
Information and Software Technology 54 (2012) 1045–1066
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A systematic review of code generation proposals from state machine specifications

Eladio Domínguez a, Beatriz Pérez b,⇑, Ángel L. Rubio b, Marı́a A. Zapata a

a Dpto. de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, E-50009 Zaragoza, Spain
b Dpto. de Matemáticas y Computación, Universidad de La Rioja, E-26004 La Rioja, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 August 2011
Received in revised form 27 April 2012
Accepted 30 April 2012
Available online 23 May 2012

Keywords:
UML state machines
Finite state machines
Statecharts
Code generation
Systematic review
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.04.008

⇑ Corresponding author.
E-mail addresses: noesis@unizar.es (E. Domínguez
Context: Model Driven Development (MDD) encourages the use of models for developing complex soft-
ware systems. Following a MDD approach, modelling languages are used to diagrammatically model the
structure and behaviour of object-oriented software, among which state-based languages (including UML
state machines, finite state machines and Harel statecharts) constitute the most widely used to specify
the dynamic behaviour of a system. However, generating code from state machine models as part of
the final system constitutes one of the most challenging tasks due to its dynamic nature and because
many state machine concepts are not supported by the object-oriented programming languages. There-
fore, it is not surprising that such code generation has received great attention over the years.
Objective: The overall objective of this paper is to plot the landscape of published proposals in the field of
object oriented code generation from state machine specifications, restricting the search neither to a spe-
cific context nor to a particular programming language.
Method: We perform a systematic, accurate literature review of published studies focusing on the object
oriented implementation of state machine specifications.
Results: The systematic review is based on a comprehensive set of 53 resources in all, which we have
classified into two groups: pattern-based and not pattern-based. For each proposal, we have analysed
both the state machine specification elements they support and the means the authors propose for their
implementation. Additionally, the review investigates which proposals take into account desirable fea-
tures to be considered in software development such as maintenance or reusability.
Conclusions: One of the conclusions drawn from the review is that most of the analysed works are based
on a software design pattern. Another key finding is that many papers neither support several of the main
components of the expressive richness of state machine specifications nor provide an implementation
strategy that considers relevant qualitative aspects in software development.

� 2012 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 1046
2. Research method . 1047
2.1. Scope of the study. 1047
2.2. Inclusion and exclusion criteria . 1047
2.3. Data sources and search strategy . 1047
2.4. Paper selection . 1048
2.5. Quality assessment . 1048
2.6. Data extraction . 1049
3. Results. 1049

3.1. Presentation of the studies . 1049
3.2. Pattern-based comparison (RQ1) . 1051
3.2.1. Pattern-based proposals . 1052
3.2.2. Proposals not based on design patterns . 1055
3.3. Element-based comparison. 1055
3.4. Feature-based comparison . 1058
ll rights reserved.

), beatriz.perez@unirioja.es (B. Pérez), arubio@unirioja.es (Á.L. Rubio), mazapata@unizar.es (M.A. Zapata).

http://dx.doi.org/10.1016/j.infsof.2012.04.008
mailto:noesis@unizar.es
mailto:beatriz.perez@unirioja.es
mailto:arubio@unirioja.es
mailto:mazapata@unizar.es
http://dx.doi.org/10.1016/j.infsof.2012.04.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1046 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
4. Discussion. 1059

4.1. Principal findings. 1059
4.1.1. Main techniques or implementation methods published within the field of state machines code generation 1059
4.1.2. State machine elements supported by the selected studies . 1061
4.1.3. Desired software development features considered by the selected studies . 1062
4.2. Study limitations . 1062
4.3. Threads to validity . 1062
5. Conclusions. 1063
Acknowledgments . 1064
Appendix A. The search strings . 1064
References . 1065
1. Introduction

Model Driven Development (MDD) [1,2] encourages the use of
models in the software development process with the aim of gen-
erating the application source code through automatic model
transformations. Following this approach, modelling languages
are used during the design and analysis processes for diagrammat-
ically model the artifacts that specify the structure and behaviour
of systems. In particular, whereas class diagrams are the mainstay
of object-oriented analysis and design for representing the static
structure of a system, state machine specifications (including
UML state machines [3], finite state machines [4] and Harel state-
charts [5]) are considered the most widely used method to specify
the dynamic behaviour of reactive systems.

The models describing the different aspects of a system are ta-
ken as a starting point to finally develop the software system. At
this point, it is well known that the software industry does not al-
ways provide satisfactory solutions to fill the gap between high-le-
vel modeling languages and programming languages. In particular,
generating code from state machine diagrams constitutes one of
the most challenging tasks due to their dynamic nature and be-
cause many of the state machine specification concepts are not di-
rectly supported by the object-oriented programming languages
[6–11] (such as events [8], states [8,7], history pseudostates [8],
or fork pseudostates [7]).

Therefore, it is not surprising that there are a wide number of
proposals in the literature devoted to studying the implementation
of state machine specifications in different programming lan-
guages in a wide variety of application contexts such as distributed
control systems [12], decentralization of production control sys-
tems [13,14], e-voting systems [15–17], or even NASA space mis-
sions [18–20]. This number could grow in the foreseeable future
because, if the Model-Driven Development (MDD) approach [1,2]
overcomes its challenges [21], it will likely be increasingly applied
to the development of software systems.

Taking this into account, the purpose of this paper is to review
the research done in the field of object oriented code generation
from state machine specifications, and provide an exhaustive anal-
ysis and comparison of these proposals.

Keeping this objective in mind, the scope of this review is lim-
ited to the literature that (i) provides proposals for generating code
structures from state machine specifications, (ii) discusses the
implementation possibilities of state machine specifications, and/
or (iii) tackles the implementation of dynamic behaviour in gen-
eral. Furthermore, in this review we take into account proposals
applied generaly without specifying a certain domain for applica-
tion as well as those presented for use in specific contexts. Our tar-
get readership is mainly researchers and software developers who
need a satisfactory solution for implementation of the behavioural
models representing the dynamics of the system they are consider-
ing. Since the needs can be extremely varied, we show all the pro-
posals we have found trying to bring out the strengths and
weaknesses of each one, thereby facilitating the selection of the
most suitable solution.

In this paper we address the following research questions:

RQ1 What techniques or implementation methods have been
used for generating object oriented code from state machine
specifications (including UML state machines, finite state
machines and Harel statecharts)?

RQ2 What state machine specification elements are translated
into code by each technique or implementation method?

RQ3 What are the desired software development features consid-
ered by the published proposals? This question can also lead
to another question: What approaches provide a software
tool that implements the proposed methodology/technique?

The review of the research work in the field has been performed
systematically carrying out a three-based dimension comparison
that in turn provides an answer to each of the given research ques-
tions. On one hand, and taking into account question RQ1, we have
analysed the general characteristics of each proposal in terms of
the implementation technique it proposes. In particular, given
the fact that most of the proposals are based on a pattern design
[22] for implementing state machine specifications, we have clas-
sified these papers depending on whether they are based on a spe-
cific pattern or not. This first dimension of comparison corresponds
to what we have called pattern-based comparison. On the other
hand, considering question RQ2, we have analysed which state ma-
chine elements are considered by each proposal, distinguishing be-
tween core elements (such as state, transition, hierarchy, and
concurrency) [5] and secondary elements (such as history, choice,
or activity). We will refer to this dimension of comparison as ele-
ment-based comparison. In addition, based on question RQ3, we
have determined a taxonomy of features expected to be considered
in software development such as maintenance, reusability, or
memory needs. Based on such a taxonomy, we have carried out
what we have called a feature-based comparison, which has allowed
us to analyse and compare such varied proposals from a different
perspective.

One of the main conclusions drawn from this review is that
there are many papers that neither support several of the main
components of the expressive richness of state machine specifica-
tions, such as hierarchy and concurrency [5], nor provide an imple-
mentation strategy that takes into account relevant qualitative
aspects in software development such as maintenance, modularity,
or reusability. Another conclusion is that UML state machines are
the most common form of state machine specification used in code
generation studies.

The paper is structured as follows: the next section describes
the method of our systematic review, which includes inclusion
and exclusion criteria, data sources and search strategy, paper
selection, quality assessment and data extraction. Results are pre-
sented in Section 3. Section 4 discusses the results obtained from

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1047
the review, limitations of the study and threats to validity. Finally,
Section 5 covers some conclusions.
2. Research method

The method we have followed to review the research work
done in the field of code generation from state machine specifica-
tions is a systematic review [23,24]. Generally speaking, a sys-
tematic review is a process by means of which all available
research concerning a research subject of interest is assessed
and interpreted. Such a review is undertaken through an accurate
and reliable methodology stated in a review protocol. This proto-
col mainly specifies the research questions to be addressed, iden-
tification of research (such as databases to be searched, and
search terms), selection process (methods to be used to identify,
assemble, and assess the resources), assumptions and inferences
to be made, and data synthesis.

Specifically, we started by developing a protocol for the system-
atic review, establishing in advance the methods to undertake it.
Such a protocol specifies the research questions, inclusion and
exclusion criteria, data sources and search strategy, paper selec-
tion, quality assessment, and data extraction.

In this section, we describe the different stages we have consid-
ered to undertake the review, while the next section is devoted to
presenting the results of the systematic review according to our
chosen framework.
2.1. Scope of the study

Following the PICO(C) template [25], we have identified the
scope of the study as follows:

� Population: State machine specifications including UML state
machines, finite state machines and Harel statecharts.
� Intervention: Techniques or implementation methods used for

object oriented code generation.
� Comparison: Different proposals for implementing code genera-

tion for elements included in finite state specification.
� Outcome: The completeness of the coverage of state machine

elements and the quality of the generated code.
� Context: Methods and techniques that identify the mechanism

by which individual finite state specification elements are
translated into code, excluding the generation of skeleton code
such as that found in case tools.

2.2. Inclusion and exclusion criteria

In order to ensure that the studies included in the review were
clearly related to the research topic, we defined detailed general
guidelines for inclusion and exclusion criteria. More specifically,
the main criterion used for including a paper in our review was
that the study should describe quality research in the field of the
implementation of state machine specifications (UML state ma-
chines, also known as UML statecharts, finite state machines and
Harel statecharts). Taking this into account, only studies that: (i)
give proposals for generating code from state machine specifica-
tions, and/or (ii) discuss implementation possibilities of state ma-
chine specifications, and/or (iii) tackle the implementation of
dynamic behaviour in general were included in our review. We
did not impose any restrictions on a specific context of application
or on a particular programming language. Moreover, the system-
atic review included research studies published up to and includ-
ing the first half of 2010.
On the other hand, we excluded pure discussion or opinion pa-
pers, and only studies reported in English were considered in the
review.

A special comment must be made regarding CASE tools appear-
ing in the marketplace with support for model to code transforma-
tion and, in particular, for code generation from state machine
specifications (such as Poseidon [26], Rhapsody [27], Borland To-
gether [28], UniMod tool [29], Rational Rose [30], and ArgoUML
[31,32]). A general conclusion to be drawn from these existing
CASE tools is that many of them generate limited skeleton code
[33,34], not providing code generation for object behaviour, and
therefore producing incomplete code. On the other hand, they
commonly produce complex and cumbersome codes, making it dif-
ficult to draw any conclusions on the state-machine generated
code structure. These issues make it very cumbersome to extract
general and concrete rules for state machine specifications-to-code
transformation. For these reasons, we have decided not to include
CASE tools in our review.

2.3. Data sources and search strategy

Regarding the data sources, the search strategy for the review
included electronic databases and a search of three conference pro-
ceedings. The electronic databases considered most relevant were
the following: IEEE Xplore, the ACM Digital Library, ScienceDirect,
Microsoft Academic Search, and Google Scholar. In addition to the
electronic databases, we hand searched several volumes of the fol-
lowing thematic conference proceedings: ECOOP (European Con-
ference on Object-Oriented Programming), MODELS
(International Conference on Model Driven Engineering Languages
and Systems), and ER (International Conference on Conceptual
Modeling).

We started our systematic electronic search by identifying a list
of keywords and search terms following a three-steps process (see
Table 1). In the first step, in order to be as unbiased as possible, we
selected a set of general keywords related to the implementation
of statecharts so as to identify as many relevant papers as possible.
The keywords are classified into two different groups: State machine
specification and Software engineering concepts (see first step in Ta-
ble 1). As a second step, in order to cover state machine specifications
in general, we augmented this list with associated terms, synonyms,
abbreviations, and alternative spellings, obtaining a more complete
list (see second step in Table 1). With these keywords, we conducted
a trial search that identified three more keywords included in differ-
ent implementation proposals unknown to us at the beginning of the
review (see third step in Table 1).

