
53

State-Based Model Slicing: A Survey

KELLY ANDROUTSOPOULOS, DAVID CLARK, MARK HARMAN, and JENS KRINKE,
University College London
LAURENCE TRATT, King’s College London

Slicing is a technique, traditionally applied to programs, for extracting the parts of a program that affect the
values computed at a statement of interest. In recent years authors have begun to consider slicing at model
level. We present a detailed review of existing work on slicing at the level of finite-state-machine-based
models. We focus on state-based modeling notations because these have received sufficient attention from
the slicing community that there is now a coherent body of hitherto unsurveyed work. We also identify
the challenges that state-based slicing presents and how the existing literature has addressed these. We
conclude by identifying problems that remain open either because of the challenges involved in addressing
them or because the community simply has yet to turn its attention to solving them.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—State
diagrams

General Terms: Design

Additional Key Words and Phrases: Slicing, finite state machines

ACM Reference Format:
Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., and Tratt, L. 2013. State-based model slicing: A
survey. ACM Comput. Surv. 45, 4, Article 53 (August 2013), 36 pages.
DOI: http://dx.doi.org/10.1145/2501654.2501667

1. INTRODUCTION

Program slicing is a source-code analysis and manipulation technique in which a sub-
program is identified based on a user-specified slicing criterion. The criterion captures
the point of interest within the program, while the process of slicing consists of fol-
lowing dependencies to locate those parts of the program that may affect the slicing
criterion [Weiser 1979]. Some flavors of slicing merely highlight the identified subpro-
gram within the larger program, while others actively rewrite the program based upon
the identified subprogram.

As an increasing portion of software production is done with models—particularly
specification and design—researchers have moved from considering only program slic-
ing to model slicing. The need for model slicing is strong: models convey many types of
information better than programs, but become unwieldy in scale far quicker.

Software modeling encompasses a number of different languages, with UML (the
de facto standard modelling language) containing several distinct sublanguages. Each
different modeling language needs to be considered differently, with the challenges

This research is supported by EPSRC grant EP/F059442/1.
Authors’ addresses: K. Androutsopoulos (corresponding author), D. Clark, M. Harman, and J. Krinke,
Computer Science Department, University College London, Malet Place, London, WC1E 6BT, UK; email:
K.Androutsopoulos@cs.ucl.ac.uk; L. Tratt, King’s College London, Strand, London WC2R 2LS, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/08-ART53 $15.00

DOI: http://dx.doi.org/10.1145/2501654.2501667

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:2 K. Androutsopoulos et al.

facing class models (describing static structure) being different than object models
(describing specific instance patterns) or collaboration models (describing behavior),
for example.

In this article we focus on the modeling notation to which slicing has been most
often applied: State-Based Models (SBMs). We use the term SBMs as an umbrella
term for a wide range of related languages (e.g., Extended Finite State Machines,
UML statecharts, STATEMATE statecharts, and RSML). These languages, typically
graphical, are based on finite state machines, often with additional features (e.g., stores,
structuring / hierarchical constructs, or explicit parallelism constructs).

1.1. Why Slicing State-Based Models Is Interesting and Useful

Initially, it may seem possible to use program slicing to achieve SBM slicing. However,
since this would lead to results too poor for a human to interpret, SBM slicing needs to
be considered as a distinct research area. There are two chief reasons for this, which
we now address.

1.1.1. Syntactic. SBMs are (visual) graphs whereas programs are sequences of (textual)
statements. Program slicing often operates at the most natural human-oriented level
of granularity: a line of code. Program slices are thus typically subsets of the lines of
code in the original program. SBMs do not have an equivalent level of granularity for
slicing to be applied at; an individual node may represent the equivalent of several
lines of code, or several nodes may represent the equivalent of a single line of code.
Because of this inherent, and unfixed, difference of granularity, translating SBMs into
programs may thus lead to slices that make little sense to a modeler.

SBM’s graph-based nature also necessitates a totally different approach to rewriting
SBMs after slicing. Where program slicing can simply remove lines and be left with a
program, SBMs must be “rewired” to prevent nodes being orphaned; as the literature
shows, achieving a good rewriting is nontrivial.

1.1.2. Semantic. An important semantic difference between SBMs and programs is
that the majority of state-based modeling languages allow nondeterminism (i.e., when,
in an given state in a SBM, more than one transition can be validly taken), whereas
programming languages go out of their way to avoid nondeterminism. Translating a
nondeterministic state-based model into a deterministic programming language re-
quires encoding. Even assuming that an accurate encoding can be found, the program
slicing algorithm will have no understanding of it; it is as likely to slice a small part
of the encoding as it is any other part of the program. Translating the sliced (encoded)
program back into a state-based model would then lead to bizarre state machines which
would appear to bear little resemblance to the original.

Indeed, the specific set of features present in SBMs presents challenges which, when
combined together, have yet to be tackled in program slicing. If one were to view
the task that confronts an approach for slicing SBMs through the eyes of traditional
program slicing, then the problem would resemble that of slicing a nondeterministic set
of concurrently executed procedures with arbitrary control flow. Such a combination
of characteristics is not addressed by the current literature on slicing [Binkley and
Gallagher 1996; Binkley 2007; Binkley and Harman 2004; Harman and Hierons 2001;
Tip 1995].

1.1.3. The Need for a Survey. In summary: SBM slicing is in many ways substantially
different from program slicing, yet important challenges remain unresolved even in
common areas between the two. Because of this, many authors have tackled various
aspects of SBM slicing. The body of knowledge on SBM slicing is wide, and spread over
many different and sometimes disjoint research communities. This article is the first

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:3

survey of SBM slicing, integrating together disparate knowledge and highlighting open
problems.

We start with an overview of program slicing (Section 2). We then give an overview
of the SBM languages (Section 3). In Section 4 we introduce the running example, an
ATM. We then discuss the slicing approaches according to their type (Section 5) before
discussing the applications of SBM slicing (Section 6). Finally, we discuss open issues
and untackled problems in SBM slicing (Section 7).

2. BACKGROUND: PROGRAM SLICING

Most research into slicing has considered slicing at program level; we therefore present
a brief overview of this “parent” subject area, as most SBM slicing work builds upon it,
directly or indirectly.

Weiser observed that programmers build mental abstractions of a program during
debugging; slicing is his formalization of that process [Weiser 1979]. Weiser defined
a slice as any subset of the program which maintains the effect of the original
program on the slicing criterion, a pair c = (s, V) consisting of a statement s in the
program and a subset V of the program’s variables. We now call such a slice an
executable slice. Slicing has many applications, including program comprehension
[Harman et al. 2003], software maintenance [Gallagher and Lyle 1991], testing and
debugging [Binkley 1998; Harman et al. 2004], virus detection [Lakhotia and Singh
2003], integration [Binkley et al. 1995], refactoring [Komondoor and Horwitz 2000],
reverse engineering and reuse [Canfora et al. 1998]. Also, slicing has been used as an
optimization technique for reducing program models or other program representations
extracted from programs for the purpose of verification via model checking [Corbett
et al. 2000; Jhala and Majumdar 2005; Dwyer et al. 2006].

Since Weiser’s seminal work, program slicing has been developed in many ways
to include: forward and backward formulations [Horwitz et al. 1990; Binkley and
Harman 2005; Fox et al. 2001], static, dynamic, hybrid formulations [Korel and Laski
1988; Agrawal and Horgan 1990; Gupta et al. 1992], conditioned formulations [Canfora
et al. 1998; Field et al. 1995; Harman et al. 2001; Fox et al. 2004], and amorphous
formulations [Harman et al. 2003; Ward 2003; Ward and Zedan 2007]. Much work
has also been conducted on applications of slicing and algorithmic techniques for
handling awkward programming language features [Agrawal et al. 1991; Ball and
Horwitz 1993; Harman and Danicic 1998] and for balancing the trade-offs of speed
and precision in slicing algorithms [Gupta and Soffa 1995; Mock et al. 2002; Binkley
et al. 2007]. This body of knowledge has been developed over several hundred papers;
interested readers may find it easier to start with one of the survey papers on the
area [Binkley and Gallagher 1996; Binkley and Harman 2004; De Lucia 2001; Harman
and Hierons 2001; Tip 1995; Venkatesh 1991; Xu et al. 2005; Silva 2012].

Consider the example program in Figure 1(a), taken from Tip [1995], that computes
the product p and the sum s of integer numbers up to a limit n. With a slicing criterion
of (line 10, {p}) (i.e., we are only interested in the computation of the product and its
output in line 10) then the slice, illustrated in Figure 1(b), still computes the product
correctly. This is a static slice because it is independent of the program’s inputs and
computes p correctly for all possible executions. Alternatively, if we are interested only
in the statements which have an impact on the criterion for a specific execution, we
can compute a dynamic slice. The slicing criterion for static slices is extended with a
third item, the inputs to the program. In Figure 1(c) a dynamic slice is shown for the
execution where the input to variable n is 0.

A common approach to program slicing uses reachability analysis in Program Depen-
dence Graphs (PDGs) [Ferrante et al. 1987]. Nodes in a PDG represent program states,
with edges representing dependence. Dependence comes in two forms: the simple form

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:4 K. Androutsopoulos et al.

1 read(n)
2 i := 1
3 s := 0
4 p := 1
5 while (i <= n)
6 s := s + i
7 p := p * i
8 i := i + 1
9 write(s)
10 write(p)

(a) original program

1 read(n)
2 i := 1
3
4 p := 1
5 while (i <= n)
6
7 p := p * i
8 i := i + 1
9

10 write(p)

(b) static slice for (10,p)

1
2
3
4 p := 1
5
6
7
8
9

10 write(p)

(c) dynamic slice for
(10, p, n = 0)

Fig. 1. A program and two slices taken from Tip [1995].

data dependence between statements S and S′ exists if S′ references a variable defined
or assigned to in S; the complex form control dependence between statements S and
S′ exists if S determines whether S is executed or not. Data dependence is relatively
easily calculated; as we shall later see, control dependence comes in many different
forms, depending on the desired effect.

Using PDGs, static slices of programs can be computed by identifying the nodes that
are reachable from the node corresponding to the criterion. The underlying assumption
is that all paths through the dependence graph are realizable. This means that, for
every path through the dependence graph, a possible execution of the program exists
that executes the statements corresponding to the nodes on the path in the same order
as on the path. In the presence of procedures, paths are considered realizable only if
they obey the calling context (i.e., called procedures always return to the correct call
site). Ottenstein and Ottenstein [1984] were the first to suggest the use of PDGs to
compute Weiser’s slices.

An example PDG is shown in Figure 2, taken from Tip [1995], where control depen-
dence is drawn in dashed lines and data dependence in solid ones. In the figure, a slice
is computed for the statement “write(p)”. The statements “s := 0”, “s := s+i”, and
“write(s)” have no direct or indirect influence on the criterion and are thus not part
of the slice.

3. STATE-BASED MODELS (SBMS)

SBMs are used to model the behavior of a wide variety of systems, such as embedded
systems. They consist of a finite set of states (a nonstrict subset of which are start
states), a set of events (or “inputs”), and a transition function that, based on the
current state and event, determines the next state (i.e., performs transitions between
states). The start state indicates the state in which computation starts; transitions
are then performed based on the transition function. This basic definition has many
variants; for example, Moore machines [Moore 1956] extend state machines with labels
on states, while Mealy machines [Mealy 1955] have labels on transitions.

Figure 3 illustrates a simple SBM with two states S1 and S2, and a labeled transition
T 1. S1 is a start state (indicated by the incoming edge from the filled-in circle). We
write source(T 1) = S1 to indicate the source state for T 1 and target(T 1) = S2 for its
target. Transition labels are of the form e[g]/a, where each part is optional: e is the
event necessary to trigger a possible change of state, g is the guard (i.e., a boolean
expression) that further constrains a possible change of state, and a is a sequence of
actions (chiefly updates to variables in the store, or generation of events) to be executed

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:5

data dependence

Entry

read(n) i := 1 s := 0 write(s) write(p)while (i<=n)

i := i + 1p := p * is := s + i

read(n)

p := 1
i := 1

while (i<=n)
p := p * i
i := i + 1

write(p)

s := 0

p := 1

s := s + i

write(s) control dependence

Fig. 2. The program dependence graph of the program from Figure 1. The slice for the criterion “write(p)”
is highlighted in the graph and in the source text.

T1:e[g]/a
S2S1

Fig. 3. A simple state machine.

when a change of state is about to take place. A transition is executed when its source
state is the current state, its trigger event occurs, and its guard is true.

SBMs can satisfy many different properties. The two most commonly references are
as follows.

—Nondeterminism. In a deterministic SBM, for each pair (state, event) only a single
matching transition can validly be taken, while in a nondeterministic SBM, any of a
set of matching transitions can be taken.

—Nontermination. A SBM is nonterminating if there is a path from each state to every
other state. A terminating SBM has at least one exit state that has no outgoing
transitions.

Basic SBM languages have long been extended to augment their expressive power or
to allow better structuring of SBMs. The major features are as follows.

—Store. SBMs can have a store, a set of variables (that can be of type real) which
can be updated by actions. For example, in Figure 5 (via Table II) the store is
{pin, d, w, sb, cb, p, attempts, l}.

—Parameterized events. Basic SBM events are opaque: one can determine only their
“type”. For more realistic purposes, events need to come with further information
about the specific instance of the event. Parameterized events fulfil this purpose. For
example, in Figure 5 (via Table II) event PIN has the parameter p that represents
the specific PIN number entered by the user.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:6 K. Androutsopoulos et al.

