., Västerås, Sweden, 2002, pp. 39–46.

[108] 4DIAC. (2010). Framework for distributed industrial automation
[Online]. Available: http://www.fordiac.org

[109] ISaGRAF. (2013, May 26). ICS triplex ISaGRAF Inc.—Leading
IEC 61131 and IEC 61499 software [Online]. Available:
http://www.isagraf.com

[110] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” IEEE Trans.
Comput., vol. 58, no. 12, pp. 1599–1614, Dec. 2009.

[111] P. Tata and V. Vyatkin, “Proposing a novel IEC61499 runtime
framework implementing the cyclic execution semantics,” in Proc. 7th
IEEE Int. Conf. Ind. Inform., Cardiff, U.K., 2009, pp. 416–421.

[112] L. H. Yoong, P. S. Roop, and Z. Salcic, “Efficient implementation of
IEC 61499function blocks,” in Proc. IEEE Int. Conf. Ind. Technol.,
Gippsland, VIC, Australia, 2009, pp. 1–6.

[113] C.-H. Yang and V. Vyatkin, “Model transformation between MATLAB
simulink and function blocks,” in Proc. 8th IEEE Int. Conf. Ind. Inf.,
Osaka, Japan, 2010, pp. 1130–1135.

[114] V. Vyatkin and V. Dubinin, “Sequential axiomatic model for execution
of basic function blocks in IEC61499,” in Proc. IEEE 5th Int. Conf.
Ind. Inform., Vienna, Austria, 2007, pp. 1183–1188.

[115] V. Dubinin and V. Vyatkin, “On definition of a formal semantic
model for IEC 61499 function blocks,” EURASIP J. Embedded Syst.
Embedded Syst. Design Intell. Ind. Autom., vol. 2008, pp. 1–10, 2008.

[116] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini, “Alternatives for
execution semantics of IEC61499,” in Proc. IEEE 5th Int. Conf. Ind.
Inform., 2007, pp. 1151–1156.

[117] J. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A.
Zoitl, “The IEC 61499 function block standard: Overview of
the second edition,” ISA Autom. Week, 2012 [Online]. Available:
http://www.isa.org/Template.cfm?Section=Shop−ISA&Template=/
Ecommerce/ProductDisplay.cfm&ProductID=12502

[118] MVC XEROX PARC. (1979). Model-view-controller design pattern
[Online]. Available: http://heim.ifi.uio.no/∼trygver/themes/mvc/mvc-
index.html



YANG et al.: MODEL-DRIVEN DEVELOPMENT OF CONTROL SOFTWARE FOR DISTRIBUTED AUTOMATION 305

[119] H. Hanisch, A. Lobov, J. L. Martinez Lastra, R. Tuokko, and V.
Vyatkin, “Formal validation of intelligent-automated production
systems: Towards industrial applications,” Int. J. Manuf. Technol.
Manage., vol. 8, no. 1, pp. 75–106, 2006.

[120] G. Frey and L. Litz, “Formal methods in PLC programming,” in Proc.
IEEE Int. Conf. Syst. Man Cybern., Nashville, TN, USA, 2000, pp.
2431–2436.

[121] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[122] W. Farn, “Formal verification of timed systems: A survey and
perspective,” Proc. IEEE, vol. 92, no. 8, pp. 1283–1305, Aug. 2004.

[123] C. Pang and V. Vyatkin, “Automatic model generation of IEC 61499
function block using net condition/event systems,” in Proc. 6th IEEE
Int. Conf. Ind. Inform., Daejeon, Korea, 2008, pp. 1133–1138.

[124] N. Hagge and B. Wagner, “Java code patterns for Petri net based
behavioral models,” in Proc. 3rd IEEE Int. Conf. Ind. Inform., Perth,
WA, Australia, 2005, pp. 450–455.

[125] V. Vyatkin, H. M. Hanisch, and T. Pfeiffer, “Object-oriented modular
place/transition formalism for systematic modeling and validation of
industrial automation systems,” in Proc. IEEE Int. Conf. Ind. Inform.,
2003.

[126] G. Cengic and K. Akesson, “On formal analysis of IEC 61499
applications, Part A: Modeling,” IEEE Trans. Ind. Inform., vol. 6, no.
2, pp. 136–144, May 2010.

[127] C. Gerber and H. M. Hanisch, “Does portability of IEC 61499 mean
that once programmed control software runs everywhere?” in Proc.
10th IFAC Workshop Intell. Manuf. Syst., Lisbon, Portugal, 2010, pp.
29–34.

Chia-Han Yang received the B.E. (first class hon-
ors) and Ph.D. degrees in electrical and electronics
engineering from the University of Auckland, Auck-
land, New Zealand, in 2006 and 2011, respectively.

His Ph.D. research focused on investigating
methodologies of improving distributed control sys-
tem design (based on IEC61499 standard) through
closed-loop validation processes. In 2011, he was a
Research Engineer with the Department of Electrical
and Computer Engineering, University of Auckland,
Auckland, New Zealand, continuing research work

in the simulation of distributed control systems. He is currently a Research
Engineer doing robotics-related research and development at the Centre for
Autonomous System (CAS), University of Technology Sydney, Sydney, NSW,
Australia. His current research interests include distributed control, industrial
automation, modeling and simulation, and robotics.

Valeriy Vyatkin received the B.E. degree in applied
mathematics, the Ph.D. and Dr. Sci. degrees from
the Taganrog State University of Radio Engineering
(TSURE), Taganrog, Russia, in 1988, 1992 and
1998, respectively, and the Dr. Eng. degree from the
Nagoya Institute of Technology, Nagoya, Japan, in
1999.

He is a Chaired Professor of dependable com-
putation and communication systems at the Luleå
University of Technology, Sweden, and a Visiting
Scholar at Cambridge University, Cambridge, U.K.

He is on leave from the University of Auckland, Auckland, New Zealand,
where he has been an Associate Professor and the Director of the In-
foMechatronics and Industrial Automation Laboratory (MITRA), Department
of Electrical and Computer Engineering. He was in faculty positions with
the Martin Luther University of Halle-Wittenberg, Germany, as a Senior
Researcher and a Lecturer from 1999 to 2004, and with TSURE as an
Associate Professor and Professor from 1991 to 2002. His current research
interests include dependable distributed automation and industrial informatics,
including software engineering for industrial automation systems, distributed
architectures and multiagent systems applied in various industry sectors:
smart grid, material handling, building management systems, reconfigurable
manufacturing, etc. He is also active in research on dependability provisions
for industrial automation systems, such as methods of formal verification and
validation, and theoretical algorithms for improving their performance.

Dr. Vyatkin was a recipient of the Andrew P. Sage Award for the Best IEEE
Transactions Paper in 2012.

Cheng Pang (S’08–M’13) received the B.E. (Hons.)
and M.E. (Hons.) degrees in computer systems engi-
neering and the Ph.D. degree in electrical and elec-
tronic engineering from the University of Auckland,
Auckland, New Zealand, in 2005, 2007, and 2013,
respectively.

He is a Post-Doctoral Research fellow at the
Laboratory of Advanced Computing and Communi-
cations for Industrial Applications, Luleå University
of Technology, Sweden. His current research inter-
ests include model-driven engineering for industrial

automation systems, building automation and control systems, and distributed
control for the Internet of things.