Fig. 1 shows the different stages performed during the systematic
review process together with the number of papers identified at each
stage. In Stage 1, we conducted the electronic search looking for all
possible permutations of the established State machine specification
and Software engineering concepts up to the moment. More specif-
ically, we established an abstract search string constructed by sepa-
rately connecting the concepts of each group (State machine
specification and Software engineering) with Boolean ORs and join-
ing the two resulting search strings with a Boolean AND. Appendix A
provides a detailed discussion of the application of this abstract
search string in the different database engines. It is worth noting that
the abstract string was then mapped onto the different search data-
base engines taking into account not only the range of interface
forms that were provided by these databases, but also their varia-
tions in search constraints and syntax. We encountered several
problems in conducting searches using the electronic databases of
publications since the string needed to be separately adapted to suit
the specific requirements of the electronic databases.

Regarding the search location in papers, the titles, abstracts, and
keywords of articles were searched, with the exception of Google

Table 1
Keywords used in our search.

Step State machine specification concepts Software engineering concepts

1 UML Statecharts Implementation
Harel’s Statecharts Code generation
Reactive system Programming language

2 UML State Machines Object-oriented language
State charts OO language
Finite State Machines C++, C#, C/C++, Java
FSM State-Oriented programming
State-based behaviour Object-oriented method
State-based behaviour OO method
Dynamic models Model-based generation
Dynamic behaviour Mapping
Dynamic behaviour Executable specification

3 Behavioural patterns
Behavioural patterns
Design patterns

1048 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
Scholar (searching the paper titles) and Microsoft Academic Search
(searching the entire paper). In addition, we performed the
searches choosing the default option All available years. Finally,
the research found in these electronic databases yielded a total
of 3614 results.

For the hand search of the thematic conference proceedings
(ECOOP, MODELS, and ER), we considered the publications of all
conference proceedings from their beginnings to the search date
(October 2010); that is, 24 editions of ECOOP (editions from
1987 to 2010), 13 editions of MODELS (editions from 1997 to
2009), and 28 editions of the ER conference (editions from 1979
to 2009). Those searches yielded a total of 9 results (3, 5, and 1 re-
sults respectively). Thus, this Stage 1 of the selection process
yielded a total of 3623 papers (see Fig. 1).

The search was performed in early October 2010 and completed
by the middle of the month approximately, which means that pub-
lications in the first half of 2010 are included, but some studies in
the second half of the year might not have been indexed in the dat-
abases. This initial stage of the selection process was undertaken
by the second author, consulting the rest of the authors when nec-
essary, especially when looking for keyword synonyms and for
agreement regarding the specification of search strings and syntax.
Fig. 1. Stages of the s
2.4. Paper selection

Starting from the initial list of 3623 papers, in Stage 2 the sec-
ond author mainly ruled out duplicates and excluded some results
with titles clearly not related to the research focus. This identifica-
tion process yielded 125 papers including works published in jour-
nals, conferences, technical reports, white papers, as well as PhD
Thesis and books (see Fig. 1).

In Stage 3, the second author went through the titles, abstracts,
and keywords of all the studies resulting from Stage 2. In most in-
stances, these portions provided clear indicators of whether the
study adhered or not to the inclusion criteria (especially in the case
of abstracts). Nevertheless, these elements did not always provide
enough evidence and even some abstracts were poor and mislead-
ing. These papers, in which the inclusion/exclusion criteria were
unclear, were analysed with the rest of the authors in consensus
meetings, resolving disagreements by discussing the matter until
agreement was reached. As a result of this stage, a total of 59 pa-
pers were chosen, which formed the basis for the next stage in
our selection process.

Studies resulting from this stage were recorded in a table in a
Microsoft Word document, noting for each study: (1) a unique
identifier, (2) its bibliographic citation, (3) the publisher, database,
or resource from which the study was available, and (4) relevant
comments, if any, given in consensus by all the authors (such as
the decision to include it and first impressions regarding the qual-
ity of the study).

2.5. Quality assessment

We initiated Stage 4 of the search to have a more representative
set of primary studies by reading all the papers resulting from the
list of papers remaining after Stage 3. In this stage, the four authors
(in consensus meetings) eliminated any paper not fulfilling the cri-
teria of papers for inclusion. More specifically, during this stage we
analysed the selected 59 papers to exclude: (i) those which, despite
providing a proposal for the generation of executable code from
state machines, do not give enough details of how state machine
elements are represented in the code generated; and (ii) those that
only present simple reviews of existing proposals, applying them
to particular case studies (such as tutorials).
election process.

Table 2
Data items extracted from all papers.

Data items Description

Reference Unique identifier for the paper (same as the
bibliographic reference number)

Bibliographic Author (s), year, title, source, web-site (if possible)
Type of article Journal/conference/PhD thesis/books/technical report/

white paper
Paper goal The goal of the paper
Related papers by

authors
References of related works by the same authors

Table 3
Data extracted from each study regarding the pattern-based comparison.

Data items Description

Strategy Pattern-based or not, and if so, what the design pattern is
Related papers Other proposals the authors compare their own with

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1049
In addition, we also consider a minimal element of quality
assessment, so that a paper is included in the review if it has been
published in a refereed source, or is a technical report, PhD Thesis,
or book verifying that there are other papers describing the same
work by the same authors published in refereed sources. The rea-
son to consider technical reports, PhD Theses, or books relevant
for our review is that normally they include more information
regarding the authors’ proposal for the implementation of state
machine specifications, strengths, evaluation aspects, and so on
than those considered in papers published by the authors in refer-
eed sources.

Furthermore, we scanned the reference lists of all the primary
studies to identify further papers; in particular, we undertook a
process of snowballing, paying special attention to ‘‘Related Work’’
sections and reviewing papers that analyse published implementa-
tion proposals of state machine specifications. However, during
this snowballing process we did not find any additional papers
conforming to the inclusion criteria.

Finally, the selection process yielded 53 potential papers and re-
sources in all, providing a general vision of the various published
proposals. Moreover, this fourth stage gave us an initial notion of
the strategies published in the literature regarding the research
focus.

2.6. Data extraction

In this section, we explain the strategy followed to extract data
from the papers, as well as the decisions made to determine the
type of analysis and comparison to be performed.

We have focused on analysing the specific implementation pro-
posals included in the 53 selected papers. In particular, taking the
research questions described in Section 1, we decided to compare
the different implementation proposals according to three differ-
ent dimensions. On one hand, taking into account RQ1, we analysed
the technique or implementation method given by each approach
focusing mainly on whether the proposal is based on a specific pat-
tern design [22] or not. We have called this dimension a pattern-
based comparison. On the other hand, considering RQ2, we decided
to compare the papers in terms of the specific state machine ele-
ments considered by each proposal. At the same time, the strategy
to translate each element into code has also been analysed. We re-
fer to this type of comparison as an element-based comparison.
Regarding this dimension of comparison, it is worth mentioning
that, although some of the analysed studies explicitly indicate
the proposal’s domain of application, the vast majority present a
general implementation proposal without specifying a concrete
domain. Therefore, in the former cases, we have had to abstract
the given implementation proposal from specific issues entailed
by the specific context of application. Finally, based on RQ3, we
have determined a taxonomy that helps to analyse and compare
these diverse proposals from a different perspective. In particular,
the taxonomy has been defined on the basis of features such as
readability, maintenance, or flexibility. We have called this type a
feature-based comparison.

In order to carry out these comparisons, the authors established
in consensus meetings several data extraction forms to ensure con-
sistent and accurate extraction of the relevant information from
each paper related to each dimension. In developing the data-
extraction process, we determined that some of the information
was needed regardless of the dimension of comparison, whereas
other information was specific to each dimension of comparison.
Table 2 shows the data extracted from all papers regardless of
the dimension of comparison.

In contrast, Table 3 shows the data that were extracted, when
possible, from all selected papers regarding the pattern-based com-
parison. In addition to identifying the implementation strategy of
each proposal, we have identified related work presented in the
papers in order to gather additional information regarding the
strengths and weaknesses of other proposals. As concerns the ele-
ments-based comparison, we have obtained from each proposal the
implementation approach of state machine elements as regards:
context-class, current state, simple states, composite states (both
simple and orthogonal), transition elements (state transition pro-
cess, event, guard, and action), pseudostates (fork, join, choice,
shallow history, and deep history), and activities. Finally, Table 4
includes the data extracted from all the selected papers to carry
out the feature-based comparison strategy. In particular, these data
items, classified into four groups, have been evaluated in accor-
dance with the following criteria: (i) ‘B/M/G’ represents Bad, Med-
ium, or Good; (ii) ‘NS/PS/S’ refers to Not Supported, Partially
Supported, or Supported, (iii) ‘N/Ne/Y’ refers to No, Neutral, or Yes;
and (iv) ‘L/M/H’ represents Low, Medium, or High.

The way in which certain papers were reported made it difficult
to extract some of the data items called for in the forms (especially
data items related to the element-based and feature-based compar-
ison). Therefore, every paper included was read in detail and the
data was extracted and cross-checked by all the authors in consen-
sus meetings.
3. Results

This section describes the analysis of the data extracted from
the selected papers. First, we present in Section 3.1 the main char-
acteristics of the 53 studies in the review and then, in Sections 3.2,
3.3, and 3.4, we synthesize the data from all the papers to answer
each question as described in Section 2.6. A complete explanation
of certain proposals presented herein regarding the three compar-
ison aspects is presented in [35].
3.1. Presentation of the studies

We have classified the selected references into 28 different
studies as identified in Table 5, where we have considered for each
study: (i) a unique identifier used from now onto refer to each
study (Identifier), (ii) a representative authors’ name of all papers
published by the same authors describing similar research work
(Authors’ R.N.), and (iii) the bibliographic references of the papers
(References).

Taking into account the years of publication of the first and last
studies included in the review, the selected papers cover the time-
span 1992–2010.

Table 4
Data extracted from each study regarding the feature-based comparison.

Type Data items Description

State machines’
expressivity

Hierarchy Whether the study gives a proposal for the implementation of states’ hierarchy (NS/PS/S)
Concurrency Whether the study supports the implementation of states’ concurrency (NS/PS/S)
History Whether the study provides a proposal for history pseudostates (NS/PS/S)

Software design Expandability The degree to which the design of a system can be extended (B/M/G)
Simplicity The degree to which the design of a system can be understood easily (N/Ne/Y)
Reusability The degree to which a piece of design can be reused in another design (B/M/G)

Implementation Learnability The degree to which the code source of a system is easy to learn (B/M/G)
Understandability The degree to which the code source can be understood easily (B/M/G)
Modularity The degree to which the implementation of the functions of a system are independent from one another (B/M/

G)

Runtime Performance of
execution

How well the generated system executes (B/M/G)

Memory needs The amount of computer memory needed by the system’s execution (L/M/H)
Efficiency How well the system utilizes processor capacity, disc space and memory (B/M/G)

Final result Tooling Corresponds to whether the authors provide a tool implementing their proposal

Table 5
Selected studies and associated references.

Identifier Authors’ R.N. References

S1 Adamczyk [36,37]
S2 Ali [11,38]
S3 Babitsky [39]
S4 Benowitz et al. [18–20]
S5 Chauvel et al. [40]
S6 Chow et al. [34]
S7 Culwin [41]
S8 Derezinska et al. [42–45]
S9 Douglass [46,47]
S10 Duby [48,49]
S11 Gamma et al. [22]
S12 Gurp et al. [4]
S13 Heinzmann [50]
S14 Knapp et al. [51,52]
S15 Köhler et al. [13,14]
S16 Lafreniere [53]
S17 Lamour et al. [54,55]
S18 Metz et al. [56]
S19 Pintér et al. [57–61]
S20 Samek [62]
S21 Samek et al. [63,64]
S22 Saúde et al. [65]
S23 Shalyto et al. [66]
S24 Shlaer et al. [67]
S25 Tanaka et al. [6–8,68–70]
S26 Tiella et al. [15–17]
S27 Tomura et al. [12,71]
S28 Yacoub et al. [72]

1050 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
Looking at the number of papers by year of publication in Fig. 2,
we notice an increasing interest in the area from 1995 onwards.
We also note a slight decrease in the number of papers published
since 2004, but papers published in recent years show that the
problem is still unresolved.

Regarding the context of application, although some of the ana-
lysed studies explicitly indicate the application domain (distrib-
uted control systems [S27], decentralization of production
control systems [S15], fault-tolerant systems [S17], e-voting sys-
tems [S26], or fault protection subsystem of a space mission
[S4]), the vast majority of the works present their implementation
approach generally, without specifying a concrete domain where it
could be applied.