A B

A1

A2 B2

B1

M

T1:e1/e2 T2:e3/e4

T3:e4/e5

S

T4: e1/e2 T5:e2

C1

C2

C

Fig. 4. A hierarchical and concurrent state machine.

Entered
Card PIN

Accepted
Language
Chosen

Exit
Savings Update

Savings
T23T3

T5

T6
T11

T12

T13
T14

T15

T16

T4

T2

T1

T7

T8

T9

T10
T17
T18

T19
T20

T21

T22

Start

UpdateCurrent
Current

Fig. 5. The ATM system as modeled by Korel et al. [2003], c© IEEE 2003 Proceedings of International
Conference of Software Maintenance, for EFSMs with a unique exit state. See Table II for the transition
labels.

—Event generation. Events can be generated by the state machine itself in actions.
In Figure 4, transition T 4 generates event e2 which then triggers transition T 5.
Generated events are also known as internal events or outputs, while events that
are generated by the environment are known as external events or inputs.

—State hierarchy. Hierarchical states are an abstraction mechanism for hiding low-
level details. Basic states are “atomic”, where composite states (“OR-states” in stat-
echarts [Harel 1987]) contain other states. In Figure 4 C1 and C2 are basic states,
while C is a composite. A superstate is the parent state of a nested state (e.g., in
Figure 4 the superstate of C1 and C2 is C).

—Concurrency and communication. Basic SBMs are purely sequential; concurrency
constructs (known as “AND-states” in statecharts [Harel 1987]) allow different su-
perstates to execute independently or in parallel with each other. For example, in
Figure 4, A and B are concurrent states (divided by a dashed line). Communica-
tion between concurrent SBMs is synchronous (the SBM blocks until the receiver
consumes the event) or asynchronous (nonblocking).

—Time. Some SBM variants add features for modeling time. For example, timed au-
tomata [Alur and Dill 1990] model clocks using real-valued variables.

There are far too many SBM languages for this article to capture; instead we concen-
trate on graphical SBM languages used in SBM slicing. Table I gives an overview of
these languages.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:7

Table I. Feature Comparison of SBM Languages Used in Slicing

SBM Variant Slicing Approaches Ca Hb SCc

Extended Finite State Machines Korel et al. [2003] × × ×
(EFSMs) Androutsopoulos et al. [2009b]

Androutsopoulos et al. [2011]
UML State Machines Colangelo et al. [2006]

√ × Sd

Lano and Kolahdouz-Rahimi [2011]
√ √

S
Timed Automata [Alur and Dill 1990] Janowska and Janowski [2006]

√ × S
Input/Output Symbolic Transition Labbé and Gallois [2008]

√ × S
Systems (IOSTs) [Gaston et al. 2006]

Extended Automata Bozga et al. [2000]
√ × Ae

UML Statecharts v1.4 Ojala [2007]
√ × A

Statecharts [Harel 1987] Fox and Luangsodsai [2005]
√ √

S
Argos [Maraninchi 1991] Ganapathy and Ramesh [2002]

√ √
S

Requirements State Machine Language Heimdahl and Whalen [1997]
√ √

S
(RSML) [Leveson et al. 1994] Chan et al. [1998]∗

Extended Hierarchical Automata Wang et al. [2002]
√ √

S
(EHA) Langenhove [2006]

Rhapsody [Harel and Kugler 2004], Guo and Roychoudhury [2008]
√ √

S
Stateflow [Hamon 2005],
UML statecharts

Ca Concurrency. Hb Hierarchy. SCc Synchronisation or Communication. Sd Synchronous. Ae Asynchronous.
∗Also, applies to statecharts [Harel 1987].

4. A RUNNING EXAMPLE

We model the Automatic Teller Machine (ATM) system using state machines in two
different ways and use these as running examples. This is because we want to illustrate
how the differences between SBM variants affect slicing. The first example models the
ATM using an SBM variant that has no concurrency or state hierarchy and is deter-
ministic with a unique exit state. The second example introduces concurrency, state
hierarchy, and event generation. In order to be consistent, we have used a standard
graphical notation, as illustrated in Figures 3 and 4.

The first example, illustrated in Figure 5, models the ATM as described by Korel
et al. [2003] for EFSMs. EFSMs extend FSMs with a store. The ATM system allows
a user to enter a card and a correct PIN. The user is allowed a maximum of three
attempts to enter a correct PIN. The PIN is verified by matching it against a PIN that
is stored on the card. Once the PIN has been verified, the user can withdraw, deposit,
or check balance, on either her current or savings account. Figure 5 has parameterized
events Card(pin, sb, cb) and PIN(p) (see Table II). The event Card has three parameters
denoting information stored on the card, that is, pin that represents the value of the
PIN, sb that represents the balance of the savings account, and cb that represents
the balance of the current account. The event PIN has a parameter p that represents
the value for the PIN entered at the ATM by the user.

Figure 6 shows the second ATM variant, which is hierarchical, concurrent, and has
generated events (we assume STATEMATE semantics [Harel and Naamad 1996]). It
consists of the hierarchical state DispensingMoney that has two substates, s2 and s3
and the concurrent states atm and bank. The atm concurrent state models the behavior
of the ATM at a higher level of abstraction than that shown in Figure 5, that is, a user
can withdraw or deposit money for a single account. Also, a variable representing the
current balance of an account is not given in Figure 6 because it requires to be updated
based on a parameterized event, such as T 13 in Figure 5 and some FSM variants do not

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:8 K. Androutsopoulos et al.

Table II. The Transitions of the ATM System as Illustrated in Figures 5

Transition Label
T1 Card(pin,sb,cb)/print(“Enter PIN”); attempts = 0
T2 PIN(p)[(p ! = pin) and (attempts < 3)]/print(“Wrong PIN, Re-enter”);

attempts = attempts+1
T3 PIN(p)[(p ! = pin) and (attempts == 3)]/ print(“Wrong PIN, Ejecting card”)
T4 PIN(p)[p==pin]/print(“Select a Language English/Spanish”)
T5 English/l=‘e’; print(“Savings/Current”)
T6 Spanish/l=‘s’; print(“Ahorros/Corriente”)
T7 Current
T8 Savings
T9 Done
T10 Done
T11 Balance[l=‘s’]/print(“Balanza=”,cb)
T12 Balance[l=‘e’]/print(“Balance=”,cb)
T13 Deposit(d)/cb=cb+d
T14 Withdrawal(w)/cb=cb-w
T15 Receipt[l=‘e’]/print(“Balance=",cb); print(“Savings/Current”)
T16 Receipt[l=‘s’]/print(“Balanza=",cb); print(“Ahorros/Corriente”)
T17 Withdrawal(w)/sb=sb-w
T18 Deposit(d)/sb=sb+d
T19 Balance[l=‘e’]/print(“Balance=”,sb)
T20 Balance[l=‘s’]/print(“Balanza=”,sb)
T21 Receipt[l=‘e’]/print(“Balance=”,sb); print(“Savings/Current”)
T22 Receipt[l=‘s’]/print(“Balanza=”,sb); print(“Ahorros/Corriente”)
T23 Exit/print(“Ejecting card”)

See Table II for the transition labels.

support parameterized events. The bank concurrent state models the bank’s behavior
as described in Knapp and Merz [2002]. It shows how a card and a PIN that are entered
into the ATM are verified by the bank. It has two key stages of verification (modeled
by the concurrent states c and b): the bank needs to verify that the card is valid (i.e., it
is not some arbitrary card) and the PIN entered is correct, and if not the user is given
three attempts to enter a correct PIN.

5. TYPES OF SBM SLICING

We describe all of the SBM slicing approaches according to their type and produce a
slice from the running example where possible. For each type of slicing, we summarize
its goal and list its main applications.

5.1. Static Slicing

Most SBM slicing techniques are static [Weiser 1979], meaning that the slice considers
any possible input event sequence. An executable slice is a subset of the original model,
where elements not in the slice have been removed, that maintains the effect of the
original model on the slicing criterion. A closure slice is given by marking elements in
the slice on the original model. Slices can be backward or forward, depending on the
direction in which models are traversed from the slicing criterion. Backward slicing
determines all the elements in the model that could influence the slicing criterion.
Forward slicing determines how modifying one part of the model will affect other parts
of the model. Computing SBM slices requires some dependence analysis to determine
which elements in the model depend on the slicing criterion. In program slicing, typi-
cally a data structure is used to make the dependencies for each statement in a program

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:9

card
entered

s2

c2

b2

b3

b1

verificationc

b

c1

DispensingMoney

start

Exit

VerifyPIN
EnterCard /

ReenterPIN

atm

bank

GetBalance / DisplayBalance

s3

[attempts=maxAttempts] / cardValid=False; Abort

[attempts<maxAttempts] / ReenterPIN

PINcorrect / attempts=0

[cardValid = True]

/PINverified

Abort
[cardValid = False]/

VerifyPIN
idle

Deposit / TakeMoney

Withdraw / Dispense

Dispense

TakeMoney

DisplayBalance

Abort

PINverified
T44

T50

T52

T53

T54

T55

T60

T45

T46

T47

T48

T49

PINincorrect / attempts++

T58

T59

T56

T41

T42

T43

T51

Fig. 6. The ATM system modeled by a hierarchical and concurrent state machine with generated events.

explicit (e.g., a PDG; see Figure 2) and slicing is defined as a reachability problem on
this graph. In SBM slicing, some approaches use dependence graphs for static slicing
but others compute dependencies directly on the model, while to compute other types
of dependence, intermediate representations of the model are required to make rela-
tionships between elements explicit. This is the case for hierarchical and concurrent
SBM variants where these additional features were introduced to make models more
concise.

The algorithms in Androutsopoulos et al. [2009b] and Korel et al. [2003] for slicing
EFSMs both slice with respect to a transition T and a set of variables at T . They
first construct a dependence graph by using data and control dependence relations. A
dependence graph is a directed graph where nodes represent transitions and edges rep-
resent data and control dependencies between transitions. Then, the algorithm starts
from the node in the dependence graph representing the slicing criterion and marks all
nodes (i.e., transitions) that are backward reachable from the slicing criterion in the de-
pendence graph. Once the transitions in the slice have been marked, Androutsopoulos
et al. [2009b] and Korel et al. [2003] have implemented different algorithms for auto-
matically reducing the size of an EFSM slice, and we discuss each respectively. Note
that the dependence graphs generated by Androutsopoulos et al. [2009b] and Korel
et al. [2003] differ because they use different definitions of control dependence. Control

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:10 K. Androutsopoulos et al.

Entered
Card PIN

Accepted
Language
Chosen

Savings Update
Savings

T5

T6
T11

T12

T13
T14

T15

T16

T4T1

T7

T8

T9

T10
T17
T18

T19
T20

T21

T22

Start

UpdateCurrent
Current

Fig. 7. The slice generated for the ATM system, shown in Figure 5, with respect to (sb, T 18) (highlighted)
using Korel et al. [2003] first algorithm. The transition labels are given in Table II.

dependence in Korel et al. [2003] is nontermination sensitive (intermediate loops are
kept in slices) and applies only to state machines with a unique “exit state” (a state
with no outgoing transitions). By contrast control dependence in Androutsopoulos et al.
[2009b] is nontermination insensitive (intermediate loops are sliced away) and can be
applied to any state machine, including those with no exit state. This means that the
slicing algorithm described in Korel et al. [2003] cannot be applied to nonterminating
EFSMs. For example, if the ATM system shown in Figure 5 had a transition whose
source state is Exit and target state is Start, then the slicing algorithm in Korel et al.
[2003] cannot be applied.

Korel et al. [2003] describe two slicing algorithms for automatically reducing the
size of the EFSM slice. The first slicing algorithm produces slices that are syntax
preserving, that is, they are executable submodels of the original EFSMs and thus
are not much smaller than the original. Consider the ATM system shown in Figure 5.
The slice obtained using the first algorithm, as described in Korel et al. [2003], with
the slicing criterion (sb, T 18) is illustrated in Figure 7. This slice could be produced
by just applying a reachability algorithm. It is not minimal as it contains more than
the transitive dependencies (e.g., in the ATM the transitive dependencies with respect
to (sb, T 18) are: T 1, T 4, T 8, T 17, T 18), which this algorithm cannot remove without
breaking the connectivity of the state machine. The second slicing algorithm is an
amorphous slicing approach and is discussed in Section 5.5.

The algorithm in Androutsopoulos et al. [2009b] anonymizes all unmarked transi-
tions, that is, they have empty labels. A slice with unmarked transitions may introduce
nondeterminism where none previously existed. Consider the ATM system shown in
Figure 5. If the slicing criterion is (sb, T 18), the slice produced is shown in Figure 8,
where ε represents unmarked transitions. Nondeterminism is introduced at any state
where there is more than one outgoing transition with an empty label because if an
event occurs that does not trigger an event of a transition with a label, then any one of
the transitions with the empty label can be taken.

The slicing algorithms in Androutsopoulos et al. [2009b] and Korel et al. [2003]
cannot be applied to the ATM system shown in Figure 6 because the EFSMs considered
don’t have generated events.

Labbé and Gallois [2008] have presented polynomial algorithms for slicing In-
put/Output Symbolic Transition Systems (IOSTSs). The slicing criterion is a set of tran-
sitions. The algorithm is similar to the algorithms in Androutsopoulos et al. [2009b]
and Korel et al. [2003] whereby a dependence graph is constructed and transitions

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:11

Entered
Card PIN

Accepted
Language
Chosen

Exit
Savings Update

Savings

T5

T6
T11

T12

T13
T14

T15

T16

T4

T2

T1

T7

T8

T17
T18

T19
T20

T21

T22

Start

ε

ε

εT3 T23 ε

ε

ε

ε

T10

T9 ε

ε

ε
ε

ε

ε

ε

ε
ε

ε

ε

UpdateCurrent
Current

Fig. 8. The slice generated for the ATM system, shown in Figure 5, with respect to (sb, T 18) using the
algorithm by Androutsopoulos et al. [2009b]. The labels of marked transitions (highlighted) are given in
Table II, while unmarked transitions have the label ε indicating an empty label.

Entered
Card PIN

Accepted
Language
Chosen

Exit
Savings Update

Savings
T23T3

T5

T6
T11

T12

T13
T14

T15

T16

T4

T2

T1

T7

T8

T9

T10
T17
T18

T19
T20

T21

T22

Start

UpdateCurrent
Current

Fig. 9. The slice generated for the ATM system (shown in Figure 5) with respect to (sb, T 18) using Labbé
and Gallois [2008]. The highlighted transitions indicate the transitions in the slice. The transition labels are
given in Table II.

that are backward reachable from the slicing criterion are marked. The slice pro-
duced is a closure slice, where transitions in the slice are marked, that is, similarly to
Androutsopoulos et al. [2009b]. Figure 9 shows the slice produced when applied to
Figure 5. This algorithm differs from Androutsopoulos et al. [2009b] as it applies a
different control dependence definition, one that is sensitive to nontermination1, that
is, loops are kept in the slice as infinite execution of a loop may prevent some transi-
tions from occuring. Also, it can be applied to communicating automata and Labbé and
Gallois [2008] define communication dependence with respect to channels to capture
the dependencies produced by communication actions. However, the algorithm cannot
be applied to the ATM system in Figure 6 because communication is not described via
channels. In their prototype tool, Labbé and Gallois [2008] give the option of reducing
the slice further by removing transitions not in the slice and reconnecting the graph by
applying two different algorithms based on τ -reduction of labeled transition systems

1Labbé et al.’s definition of control dependence in Labbe et al. [2007] differs slightly from Labbé and Gallois
[2008], so we evaluate the most recent.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:12 K. Androutsopoulos et al.

and ε-reduction of Nondeterministic Finite Automata (NFA) with ε-transitions. The
process of ε-reduction of an NFA with n states and alphabet size p can lead to an NFA
with O(n2 p) transitions [Hromkovic and Schnitger 2007]. They do not give the details
in Labbé and Gallois [2008] of the algorithms or how they overcome this problem.

Fox and Luangsodsai [2005] have defined And-Or dependence graphs that are used
to slice statecharts [Harel 1987]. The And-Or dependence graphs are based on depen-
dence graphs as in Kuck et al. [1981] but augmented to record And-Or dependencies.
They consist of nodes that represent any statechart element that can be depended on
or can depend on (i.e., states, actions, events, and guards), and edges that represent
potential dependence. The slicing criterion is a collection of states, transitions, actions,
and variable names. Slicing is static and backward and it is defined as a graph reacha-
bility problem over the And-Or dependency graph with respect to the slicing criterion.
Elements not in the slice are deleted. This slicing approach cannot be applied to the
ATM system in Figure 5 as details of how to extend the dependence graph to include
variable dependencies have not been given. Also, it cannot be applied to the ATM in
Figure 6 because the approach does not yet deal with hierarchical states.

Ojala [2007] has presented a slicing approach for UML state machines (specifi-
cally UML 1.4 [OMG 2001]). The guards and actions of transitions are expressed
in Jumbala [Dubrovin 2006], which is an action language for UML state machines.
Actions have at most one primitive operation, that is, an assignment, an assertion, or a
Jumbala “send” statement. The slicing criterion is a set of transitions in a collection
of UML state machines. The slicing algorithm constructs a CFG from the UML state
machines, keeping a record of the mapping between UML transitions and CFG nodes.
Three types of CFG nodes are defined: BRANCH which are used to represent triggers
and guards, SIMPLE, and SEND, both of which are used to represent actions. BRANCH
nodes can have more than one successor and SIMPLE and SEND have only one succes-
sor. Then, using the CFG, four types of dependencies are computed. The CFG slice is the
smallest set of nodes and event parameters, including the nodes of the slicing criterion,
that are closed under the four dependencies. From the CFG slice, the slice for the UML
model is computed by removing all parts of the transitions in the UML model whose
counterparts in the CFG are not in the slice. Also, unused parameters are replaced with
a dummy value. Fox and Luangsodsai [2005] and Ojala [2007] are the only authors that
have defined slicing approaches that can remove parts of transitions, that is, trigger
events, or guards, or actions, rather than just the actions of a transition or the entire
transition (or label). These differ in the way that the dependencies are computed. Ojala
[2007] defines four dependence relations between transition elements while in Fox
and Luangsodsai [2005] every action depends on its trigger, guard, and source state.
Table V compares the slicing approaches according to the elements that they remove.
This slicing approach [Ojala 2007] cannot be applied to any of the running examples
because the language used for expressing the guards and actions is not Jumbala.

Lano and Kolahdouz-Rahimi [2011] define a slicing approach for a restricted subset
of UML that is used for developing reactive systems. Their approach makes use of
the semantic concept of path predicates (as used in SPADE [Praxis Ltd 2008]). A
predicate is assigned to each path which defines how the values of the variables at
the end of the path relate to the values of the start state, over all executions of the
path. Computing path predicates for state machines with loops is impractical and
thus Lano and Kolahdouz-Rahimi [2011] only provide an algorithm for loop-free state
machines. The slicing criterion is a tuple of variables of interest. Actions that cannot
affect the values of the variables in the target state of the transition are deleted. Lano
and Kolahdouz-Rahimi [2011] have also described another slicing approach that is
environment based (discussed in Section 5.6) that uses a number of algorithms. They
claim that these algorithms can be used for this type of slicing too, but require the data

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:13

dependencies to be recalculated because the set of states and paths may have changed.
These algorithms can be reapplied until the state machine can be no longer be reduced.
This slicing approach cannot be applied to any of the state machines defined for the
ATM system (Figure 6 and Figure 5) because they all contain loops.

Objective. The objective is to produce a slice that shows what elements in the SBM
influence a given set of elements, either variables, transitions, states, or actions, or
some combination of these.

Applications. The applications are for model comprehension.

5.2. Proposition-Based Slicing

Proposition-based slicing [Hatcliff et al. 2000] was defined for reducing the size of a
program with respect to a Linear Temporal Logic (LTL) formula in order to reduce the
size of the corresponding transition system for model checking. Model checking is often
very costly for large and complex programs.

We classify an SBM slicing approach as being proposition based if its objective is to
reduce the model with respect to a property φ (expressed as a temporal logic formula)
that is to be model checked. The slicing criterion typically consists of elements from
φ, such as, the set of states and transitions in φ, or the set of variables in φ. The slice
produced must preserve the behavior of those parts of the model that affect the truth of
φ. The first proposition-based slicing approach [Chan et al. 1998] was defined for RSML
(Requirements State Machine Language) and statechart [Harel 1987] specifications for
model checking. RSML [Leveson et al. 1994] is a requirements specification language
that combines a graphical notation that is based on statecharts [Harel 1987] and a
tabular notation, that is, AND/OR tables. The slicing criterion consists of the states,
events, transitions, or event parameters that appear in a property to be model checked.
Initially the slicing criterion will be in the slice. The algorithm recursively applies the
following rules until a fixed point is reached. If an event is in the slice, then so are all
the transitions that generate it. If a transition is in the slice, then so are its trigger
event, its source state, as well as all the elements in the guarding condition. If a state
is in the slice, then so are all of its transitions (both in and out), as well as its parent
state. In fact, the algorithm describes a search of the dependence graph and its time
complexity is linear to the size of the graph.

We manually apply this slicing algorithm to the hierarchical and concurrent stat-
echart of the ATM system in Figure 6. Given the LTL safety property G(¬(Abort ∧
PINverified)), which states that a card cannot be both aborted and verified by the bank,
the slicing criterion consists of the events Abort and PINverified. The slice produced
is shown in Figure 10. The nested states and transitions of DispensingMoney have
been removed. Given the LTL property G(Withdraw ⇒ F(TakeMoney)), which states
that if the user asks to withdraw money, he/she will eventually take it, then the slicing
criterion consists of the events Withdraw and TakeMoney. The slice will only consist of
these events, as these are external events that do not influence any other element.

The slicing algorithm [Chan et al. 2001] is not minimal and may include false depen-
dencies, that is, elements are shown to be dependent on each other when they should
not be. Not only do false dependencies increase the size of the slice but they can mislead
as to which elements actually affect the slicing criterion.

Wang et al. [2002] use slicing for reducing the state space of UML statecharts when
model checking. UML statecharts are translated into Extended Hierarchical Automata
(EHAs) [Dong et al. 2001] and then sliced with respect to the slicing criterion, which
is extracted from a given LTL x (without the next operator) property φ. An EHA is
composed of a set of sequential automata, which is a 4-tuple, consisting of a finite set
of states, an initial state, a finite set of labels, and a transition relation. The slicing

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:14 K. Androutsopoulos et al.

card
entered

atm

start
VerifyPIN

DispensingMoney

T43 Abort

T42
ReenterPIN

EnterCard /T41

PINverified
T44

ExitT51

bank

c1

c Verification

/PINverified

c2
[cardValid = False]/

Abort

T60

T56

VerifyPIN
T52idle

b2

b1
PINincorrect / attempts++

PINcorrect / attempts=0T53

T54

b

[attempts<maxAttempts] / ReenterPIN

[attempts=maxAttempts] / cardValid=False; Abort

T57

T58

b3

T55 [cardValid = True]

Fig. 10. The slice produced by applying the algorithm in Chan et al. [1998] to the ATM system in Figure 6
with the slicing criterion consisting of events Abort and PINverified.

criterion consists of the states and transitions described in φ as well as the states and
transitions that generate any event found in φ. Four dependence relations are defined,
which are able to handle hierarchy, concurrency, and communication. A slice consists of
sequential automata. If a state or transition in a sequential automaton is determined
to be in the slice, then all of the states and transitions in this automaton are also in
the slice. After the algorithm terminates, if a state is not dependent on any elements,
then a sub-EHA and actions of this state will be deleted from the slice. If a transition
is not dependent on any elements, its action will be deleted. This is an improvement
on the algorithm described by Ganapathy and Ramesh [2002] that only deletes states
and the transitions associated with that state, but not parts of transitions.

Langenhove and Hoogewijs [2007] have defined two new slicing algorithms as part
of the SVtL (System Verification through Logic) framework. The first algorithm is an
extension of the algorithm defined in Wang et al. [2002] for slicing a single state-
chart. It removes false parallel data dependencies by taking into account the execution
chronology and defining a Lamport-like [Lamport 1978] happens-before relation on
statecharts that follows from the internal broadcasting (synchronization) mechanism
for communication between concurrent states/transitions.

The second algorithm is a parallel algorithm for slicing a collection of statechart
models. A collection of statecharts is often used when describing a system in UML,
that is, a class diagram is defined, where each class has a corresponding statechart.
Figure 11 shows an example of a bank and ATM system modeled in UML as two threads
of control with their classes and collection of statecharts. Slices are extracted across
all statecharts in order to keep the object-oriented structure of the model. Langenhove
and Hoogewijs [2007] define global dependence relations in terms of global variables
and events that statechart diagrams use to communicate. The algorithm uses these

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:15

Thread 1 Thread 2

1..*

1 1

1

BranchATM

BankVerifier ATMAdministrator

Fig. 11. An example of a multithreaded behavioral modal of the bank and ATM system.

relations to connect the statecharts to each other by drawing a global directed edge for
each global dependence. The result is a graph-like structure which is similar to the one
in Ganapathy and Ramesh [2002], but draws edges between statecharts rather than
statechart elements. Then SVtL starts running an instance of the slicing algorithm
for a statechart, for example, BankVerifier in Figure 11. If a global dependence edge
is encountered, then a second instance of the slicing algorithm is started that runs in
parallel, for example, if there is a global dependence between BankVerifier and ATM in
Figure 11, then another instance of the slicing algorithm is executed. For n statecharts
in the worst case SVtL will execute n slicing algorithms in parallel. Langenhove and
Hoogewijs [2007] state that the happens-before relation on a single statechart can be
easily adapted to apply to a collection of statecharts. This will produce smaller slices
because there will be fewer global dependence edges.

Janowska and Janowski [2006] have described a static backward algorithm for slic-
ing timed automata with discrete data. They consider only automata with reducible
control flow as defined in Aho et al. [1986], that is, those that have two disjoint sets of
transitions, where one set forms an acyclic graph, while the other consists of transitions
whose targets dominate their sources. A state a dominates a state b if every path from
the start state to b must go through a. The algorithm first extracts the slicing criterion,
which is made of two sets, from a formula φ representing a given property to be ver-
ified. The first set consists of all enabling conditions and actions defining variables in
φ. The second set consists of the states in φ and their immediate predecessors. Then,
the algorithm computes four kinds of dependencies: data, control, clock and time. The
transitive closure of the data dependence relation is computed and then the transitive
closure of the union of all the other relations on states. Finally, starting from the slic-
ing criterion, the algorithm marks all relevant elements based on the dependencies.
The slice consists of marked elements. Any unmarked states, transitions, or actions
are deleted. We cannot apply this slicing approach to any of the ATM systems given
as running examples because they are not timed and transitions are synchronized
differently.