Taking into account the data extraction framework outlined in
Section 2.6, the characteristics of these 53 selected papers classi-
fied into the 28 studies are given in Tables 6 and 7. Table 6 presents
studies that provide reviews of other works or apply existing pro-
posals from other authors. Table 7 shows studies that provide
implementation proposals themselves. In these tables we have dis-
tinguished: (i) the identifier of each study, (ii) the bibliographic ref-
erence of the papers selected for inclusion in the review (Ref.), (iii)
the source of publication of each of these papers (Source), (iv) the
year of publication of each paper (Year), (v) the goal of the work
(Goal) distinguishing between ‘GP’ (if the work includes a state ma-
chines’ implementation approach within a General Project/ap-
proach) and ‘PIP’ (if the work just Provides an Implementation
Approach), (vi) the behavioural model the authors consider to be
implemented (Behavioural model), and (vii) the object-oriented
programming language used to implement the authors’ approach.
Where the authors have more than one paper related to the given
issue, we have taken as the authors’ reference name either the sur-
name of the first author signing the oldest published paper or the
surname of the author who appears in most of the cited papers.

Specially, as presented in Tables 6 and 7, most of the selected
studies (20 studies) focus on providing a state machine implementa-
tion approach, whereas a few (eight studies) form part of more gen-
eral projects or works that do not have this implementation as the
only goal. From these tables we can also infer that most of the studies
(19 studies) consider UML Statecharts as behavioural model to be
implemented. Another conclusion is that some authors use different
object-oriented programming languages to implement their ap-
proaches (for example, 13 of the studies use Java, 10 use C/C++,
and 2 use C#), and four studies do not provide this information or
simply leave the actual decision up to the user, which has been rep-
resented in Tables 6 and 7 with the acronym ‘UTU’.

In particular, the 53 selected works with the 28 studies can be
classified into three different groups as described in the paragraphs
below.

First, we highlight the study [S1] by Adamczyk (see Table 6) in
which the author presents an expert review comparing more than
twenty possible implementations and extensions of the State pat-
tern (which, as we will see below, is one of the most commonly
used implementation proposals). The comparison focuses mainly
on presenting the advantages of each pattern but not discussing
its drawbacks sufficiently. Thus, the author presents, for each pat-
tern, the applicability context, a solution to tackle the context, con-
sequences of the design proposal, and related patterns. The two
papers included in study [S1] have been used to clarify ideas of
implementation proposals appearing in other works, as well as to
compare them regarding their applicability, advantages, and
disadvantages.

Second, we have considered another four different studies ([S4],
[S5], [S22], and [S26]), including eight different papers (see

Fig. 2. Publications by year.

Table 6
General aspects of studies making use of other works.

Id. Ref. Source Year Goal Behavioural model Pro. lang.

S1 [36] Proceedings 2003 PIP Finite State
Machines

Java/C/
C++[37] Proceedings 2004

S4 [18] Proceedings 2006 GP UML Statecharts C/C++
[19] Proceedings 2008
[20] Tech. Rep. 2008

S5 [40] Proceedings 2005 PIP UML Statecharts Java

S22 [65] Proceedings 2010 PIP Finite State
Machines

Java

S26 [15] Proceedings 2006 GP UML Statecharts Java
[16] Proceedings 2007
[17] Journal 2009

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1051
Table 6), not because they provide new ways of implementing
state machine specifications, but because they apply existing
implementation approaches from other authors to their specific
works. We decided to include them since they normally highlight
the main characteristics of the implementation proposal used,
even comparing it to existing approaches, which may by particu-
larly useful for the review. In particular, the study [S4] by Benowitz
et al. uses the QHsm pattern presented in [62], study [S26] applies
the State pattern approach given in [22], and [S22] integrates the
State Machine Design pattern presented in [66].

We have also included within this group the study [S5] by F.
Chauvel and J. Jézéquel, which tackles the implementation of
UML statecharts in general, providing an upper-level general
framework that can be adapted to any existing state machine
implementation proposal. More specifically, first, the authors pro-
pose to reify the various semantic variation points of UML 2.0 state-
charts [3] into models of their own in order to avoid hardcoding
the semantic choices in the tools. Second, the authors propose
modelling several implementation choices in the same spirit as
in the modelling of semantic variation points. Finally, following
an OMG’s Model Driven Architecture, these semantic and imple-
mentation models are processed along with a source UML model
used as a basis for code generation.

Finally, in contrast to the previous studies, the remaining 39 pa-
pers themselves provide 23 different implementation proposals for
generating code from state machine specifications (see Table 7).
Each of these studies provides support for the implementation of
a specific subset of state machine elements, providing most of
them with different frameworks that include, to a greater or lesser
extent, desired software development features. Furthermore, these
papers usually have a related work section in which the authors
synthesize related literature, which is an interesting component
to help us to assess and evaluate the considered implementation
proposals.

Therefore, taking into account the research questions, all of the
28 studies have been considered for the review as follows. On one
hand, the first five studies (Table 6) have been included in the re-
view mainly to clarify ideas and to be used as a preliminary valida-
tion of the implementation proposals appearing in the other 23
studies since these five studies are expected to highlight their
strengths and weaknesses. On the other hand, the remaining 23
studies (Table 7), which provide their own state machine imple-
mentation proposals, have been taken as sources for the different
comparisons we perform in the following sections, using as source
background the above five studies.

3.2. Pattern-based comparison (RQ1)

The main goal of this comparison is to distinguish the different
methodologies proposed for the selected studies regarding the
implementation of state machine specifications. Next, we intro-
duce these proposals giving a brief explanation of each of them,
starting with the pattern-based proposals and continuing with
those not based on any pattern. In order to provide the reader with
a general view of the different proposals, a summary is presented
in Table 8, for pattern-based proposals, and Table 9 for proposals
not based on any pattern. These two tables employ the following
notation: (i) an empty cell represents that the authors do not men-
tion anything about the implementation proposal in question, (ii)
the symbol ‘IB’ indicates that the authors’ approach Is Based on
the corresponding implementation proposal. Moreover, we have
included additional information when the authors compare their
works with the implementation proposal shown in the corre-
sponding row.

Regarding the strategy followed by the authors, we would like
to point out that in Tables 8 and 9 we have mainly distinguished
two different options. (1) Whether the authors present a specific
pattern, in which case we have noted the pattern, or if they extend
an existing pattern (such as the proposal given by Heinzmann in
[S13], which is an extension of the Hierarchical State Machine pat-

Table 7
General aspects of studies providing implementation proposals.

Id. Ref. Source Year Goal Behavioural model Pro.
lang.

S2 [11] Journal 2010 PIP UML State Machines Java
[38] Proceedings 2010

S3 [39] Journal 2005 PIP UML Statechart Diag. C/
C++

S6 [34] Proceedings 2000 PIP UML Statechart Diag. Java

S7 [41] Journal 2004 PIP UML Statecharts Java

S8 [42] Proceedings 2007 GP UML State Machines C#
[44] Journal 2007
[43] Proceedings 2008
[45] Journal 2009

S9 [46] Book 1998 PIP UML Statecharts C/
C++[47] Proceedings 2001

S10 [48] Proceedings 2001 PIP UML Statechart Diag. C/
C++

[49] White
paper

2004

S11 [22] Book 1995 GP – UTU

S12 [4] Proceedings 1999 PIP Finite State Machines Java

S13 [50] Journal 2004 GP Hierarchical State Mach./
UML Statecharts

C/
C++

S14 [51] Proceedings 2002 GP UML State Machines Java
[52] Proceedings 2002

S15 [13] Tech. Rep. 1999 GP UML Statecharts Java
[14] Proceedings 2000

S16 [53] Journal 2000 PIP UML State Machines C/
C++

S17 [54] Proceedings 1998 PIP Harel’s Statecharts Java
[55] Proceedings 1998

S18 [56] Proceedings 1999 PIP UML Statechart Diag. C/
C++

S19 [57] Journal 2003 PIP UML Statecharts UTU
[61] Proceedings 2003
[58] Proceedings 2003
[59] Proceedings 2004
[60] PhD Disser. 2007

S20 [62] Book 2002 PIP UML Statecharts C/
C++

S21 [63] Journal 2000 PIP UML Statecharts C/
C++[64] Book 2002

S23 [66] Proceedings 2006 PIP State charts C#

S24 [67] Book 1992 PIP Harel’s Statecharts UTU

S25 [68] Proceedings 1999 PIP UML Statecharts Java
[69] Journal 2001
[6] Proceedings 2003
[7] Proceedings 2004
[8] PhD Disser. 2005
[70] Journal 2005

S27 [12] Proceedings 2001 GP Finite State Machines Java
[71] Proceedings 2001

S28 [72] Proceedings 1998 PIP Finite State Machines UTU

1052 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
tern proposed by [S21]). Or (2) whether the authors do not use any
pattern as a base, in which case we consider another two options:
(2.a) the proposal is based on a known approach (such as the use of
switch statements by Metz et al. in [S18]), or (2.b) the proposal is a
concrete one, not based specifically on any existing approach (such
as the one given by Knapp et al. in [S14]), in which case we note the
authors’ surnames. More specifically, from the 23 different imple-
mentation proposals, 15 correspond to pattern-based approaches
and the other 8 do not.
3.2.1. Pattern-based proposals
A design pattern [22] is not expected to describe the details of

the implementation since it only specifies a general solution for
recurring design problems [56]. Consequently, when considering
pattern-based proposals, it must be taken into account that,
although they are based on the implementation guidelines pro-
vided by the pattern, the actual implementation decisions were
made by the developers. In particular, regarding studies based on
a specific design pattern, in this review we discuss the most com-
monly used patterns and also include those works that have pro-
posed extensions to some such patterns, providing an approach
for the implementation of particular features not supported by
the source pattern-based proposal.

The pattern-based comparison regarding pattern-based propos-
als is summarized in Table 9, showing, as mentioned above, the
implementation technique followed in each work, whether the
work corresponds to an extension of another proposal, and the
studies the authors compare their own with. Next we describe
the main characteristics of these proposals.

3.2.1.1. State pattern. The State pattern, or State Design pattern, was
first introduced by Gamma et al. in the study [S11] together with a
total of 23 useful patterns for systems design. This pattern is con-
sidered to be a useful software pattern that takes advantage of
polymorphism to define different behaviours for different states of
an object. It is especially valuable to master because it can be used
in practically any size application [32]. As mentioned above, [S26]
applies this pattern to their specific context of application.

In addition, the State pattern (as well as the State Table pattern
corresponding to study [S9] that we present below) primarily fo-
cuses on encapsulating only the behaviour of the state of the con-
text object, which is problematic when dealing with specific
behaviours and substates. In particular, this pattern does not deal
with the hierarchical states, history or concurrency, some of the
most commonly used elements of state machine specifications
[8,63,57], which are unsupported. Furthermore, another important
weakness of this approach is that it does not provide any means of
implementing the model’s dynamic parts [8,57].

Given the pattern weaknesses, other proposals have been built
upon it, providing some solutions. The proposals advanced by Ta-
naka et al. in [S25] is an extension of the State design pattern and
mainly solves the aforementioned substate problems.

3.2.1.2. Finite State Machines (FSMs) framework. Gurp et al. [S12]
presented the Finite State Machines (FSMs) framework to imple-
ment Finite state machines as an alternative approach to solving
certain problems related to the evolution of FSM implementation
and data management. In particular, in their work Gurp et al.
examine two of the most commonly used implementation ap-
proaches: doubly nested switch statements (or procedural ap-
proach) and the State pattern. They discuss the main problems
that arise through the use of such proposals and present a solution
that addresses the problems providing more structure at the
implementation level by modelling all the state machine elements
as classes.

3.2.1.3. State-Table pattern. Another pattern used for UML state-
chart implementation is the State-Table pattern first defined by
Douglas [S9]. There are several approaches for this pattern, but
the most commonly used one considers the state table consisting
of an n � m array, where n is the number of states and m is the num-
ber of transitions, and each cell (row/column intersections) con-
tains a single pointer to a transition object that handles the
event [46]. Nevertheless, the exact data structuring depends on
the problem being solved [47].

Ta
bl

e
8

Pa
tt

er
n-

ba
se

d
co

m
pa

ri
so

n
fo

r
pa

tt
er

n-
ba

se
d

pr
op

os
al

s.

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1053

Table 9
Pattern-based comparison for proposals not based on any pattern.

1054 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
Other proposals, such as the one given by Duby [S10] and the
approach given by Köhler et al. [S15], have extended this approach
in different ways. Duby [S10], for instance, advocates the state table
technique [S9] based on pointer-to-member functions in C++, con-
sidering a reactive system to be composed of a set of ActiveOb-
jects instances that respond to events. On the other hand,
Köhler et al. [S15] adapt the idea of Douglas, providing an object-
oriented implementation of the state-table at runtime.
3.2.1.4. Basic Statechart pattern. Yacoub et al. [S28] propose several
patterns of Finite State Machines. Particularly, they define the Basic
Statechart pattern which is an extension of the State pattern to
implement guards and entry/exit actions. So, support for hierarchy,
concurrency, and history remains a pending task. Additionally, Ya-
coub et al. [S28] propose other patterns, however, in this review,
we only take into account the Basic Statechart pattern because it
provides the basis concepts and implementation philosophy of
their other patterns.
3.2.1.5. State Machine Design pattern. Shalyto et al. [S23] present
this pattern as an extension of the State pattern with the aim of
making the classes designed with the State Machine pattern more
reusable than the ones designed with the State pattern. To do so,
the authors introduce an event mechanism. Specifically, the basic
idea of the State Machine pattern is to separate classes that imple-
ment transition logic (context class) and state classes so that the
context and state classes interact by using events as objects that
the state objects pass to context.

The proposal by Saúde et al. [S22] shows the feasibility of using
this pattern with large databases, and equally large business pro-
cesses and workflows. In particular, the authors present the Persis-
tent State pattern which integrates classic and enterprise design
patterns (Abstract Factory design pattern [22], Data Access Object de-
sign pattern [73], and Business Object pattern [73]), together with
the State Machine Design pattern, which is specifically used to con-
trol the transition logic of the state machine description.
3.2.1.6. Statechart Design pattern. Tomura et al.’s work [S27] pro-
poses the Statechart design pattern for Finite State Machines. This
pattern defines classes and state-transition execution mechanisms
for realizing the dynamic behaviour of device component models
of an open distributed control system.
3.2.1.7. Hierarchical State Machine pattern. The Hierarchical State
Machine pattern (HSM), by Samek et al. [S21], as well as the Quan-
tum Hierarchical State Machine pattern (QHsm) by Samek [S20] pre-
sented below, have been defined to implement state hierarchy and
transition dynamics. In particular, the fundamental HSM pattern
constitutes an external add-onto C++ or C. Unlike the State pattern,
the State class is not intended for subclassing but rather for inclu-
sion. Therefore, in their proposal, state machines are defined by com-
position rather than by inheritance.

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1055
Heinzmann [S13] provides an extension of the Hierarchical State
Machine pattern [S21]. In particular, this approach allows the cod-
ification of a state machine in C++ directly, without the need for
special code generation tools or wizards, although the author
acknowledges that the existence of such a wizard could facilitate
further development by converting the statechart automatically.
Heinzmann uses template techniques to enable the compiler to
optimize the code through inlining.

3.2.1.8. Quantum Hierarchical State Machine pattern (QHsm). This
pattern, proposed by Samek [S20], is an improved version of
HSM that takes advantage of the Quantum Programming paradigm
(QP). QP enables statechart modelling directly in C or C++ through
two further fundamental meta-patterns: the HSM and active-ob-
ject based framework.

Study [S4] uses the Quantum framework building rapid execut-
able and verifiable models that can be implemented directly into
the application software. Furthermore, two proposals for exten-
sions to this pattern have been provided by Babitsky [S3] and Pin-
tér et al. [S19]. In particular, Babitsky in [S3] proposes an approach
that is a follow-up to Samek’s work [S20] and, at the same time, is
based in part on the State design pattern. On the other hand, Pintér
et al. [S19] provide an extension of the Quantum Hierarchical State
Machine pattern that they call Extended Quantum Hierarchical state
machine (EQHsm), providing support for actions on transitions, his-
tory states, and most cases of concurrent operation (that is, concur-
rency is partially supported).

3.2.1.9. Reflective State pattern. Lamour et al. [S17] present this pat-
tern as a refinement of the State pattern based on the Reflection
architectural pattern. The proposed pattern solves some of the de-
sign decisions that have to be made to implement the State pattern
(such as the creation of the control of state objects and also the
execution of state transitions) or even some disadvantages of the
State pattern (such as centralizing all the control aspects in the con-
text object or decentralizing the responsibilities of the transition
logic), by allowing state subclasses themselves to specify their suc-
cessor states. Specifically, it uses the Reflection architectural pattern
to separate the control aspects of the state machine’s implementa-
tion from the application’s logic [36]. Nevertheless, one of the dis-
advantages is that not all programming languages support
reflection [36].

3.2.2. Proposals not based on design patterns
The results of the pattern-based comparison regarding propos-

als not based on any design pattern are summarized in Table 9.
Next we describe the main characteristics of these proposals.

3.2.2.1. Nested switch statements. Nested switch statements [46] con-
stitutes one of the most common proposals to implement state ma-
chine specifications. This proposal normally uses doubly nested
switch statements for partitioning the event-handler function to
segments reflecting the object behaviour in specific states (exter-
nal branches) and sub-segments for each event handled in the
state (internal branches) [46,47,57,63]. As stated in [11], this tech-
nique works well when implementing flat state machines and is
mostly used in non-object-oriented procedural languages. An
example of this method’s use can be seen in the work presented
by Metz et al. [S18], where an ordinary switch statement in C++
is used to perform the state transition process of the system.

3.2.2.2. Knapp et al.’s proposal. Knapp et al. [S14] present Hugo as a
UML model translator for model checking (using the SPIN [74]
model checker), theorem proving, and code generation. Hugo code
generation is interpretative in nature and is not aimed at produc-
ing product quality and optimized code [51,75], but is intended in-
stead to represent UML semantics as faithfully as possible. Taking
into account the works published in relation to this project, it
seems that the tool efforts are oriented towards verification rather
than code generation. In fact, we have not been able to extract clear
rules of their code generation approach due to the incomplete
information presented in the paper. So, in this review we consider
literally the main points of their approach we have obtained from
Refs. [51,52,75].

3.2.2.3. Shlaer et al.’s proposal. Shlaer et al. [S24] suggest an imple-
mentation of a subset of Harel’s statecharts [5] based on a linked
list of transitions.

3.2.2.4. Culwin’s proposal. Culwin [S7] gives a proposal for the
implementation of a specific statechart representing a date input
mechanism, without focusing on describing general implementa-
tion rules. In particular, we should note that, since the author pre-
sents her proposal by directly applying it to such a specific
statechart, it has been a bit difficult to extract the general rules
for statechart to Java code transformation.

3.2.2.5. Chow et al.’s proposal. Chow et al. [S6] give an approach for
translating code from the dynamic behaviour of a system based on
two main steps. First, in the statechart diagram step, the corre-
sponding Java code is generated from each element. Second, the
generate method body step is based on the pre/post condition of
an operation and specifies the order of language statements taking
into account the message-passing sequence in the interaction
diagram.

3.2.2.6. Derezinska et al.’s proposal. Derezinska et al. [S8] present a
framework for eXecutable UML (FXU) that is able to transform
UML models into C# source code and supports execution of the
application reflecting the behavioural model. The authors state
that this framework corresponds to the first solution that supports
generation and execution of all elements of state machine UML 2.0
[76] using the C# language. The FXU Framework consists of two
components: the FXU Generator, responsible for the transforma-
tion of the UML model to the corresponding C# code realization,
and the FXU Runtime Library, which implements the general rules
of state machine behaviour (such as processing of events, execu-
tion of transitions, entering and exiting states, and realization of
different pseudostates).

3.2.2.7. Lafreniere’s proposal. Lafreniere [S16] presents a particular
design for the implementation of state machines using C++, which
solves the problems given by the use of switch statements by
including support for both internal and external events, event data,
and state transition validation.

3.2.2.8. Ali’s proposal. Ali [S2] aims to provide an easy way for
implementing concurrent/hierarchical state machines into effi-
cient and encapsulated Java code based mainly on the use of Java
Enums [77], making the resulting code compact, efficient and easy
to understand [11,38]. His approach considers state machines hav-
ing hierarchical and concurrent states, and encapsulates the state
machine behaviour within a specific class and keeps the structure
of the state machine obvious at the programming level.

3.3. Element-based comparison

The goal of this comparison is to analyse which state machine
elements are considered by each proposal and the strategy fol-
lowed in order to implement these elements as code structures.
The results are summarized in Table 10, for pattern-based propos-
als, and in Table 11, for not pattern-based proposals, indicating in

Ta
bl

e
10

El
em

en
t-

ba
se

d
co

m
pa

ri
so

n
of

pa
tt

er
n-

ba
se

d
pr

op
os

al
s.

1056 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066

Table 11
Element-based comparison of not pattern-based proposals.

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1057
every cell of these tables each author’s proposal. We decided to
present the results using these tables in order to ease legibility,
but the explanations of the results are given without making the
same distinction. In these tables, we have used the following nota-
tion: (i) an empty cell means that the authors do not mention any-
thing about the element in question, (ii) the symbol ‘–’ indicates
that the authors propose translating the corresponding element
but they do not explain their complete strategy, and (iii) the sym-
bol ‘X’ means that the authors explicitly state that they do not pro-
vide an implementation for the element. In all events, we have
filled each cell with the authors’ translation proposal for the corre-
sponding element.

In order to compare the way in which each element is con-
sidered by each proposal, we have sorted the rows into three
groups (represented by alternating grey/white colours in Tables
10 and 11), using a double criteria. The first group is determined
according to the number of works that deal with each element.
More specifically, this group includes the elements for which the
majority of works propose a translation. In contrast, the ele-
ments of the other two groups are analysed by either few works
or almost none. The second and third group distinguish between
composite states, considered as core elements [5] that we be-
lieve should be considered by the authors, and pseudostates
and activities, which can be thought of as secondary elements
and therefore are not essential to be translated. Next, we will ex-
plain each group in detail.

As mentioned above, the first group includes the elements that
are considered by almost every proposal. It is no wonder that the
elements of this group are the most widely used state machine
specification elements: current state, simple state, event, guard, ac-
tion, considering also the state-transition process and the context
class, whose behaviour is represented by the state machine speci-
fication. With regard to the strategy followed to implement the
context class, the current state and the state-transition process, the
authors are in agreement, to a greater or lesser extent. In particu-
lar, the usual proposal for the implementation of the context class is
by means of a simple class, while others propose to also define a
base class from which the previous one will inherit. The specific
class, in the former case, or the corresponding superclass, in the
latter case, describes the state machine behaviour.

1058 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
As regards current state, all approaches agree in their represen-
tation as an attribute whose value refers to the current state the
object is in.

Regarding simple states, six different strategies are
distinguished:

� SS1: defining a purely abstract class for every state plus a con-
crete subclass, which inherits from the general class, for each
operational state ([S3], [S11], [S25], and [S28]).
� SS2: creating a specific class for each state in the state machine

specification ([S23]).
� SS3: defining a single class for all states ([S8], [S9], [S10], [S12],

[S13], [S14], [S15], [S21], and [S27]).
� SS4: creating a function for each state in the context class

([S16]) or in derived classes ([S20] and [S19]).
� SS5: defining an enumeration type for all states (each state as

an enum value) ([S2] and [S18]) or simply a data value for each
state ([S6], [S7], and [S24]).
� SS6: defining several classes representing the state object ini-

tializations and the behaviour associated with each state
([S17]).

The performance of the state-transition process is encapsulated
in a specific method (in most cases located in the context class)
that is invoked for each incoming event and is responsible for del-
egating events to the corresponding state implementation struc-
tures or directly to the state implementation of that event. The
trigger of the transition is checked normally by a switch statement;
exceptions to this implementation proposal are the approaches
based on the State-table pattern ([S9], [S10] and [S15]), in which
the state transition correspondences are encapsulated in a state-ta-
ble structure as described in the previous section.

Events are implemented as:

� E1: a method in the corresponding state class ([S3], [S11], [S17],
and [S25]) or in the context class ([S6], [S16], [S18] and [S24]).
� E2: an object of a single class defined for all events ([S8], [S9],

[S14], [S19], [S20] and [S23]), in some cases, together with a
specific method implemented accordingly in the class ([S10]),
in the context class ([S15]), or in the corresponding state class
([S28]).
� E3: an attribute in a transition class ([S27]).
� E4: a value in an enumeration type ([S2] and [S21]).