Colangelo et al. [2006] have described an approach for slicing Software Architec-
ture (SA) models that are specified as UML state machines. A state in a UML state
machine represents an architectural component, while a transition represents the
communication channel between two components. Properties are described using the
Property Sequence Charts (PSC) language, an extension of UML 2.0 sequence di-
agrams for specifying Linear-time Temporal Logic (LTL) properties. The state ma-
chines will be translated into PROMELA (input language of the model checker SPIN)
and the PSC properties into temporal logic representation for SPIN (Büchi automata)

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:16 K. Androutsopoulos et al.

[Holzmann 1997] for model checking. The slicing criterion is a property to be model
checked expressed in PSC. The slicing algorithm is based on TeSTOR (a TEst Sequence
generaTOR algorithm) [Pelliccione et al. 2005]. TeSTOR is an algorithm that takes as
input a state machine and scenarios and produces a set of test sequences that explore
the scenarios. The authors extend TeSTOR to implement the slicing algorithm, that
is, instead of returning a set of test sequences, it returns a state machine where the
parts of the model that are required to verify the given properties are marked. Their
algorithm first marks every source and target state of a message in the slicing criterion
(an arrow in the PSC between two components defines a communication channel and
the messages that can occur) in at least one test sequence generated by TeSTOR. Then,
for all the variables of transitions that have a marked target state, the algorithm iden-
tifies paths from the initial state to all occurrences of variables that are marked. These
two steps are iterated. Any unmarked states or transitions that have unmarked source
or target states are deleted. The algorithm never deletes states that might break the
connectivity of the state machine because any unmarked states on a path starting in
the initial state and ending at a marked state are always marked. Therefore, the slice
may not be minimal. This slicing approach cannot be applied to the state machines of
the ATM system (Figure 6 and Figure 5) because they are not software architecture
models with PSC.

Objective. The objective is that the slice produced by proposition-based slicing is a
subset of the state-based model that satisfies a given temporal logic formula.

Applications. Applications are for model checking.

5.3. Reactive Program Slicing

Ganapathy and Ramesh [2002] devise a new notion of slicing for reactive programs
because the traditional notion of slicing for programs [Weiser 1979] is unsuitable. The
behavior of reactive programs maintains an ongoing relationship with its environment,
that is, is a set of I/O sequences and therefore events are of greater interest than
variables. Work on program slicing has not considered reactive programs.

Reactive program slicing [Ganapathy and Ramesh 2002] is defined for Argos spec-
ifications. Argos is a graphical language based on Boolean Mealy machines with hi-
erarchical states and concurrent state machines used to specify synchronous reactive
systems. The slicing criterion <S, e> is given as the name of a state S and a generated
event e. Slicing produces a state machine M′ by removing zero or more states and
transitions from the original machine M and the behavior of M′ up to state S is the
same as the behavior of M up to state S with respect to event e. The slicing algorithm,
with respect to <S, e>, is a traversal algorithm that works on a graph representing
the original state machine M, whose nodes correspond to the states of M and has three
types of edges. A transition edge exists for every transition in M. A hierarchy edge
exists between a node A and a node B if the state corresponding to A contains the state
corresponding to B as a sub state. A trigger edge occurs between a transition t1 and
t2, if t1 generates an output signal that triggers t2. All of the states and transitions
encountered during the traversal are included in the slice. The algorithm starts from S
and traverses down the hierarchy edges including the states that preserve the behavior
of M according to e. Then, for the same hierarchy level as S, it traverses backwards
up the transition edges and includes all the states encountered. Once all the required
states at that level have been traversed, then a similar traversal occurs at the next,
higher level, and so on, until it reaches the top most level. From the top most level, the
algorithm traverses backwards along the trigger edges and includes any state that is
concurrent to the states already in the slice.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:17

Similarly to the slicing approaches given in Chan et al. [1998] Heimdahl and Whalen
[1997], transitions that may generate an event of interest are kept in the slice in Gana-
pathy and Ramesh [2002]. This ensures that the connectivity of the state machine is
not broken during slicing. Also, the slicing algorithm in [Ganapathy and Ramesh 2002]
does not fall prey to false dependencies like in Chan et al. [1998] because transitions
in Argos do not have guards.

This slicing algorithm cannot be applied to any of the running examples because
Argos programs are composed of Boolean Mealy machines in which the inputs and
outputs are pure signals (or events), that is, transitions have no guarding conditions
and there is no store.

Objective. Given a state S and a generated event e, reactive program slicing produces
a state machine M′ by removing zero or more states and transitions from the original
state machine M, and the behavior of M′ up to state S is the same as the behavior of
M up to state S with respect to event e.

Applications. Applications are model comprehension and model checking.

5.4. Dynamic Slicing

Dynamic slicing in programs [Korel and Laski 1988] extracts slices that contain the
statements in a program that influence the slicing criterion for a specific execution
rather than any execution as in static slicing. It was defined for debugging programs.
Figure 1 describes a dynamic slice for an example program.

Guo and Roychoudhury [2008] describe an SBM slicing approach that uses dynamic
slicing of programs for debugging model-driven software. Their goal is to take errors
found in the Java code and trace the error back to the corresponding part of the model.
Rhapsody [Harel and Kugler 2004] or Stateflow [Hamon 2005] statecharts are used to
model a system and the authors have defined a tool that automatically generates exe-
cutable Java code from the models that handles hierarchy, concurrency, and event gen-
eration. The code generated is tagged with corresponding statechart elements, known
as model-code association tags, to ensure traceability. Their tool supports better model-
code association tags than Rhapsody and Stateflow as it includes tags for event and
transition firings. This leads to more accurate slices because with these tags they can
track events which trigger transitions and generated events and can distinguish be-
tweeen which transitions to keep or remove in the slice. Each statechart is translated
into a single-threaded Java program. Then, subject to an error being detected, dynamic
slicing, using the JSlice [Wang et al. 2008] tool, is applied to the Java code. JSlice is an
ope-source tool that produces backward dynamic slices of sequential Java programs.
Guo and Roychoudhury [2008] have previously [Wang and Roychoudhury 2004] mod-
ified JSlice to perform online compression during trace collection and they use this
version to produce the code slices. The slicing criterion, at model level, is the last state
visited by an object where the error occured. Since slicing is performed at code level,
the slicing criterion is the last state entry point in the code where the error occurred.
For dynamic slicing, the inputs that reveal the error are also required as part of the
slicing criterion. These are obtained from test cases. In their experiments at least five
test cases are chosen for each buggy version of code, and the input for each test case
that reveals an error will become a different slicing criterion. The slice produced by
JSlice is mapped back to the statechart model using the model-code associations and
represented as a model-level bug report. The model-level bug report can then be further
processed to reflect the hierarchical and concurrent structure of statecharts.

This approach can be generalized to be used with other types of program slicing
and there is around 30 years of work on program slicing and some existing tools,
including a commercial tool [Grammatech Inc. 2002]. It avoids developing new slicing

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:18 K. Androutsopoulos et al.

algorithms at model level. However, the main effort of this approach lies in defining
mappings between the statechart language and the program language. Defining the
mapping of the program slice back into the model is particularly hard in the case of
hierarchical and concurrent statecharts if the structure of the original state machine is
to be reflected in the slice. Also, the statecharts must be completely specified such that
the generated code is executable. Finally, in order to provide confidence in this approach
and depending on the application of slicing, the translations between the model and
code level should be verified. Guo and Roychoudhury [2008] have not discussed the
correctness of their translations.

Objective. For a given program P, input I, line of code l and set of variables V ,
dynamic slicing finds what statements or statement instances of P affect the values of
the variables V at l in the execution trace corresponding to I.

Applications. Applications are for debugging.

5.5. Amorphous Slicing

Amorphous slices in programs [Harman and Danicic 1997] are produced by using some
program transformations to simplify the program while still preserving its semantics
with respect to the slicing criterion. The slices produced are no longer syntax preserv-
ing, taht is, subsets of the original programs, and are often much smaller than slices
produced using syntax-preserving slicing approaches.

Similarly, amorphous slicing for models produces slices that are not strict subsets of
the original models and are thus not syntax preserving. The challenge lies in how to
remove the elements not in the slice and reconnect the state machine while preserving
the semantics with respect to its slicing criterion. The task of reconnecting the state
machine can lead to slices with different semantics than in the original (with respect
to the traditional notion of slicing [Weiser 1979]) by possibly introducing additional
behavior (by merging states some transitions become self-transitions which means
they can be executed more often than in the original machine) and nondeterminism.
Therefore, for amorphous slicing of SBMs a weaker notion of slicing is defined. For
certain applications, such as for model comprehension, these slices are desirable as
they are much smaller than slices produced using traditional static slicing algorithms
and thus easier to understand and analyze.

The second slicing algorithm described by Korel et al. [2003] produces an amorphous
slice for EFSMs as it is not a strict subset of the original EFSM. It constructs a
dependence graph by using data and control dependence relations. Then, starting
from the node in the dependence graph representing the slicing criterion, which is a
transition and its variables, the algorithm marks all backwardly reachable transitions
in the dependence graph. The algorithm applies two reduction rules for merging states
and deleting unmarked transitions. These rules are not general enough to cover all
possible cases, that is, for differently structured state machines these rules might
not be very effective and slices might contain some irrelevant elements (unmarked
transitions). Also, by merging states, the slice does not behave in the same way as the
original on event sequences that stutter. A stuttering event sequence is a sequence
of events whereby not all events trigger transitions. If an event does not trigger a
transition, the state machine remains in the same state. Korel et al. [2003] address this
problem by defining a new notion of correctness taking into consideration stuttering
event sequences.

Consider the ATM shown in Figure 5. The slice obtained using Korel et al.’s second
algorithm with the slicing criterion (sb, T 18) is shown in Figure 12. The transitions that
have been marked from the dependence analysis are: T 1, T 4, T 8, T 17, T 18. However,
the slice includes T 10 as this is required to ensure that T 17 and T 18 can be reexecuted.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:19

Card
Entered

Savings,
Update Savings

T4T1Start

T10

T8

T17

T18

PIN accepted,
Language Chosen,
Current,
Update Current

Fig. 12. The slice generated for the ATM system, shown in Figure 5, with respect to (sb, T 18) using Korel
et al. [2003] second algorithm. The transitions are labeled as described in Table II.

For the stuttering event sequence: T 1, T 4, T 6, T 8, T 18, T 17, T 17, T 18, the slice and
the original will not behave in the same way according to the traditional notion of
correctness. Compared to the slice generated by Korel et al.’s first algorithm with
respect to the same slicing criterion (sb, T 18) (Figure 7) and also other static slicing
algorithms (e.g., see Figure 8), it is much easier to see in the slice (Figure 5) how the
transitions T 1, T 4, T 17 interact with the slicing criterion.

Objective. Amorphous slicing for SBM aims to produce minimal slices (slices contain-
ing only elements that are identified to be either control or data dependent) while not
preserving the syntax and preserving a weaker notion of correctness with respect to
the transition and variables of interest.

Applications. Applications are for model comprehension.

5.6. Environment-Based Slicing

Environment-based slicing (a.k.a. event-based slicing) has only been defined for mod-
els [Androutsopoulos et al. 2011; Lano and Kolahdouz-Rahimi 2011], in particular for
EFSMs and a restricted subset of UML statecharts. Its purpose is to facilitate model de-
velopment by specializing models for a specific operating environment. Its applications
include specification reuse and property verification.

The slice produced, using environment-based slicing, is a model projection with re-
spect to a set of events I, which is the slicing criterion, that cannot occur in the new
environment. Androutsopoulos et al. [2011] define four algorithms, each aiming to re-
duce the slice further when applied. The first algorithm deletes all transitions whose
trigger event corresponds to the events in I. Then it removes all states and transi-
tions that are no longer reachable. The second algorithm further reduces the slice by
replacing a constant-value variable by its value on all remaining transitions. This can
lead to guards being updated and simplified to False, in which case the corresponding
transition (and possibly its target state) can be removed. The final two algorithms
merge groups of states that have identical semantics. The first merging algorithm is
an extension of an algorithm [Ilie and Yu 2003] for merging R-equivalent finite state
automata. States s1 and state s2 are R-equivalent if the outgoing transitions from s1
and s2 are identical in their events, guards, and actions and have identical target states
after the merge. The second merging algorithm merges a group of states whose size is
greater that two, all transitions in the group have no actions, and the set of triggering
events on transitions within the group are disjoint from the set of triggering events of
transitions exiting the group. This algorithm results in greater reduction, however, it
only preserves the weaker semantic requirement, that is, behavior is preserved only
for the stutter free event sequences (every event in the sequence triggers a transition
in the model) that exclude events in I.

Lano and Kolahdouz-Rahimi [2011] adopt this approach for slicing reactive systems
that are modeled as hierarchical and concurrent state machines, whereby the com-
munication dependencies between the two communicating state machines form an
acyclic directed graph. The core algorithm is the same as in Androutsopoulos et al.
[2011], however, they apply it to each individual state machines within a hierarchy of

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:20 K. Androutsopoulos et al.