Special cases of the event’s implementation proposals are as fol-
lows. In [S13], the author provides freedom to implement them,
[S7] only considers the event KeyEvent of Java and in [S8] a differ-
ent class is defined for each type of event (change events, call
events, time events, and completion events) and for each signal
event.

The authors more or less agree on the translation of guards,
checking them directly as if-statements normally in the event
methods or event-handler functions ([S2], [S6], [S7], [S13], [S18],
[S25], and [S28]). Additionally, in [S8], [S9], [S15], and [S27] each
guard is checked in an evaluated method, and in [S14] a specific
class is created for guards.

Transition actions, on the other hand, are implemented as:

� A1: a method in the context class used by the vast majority of
the proposals ([S2], [S6], [S8], [S9], [S10], [S11], [S13], [S15],
[S18], [S19], [S20], [S25], and [S27]).
� A2: an interface which has to be implemented by all actions in

the state machine specification ([S12]).
� A3: an action class with a method for each action ([S28]).
� A4: a single class ([S14]).
As noted above, the elements of the second and third group of
Tables 10 and 11 are considered by few to almost none of the
authors. Particularly noteworthy is the second group correspond-
ing to composite states (hierarchy and concurrency), which are
two of the main components of the expressive richness of state
machines [5,78] and also improve their comprehension [79]. In
particular, regarding simple composite states (hierarchical states),
only [S2], [S3], [S7], [S10], [S13], [S15], [S18], [S19], [S20], [S21],
[S25] and [S27] provide a proposal for their implementation,
whereas others ([S8] and [S14]) state that they translate simple
composite states but do not explain the strategy they use. A similar
issue occurs with orthogonal composite states, which are imple-
mented only by [S2], [S3], [S10], [S15], [S19], [S25], and [S27].

Finally, the third group corresponds to pseudostates and activi-
ties, which can be considered as secondary elements that, in our
opinion, contribute to the complexity of models [78] without being
essential. Regarding pseudostates, only [S8] takes into account all of
them, defining a specific class for each type of pseudostate. On the
other hand, [S25] takes into account all but one of them, using dif-
ferent strategies for their implementation (fork method, chained
if-statements or references).

Finally, as far as state activities (we refer to entry/exit/do ac-
tions), they are implemented as:

� A1: a specific method in the context class ([S3], [S10], [S13],
[S15] and [S20] consider entry/exit actions and [S9], [S18] and
[S27] consider entry/exit/do actions).
� A2: a specific method in the event handler ([S21] implements

entry/exit actions).
� A3: a specific method in the corresponding state class ([S3],

[S19], [S25] and [S28] considers entry/exit actions).
� A4: a class for all actions ([S12] implements entry/exit/do

actions).

3.4. Feature-based comparison

As described above, taking into account the RQ3 research ques-
tion, first we determined a taxonomy of software development fea-
tures expected to be considered by the published proposals. Then,
we carried out a feature-based comparison that allows us to ana-
lyse and compare the selected proposals from a different point of
view to that of the pattern-based and the element-based
comparisons.

In Subsection 2.6 of Section 2, we present the taxonomy of 13
data items extracted from the selected papers classified into five
groups. This taxonomy has been established taking into account:
(i) the main software development features highlighted in the ana-
lysed proposals, and (ii) the list of system quality attributes pre-
sented in [80], which are based on their relevance to design
patterns. In particular, we have taken [80] as a starting point and
chosen the quality attributes we considered most appropriate for
our particular study. We have also considered some comparison
aspects directly related to state machines expressivity. Below, we
explain in detail the features we have chosen for our taxonomy
as well as the criteria followed to evaluate these features for each
proposal.

� Features related to state machines expressivity
– Hierarchy: whether hierarchical composite states are imple-

mented or not, evaluated following the criteria: Not Sup-
ported, Partially Supported, or Supported.

– Concurrency: whether orthogonal states are implemented or
not, assessed by means of the criteria: Not Supported, Par-
tially Supported, or Supported.

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1059
– History: whether history pseudostates are implemented or
not, using the criteria: Not Supported, Partially Supported, or
Supported. We have included this feature in the taxonomy
due to the fact that the history mechanisms, provided by
statecharts [5] and its variants, are not provided by other
state-based formalisms. This feature allows us to evaluate
whether the authors make use of it or not.

� Features related to software design
– Expandability: degree to which a system design can be

extended [80], evaluated as Bad, Medium, or Good. From
our point of view, it is closely related to the maintenance,
extensibility, or flexibility aspects of the generated code.

– Simplicity: degree to which the design of a system can be
easily understood [80], assessed by means of the criteria:
No, Neutral, or Yes.

– Reusability: whether some code extracts resulting from the
implementation of a specific state machine specification
could be reused as part of the code generated from another,
somehow related, state machine specification [80], assessed
as: Bad, Medium, or Good.

� Features related to implementation
– Learnability: degree to which the code source of a system is

easy to learn [80], assessed by the criteria: Bad, Medium, or
Good.

– Understandability: degree to which the code source can be
understood easily [80], evaluated as Bad, Medium, or Good.
We think that the understandability, as well as the readabil-
ity, of a software system is crucial for its reuse and evolution,
so we have considered this feature as essential for evaluating
the implementation proposals.

– Modularity: degree to which the implementation of a sys-
tem’s functions are independent of one another [80], evalu-
ated using Bad, Medium, or Good. It is worth highlighting that
modularity is closely related to compactness and a more
structured code. In addition, a modular implementation
can result in, among other things, a simplified design,
improved understandability and quality, and expedited
response to system requirement changes.

� Features related to runtime
– Performance of execution: how well the generated system is

executed, evaluated as Bad, Medium, or Good. It is related
to the speed of execution or the time the application takes
to perform a requested task during execution.

– Memory needs: amount of computer memory needed for the
system’s execution, assessed as Low, Medium, or High.

– Efficiency: how well the system utilizes processor capacity,
disc space, and memory, assessed by the criteria: Bad, Med-
ium, or Good. Computational efficiency is related to both
memory requirements and execution speed.

� Feature related to the final result
– Tooling: whether the authors provide a tool implementing

their proposal. In this case, we present the tool in question.

Finally, the results of this feature-based comparison are pre-
sented in Table 12, for pattern-based proposals, and in Table 13,
for proposals not based on any pattern. We should mention that
to evaluate a proposal regarding a specific feature, we have used
two main aspects as a basis: (i) the papers themselves presenting
such a proposal and on the way they present it, and (ii) other works
that compare their approach with this proposal. In each cell of
these tables, we have included the evaluation according to the
scale used for the corresponding feature together with the source
from which we have concluded the assessment. We should note
that, in some cases, we have not found any clue in the paper’s text
that would give us a clear feature evaluation. In those situations,
we have provided our own evaluation (represented in the table
in grey cells); otherwise, we have represented it with an empty
cell.

We should point out that there were several features that we
needed to evaluate ourselves due to poor or non-existent informa-
tion in the studies. Moreover, we would like to highlight that, for
the Expandability and Understandability features of the proposal gi-
ven by Gamma et al. [S11], studies do not agree on the evaluation
criteria. Although we have decided to present the two opinions in
Table 12, we have to say that we consider that the proposal given
by Gamma et al. [S11] provides good understandability and main-
tenance. Similarly, studies do not agree on the assessment of the
proposals given by Samek [S20] and by Yacoub et al. [S28] regard-
ing Understandability, where in both cases we lean towards the
assessments made by [S1] (particularly in [36]). Taking advantage
of this remark, we would also like to mention that our feature-
based results for the State pattern approach given by Gamma
et al. [S11] (taking into account the second evaluations of Expand-
ability and Understandability features) fits with the evaluation of
this pattern given in [81], where the authors evaluate the impact
of Gamma et al.’s 23 patterns.

Similarly, regarding tool development, we note that in this fea-
ture we have also considered the case of the tool Rhapsody [27]
which, although not developed by Douglas [S9], uses switch state-
ments as part of its code generation proposal.
4. Discussion

In this section we address three main issues. First, we summa-
rize the principal findings of the systematic review, highlight the
strengths and weaknesses of the evidence gathered, and discuss
the relevance and contribution of the different techniques and
implementation methods of state machine specifications into code
published in the literature. Second, we discuss the study limita-
tions. Finally, we analyse the threats to validity arising from the
procedures we followed to perform the systematic review.

4.1. Principal findings

The main goal of this paper was to identify and classify the re-
search work done in the field of code generation from state ma-
chine specifications and provide an exhaustive analysis and
comparison of the proposals. To do so, a systematic review was
conducted through an accurate process carrying out a three-based
dimension comparison that in turn provides an answer to each of
the given research questions. Next, we address each research ques-
tion starting by discussing the main techniques and implementa-
tion methods proposed within the research topic (RQ1). The
second subsection is devoted to highlighting the main state ma-
chine elements supported by the selected studies (RQ2), and the
third subsection discusses the main desired software development
features considered by the selected studies (RQ3).

4.1.1. Main techniques or implementation methods published within
the field of state machines code generation

The review has led us to conclude that there is a strong ten-
dency to use design patterns for implementing state machine spec-
ifications. Especially remarkable is the use of the State Design
pattern (study [S11]), which is very appreciated in the field since
it can be used in practically any size application [32]. Nevertheless,
its lack of support for implementing certain aspects (such as the
dynamic parts of the model or several state machines elements)
has prompted the development of a great variety of extensions
and patterns built upon this pattern in order to provide solutions
for some of its weaknesses. This is the case of study [S25] by Tana-
ka et al., which provides one of the most complete approaches,

Ta
bl

e
12

Fe
at

ur
e-

ba
se

d
co

m
pa

ri
so

n
of

pa
tt

er
n-

ba
se

d
pr

op
os

al
s.

1060 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066

Table 13
Feature-based comparison of not pattern-based proposals.

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1061
solving the State pattern’s substate problems, among other
improvements. The Reflective State pattern (study [S17]) solves
some of the design decisions chosen in the State pattern or even
some disadvantages by allowing state subclasses themselves to
specify their successor states. Patterns such as the Basic Statechart
pattern (study [S28]) improve the State pattern by adding support
for guards and entry/exit actions.

Other patterns, such as the Finite State Machines pattern (study
[S12]), address the State pattern’s problems related to the evolution
of state machines and data management by providing more struc-
ture at the implementation level. Another extension of the State
pattern that focuses on reusability is the State Machine Design pat-
tern (study [S23]), which makes the classes more reusable than the
ones defined with the State pattern.

In the Hierarchical State Machine pattern (HSM) (study [S21]),
state machines are defined, unlike the State pattern, by composi-
tion rather than by inheritance. The Quantum Hierarchical State Ma-
chine pattern (QHsm) (study [S20]) improve the HSM pattern by
taking advantage of the Quantum Programming paradigm, en-
abling state machine specifications to be implemented in C or
C++ by combining the HSM pattern and active-object based
framework.

The State-table pattern (study [S9]), on the other hand, gives an
approach to implement state machine specifications based upon a
state table with references to concrete states and transitions.
Regarding proposals not pattern-based, it is worth citing the use
of nested switch statements, which is one of the most common pro-
posals to implement state machine specifications that works well
with flat state machines but does not provide good solutions when
hierarchy is presented in the state machine. This proposal is quite
popular because it provides fast execution but at the cost of weaker
readability and maintainability [6,8,36,57,58]. Several studies have
used switch statements as the basis for state machine implementa-
tions. Among them it is worth citing Metz et al.’s work (study
[S18]), which uses an ordinary switch statement to perform the
system’s state transition process. Lafreniere’s proposal (study
[S16]), on the other hand, provides a solution to the problems aris-
ing in the use of switch statements by including support for both
internal and external events, event data, and state transition vali-
dation. Ali’s proposal (study [S2]) provides a way of implementing
concurrent and hierarchical state machines into efficient and
encapsulated code based mainly on the use of Java Enums.

4.1.2. State machine elements supported by the selected studies
From the analysed studies, we have concluded that the subset

of elements considered by almost every proposal is precisely the
most widely used state machine elements (the context class, the
current state, the state-transition process, guards, simple states,
events, and actions). As for the implementation of the first four ele-
ments, authors more or less agree on the strategy followed since

1062 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
their semantics can be easily mapped in the usual language sup-
porting concepts. This is not the case of, for example, simple states
that are implemented in a variety of manners, not providing a clear
trend for a unique implementation.

In some cases, the authors clearly opt for one or two specific
implementation proposals. This is the case of events where, from
the 18 studies that provide support for the implementation of
events, 9 studies follow the approach labelled E1 and 9 studies
consider implementation E2. On the other hand, in the case of
Transition actions, there are 17 studies that provide four different
proposals (A1–A4), among which most of the works (13 studies)
follow method A1.