Entered
Card PIN

Accepted
Language
Chosen

Exit
Savings Update

Savings
T23T3

T12

T13
T14

T15

T4

T2

T1

T7

T8

T9

T10

T21

Start

UpdateCurrent
Current

T17

T18

T19

T5

Fig. 13. The slice generated for the ATM system, shown in Figure 5, with respect to {Spanish} using
environment-based slicing algorithm [Androutsopoulos et al. 2011] or Lano and Kolahdouz-Rahimi [2011].
The transitions are labeled as described in Table II.

Entered
Card PIN

Accepted

Exit

T4

T2

T1Start

T3

Fig. 14. The slice generated for the ATM system, shown in Figure 5, with respect to {Spanish, English}
using environment-based slicing algorithm [Androutsopoulos et al. 2011]. The transitions are labeled as
described in Table II.

communicating state machines, which leads to simplifying both the subordinate and
superordinate state machine in the hierarchy. As in Androutsopoulos et al. [2011] the
systems are deterministic.

Consider the ATM system illustrated in Figure 5. Assume that this system is to be
reused in an English-speaking country only, that is, the event Spanish never occurs.
Environment-based slicing [Androutsopoulos et al. 2011] can be used with respect to
the slicing criterion I = {Spanish} to produce an EFSM that is semantically indis-
tinguishable from the original on all event sequences excluding the event Spanish.
Transition T 6 is removed first by the first algorithm. This leads to the guard of transi-
tion T 11 always being False, so T 11 can be deleted too. Similarly, T 16, T 20, T 22 are
also deleted. Applying the algorithm in Lano and Kolahdouz-Rahimi [2011] to Figure 5
with respect to the ignore set Spanish produces the same slice as Androutsopoulos et al.
[2011], illustrated in Figure 13. However, the algorithm in Lano and Kolahdouz-Rahimi
[2011] cannot be applied to the hierarchical and concurrent statechart of the ATM sys-
tem illustrated in Figure 6 because the communication between the concurrent state
machines atm and bank is cyclic.

Although environment-based slicing is suited to SBMs as it considers the environ-
ment, the algorithm is based on reachability and often produces slices that are not
reusable. For example, if the ATM system shown in Figure 5 were to be reused in an
environment where the user is not going to be given the choice of language (i.e. the
events English and Spanish can not occur), then applying environment-based slicing
will produce the slice as shown in Figure 14. The user should be able to deposit or
withdraw from the savings or checking account, even if he or she is not given a choice
of language (i.e., the slice could merge the states PIN Accepted and Language Chosen).

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:21

Lano and Kolahdouz-Rahimi [2011] also define output event-based slicing, which is
similar to environment-based slicing, except that the ignore set represents generated
events (found in the actions of transitions) that cannot happen rather than input
events from the environment. It uses the same algorithm as that for environment-based
slicing. The applications of output slicing include refactoring and model comprehension
(in order to view the state machines, modes and effect on one group of output devices).
Output event-based slicing cannot be applied to any of the ATM state machines defined
as our running examples. This is because the ATM state machine shown in Figure 5
does not have any generated events, while the concurrent state machine in Figure 6
allows for cyclic communication.

Objective. Given, as a slicing criterion, the set of events I that can never occur in
the new environment (as inputs or outputs), environment-based slicing finds a reduced
EFSM that behaves semantically indistinguishably from the original for all possible
sequences of events that exclude the events in I.

Applications. Applications include Specification reuse, model checking, refactoring,
and model comprehension.

5.7. Conditioned Slicing

Conditioned slicing for programs [Canfora et al. 1998] adds a condition to the traditional
static slicing criterion that captures the set of initial program states. There have been
two SBM slicing approaches that could be considered as being analogous to condition
slicing for programs. The first was defined for RSML specifications [Heimdahl and
Whalen 1997; Heimdahl et al. 1998] to aid model comprehension and the second was
defined for asynchronous extended automata [Bozga et al. 2000] for improving test case
generation. We discuss each in turn.

The SBM slicing approach presented in Heimdahl and Whalen [1997] and Heimdahl
et al. [1998] first reduces the RSML specification based on a specific scenario of
interest (a domain restriction), which is a form of conditioned slicing. It removes all
behaviors that are not possible when the operating conditions defining the reduction
scenario are satisfied. A reduction scenario is an AND/OR table and it is used to
mark the infeasible columns in each AND/OR table in the specification. An infeasible
column is one that contains a truth value that contradicts the scenario. A collection of
decision procedures have been implemented for determining whether the predicates
over enumerated variables and over states in a column contradict a scenario. After all
of the infeasible columns have been marked, they are removed as well as any rows that
remain with only “don’t care” values. Finally, tables that are left without any columns
are removed, as these constitute transitions with unsatisfiable guarding conditions.

Then, in Heimdahl and Whalen [1997] and Heimdahl et al. [1998], static and
backward slicing based on data and control dependence is applied to the remaining
specification in order to extract the parts affecting selected variables and transitions of
interest. Data and control dependence are different but are used together to compute
the slice. Data dependence is computed with respect to a transition or variable. It is
given as a dataflow relation between elements x and y defines that y is required for
evaluating x. The algorithm traverses the data dependence graph that is produced
using the dataflow relation, and marks all elements that directly or indirectly affect
the truth value of the guarding transition. Unmarked elements are removed. Control
dependence is computed with respect to a transition t with event e. It determines all
transitions with event e as an action. The algorithm repeatedly applies the control-flow
relation for all the transitions that have been added to the slice, until transitions are
reached that are triggered by external events. This is similar to the first rule defined

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:22 K. Androutsopoulos et al.

for the proposition-based slicing approach in Chan et al. [1998]. In both of these
approaches external events have no dependencies.

This slicing approach cannot be applied to the ATM system state machines (Figure 6
and Figure 5) because they don’t have AND/OR tables.

The conditioned slicing approach defined by Bozga et al. [2000] is given with respect
to the following slicing criterion: a test purpose and a set of feeds. A test purpose de-
scribes a pattern of interaction between the user and the Implementation Under Test
(IUT). It is expressed as an acyclic finite state automaton, with inputs and outputs cor-
responding to inputs and outputs in the implementation. Feeds are a set of constrained
signal inputs that the tester provides to the IUT during a test. These constrained sig-
nal inputs are analogous to adding conditions to the set of initial program states when
slicing programs.

The slicing approach [Bozga et al. 2000] consists of three algorithms that are ap-
plied iteratively (in any order) until there are no more reductions possible. The first
reduces the processes in the extended automata to the sets of states and transitions
that can be reached, given the set of feeds, that is, the algorithm performs reachability
analysis. The second algorithm computes the set of relevant variables with respect to
test purpose outputs in each state. A variable is relevant at a state if at that state its
value could be used to compute the parameter value of some signal output occurring
in the test purpose. Variables are used only in external outputs that are referred to
in the test purpose or in assignments to relevant variables. The algorithm computes
the relevant variables for all processes in a backward manner on the control graphs.
The variables that are irrelevant are replaced by the symbol �. Transitions that have
definitions assigning irrelevant variants are relabeled as silent transitions. This is
similar to anonymizing transitions in the static slicing approach in Androutsopoulos
et al. [2009b]. Since the asynchronous extended automata is used as an intermediate
program representation (in the IF [Bozga et al. 1999] framework for applying static
analysis techniques), removing transitions and rewiring the graph is not an issue be-
cause the automata will be translated, for example, into the input language of a model
checker where the variables and transitions will be removed. The third algorithm uses
constraints on the feeds and the inputs of the test purpose in order to simplify the
specification. These constraints are first added to possible matching inputs and then
propagated in the specification via some intra-/inter-proces dataflow analysis algo-
rithms. Then, a conservative approximation of the set of possible values is computed
for each control state and used to evaluate the guarding conditions of transitions. Any
transition guard that can never be triggered is deleted. This slicing approach is not
minimal, in that slices could be reduced further. Bozga et al. [2003] define dependence
relations for specific specifications, between values of timers, for the Ariane-5 Flight
program suggesting that there is possible scope for further reduction.

Objective. By adding a condition on the slicing criterion (results in constraining the
input), conditioned slicing finds a reduced SBM that contains all the model elements
that influence a set of variables and transitions of interest.

Applications. Model comprehension and testing are included in applications.

5.8. Comparison of SBM Slicing Approaches

We compare the slicing approaches (first column) in Table III, by specifying the
following:

—the Type (second column) of slicing as described in Section 5 (S = Static, P =
Proposition-based, R = Reactive program, D = Dynamic, A = Amorphous, E =
Environment-based, C = Conditioned);

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:23

Table III. Comparison of SBM Slicing Approaches

Approach T.a Dir.b E./C.c Dep.d Syn./Sem.e Int. f

Korel et al. [2003] S B E D,C Y/Y No
Fox and Luangsodsai [2005] S B E D Y/Y Yes
Ojala [2007] S B E D,C,I Y/Y Yes
Labbé and Gallois [2008] S B C D,C,I Y/Y Yes
Androutsopoulos et al. [2009b] S B C D,C Y/Y No
Lano and Kolahdouz-Rahimi [2011] S B E D Y/Y Yes
Chan et al. [1998] P B E D Y/Y Yes
Wang et al. [2002] P B E D,C,I Y/Y Yes
Langenhove [2006] P B E D,C,I Y/Y Yes
Janowska and Janowski [2006] P B E D,C,O Y/Y Yes
Colangelo et al. [2006] P B E - Y/Y Yes
Ganapathy and Ramesh [2002] R B E - Y/Y Yes
Guo and Roychoudhury [2008] D B E D,C Y/Y Yes
Korel et al. [2003] A B E D,C N/Y No
Androutsopoulos et al. [2011] E F E - Y/Y No
Lano and Kolahdouz-Rahimi [2011] E F E - Y/Y Yes
Heimdahl and Whalen [1997] C B E D,C Y/Y Yes
Bozga et al. [2000] C B E D Y/Y Yes

T.a Type of slicing (S = Static, P = Proposition-based, R = Reactive program, D = Dynamic,
A= Amorphous, E = Environment-based, C = Conditioned).
Dir.b Direction of slicing.
E./C.c Executable or closure slice.
Dep.d Dependencies.
Syn./Sem.e Syntax/Semantics preserving.
Int. f Interchart slicing.

—the Direction (third column) of traversal to produce the slice , that is, backwards (B)
or forwards (F);

—whether slices are Executable (E) or Closure (C) (fourth column);
—what Dependence (fifth column) relations are supported. Most relations used for

SBM slicing are for computing data (D) and control (C) dependence, a few for com-
puting interference (I) dependence for inter-chart slicing. Also, there are other (O)
dependence relations defined for specific state machine languages. Janowska and
Janowski [2006] define clock and time dependence specifically for timed automata.
For the approaches that do not compute dependencies by defining dependence rela-
tions explicitly, we simply mark the column with a −;

—whether the slices are Syntax/Semantics preserving (sixth column). We use Y (yes)
or N (no) to indicate whether the slice produced is a projection of the program syntax
(that is, the slice is submodel of the original). We use the same notation to indicate
whether the slice is a projection of the original semantics; and

—whether Inter-chart slicing (seventh column) is supported by the approach.

6. THE SLICING CRITERION AND APPLICATIONS OF SLICING SBMS

As in program slicing [Harman et al. 1996; Silva 2012], the slicing criterion differs
depending on the type of SBM slicing adopted. The SBM language variant also plays
a role in the choice of slicing criterion. For example, when slicing EFSMs Korel et al.
[2003] and Androutsopoulos et al. [2009b] choose a transition and its variables as a
slicing criterion because all of the information is contained on transitions in EFSMs
(i.e., trigger events, guards, and actions) and none on states. If a specific state was
chosen, there could be many transitions that lead to that state, and thus all of these

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:24 K. Androutsopoulos et al.

Table IV. Approaches for Slicing SBMs and their Applications

Model comprehension SBM variant Slicing criterion
Heimdahl and Whalen [1997] RSML A transition or variable
Korel et al. [2003] EFSMs A transition and its variables
Fox and Luangsodsai [2005] Statecharts Collection of states, transitions, actions,

variable names
Labbé and Gallois [2008] IOSTs Set of transitions
Androutsopoulos et al. [2009b] EFSMs A transition and its variables
Ganapathy and Ramesh [2002] Argos, Lustre A state and output signal (generated

event)
Lano and Kolahdouz-Rahimi
[2011]

restricted UML
state machines

Tuple of variables

Model checking
Chan et al. [1998] RSML States, events, transitions, or inputs in

property
Wang et al. [2002] EHAs States and transitions in property
Langenhove [2006] EHAs States and transitions in property
Colangelo et al. [2006] State machines Property sequence chart (events)
Janowska and Janowski [2006] Timed automata A set of variables and states in property
Ojala [2007] State machines Set of transitions
Testing
Bozga et al. [2000] Extended

automata
Test purpose (acyclic finite automata)
and a set of feeds (constrained inputs)

Debugging
Guo and Roychoudhury [2008] Java (map to

statecharts)
Last state visited by an object when er-
ror occured

Reuse
Androutsopoulos et al. [2011] EFSMs Set of events to ignore
Lano and Kolahdouz-Rahimi
[2011]

Restricted UML
state machines

Set of events to ignore

will have to be considered as part of the slicing criterion. Conversely, in EHA actions
(variable updates and event generation) occur at the states. Therefore, when slicing
EHA, Wang et al. [2002] choose a set of states and transitions as a slicing criterion.

Another key factor that affects the choice of slicing criterion is the application of
slicing. There are various applications of SBM slicing and we have broadly categorized
these into: (1) model comprehension, (2) model checking, (3) testing, (4) debugging, and
(5) reuse. For example, when slicing for the purpose of model checking, typically the
slicing criterion consists of elements mentioned in the properties to be verified, while
when slicing for the purpose of model comprehension, the slicing criterion is typically
a transition or set of transitions and their variables. Table IV lists the slicing criteria
and applications for all SBM slicing approaches. In the following sections we discuss
each group of applications in more detail.

6.1. Model Comprehension

Some SBM slicing approaches were developed for helping with model comprehension,
analysis, or review. Typically, the slicing criterion of such approaches is a transition (or
set of transitions) and its variables, and sometimes states, if variables are updated on
states rather than transitions. The slice aims to reduce the size of the model to include
only transitions (or states) that affect the slicing criterion.

The first application of SBM slicing was for helping manual review of system
requirements of large RSML specifications [Heimdahl and Whalen 1997; Heimdahl
et al. 1998]. Heimdahl et al. [1998] evaluated the effectiveness of slicing on TCAS II

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:25

models [Heimdahl et al. 1996], a collection of airborne devices that provide collision
avoidance protection for commercial aircraft. It consists of more than 300 states and
650 transitions. Heimdahl et al. [1998] found that slicing reduced the specification, by
removing states and transitions, from 68% to 90%.

The slicing algorithms described in Korel et al. [2003] and Androutsopoulos et al.
[2009b] are used to reduce the size of EFSM specifications in order to enhance model
comprehension. Empirical results, given in Androutsopoulos et al. [2009a], show that
the smallest average backward slice size for all possible transitions over 10 EFSM
models, including an industrial model, is 38.42%. This result is comparable to the
typical backward slice size of a program, which may be one-third of the original pro-
gram [Binkley and Harman 2003]. Note that a slice according to Androutsopoulos et al.
[2009b] consists of marked and unmarked transitions and its size, in terms of number
of transitions and number of states, is not reduced. Korel et al. [2003] did not explicitly
describe a set of examples and their slices, but claim that experience with their tool
showed a reduction of 55%–80% of model size when applying the amorphous slicing
algorithm to several EFSM models. Other slicing approaches for enhancing model com-
prehension are described in Fox and Luangsodsai [2005] and Labbé and Gallois [2008].
The slices produced are submodels of the original. Neither provide data about the size
of the slices.

Ganapathy and Ramesh [2002] have described an algorithm for slicing Argos speci-
fications that can help with analysis, debugging, and verification. They show that for
any input sequence, the behavior of the slice up to state S is the same as the behavior
of the original up to state S as far as the event b is concerned (where <S, b> is the slic-
ing criterion). The algorithm has been run on several example systems, including case
studies like the digital watch example, as well as randomly generated Argos programs
with large number of states and trigger edges to determine the time complexity. The
slicing criteria were chosen randomly. The algorithm was run on each input several
times and the average time was taken. For systems of average size (ranging from 100
states to 2000 and trigger edges ranging from 1 to 79), the average system time was
negligible (0.01 seconds).

Lano and Kolahdouz-Rahimi [2011] describe an algorithm for slicing a restricted
subset of UML state machines. The correctness of their slicing technique has been
formally shown. Also, they experimentally evaluate the efficiency of their algorithm by
applying it to slice five concurrent state machines, each composed of multiple copies of
a component with three states. The first state machine that is sliced has 3 states and
3 transitions, the second has 9 states and 18 transitions, while the last state machine
has 243 states and 1215 transitions. The execution time for the smaller state machines
were reasonable, for example, 0ms for the first state machine and 20ms for the second.
By contrast, the execution time for the fourth state machine was 64348ms and for the
final state machine it produced an out-of-memory error.

6.2. Model Checking

Model checking consists of representing a system as a finite model in an appropriate
logic and automatically checking whether the model satisfies some desired properties.
If the model does not satisfy a property, a counter-example is produced, that is, a
trace that outlines the system behavior that led to that contradiction. The properties
to be verified are expressed as either temporal logic formulae or as automata. The
system model is expressed as a transition system. Three types of transition systems are
typically used [Muller-Olm et al. 1999]: Kripke structures, whose nodes are annotated
with atomic propositions, Labeled Transition Systems (LTS) whose arcs are annotated
by actions, and Kripke transition systems that combine Kripke structures and LTS.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:26 K. Androutsopoulos et al.

Model checking suffers the state space explosion problem [Clarke et al. 1999]. This is
because the state space of a system can be very large, making model checking infeasible
because it is impossible to explore the entire state space with limited resources of time
and memory. There are several approaches, including slicing, to handle this problem.
Slicing can be applied both at the level where the system model is expressed in the input
language of a model checker (a model checker is a tool used for model checking), as well
as at the state machine specification level (in integrated formal methods), before the
specification is translated into the input language of the model checker for verification.

At the level of the input language of the model checker, slicing techniques apply
either on the input language itself or on the underlying SBM. Cone of influence [Clarke
et al. 1999] is a technique for reducing the size of the underlying SBM by removing
variables that do not influence the variables in the specification. This technique only
focuses on variables and is similar to slicing after data dependence. Chan et al. [1998]
point out that carrying out dependence analysis on the underlying SBM of the model
checker, rather than at the state machine specification level, may not be as effective.
For example, an event parameter would appear to depend on every event. This false
dependency would not occur at the state machine specification level.

Millett and Teitelbaum [1998] and Millett and Teitelbaum [1999] have described
an approach for slicing PROMELA, the input language for the SPIN [Holzmann
1997] model checker. PROMELA allows for nondeterminism and is concurrent, where
communication can be both synchronous or asynchronous. Slicing PROMELA consists
of first producing a CFG, which is a directed graph with a set of nodes representing
statements and edges representing control flow, and a PDG. Millett and Teitelbaum
[1998] extend the features of the CFG and PDG with additional nodes and edges
for handling PROMELA’s concurrent and nondeterminism constructs, while keeping
the reachability algorithm as used by CodeSurfer [Grammatech Inc. 2002] and the
Wisconsin tool [Horwitz et al. 2000] (both used for program slicing) the same. Since
slicing is applied at the CFG of the input language and not on the underlying SBM
model, this approach is comparable to program slicing.

We focus on slicing techniques at the state machine specification level. These tech-
niques address the state space explosion problem by extracting a smaller state machine
from the original that preserves the behavior of those parts of the model that affect the
truth of a given property. The slicing criterion is typically elements of a property to be
model checked, such as states, transitions, events, or variables. Ideally, for each slicing
approach, the equivalence of the original and sliced state machine, with respect to a
property, needs to be formally shown.

Chan et al. [1998] have defined an algorithm for slicing RSML models for model
checking. They have experimentally evaluated their slicing approach in Chan et al.
[2001] on two models, the TCAS II model [Heimdahl and Leveson 1995] and Boe-
ing EPD (Electrical Power Distribution) case study [Nobe and Bingle 1998]. Results
show that applying slicing to TCAS II reduces the Boolean state variables by half for
four of the five properties. Chan et al. [1998] encode each RSML variable as a set of
Boolean variables, however, typical RSML models have variables of many types, not
just Booleans. Only one property required additional optimizations in order for model
checking to be feasible. The reduction owing to slicing of the Boeing EPD case study
was moderate because the components were more inter-dependent, that is, the Boolean
state variables were reduced by 30% for three properties and there were no slices for
two of its properties because these depended on the entire model.

Wang et al. [2002] and Langenhove [2006] both have presented approaches for
slicing Extended Hierarchical Automata (EHA) for reducing the complexity of verifying
UML statechart models. A property φ to be model checked is given as a Linear-time
Temporal Logic (LTL) [Clarke et al. 1999] formula. Wang et al. [2002] show that slicing

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:27

with respect to the slicing criterion, which consists of the states and transitions in a
property φ, extracts a smaller EHA which is φ-stuttering equivalent to the original
EHA. Stuttering [Lamport 1983] refers to the occurrence of repeated states (with
identical labels) along a path in a Kripke structure. According to Lamport a concurrent
specification should be invariant to stuttering. φ-stuttering equivalence means that
on the property φ, two Kripke structures have equivalent behavior and are invariant
under stuttering. Langenhove [2006] has shown that a property is satisfied by the
sliced model if and only if it is satisfied by the original model.

Ojala [2007] has described a slicing algorithm for UML statecharts for reducing the
state space for model checking. A proof of correctness of slicing with respect to a formula
to be model checked has not been given nor any experimental results.

Colangelo et al. [2006] have described an approach for slicing SA models, in order to
handle the state space explosion problem when model checking. SA models are specified
as state machines and the LTL properties to be model checked are expressed using
property sequence charts. They have applied their approach to a naval communication
environment. The benefit of slicing is that properties that could not be model checked
on the original model, because the model checker ran out of memory, could be model
checked on the reduced model. No proof of correctness for their slicing approach has
been given.

Janowska and Janowski [2006] have presented a slicing approach for a set of timed
automata with discrete data for handling the state space explosion problem when model
checking. They show that two models (the original and the slice) are equivalent with
respect to CT L−X∗ [Clarke and Emerson 1982] formulas if there exists a bisimulation
between the states of the two structures.

6.3. Testing

Slicing can be used to simplify specifications in order to help with testing. Bozga et al.
[2000] have presented a slicing approach for improving automatic test case generation,
in particular of conformance test cases for telecommunication protocols. Conformance
testing is a black-box testing method that aims to validate that the implementations of
systems conform to their specifications. Their testing approach is based on on-the-fly
model checking and test cases are generated by exploring a synchronous product of the
specification and some test purpose (see Section 5.7 for definition). Both specification
and test purposes are described as labeled transition systems. This product can lead
to the state space explosion problem arising. Bozga et al. [2000] deal with this prob-
lem by representing the specification and test purpose at a higher level, that is,. as
asynchronous extended automata and acyclic finite state automata, respectively, and
applying slicing before generating test cases. The slicing criterion is a test purpose and
a set of feeds (see Section 5.7 for definition).

Bozga et al. [2000] have experimentally evaluated two of the three slicing techniques
on a telecommunications protocol that consists of 1075 states, 1291 transitions, and 134
variables. The first slicing technique can reduce the specification by removing states
and transitions (and actions on transitions) by up to 80% if a suitable set of feeds for
each test purpose is chosen. The smallest set of feeds covering the test purpose is not
necessarily the most suitable as it is often too restrictive. They start from the smallest
and iteratively add other input to the feeds until the model becomes large enough to
cover the test purpose behavior. The second slicing technique reduces the number of
variables by up to 40%. They also applied their slicing techniques to a medium access
control protocol for wireless ATM as well as the Ariane-5 Flight program. For the
protocol, they focus on verification rather than testing and found that without slicing
they were not able to prove any properties because of memory limitations. The Ariane-5
Flight program also benefited from slicing, as processes not involved in the verification

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:28 K. Androutsopoulos et al.

or test generation were removed. They do not provide any experimental results for the
third slicing technique as it was still under development. Bozga et al. [2000] also define
notions of correctness in terms of bisimulation for each of their slicing techniques but
do not provide any proofs.

6.4. Debugging

Guo and Roychoudhury [2008] have described a slicing approach used for debugging
statecharts. Their approach translates buggy statecharts into Java programs and ap-
plies dynamic slicing at program level. The slices are then translated back into state-
charts which are used to produce bug reports. They report on experiments using several
buggy versions of four statechart models (a total of 19 buggy programs). For each buggy
version, the slicing criterion is set based on the observable error and the inputs which
cause the error obtained using at least five test cases. The average over all the test
cases for that buggy version are computed. The results show that the size of the slices
at model level is 27% to 47%, while at program level is 17% to 30%. For all of the buggy
versions of the models, the size of a model-level slice is 12% to 25% of the corresponding
program-level slice. The authors argue that the difference is because a single model
element may be implemented by several lines of code.

6.5. Reuse

Androutsopoulos et al. [2011] have defined environment-based slicing, whose purpose
is to facilitate model development by specializing models for a specific operating en-
vironment. Its applications include specification reuse and property verification. The
authors report on experiments that consider the reduction obtained on ten EFSM mod-
els, first by considering small number of events as the slicing criterion (a.k.a. small
ignore sets) and then large number of events as the slicing criterion (a.k.a. large ignore
sets). Also, they report on the performace of the slicer. The results show that for both
small and large ignore sets the four algorithms consistently produce smaller slices.
Slicing with ignore sets of size four reduces the number of states by 60% and the num-
ber of transitions by 70%. In the case of slicing with singleton ignore sets, if there is
a large reduction (most of the EFSM) this identifies a key event, for example, a key
event in the ATM system shown in Figure 5 is Card where slicing with respect to Card
results in a slice containing only state Start. At the other extreme, that is, considering
ignore sets containing all events except one, produces an average slice size of 12.7%
states and 1.1% transitions.

Lano and Kolahdouz-Rahimi [2011] describe an algorithm for slicing a restricted
subset of UML state machines. The correctness of their slicing technique has been
formally shown. Also, they experimentally evaluate the efficiency of their algorithm by
applying it to slice five concurrent state machines, each composed of multiple copies of
a component with three states. The first state machine that the slice is applied to has
3 states and 3 transitions, the second has 9 states and 18 transitions, while the last
state machine has 243 states and 1215 transitions. The execution time for the smaller
state machines were reasonable, for example, 0ms for the first state machine and
20ms for the second, while the execution time for the larger state machines were also
reasonable, for example, the fourth state machine was 151ms and 359ms for the final
state machine. This algorithm is much more efficient than the static slicing algorithm
that they also defined (discussed in Section 5.1).