Other elements are supported by very few studies. This is the
case of, for example, fork and join (supported by two studies pro-
viding two different proposals), choices (supported by three studies
providing two different implementation proposals), shallow history
(supported by six studies providing three different proposals) and
deep history (supported by four studies with two different
proposals).

As for composite states, it is especially remarkable that not only
are there few studies that provide an implementation, but also that
these approaches are quite different from one another, going from
more structured ones, based on classes and hierarchies (such as
these by studies [S3], [S13], [S15], [S21], [S25], and [S27]) to sim-
pler options, based on member functions or enumeration variables
(such as these by studies [S2], [S7], [S10], [S18], [S19], and [S20]).

Another general conclusion that can be extracted from this
comparison is that the proposal of Tanaka et al. [S25] is one of
the most complete approaches. Furthermore, another key finding
of this element-based comparison is that there are very few papers
that support two of the main components of the expressive rich-
ness of state machine specifications [5,78] – hierarchy and
concurrency.

4.1.3. Desired software development features considered by the
selected studies

Our third research question addressed the desired features in
software development provided by the selected studies. The first
conclusion that can be extracted from our analysis (summarized
in Tables 12 and 13) is that there are many papers that do not pro-
vide an implementation strategy taking into account relevant qual-
itative aspects in software development such as maintenance ([S6],
[S7], [S8], [S9], [S18]), reusability ([S2], [S6], [S7], [S8], [S9], [S10],
[S11], [S15], [S16], [S18]), and modularity ([S2], [S6], [S7], [S8],
[S9], [S16], [S18]).

Another key finding concluded from this comparison is that the
proposal of Tanaka et al. [S25] is one of the most complete, fol-
lowed by Samek et al. [S21], Samek [S20] and Pintér et al. [S19],
which are characterized by, on one hand, being easy to learn and
to understand and, on the other hand, by the use of modular, struc-
tured code, decreased process memory requirements, and en-
hanced execution speed.

Regarding tool development, there are few works providing a
tool that implements their proposal. Among them, JCode [S25],
FSMGenerator [S12], Rhapsody [S9], and FXU Framework [S8] have
been designed for state machine specifications to code generation,
whereas the Hugo tool [S14] and the Fujaba tool [S15] were devel-
oped for broader purposes. Specifically, [S14] presents Hugo, which
is described as a UML model translator for model checking, theo-
rem proving, and code generation, but whose main efforts are ori-
ented towards verification rather than code generation, so it is not
aimed at producing product quality and optimized code.

As concerns study [S25], the authors have successfully imple-
mented their approach in their system, JCode, which aims to auto-
matically convert UML class and statechart diagrams specifications
into Java code. This tool has mainly been evaluated by comparing it
with the Rhapsody tools, showing that the code generated by the
JCode system is about 68% more efficient and about four times
more compact than that of Rhapsody.

As for the FSMGenerator tool, presented in [S12], the authors
evaluate their approach by comparing it with the State pattern with
respect to maintenance and performance, obtaining promising re-
sults in maintenance and quite an acceptable performance.

The FXU Framework is presented in study [S8] as the first solu-
tion to support the generation and execution of all elements of
state machine UML 2.0 using C# language. The authors have as-
sessed the proposal by performing several experiments showing
that an application performing a behaviour specified in state ma-
chine models can be developed effectively and reliably [43]. In par-
ticular, the code generation was tested on over forty models
(classes and state machines), using all possible constructs of UML
2.x state machines in different situations, including elements such
as complex and orthogonal states, different kinds of pseudostates,
and submachine states. Moreover, the programs performing those
state machines were run taking into account different sequences of
triggering events.

Last, the Fujaba tool (study [S15]), originally aimed at support-
ing software forward and reverse engineering (it is an acronym for
‘‘From UML to Java and back again’’), has nowadays become a com-
plex project with support for model-based software engineering
and re-engineering.

4.2. Study limitations

This study has the usual limitations associated with any sys-
tematic literature review. With respect to the search process, we
have to admit that we may have missed some relevant papers
and the data extraction may have been incorrect for some papers.
In this process, we have limited ourselves to English-language
studies and to five major electronic databases using search terms
related to specific English terms. Therefore, this strategy did not
take into account non-English-language papers, papers in many
national journals and conferences, or papers that use keywords
not considered or unusual terminology. Overall, though, we do
not expect to have missed a large number of important studies.

As regards data extraction, we should also mention that some
aspects of the literature, related to both the element-based and
the feature-based comparisons, have been rooted on our own inter-
pretation of the papers (especially in the latter comparison), so it is
possible that other researchers might arrive at different
conclusions.

4.3. Threads to validity

A systematic literature review such as this one has several evi-
dent threats to its validity. First, whether we have identified ade-
quate keywords and chosen enough search engines. In this
respect, the ample list of different papers indicates that the width
of the search is sufficient. The snowball sampling procedure shown
that the search worked well since we have not found any addi-
tional papers conforming to the established inclusion criteria.

Second, another possible threat to validity is bias in applying
quality assessment and data extraction. In order to minimize this
threat insofar as possible, we explicitly established the inclusion
and exclusion criteria, which we believe was detailed enough to
provide an assessment of how we selected the chosen papers for
analysis.

Finally, another important threat to validity is reliability, which
focuses on whether the data are extracted and the analysis is per-
formed in such a way that it can be repeated by other researchers
to obtain the same results. In this respect, we have defined search
terms and the procedures applied during the review so that it may

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1063
be replicated by others, with the exception of, as described in Sub-
section 4.2, those aspects considered in the element-based and the
feature-based comparisons, where we have based on our own inter-
pretation of the papers.
5. Conclusions

In this paper we provide a systematic literature review of peer-
reviewed published studies that focus on the code generation from
state machine specifications. For this task, the review presented
herein has been conducted using an accurate and reliable process
that has allowed us to identify, analyse, and compare a compre-
hensive set of 53 relevant proposals published within the research
topic.

The systematic review has addressed the following main re-
search questions: (RQ1) What techniques or implementation
methods have been used for generating object oriented code from
state machine specifications (including UML state machines, finite
state machines and Harel statecharts)?, (RQ2) What state machine
specification elements are translated into code by each technique
or implementation method? and (RQ3) What are the desired soft-
ware development features considered by the published propos-
als? the main findings of the review being those presented in the
following paragraphs.
Table A.14
Search strings.

DB Place of search Detailed search strings

IEEE Xplore Abstract (summary) and title
text, and indexing terms

(‘‘UML Statecharts’’ OR ‘‘U

charts’’ OR ‘‘Finite State M

behavior’’ OR ‘‘State-base

behaviour’’ OR ‘‘Reactive s

‘‘Model-based generation’’

‘‘Behavioral patterns’’ OR

‘‘Object-oriented language

method’’ OR ‘‘OO method’’ O

ACM Title, abstract and keywords Being:
A = ‘‘UML Statecharts’’ OR ‘
charts’’ OR ‘‘Finite State M

behavior’’ OR ‘‘State-base

behaviour’’ OR ‘‘Reactive s

B = ‘‘Implementation’’ OR ‘‘

‘‘Mapping’’ OR ‘‘Executabl

‘‘Behavioural patterns’’ O

‘‘Programming language’’ O

Oriented programming’’ OR C

(Title: (A) AND Title: (B))

(Keywords: (A) AND Keywords

Total

ScienceDirect Abstract, title, keywords Being:
A = {UML Statecharts} OR {UML
{Finite State Machines} OR F

B = {State-based behaviour}
behaviour} OR {Reactive syst

C = Implementation OR {Code
{Executable specification}
patterns}
D = {Object-oriented langua

{OO method} OR {State-Orient
The search strings were:
TITLE-ABSTR-KEY (A) AND TIT

TITLE-ABSTR-KEY (A) AND TIT

TITLE-ABSTR-KEY (B) AND TIT

TITLE-ABSTR-KEY (B) AND TIT

Total
Regarding the first question, the results of the review show that
the different techniques for code generation from state machine
specifications can be mainly classified as those based on a design
pattern and those that are not. More specifically, the selected pa-
pers provide a total of 23 different implementation proposals (15
corresponding to pattern-based approaches and 8 related to not
pattern-based approaches), which are used in a wide variety of
application contexts such as in distributed control systems or even
in NASA space missions. In particular, we would like to make a spe-
cial comment regarding the State design pattern, which constitutes
one of the most widely used patterns to model the execution
semantics and which has been taken as the basis for the develop-
ment of a wide number of pattern-based proposals.

As regards the second question, we found that most of the ana-
lysed works provide an implementation proposal of the main state
machine elements commonly used for the representation of the
dynamic behaviour of systems (such as simple states, events,
guards, and actions in transitions), whereas only a few proposals
support implementation of more specific elements such as simple
and orthogonal composite states, which are two of the main com-
ponents of the expressive richness of state machine specifications
[5,78]. In addition, another conclusion drawn from the review is
that the proposal of Tanaka et al. [S25] is one of the most complete
approaches.

Regarding the third research question, a key finding of the re-
view obtained from the feature-based comparison is that there
Num.

ML State Machines’’ OR ‘‘Harel’s Statecharts’’ OR ‘‘State

achines’’ OR ‘‘FSM’’ OR ‘‘Dynamic models’’ OR ‘‘State-based

d behaviour’’ OR ‘‘Dynamic behavior’’ OR ‘‘Dynamic

ystem’’) AND (‘‘Implementation’’ OR ‘‘Code generation’’ OR

OR ‘‘Mapping’’ OR ‘‘Executable specification’’ OR

‘‘Behavioural patterns’’ OR ‘‘Design patterns’’ OR

’’ OR ‘‘Programming language’’ OR ‘‘Object-oriented

R ‘‘State-Oriented programming’’ OR C++ OR Java OR C/C++)

1384

‘UML State Machines’’ OR ‘‘Harel’s Statecharts’’ OR ‘‘State

achines’’ OR ‘‘FSM’’ OR ‘‘Dynamic models’’ OR ‘‘State-based

d behaviour’’ OR ‘‘Dynamic behavior’’ OR ‘‘Dynamic

ystem’’ and
Code generation’’ OR ‘‘Model-based generation’’ OR

e specification’’ OR ‘‘Behavioral patterns’’ OR

R ‘‘Design patterns’’ OR ‘‘Object-oriented language’’ OR

R ‘‘Object-oriented method’’ OR ‘‘OO method’’ OR ‘‘State-

++ OR C# OR Java OR C/C++ The search strings were:
OR (Abstract: (A) AND Abstract: (B)) 690
: (B)) 31

721

State Machines} OR {Harel’s Statecharts} OR {State charts} OR
SM OR {Dynamic models}
OR {State-based behaviour} OR {Dynamic behaviour} OR {Dynamic
em}
generation} OR {Model-based generation} OR Mapping OR

OR {Behavioral patterns} OR {Behavioural patterns} OR {Design

ge} OR {Programming language} OR {Object-oriented method} OR
ed programming} OR C++ OR C# OR Java OR C/C++

LE-ABSTR-KEY (C) 157
LE-ABSTR-KEY (D) 19
LE-ABSTR-KEY (C) 75
LE-ABSTR-KEY (D) 9

260

Table A.15
Search strings.

DB Place of search Detailed search strings Num.

Microsoft
Academic
Search

Anywhere in the
article

Considering all possible pair permutations of the first group of keywords chosen in the first step of the electronic
systematic search, that is, UML Statecharts, Harel’s Statecharts and Reactive Systems, and Implementation, Code
Generation, and Programming language

1184

Google Scholar Title Being:
A = ‘‘UML Statecharts’’ OR ‘‘UML State Machines’’ OR ‘‘Harel’s Statecharts’’ OR ‘‘State charts’’
OR ‘‘Finite State Machines’’ OR FSM OR ‘‘Dynamic models’’

B = ‘‘State-based behavior’’ OR ‘‘State-based behaviour’’ OR ‘‘Dynamic behavior’’ OR ‘‘Dynamic

behaviour’’ OR ‘‘Reactive system’’

C = ‘‘Implementation’’ OR ‘‘Code generation’’ OR ‘‘Model-based generation’’ OR ‘‘Mapping’’

D = ‘‘Executable specification’’ OR ‘‘Behavioral patterns’’ OR ‘‘Behavioural patterns’’ OR

‘‘Design patterns’’

E = ‘‘Object-oriented language’’ OR ‘‘Programming language’’ OR ‘‘Object-oriented method’’ OR

‘‘OO method’’

F = ‘‘OO-method’’ OR ‘‘State-Oriented programming’’ OR C++ OR C# OR Java OR C/C++

The search strings were:
allintitle: (A AND C) 50
allintitle: (A AND D) 1
allintitle: (A AND E) 0
allintitle: (A AND F) 5
allintitle: (B AND C) 8
allintitle: (B AND D) 0
allintitle: (B AND E) 0
allintitle: (B AND F) 1

Total 65

1064 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
are many papers that do not provide an implementation strategy
that takes into account relevant qualitative aspects in software
development such as maintenance, reusability, or modularity,
whereas others, such as those of Tanaka et el. [S25], Samek et al.
[S21], Samek [S20] and Pintér et al. [S19], particularly care about
desirable features to be considered in software development.

As another general conclusion drawn from the review, we have
to say that UML state machines are the most common form of state
machine specification used in code generation studies.

The classification of the literature should be of value both to
researchers and software developers who need a satisfactory solu-
tion for the implementation of the behavioural models represent-
ing the dynamics of their system. In particular, the work carried
out in this review has been taken as a starting point for the devel-
opment of our own proposal for the implementation of UML State-
charts in a specific medical context [35,82,83], based on the
proposal by Tanaka et al. [S25].
Acknowledgments

This work has been partially supported by the Spanish Ministry
of Science and Innovation (projects TIN2009-13584 and SMOTY
(IPT-2011-1328-390000)) and the Centre for Industrial Technolog-
ical Development (CDTI) (project THOFU (CEN20101019)).
Appendix A. The search strings

The final abstract search string constructed containing all the
relevant keywords chosen for the search is: (‘‘UML State-

charts’’ OR ‘‘Harel’s Statecharts’’ OR ‘‘Reactive sys-

tem’’ OR ‘‘UML State Machines’’ OR ‘‘State charts’’ OR

‘‘Finite State Machines’’ OR ‘‘FSM’’ OR ‘‘State-based

behavior’’ OR ‘‘State-based behaviour’’ OR ‘‘Dynamic

models’’ OR ‘‘Dynamic behavior’’ OR ‘‘Dynamic behav-

iour’’) AND (‘‘Implementation’’ OR ‘‘Code generation’’

OR ‘‘Programming language’’ OR ‘‘Object-oriented lan-

guage’’ OR ‘‘OO language’’ OR C++ OR C# OR Java OR C/
C++ OR ‘‘State-Oriented programming’’ OR ‘‘Object-

oriented method’’ OR ‘‘OO method’’ OR ‘‘Model-based

generation’’ OR ‘‘Mapping’’ OR ‘‘Executable specifi-

cation’’ OR ‘‘Behavioral patterns’’ OR ‘‘Behavioural

patterns’’ OR ‘‘Design patterns’’).
As we described above, starting from such an abstract search

string, different strings were derived on each database engine, tak-
ing into account their search particularities. These strings are ex-
plained in Tables A.14 and A.15, where we have specified: (1) the
electronic database in which the search took place, (2) the fields
in which the search took place, (3) the detailed search string(s),
and (4) the number of papers resulting from the search (hence,
note that this number refers to papers without considering any
selection criteria). Explaining in more detail, taking into account
our particularly long search string, we had to use the advanced
search option in all databases. More specifically, in some databases
we came across several problems related to the length of our
search string. The fact is that, as expected, these database engines
have size limitations in their search text boxes, even in the ad-
vanced search. This issue led us to perform separate searches on
these electronic databases (particularly in ACM, ScienceDirect,
Microsoft Academic Search, and Google Scholar), considering dif-
ferent ‘‘equivalent’’ combinations of boolean search strings, hence
obtaining duplicated results. That is the case of, for example,
ScienceDirect (see Table A.14). In this database, we had to split
the search string into four different strings (A and B with the OR
concatenation of the State machine specification keywords, and C

and D with the OR concatenation of the Software engineering con-
cepts) and carried out the search of the four possible combinations
using the AND to join these major terms. On the other hand, the
search constraints in the case of Microsoft Academic Search were
even more limiting, forceding us first to carry out the searches with
the 12 � 18 = 216 possible pairs (one pair per each combination of
the State machine specifications and the Software engineering con-
cepts). This search obtained as a result a total of 35325, which we
considered to be an unmanageable number. Therefore, we decided
to perform the searches in this database considering all possible
pair permutations of the first group of keywords chosen in the first

E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066 1065
step of the electronic systematic search, that is, UML Statecharts,
Harel’s Statecharts and Reactive Systems, and Implementation,
Code Generation, and Programming language, yielding a total of
1184 results.

Regarding the search location in the papers (both in electronic
databases and the specified conference proceedings), titles, ab-
stracts, and keywords of the articles were searched (see Tables
A.14 and A.15), with the exception of Google Scholar and Microsoft
Academic Search. In particular, Google Scholar allows for searching
either in the title or anywhere in the article, so, in order to be as
similar as possible to the other databases, we searched in the paper
titles. On the other hand, Microsoft Academic Search carries out
the search in all the paper contents, being able to establish con-
straints only regarding the author, conference, journal, organiza-
tion, year, and DOI. For this reason, we searched in the entire
paper’s contents.

Taking into account that all databases cover a wide range of
years, we performed the searches choosing the default option All
available years. Hence, since the search took place in October
2010, all resources up to the first half of 2010 were considered in
the search. Finally, the research found in these electronic databases
yielded a total of 3623 results.
References

[1] B. Selic, The pragmatics of model-driven development, IEEE Software 20 (5)
(2003) 19–25.

[2] OMG Model Driven Architecture, Committed Companies & Their Products,
2010. <http://www.omg.org/mda/committed-products.htm> (last visited May
2012).

[3] OMG, UML 2.3 Superstructure Specification, Document Formal/2010-05-05,
2010. <http://www.omg.org/> (last visited May 2012).

[4] J.V. Gurp, J. Bosch, On the implementation of finite state machines, in:
Proceedings of the 3rd Annual IASTED International Conference Software
Engineering and Applications, 1999.

[5] D. Harel, Statecharts: a visual formulation for complex systems, Science of
Computer Programming 8 (3) (1987) 231–274.

[6] I.A. Niaz, J. Tanaka, Code generation from UML statecharts, in: Proc. 7th IASTED
Conf. on Software Engineering and Application (SEA 2003), 2003, pp. 315–321.

[7] I.A. Niaz, J. Tanaka, Mapping UML statecharts to java code, in: Proceedings of
the IASTED Conf. on Software Engineering, 2004, pp. 111–116.

[8] I. Azim, Automatic Code Generation From UML Class and Statechart Diagrams,
PhD Dissertation, University of Tsukuba, 2005.

[9] A. Jakimi, M. Elkoutbi, An object-oriented approach to UML scenarios
engineering and code generation, International Journal of Computer Theory
and Engineering (IJCTE) 1 (1) (2009) 35–41.

[10] A. Jakimi, M. Elkoutbi, Automatic code generation from UML statechart,
International Journal of Computer Theory and Engineering (IJCTE) 1 (2) (2009)
165–168.

[11] J. Ali, Using Java Enums to implement concurrent–hierarchical state machines,
Journal of Software Engineering 4 (3) (2010) 215–230.

[12] T. Tomura, S. Kanai, K. Uehiro, S. Yamamoto, Object-oriented design pattern
approach for modeling and simulating open distributed control system, in:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 2001), 2001, pp. 211–216.

[13] H.J. Köhler, U.A. Nickel, J. Niere, A. Zündorf, Using UML as a Visual
Programming Language, Tech. Rep. tr-ri-99-205, University of Paderborn,
Paderborn, Germany (August 1999).

[14] H.J. Köhler, U. Nickel, J. Niere, A. Zündorf, Integrating UML diagrams for
production control systems, in: Proc. of the 22nd International Conf. on
Software Engineering (ICSE 2000), 2000, pp. 241–251.

[15] R. Tiella, A. Villafiorita, S. Tomasi, Speciffication of the control logic of an
eVoting system in UML: the ProVotE experience, in: Proceedings of the 5th
International Workshop on Critical Systems Development Using Modeling
Languages (CSDUML06), 2006, pp. 93–102.

[16] R. Tiella, A. Villafiorita, S. Tomasi, FSMC+, a tool for the generation of Java code
from statecharts, in: Principles and Practice of Programming in Java, 2007, pp.
93–102.

[17] A. Villafiorita, K. Weldemariam, R. Tiella, Development, formal verification,
and evaluation of an E-voting system with VVPAT, IEEE Transactions on
Information Forensics and Security 4 (4) (2009) 651–661.

[18] E. Benowitz, K. Clark, G. Watney, Auto-coding UML statecharts for flight
software, in: Proceedings of the Second IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT’06), 2006, pp. 413–
417.

[19] K.P. Kiri L. Wagstaff, L. Scharenbroich, From Protocol Specification to
Statechart to Implementation, JPL Technical Report, Nasa, Jet Propulsion
Laboratory, 2008. http://ml.jpl.nasa.gov/papers/wagstaff/wagstaff-protocol-
statecharts-08.pdf (last visited May 2012).

[20] K.L. Wagstaff, E. Benowitz, D.J. Byrne, K. Peters, G. Watney, Automatic code
generation for instrument flight software, in: Proceedings of the 9th
International Symposium on Artificial Intelligence, Robotics, and Automation
in Space, 2008.

[21] S. Teppola, P. Parviainen, J. Takalo, Challenges in deployment of model driven
development, in: The Fourth International Conference on Software
Engineering Advances (ICSEA 2009), 2009, pp. 15–20.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

[23] B. Kitchenham, Procedures for Performing Systematic Reviews, Technical
Report tr/se-0401, Keele University, 2004. <http://www.eecis.udel.edu/
�cisgsa/lib/exe/fetch.php?id=research&cache=cache&media=faq:kitchenham_
2004.pdf> (last visited May 2012).

[24] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Version 2 (EBSE 2007-01) (2007) 200701.
<http://pages.cpsc.ucalgary.ca/sillito/cpsc-601.23/readings/kitchenham-
2007.pdf> (last visited May 2012).

[25] M. Petticrew, H. Roberts, Systematic Reviews in the Social Sciences: A Practical
Guide, Blackwell Publishing, 2005.

[26] Gentleware, Poseidon for UML Case Tool, 2012. <http://www.gentleware.com/
> (last visited May 2012).

[27] Rhapsody, 2012. <http://www.ibm.com/developerworks/rational/products/
rhapsody/> (last visited May 2012).

[28] Borland Together 2008 Edition for Eclipse, 2012. <http://www.borland.com/
us/products/together/> (last visited May 2012).

[29] Executable UML, UniMod, UniMod Project, 2008. <http://
unimod.sourceforge.net/> (last visited May 2012).

[30] IBM, IBM Rational Rose, 2012. <http://www-01.ibm.com/software/awdtools/
developer/rose/> (last visited May 2012).

[31] Tigris.org, Open Source Software Engineering Tools, ArgoUML Modeling Tool,
2012. <http://argouml.tigris.org> (last visited May 2012).

[32] T. Allegrini, Code Generation Starting from Statecharts Specified in UML,
argoUML White Paper, 2002. <http://argouml.tigris.org/docs/
allegrini_dissertation/tesi_en.pdf>. (last visited May 2012).

[33] I. Niaz, Automatic Code Generation From UML Class and Statechart Diagrams,
PhD Dissertation, University of Tsukuba, 2005.

[34] K.O. Chow, W. Jia, V.P. Chan, J. Cao, Model-based generation of Java code, in:
Proc. International Conf. On Parallel and Distributed Processing Techniques
and Applications (PDPTA 2000), 2000.

[35] B. Pérez, Towards Decision Facts Management Systems: The Particular Case of
Clinical Guidelines, PhD Thesis, University of Zaragoza, Department of
Computer Science and Systems Engineering, Zaragoza, Spain, 2011.

[36] P. Adamczyk, The anthology of the finite state machine design patterns, in:
Proceedings of the 10th Conference on Pattern Languages of Programs (PLoP),
2003.

[37] P. Adamczyk, Selected patterns for implementing finite state machines, in:
Proceedings of the 11th Conference on Pattern Languages of Programs (PLoP),
2004.

[38] J. Ali, Implementing statecharts using Java enums, in: Proceedings of the 2nd
International Conference on Education Technology and Computer (ICETC), vol.
4, 2010, pp. 413–417.

[39] D. Babitsky, Hierarchical state machine design in C++, C/C++ Users Journal.
<http://drdobbs.com/cpp/184402040> (last visited May 2012).

[40] F. Chauvel, J. Jézéquel, Code generation from UML models with semantic
variation points, in: Proceedings of the 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Lecture Notes in
Computer Science, vol. 3713, Springer, 2005, pp. 54–68.