7. OPEN ISSUES

SBM slicing is still in the early stages and there are still issues to address.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:29

7.1. Correctly Accounting for Control Dependence

Although there has been considerable effort in trying to correctly account for control
dependence, there is still much work to be done. For example, some control depen-
dence definitions for models are adaptations of control dependence definitions for pro-
grams [Androutsopoulos et al. 2009b]. However, the results of the survey show that
work on slicing finite state machines has identified problems that are also present
when slicing programs but have never been addressed. For example, slicing nontermi-
nating finite state machines has been addressed as early as in Heimdahl and Whalen
[1997] while the program slicing community only addressed the problem of slicing
nonterminating programs in Ranganath et al. [2007].

7.2. Improving Precision of Algorithms

7.2.1. State Hierarchy. When slicing hierarchical state machines, the algorithms aim to
preserve the state hierarchy in the slices. The algorithms start with the lowest level
of states in the hierarchy and consider all states at that level before moving up to the
next level. If a state is in the slice, then so is its superstate. However, for many of them,
if a state is included in the slice, then all of the substates are also included. This leads
to larger, less precise slices. Ganapathy and Ramesh [2002] give some suggestions of
how to improve precision after slicing, but these have not been implemented. Further
work is required for improving algorithms to produce more precise slices of hierarchical
state machines.

7.2.2. Concurrency and Communication. All approaches that slice concurrent and commu-
nicating state machines are based on extracting the dependencies and then traversing
the dependencies. Most approaches handle communication and synchronization by in-
troducing new dependencies, similar to interference dependence that is defined when
slicing concurrent programs. Computing such dependencies is complex and requires
that the order of execution be considered to ensure precise slices. Even if the computed
dependencies are precise, the slicing algorithm can be imprecise if it just assumes
transitivity of the dependencies and traverses the reachable dependencies [Krinke
1998]. Only a few SBM slicing approaches try to compute precise dependencies, such
as in Langenhove [2006], and none actually computes precise slices. Hence there is
scope for further work in improving algorithms to produce precise slices for concurrent
SBMs.

7.3. Graph Connectivity

The SBM elements that are kept and removed in a slice vary from one slicing approach
to another. Table V lists the elements that are removed (indicated by a cross) and kept
(indicated by a tick) in a slice that is generated by each slicing approach. For example,
Labbé and Gallois [2008] do not remove any elements but simply mark those that
are in the slice. Heimdahl and Whalen [1997] produce slices by deleting states and
transitions. Ojala [2007] only deletes parts of transitions trigger events, guards, and
actions. What is not shown in Table V is whether removing transitions or states can lead
to breaking the connectivity of the model, that is, some states become unreachable. Most
slicing approaches only delete transitions or states that do not cause other states or
transitions to become unreachable. This leads to larger, less precise slices. Only Korel
et al. [2003] have described an algorithm (their amorphous algorithm described in
Section 5.5) for removing transitions and reconnecting the state machine by merging
states. For example, Figure 12 shows the slice generated for the ATM state machine
shown in Figure 5.

However, there is still much work to be done. First, Korel et al.’s [2003] algorithm
applies a couple of rules for merging states and they suggest that more rules can be

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:30 K. Androutsopoulos et al.

Table V. The SBM Elements that Slicing Approaches Remove (indicated by cross) and Keep
(indicated by tick) in a Slice

Approach S Tb Lc TEd Ge A f

Labbé and Gallois [2008]
√ √ √ √ √ √

Androutsopoulos et al. [2009b]
√ √ × √ √ √

Heimdahl and Whalen [1997] × × √ √ √ √
Chan et al. [1998] × × √ √ √ √
Korel et al. [2003] × × √ √ √ √
Ganapathy and Ramesh [2002] × × √ √ √ √
Colangelo et al. [2006] × × √ √ √ √
Wang et al. [2002] × × √ √ √ ×
Fox and Luangsodsai [2005] × × √ √ √ ×
Langenhove [2006] × × √ √ √ ×
Janowska and Janowski [2006] × × √ √ √ ×
Bozga et al. [2000] × × √ √ √ ×
Guo and Roychoudhury [2008] × × √ √ × ×
Lano and Kolahdouz-Rahimi [2011] (static) × × √ √ √ ×
Lano and Kolahdouz-Rahimi [2011] (environment-based) × × √ √ √ √
Androutsopoulos et al. [2011] (environment-based) × × √ √ √ √
Ojala [2007]

√ √ √ × × ×
Sa States. Tb Transitions. Lc Labels. TEd Triggering Events. Ge Guards. A f Actions.

developed. Thus, this algorithm is not general enough to apply to all possible cases for
merging states. Better algorithms could be developed.

Second, depending on the semantics of the state machines, slicing could introduce
additional behavior that is not in the original state machine. Assume the ATM state
machine in Figure 5 has skip semantics, that is, events produced by the environment
that do not trigger a transition are consumed and the state machine remains in the
same state. If stuttering event sequences are generated by the environment, then
according to Weiser’s notion of correctness [Weiser 1979] this slicing algorithm is in-
correct. The slice obtained using Korel et al.’s amorphous algorithm with the slicing
criterion (sb, T 18) is shown in Figure 12. An example of a stuttering event sequence is:
T 1, T 4, T 8, T 6, T 18, T 17, T 17, T 18, where the slice and the original will not behave
in the same way according to the traditional notion of correctness. Korel et al. [2003]
have described a new notion of correctness with event sequences (nonstuttering ones)
that ensures that the original and the slice produce the same values for the variables
of interest. However, this definition of correctness is still in the early stages of de-
velopment and has not been proved. Further work is required in developing slicing
algorithms that improve on these issues.

7.4. Slicing across Different Levels of Abstraction

Systems can be modeled at different levels of abstraction. For example, a system can
be first modeled in a high level of detail and is often nondeterministic because of
underspecification. Then it is modeled at a low level, where one state in the high
level corresponds to many states in the low level. In some notations this state is
modelled as a superstate. Most of the approaches, such as Wang et al. [2002], Korel
et al. [2003], and Labbé and Gallois [2008], concern themselves with low-level model
representations. There has been no slicing approach that has considered slicing across
several models that have varying levels of abstraction.

Furthermore, a transition in a high-level model can represent many transitions in
a low-level model. In this case, the transition may have combined labels of all those
transitions, that is, it may consist of more than one action. This could be a problem

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:31

when computing data dependence using the existing definitions as dependencies may
occur between different actions of a transition. This research problem has not been
addressed in the literature.

7.5. Slicing Richer and Larger SBMs

Only some of the features of some SBMs have been considered by slicing approaches,
such as hierarchy, concurrency, communication, and event generation. Features of
richer SBMs, such as UML, have not been considered. These include: the condition
and selection circled connectives, delays and timeouts, and the entry/exit activity and
histories. Moreover, how to slice SBMs with rich action languages for transitions, such
as those that allow functions to be defined that interact with other parts of the pro-
gram, has not been considered in the literature. Slicing approaches could be developed
further so that they can be applied to any SBM.

Experimental studies were carried out by various SBM slicing approaches. The
largest state machine in terms of states had 2000 states but only 79 transitions
[Ganapathy and Ramesh 2002] while the largest state machine in terms of transitions
was a telecommunications protocol [Bozga et al. 2000] that had 1075 states, 1291
transitions, and 134 variables. Further studies to investigate the performance of the
slicing algorithms when applied to a large state machine in terms of both states and
transitions and number of variables would be of interest.

7.6. How SBM Semantics Affects Slicing

Slicing is defined primarily on the syntax of the SBM. If we fix the syntax of an SBM
and change the semantics, how is slicing affected? There are three possibilities.

(1) A different dependence graph is produced when this happens, which results in
different slices.

(2) The dependence graph produced is the same. There can still be issues with the
correctness of the slicing algorithms. Lano and Kolahdouz-Rahimi [2011] state
that the choice of semantics can lead to computing different slices. They discuss
three alternative semantics that can be used for an SBM that is not completely
specified, that is, for every state there is not a complete set of guards for every
possible event occurrence. However, they do not show how these semantics lead to
computing different slices.

(3) The choice of syntax/semantics can have problems of itself, which can make the
correctness proofs of slicing difficult. Lano and Clark [1999] discuss ways in which
problems with the semantics are overcome to achieve global consistency in SBM. For
example, if an SBM allows logic on triggers and there are two parallel transitions
t1 : ¬a/b and t2 : b/a, then when there are no input events, {t1, t2} is constructed in
the step as well as the generated events {a, b}. Thus, a is generated and t1 is taken
even though t1 is enabled by the absence of a.

Except for Lano and Kolahdouz-Rahimi [2011], no existing work in the survey has
discussed any of these issues.

8. CONCLUSIONS

This article is the first to survey existing work on slicing finite state machines. It
comprehensively reviewed slicing approaches, classifying them in terms of their type.
It also gave an overview of their applications, empirical evaluation, correctness, and
open problems for future work.

Work on slicing finite state machines is typically seen as extending work on pro-
gram slicing to the model level. For example, some control dependence definitions for
models are adaptations of control dependence definitions for programs. However, the

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:32 K. Androutsopoulos et al.

results of the survey show that work on slicing finite state machines has identified
problems that are also present when slicing programs but have never been addressed.
For example, slicing nonterminating finite state machines has been addressed as early
as in Heimdahl and Whalen [1997] while the program slicing community only ad-
dressed the problem of slicing nonterminating programs in Ranganath et al. [2007].
Moreover, we believe that the problems addressed when slicing finite state machines
are similar to those required when slicing interactive programs, which has not been
addressed in the program slicing community. This highlights the importance of this
survey to both the model and program slicing communities.

REFERENCES

AGRAWAL, H., DEMILLO, R. A., AND SPAFFORD, E. H. 1991. Dynamic slicing in the presence of unconstrained
pointers. In Proceedings of the 4th ACM Symposium on Testing, Analysis, and Verification (TAV4’91).
60–73.

AGRAWAL, H. AND HORGAN, J. R. 1990. Dynamic program slicing. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 246–256.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers, Principles, Techniques, and Tools. Addison-Wesley,
Pearson Education.

ALUR, R. AND DILL, D. L. 1990. Automata for modeling real-time systems. In Proceedings of the 17th Interna-
tional Colloquium on Automata, Languages and Programming. Springer, New York, 322–335.

ANDROUTSOPOULOS, K., BINKLEY, D., CLARK, D., GOLD, N., HARMAN, M., LANO, K., AND LI, Z. 2011. Model projection:
Simplifying models in response to restricting the environment. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE’11). 291–300.

ANDROUTSOPOULOS, K., GOLD, N., HARMAN, M., LI, Z., AND TRATT, L. 2009a. A theoretical and empirical study of
efsm dependence. In Proceedings of the International Conference on Software Maintenance (ICSM’09).

ANDROUTSOPOULOS, K., CLARK, D., HARMAN, M., LI, Z., AND TRATT, L. 2009b. Control dependence for extended
finite state machines. In Proceedings of the 12th International Conference on Fundamental Approaches
to Software Engineering held in Conjunction with the European Conference Joint Conferences on the
Theory and Practice of Software. Springer, 216–230.

BALL, T. AND HORWITZ, S. 1993. Slicing programs with arbitrary control–flow. In Proceedings of the 1st Confer-
ence on Automated Algorithmic Debugging. P. Fritzson, Ed., Springer, 206–222.

BINKLEY, D. 1998. The application of program slicing to regression testing. Inf. Softw. Technol. 40, 11, 583–594.
BINKLEY, D. AND GALLAGHER, K. B. 1996. Program slicing. Adv. Comput. 43, 1–50.
BINKLEY, D. AND HARMAN, M. 2003. A large-scale empirical study of forward and backward static slice size

and context sensitivity. In Proceedings of the IEEE International Conference on Software Maintenance.
IEEE Computer Society Press, 44–53.

BINKLEY, D. AND HARMAN, M. 2004. A survey of empirical results on program slicing. Adv. Comput. 62, 105–178.
BINKLEY, D. AND HARMAN, M. 2005. Forward slices are smaller than backward slices. In Proceedings of the

5th IEEE International Workshop on Source Code Analysis and Manipulation. IEEE Computer Society
Press, 15–24.

BINKLEY, D., HARMAN, M., AND KRINKE, J. 2007. Empirical study of optimization techniques for massive slicing.
ACM Trans. Program. Lang. Syst. 30, 1.

BINKLEY, D., HORWITZ, S., AND REPS, T. 1995. Program integration for languages with procedure calls. ACM
Trans. Softw. Engin. Methodol. 4, 1, 3–35.

BINKLEY, D. W. 2007. Source code analysis: A road map. In Proceedings of the Workshop on Future of Software
Engineering (FOSE’07). L. Briand and A. Wolf, Eds., IEEE Computer Society Press, 104–119.

BOZGA, M., FERNANDEZ, J.-C., AND GHIRVU, L. 2000. Using static analysis to improve automatic test generation.
In Proceedings of the 6th International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’00). Springer, 235–250.

BOZGA, M., FERNANDEZ, J.-C., AND GHIRVU, L. 2003. Using static analysis to improve automatic test generation.
Int. J. Softw. Tools Technol. Transfer 4, 142–152.