[41] F. Culwin, The statechart design of a novel date input mechanism, Italics e-
Journal 3 (1). <http://www.ics.heacademy.ac.uk/italics/Vol3-1/statechart paper/
statechartpaper.PDF> (last visited May 2012).

[42] R. Pilitowski, A. Derezinska, Code generation and execution framework for
UML 2.0 classes and state machines, in: Innovations and Advanced Techniques
in Computer and Information Sciences and Engineering, LNCS, Springer Verlag,
2007, pp. 421–427.

[43] A. Derezinska, R. Pilitowski, Correctness issues of UML class and state machine
models in the C# code generation and execution framework, in: Proceedings of
the International Multiconference on Computer Science and Information
Technology (IMCSIT’2008), 2008, pp. 517–524.

[44] A. Derezinska, R. Pilitowski, Event processing in code generation and execution
framework of UML state machines, Software Engineering in Progress (2007) 80–92.

[45] A. Derezinska, R. Pilitowski, Realization of UML class and state machine
models in the C# code generation and execution framework, Informatica
(Slovenia) 33 (2009) 431–440.

[46] B.P. Douglass, Real Time UML – Developing Efficient Objects for Embedded
Systems, Addison-Wesley, Massachusetts, 1998.

[47] B.P. Douglass, Class 505/525: state machines and statecharts, in: Proceedings
of Embedded Systems Conference Fall, 2001.

[48] C. Duby, Class 265: implementing UML statechart diagrams, in: Proceedings of
Embedded Systems Conference Fall, 2001.

[49] C. Duby, Implementing UML Statechart Diagrams, White Paper, 2004, <http://
www.pathfindermda.com/wp-content/themes/pathfinder/downloads/
implementing_state_charts.pdf> (last visited May 2012).

[50] S. Heinzmann, Yet another hierarchical state machine, Overload Journal:
Association of C & C++ Users (64) (2004) 14–21.

http://www.omg.org/mda/committed-products.htm
http://www.omg.org/
http://ml.jpl.nasa.gov/papers/wagstaff/wagstaff-protocol-statecharts-08.pdf
http://ml.jpl.nasa.gov/papers/wagstaff/wagstaff-protocol-statecharts-08.pdf
http://www.eecis.udel.edu/~cisgsa/lib/exe/fetch.php?id=research&cache=cache&media=faq:kitchenham_2004.pdf
http://www.eecis.udel.edu/~cisgsa/lib/exe/fetch.php?id=research&cache=cache&media=faq:kitchenham_2004.pdf
http://www.eecis.udel.edu/~cisgsa/lib/exe/fetch.php?id=research&cache=cache&media=faq:kitchenham_2004.pdf
http://pages.cpsc.ucalgary.ca/sillito/cpsc-601.23/readings/kitchenham-2007.pdf
http://pages.cpsc.ucalgary.ca/sillito/cpsc-601.23/readings/kitchenham-2007.pdf
http://www.gentleware.com/
http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www.borland.com/us/products/together/
http://www.borland.com/us/products/together/
http://unimod.sourceforge.net/
http://unimod.sourceforge.net/
http://www-01.ibm.com/software/awdtools/developer/rose/
http://www-01.ibm.com/software/awdtools/developer/rose/
http://argouml.tigris.org
http://argouml.tigris.org/docs/allegrini_dissertation/tesi_en.pdf
http://argouml.tigris.org/docs/allegrini_dissertation/tesi_en.pdf
http://drdobbs.com/cpp/184402040
http://www.ics.heacademy.ac.uk/italics/Vol3-1/statechartpaper/statechartpaper.PDF
http://www.ics.heacademy.ac.uk/italics/Vol3-1/statechartpaper/statechartpaper.PDF
http://www.pathfindermda.com/wp-content/themes/pathfinder/downloads/implementing_state_charts.pdf
http://www.pathfindermda.com/wp-content/themes/pathfinder/downloads/implementing_state_charts.pdf
http://www.pathfindermda.com/wp-content/themes/pathfinder/downloads/implementing_state_charts.pdf

1066 E. Domínguez et al. / Information and Software Technology 54 (2012) 1045–1066
[51] A. Knapp, S. Merz, Model checking and code generation for UML state
machines and collaborations, in: G. Schellhorn, W. Reif (Eds.), Proceedings of
the 5 th Workshop on Tools for System Design and Verification (FM-TOOLS),
Institut für Informatik, Universität Augsburg, Reisensburg, Germany, 2002, pp.
59–64.

[52] A. Knapp, S. Merz, C. Rauh, Model checking – timed UML state machines and
collaborations, in: Proceedings of the Formal Techniques in Real-Time and
Fault-Tolerant Systems, 7th International Symposium (FTRTFT 2002), vol.
2469, Lecture Notes in Computer Science, 2002, pp. 395–416.

[53] D. Lafreniere, State machine design in C++, C/C++ Users Journal 18 (5) (2000)
58–66.

[54] L. Lamour, C.M.F. Rubira, The reflective state pattern, in: Proceedings of the
Pattern Languages of Program Design, TR-WUCS-98-25, 1998.

[55] L. Lamour, C.M.F. Rubira, Reflective design patterns to implement fault
tolerance, in: Proceedings of the Workshop on Reflective Programming in
C++ and Java, OOPSLA’98, 1998, pp. 81–85.

[56] P. Metz, J. O’Brien, W. Webern, Code generation concepts for statechart
diagrams of the UML v1.1, in: Proc. of the Object Technology Group (OTG)
Conference, 1999.

[57] G. Pintér, I. Majzik, Program code generation based on UML statechart models,
Periodica Polytechnica, Electrical Engineering 47 (3–4) (2003) 087–204.

[58] G. Pintér, I. Majzik, Automatic code generation based on formally analyzed
UML statechart models, in: Proceedings of the Workshop on Formal Methods
for Railway Operation and Control Systems, Budapest, L’Harmattan Kiad, 2003,
pp. 45–52.

[59] G. Pintér, I. Majzik, Impact of statechart implementation techniques on the
effectiveness of fault detection mechanisms, in: Proceedings of the 30th
EUROMICRO Conference, IEEE Computer Society, 2004, pp. 136–143.

[60] G. Pintér, Model Based Program Synthesis and runtime Error Detection for
Dependable Embedded Systems, PhD Thesis, Budapest University of
Technology and Economics, Department of Measurement and Information
Systems, Budapest, Hungary, 2007.

[61] G. Pintér, I. Majzik, Code Generation Based on UML Statecharts, in: Proceedings
of the 10th PhD Mini-Symposium: Budapest University of Technology and
Economics Department of Measurement and Information Systems, 2003, pp.
18–19.

[62] M. Samek, Practical Statecharts in C/C++, Quantum Programming for
Embedded Systems., CMP Books, 2002.

[63] M. Samek, P. Montgomery, State-oriented programming, International Journal
of Embedded Systems 13 (8) (2000) 22–43.

[64] M. Samek, Practical Statecharts in C/C++, CMP Books, 2002.
[65] A.V. Saúde, R.A.S.S. Victorio, G.C.A. Coutinho, Persistent state pattern, in:

Proceedings of the 17th Conference of Pattern Languages of Programs (PLoP),
2010.

[66] A. Shalyto, N. Shamgunov, G. Korneev, State machine design pattern, in:
Proceedings of the 4th International Conference on.NET Technologies, 2006,
pp. 51–57.
[67] S. Shlaer, S.J. Mellor, Object Lifecycles Modeling The World in States, Addison-
Wesley, 1992.

[68] J. Ali, J. Tanaka, Converting statecharts into Java code, in: Proceedings of the
5th International Conference on Integrated Design and Process Technology
(IDPT’99), 1999, pp. 111–116.

[69] J. Ali, J. Tanaka, Implementing the dynamic behavior represented as multiple
state diagrams and activity diagrams, Journal of Computer Science and
Information Management (JCSIM) 2 (1) (2001) 24–34.

[70] I.A. Niaz, J. Tanaka, An object-oriented approach to generate Java code from
UML statecharts, International Journal of Computer & Information Science 6
(2) (2005).

[71] T. Tomura, S. Kanai, K. Uehiro, S. Yamamoto, Developing simulation models of
open distributed control system by using object-oriented structural and
behavioral patterns, in: Proceedings of the fourth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, IEEE
Computer Society, 2001, pp. 428–437.

[72] S.M. Yacoub, H.H. Ammar, A pattern language of statecharts, in: Proceedings of
the Fifth Annual Conf. on the Pattern Languages of Program (PLoP’98), 1998,
pp. 98–99.

[73] D. Alur, D. Malks, J. Crupi, Core J2EE Patterns: Best Practices and Design
Strategies, 2nd ed., Prentice Hall/Sun Microsystems Press, 2003.

[74] SPIN and PROMELA Reference Manual, 2011. <http://spinroot.com/spin/
whatispin.html> (last visited May 2012).

[75] HUGO Tool, 2008. <www.pst.ifi.lmu.de/projekte/hugo> (last visited May
2012).

[76] OMG, UML 2.1.2 Superstructure Specification, Document Formal/2007-11-02,
2007. <http://www.omg.org/> (last visited May 2012).

[77] Sun Microsystems, The Java Tutorial, 2012. <http://download.oracle.com/
javase/tutorial/java/javaOO/enum.html> (last visited May 2012).

[78] D.L. Moody, The ‘‘physics’’ of notations: toward a scientific basis for
constructing visual notations in software engineering, IEEE Transactions on
Software Engineering 35 (6) (2009) 756–779.

[79] D. Budgen, A.J. Burn, O.P. Brereton, B. Kitchenham, R. Pretorius, Empirical
evidence about the UML: a systematic literature review, Software: Practice &
Experience 41 (4) (2011) 363–392.

[80] F. Khomh, Y.G. Guéhéneuc, Do design patterns impact software quality
positively? in: Proceedings of the 12th Conference on Software Maintenance
and Reengineering, IEEE Computer Society Press, 2008, 5pp (Short Paper).

[81] F. Khomh, Y.G. Guéhéneuc, DEQUALITE: building design-based software
quality models, in: Proceedings of the 15th Conference on Pattern Languages
of Programs (PLoP), ACM Press, 2008.

[82] E. Domı´ nguez, B. Pérez, M.A. Zapata, Towards a traceable clinical guidelines
application: a model driven approach, Methods of Information in Medicine 46
(6) (2010) 571–580.

[83] B. Pérez, I. Porres, Authoring and verification of clinical guidelines: a model
driven approach, Journal of Biomedical Informatics 43 (4) (2010)
520–536.

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.pst.ifi.lmu.de/projekte/hugo
http://www.omg.org/
http://download.oracle.com/javase/tutorial/java/javaOO/enum.html
http://download.oracle.com/javase/tutorial/java/javaOO/enum.html

	A systematic review of code generation proposals from state machine specifications
	1 Introduction
	2 Research method
	2.1 Scope of the study
	2.2 Inclusion and exclusion criteria
	2.3 Data sources and search strategy
	2.4 Paper selection
	2.5 Quality assessment
	2.6 Data extraction

	3 Results
	3.1 Presentation of the studies
	3.2 Pattern-based comparison (RQ1)
	3.2.1 Pattern-based proposals
	3.2.1.1 State pattern
	3.2.1.2 Finite State Machines (FSMs) framework
	3.2.1.3 State-Table pattern
	3.2.1.4 Basic Statechart pattern
	3.2.1.5 State Machine Design pattern
	3.2.1.6 Statechart Design pattern
	3.2.1.7 Hierarchical State Machine pattern
	3.2.1.8 Quantum Hierarchical State Machine pattern (QHsm)
	3.2.1.9 Reflective State pattern

	3.2.2 Proposals not based on design patterns
	3.2.2.1 Nested switch statements
	3.2.2.2 Knapp et al.’s proposal
	3.2.2.3 Shlaer et al.’s proposal
	3.2.2.4 Culwin’s proposal
	3.2.2.5 Chow et al.’s proposal
	3.2.2.6 Derezinska et al.’s proposal
	3.2.2.7 Lafreniere’s proposal
	3.2.2.8 Ali’s proposal

	3.3 Element-based comparison
	3.4 Feature-based comparison

	4 Discussion
	4.1 Principal findings
	4.1.1 Main techniques or implementation methods published within the field of state machines code generation
	4.1.2 State machine elements supported by the selected studies
	4.1.3 Desired software development features considered by the selected studies

	4.2 Study limitations
	4.3 Threads to validity

	5 Conclusions
	Acknowledgments
	Appendix A The search strings
	References