BOZGA, M., FERNANDEZ, J.-C., GHIRVU, L., GRAF, S., PIERRE KRIMM, J., MOUNIER, L., AND SIFAKIS, J. 1999. If: An
intermediate representation for sdl and its applications. In Proceedings of the SDL-Forum. Elsevier
Science, 423–440.

CANFORA, G., CIMITILE, A., AND DE LUCIA, A. 1998. Conditioned program slicing. Inf. Softw. Technol. 40, 11,
595–607.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:33

CHAN, W., ANDERSON, R. J., BEAME, P., AND NOTKIN, D. 1998. Improving efficiency of symbolic model checking
for state-based system requirements. SIGSOFT Softw. Engin. Not. 23, 2, 102–112.

CHAN, W., ANDERSON, R. J., BEAME, P., NOTKIN, D., JONES, D. H., AND WARNER, W. E. 2001. Optimizing symbolic
model checking for statecharts. IEEE Trans. Softw. Engin. 27, 2, 170–190.

CLARKE, E. M. AND EMERSON, E. A. 1982. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Proceedings of the Workshop on Logic of Programs. Springer, 52–71.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. CMIT Press.
COLANGELO, D., COMPARE, D., INVERARDI, P., AND PELLICCIONE, P. 2006. Reducing software architecture models

complexity: A slicing and abstraction approach. In Proceedings of the IFIP WG 6.1 International Con-
ference on Formal Techniques for Networked and Distributed Systems (FORTE’06). Lecture Notes in
Computer Science, vol. 4229, Springer, 243–258.

CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S., PASAREANU, C. S., ROBBY, AND ZHENG, H. 2000. Bandera:
Extracting finite-state models from java source code. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE’00). IEEE Computer Society Press, 439–448.

DE LUCIA, A. 2001. Program slicing: Methods and applications. In Proceedings of the International Workshop
on Source Code Analysis and Manipulation. IEEE Computer Society Press, 142–149.

DONG, W., WANG, J., QI, X., AND QI, Z.-C. 2001. Model checking UML statecharts. In Proceedings of the 8th

Asia-Pacific Software Engineering Conference. IEEE Computer Society, 363.
DUBROVIN, J. 2006. Jumbala—An action language for uml state machines. Res. rep. HUT-TCSA101, Helsinki

University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland.
DWYER, M. B., HATCLIFF, J., HOOSIER, M., RANGANATH, V., AND WALLENTINE, T. 2006. Evaluating the effectiveness

of slicing for model reduction of concurrent object-oriented programs. In Proceedings of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06). Springer,
73–89.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9, 3, 319–349.

FIELD, J., RAMALINGAM, G., AND TIP, F. 1995. Parametric program slicing. In Proceedings of the 22nd ACM
Symposium on Principles of Programming Languages. ACM Press, New York, 379–392.

FOX, C., DANICIC, S., HARMAN, M., AND HIERONS, R. M. 2004. ConSIT: A fully automated conditioned program
slicer. Softw. Pract. Exper. 34, 15–46.

FOX, C., HARMAN, M., HIERONS, R. M., AND DANICIC, S. 2001. Backward conditioning: A new program spe-
cialisation technique and its application to program comprehension. In Proceedings of the 9th IEEE
International Workshop on Program Comprehension. IEEE Computer Society Press, 89–97.

FOX, C. AND LUANGSODSAI, A. 2005. And-or dependence graphs for slicing statecharts. In Beyond Program
Slicing. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany.

GALLAGHER, K. B. AND LYLE, J. R. 1991. Using program slicing in software maintenance. IEEE Trans. Softw.
Engin. 17, 8, 751–761.

GANAPATHY, V. AND RAMESH, S. 2002. Slicing synchronous reactive programs. Electron. Notes Theor. Comput.
Sci. 65, 5, 50–64.

GASTON, C., GALL, P. L., RAPIN, N., AND TOUIL, A. 2006. Symbolic execution techniques for test purpose definition.
In Proceedings of the 18th IFIP TC6/WG6.1 International Conference on Testing of Communicating
Systems (TestCom’06). Lecture Notes in Computer Science, vol. 3964, Springer, 1–18.

GRAMMATECH INC. 2002. The CodeSurfer slicing system. http://www.grammatech.com/.
GUO, L. AND ROYCHOUDHURY, A. 2008. Debugging statecharts via model-code traceability. In Proceedings of the

3rd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’08). Springer, 292–306.

GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. 1992. An approach to regression testing using slicing. In Proceed-
ings of the IEEE Conference on Software Maintenance. IEEE Computer Society Press, 299–308.

GUPTA, R. AND SOFFA, M. L. 1995. Hybrid slicing: An approach for refining static slices using dynamic infor-
mation. In Proceedings of 3rd ACM SIGSOFT Symposium on the Foundations of Software Engineering
(SIGSOFT’95). 29–40.

HAMON, G. 2005. A denotational semantics for stateflow. In Proceedings of the 5th ACM International Confer-
ence on Embedded Software (EMSOFT’05). ACM Press, New York, 164–172.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8, 3, 231–274.
HAREL, D. AND KUGLER, H. 2004. The rhapsody semantics of statecharts (or, on the executable core of the

UML). In Proceedings of the Priority Program SoftSpez of the German Research Foundation (DFG)

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:34 K. Androutsopoulos et al.

on Integration of Software Specification Techniques for Applications in Engineering. Lecture Notes in
Computer Science, vol. 3147, Springer, 325–354.

HAREL, D. AND NAAMAD, A. 1996. The statemate semantics of statecharts. ACM Trans. Softw. Engin. Methodol.
5, 4, 293–333.

HARMAN, M., BINKLEY, D., AND DANICIC, S. 2003. Amorphous program slicing. J. Syst. Softw. 68, 1, 45–64.
HARMAN, M. AND DANICIC, S. 1997. Amorphous program slicing. In Proceedings of the 5th IEEE International

Workshop on Program Comprehesion (IWPC’97). IEEE Computer Society Press, 70–79.
HARMAN, M. AND DANICIC, S. 1998. A new algorithm for slicing unstructured programs. J. Softw. Maint. Evolut.

10, 6, 415–441.
HARMAN, M., DANICIC, S., SIVAGURUNATHAN, Y., AND SIMPSON, D. 1996. The next 700 slicing criteria. In Proceedings

of the 2nd UK Workshop on Program Comprehension. M. Munro, Ed.
HARMAN, M. AND HIERONS, R. M. 2001. An overview of program slicing. Softw. Focus 2, 3, 85–92.
HARMAN, M., HIERONS, R. M., DANICIC, S., HOWROYD, J., AND FOX, C. 2001. Pre/post conditioned slicing. In

Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01). IEEE Computer
Society Press, 138–147.

HARMAN, M., HU, L., HIERONS, R. M., WEGENER, J., STHAMER, H., BARESEL, A., AND ROPER, M. 2004. Testability
transformation. IEEE Trans. Softw. Engin. 30, 1, 3–16.

HATCLIFF, J., DWYER, M. B., AND ZHENG, H. 2000. Slicing software for model construction. Higher-Order Symbol.
Comput. 13, 4, 315–353.

HEIMDAHL, M. P. E., LEVESON, N., AND REESE, J. D. 1996. Experiences and lessons from the analysis of TCAS
II. SIGSOFT Softw. Engin. Notes 21, 3, 79–83.

HEIMDAHL, M. P. E. AND LEVESON, N. G. 1995. Completeness and consistency analysis of state-based require-
ments. In Proceedings of the 17th International Conference on Software Engineering. ACM Press, New
York, 3–14.

HEIMDAHL, M. P. E., THOMPSON, J. M., AND WHALEN, M. W. 1998. On the effectiveness of slicing hierarchical
state machines: A case study. In Proceedings of the 24th Euromicro Conference (EUROMICRO’98). IEEE
Computer Society, 10435–10444.

HEIMDAHL, M. P. E. AND WHALEN, M. W. 1997. Reduction and slicing of hierarchical state machines. In Pro-
ceedings of the 5th ACM SIGSOFT Symposium on the Foundations of Software Engineering. Springer.

HOLZMANN, G. J. 1997. The model checker spin. IEEE Trans. Softw. Engin. 23, 279–295.
HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs. ACM Trans.

Program. Lang. Syst. 12, 1, 26–61.
HORWITZ, S., REPS, T., ROSAY, G., DAS, M., HASTI, B., LAMPERT, J., MELSKI, D., SHAPIRO, M., SIFF, M.,

TURNIDGE, T., BALL, T., BINKLEY, D., BARGER, V., BATES, S., BRICKER, T., CAI, J., PAIGE, R., PFEIFFER,
P., PRINS, J., YANG, W., RAMALINGAM, G., AND SAGIV, M. 2000. Wisconsin program slicing project.
http://www.cs.wisc.edu/wpis/html/.

HROMKOVIC, J. AND SCHNITGER, G. 2007. Comparing the size of NFAs with and without epsilontransitions.
Theor. Comput. Sci. 380, 1–2, 100–114.

ILIE, L. AND YU, S. 2003. Reducing nfas by invariant equivalences. Theor. Comput. Sci. 306, 1–3, 373–390.
JANOWSKA, A. AND JANOWSKI, P. 2006. Slicing of timed automata with discrete data. Fundam. Informaticae 72,

1–3, 181–195.
JHALA, R. AND MAJUMDAR, R. 2005. Path slicing. SIGPLAN Not. 40, 6, 38–47.
KNAPP, A. AND MERZ, S. 2002. Model checking and code generation for UML state machines and collaborations.

In Proceeding 5th Workshop on Tools for System Design and Verification (FM-Tools’02). D. Haneberg,
G. Schellhorn, and W. Reif, Eds, 59–64.

KOMONDOOR, R. AND HORWITZ, S. 2000. Semantics-preserving procedure extraction. In Proceedings of the 27th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’00). ACM Press,
New York, 155–169.

KOREL, B. AND LASKI, J. 1988. Dynamic program slicing. Inf. Process. Lett. 29, 3, 155–163.
KOREL, B., SINGH, I., TAHAT, L., AND VAYSBURG, B. 2003. Slicing of state based models. In Proceedings of the IEEE

International Conference on Software Maintenance (ICSM’03). IEEE Computer Society Press, 34–43.
KRINKE, J. 1998. Static slicing of threaded programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Work-

shop on Program Analysis for Software Tools and Engineering (PASTE’98). ACM Press, New York,
35–42.

KUCK, D. J., KUHN, R. H., PADUA, D. A., LEASURE, B., AND WOLFE, M. 1981. Dependence graphs and compiler opti-
mizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’81). ACM Press, New York, 207–218.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

State-Based Model Slicing: A Survey 53:35

LABBE, S. AND GALLOIS, J.-P. 2008. Slicing communicating automata specifications: Polynomial algorithms for
model reduction. Formal Aspects Comput. 20, 6, 563–595.

LABBE, S., GALLOIS, J.-P., AND POUZET, M. 2007. Slicing communicating automata specifications for efficient
model reduction. In Proceedings of the 18th Australian Software Engineering Conference (ASWEC’07).
IEEE Computer Society, 191–200.

LAKHOTIA, A. AND SINGH, P. 2003. Challenges in getting formal with viruses. Virus Bull. 9, 1, 14–18.
LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm. ACM 21, 7,

558–565.
LAMPORT, L. 1983. What good is temporal logic? In Proceedings of the 9th IFIP World Congress on Information

Processing 83. R. E. A. Mason, Ed., 657–668.
LANGENHOVE, S. V. 2006. Towards the correctness of software behavior in uml: A model checking approach

based on slicing. Ph.D. thesis, Ghent University. http://lib.ugent.be/fulltxt/RUG01/000/970/662/RUG01-
000970662 2010 0001 AC.pdf.

LANGENHOVE, S. V. AND HOOGEWIJS, A. 2007. SVtL: System verification through logic tool support for verifying
sliced hierarchical statecharts. In Proceedings of the 18th International Workshop on Recent Trends in
Algebraic Development Techniques. Lecture Notes in Computer Science, vol. 4409, Springer, 142–155.

LANO, K. AND CLARK, D. 1999. Demonstrating preservation of safety properties in reactive control system
development. In Proceedings of the 4th Australian Workshop on Industrial Experience with Safety Critical
Systems and Software.

LANO, K. AND KOLAHDOUZ-RAHIMI, S. 2011. Slicing techniques for uml models. J. Object Technol. 10, 11:1–49.
LEVESON, N., HEIMDAHL, M., HILDRETH, H., AND REESE, J. 1994. Requirements specification for process-control

systems. IEEE Trans. Softw. Engin. 20, 9, 684–706.
MARANINCHI, F. 1991. The Argos language: graphical representation of automata and description of reactive

systems. In IEEE Workshop on Visual Languages.
MEALY, G. H. 1955. A method to synthesizing sequential circuits. Bell Syst. Tech. J. 34, 5, 1045–1075.
MILLETT, L. AND TEITELBAUM, T. 1998. Slicing promela and its applications to model checking. In Proceedings

of the 4th International SPIN Workshop. 75–83.
MILLETT, L. I. AND TEITELBAUM, T. 1999. Channel dependence analysis for slicing promela. In Proceedings of

the International Symposium on Software Engineering for Parallel and Distributed Systems (PDSE’99).
IEEE Computer Society, 52–61.

MOCK, M., ATKINSON, D. C., CHAMBERS, C., AND EGGERS, S. J. 2002. Improving program slicing with dynamic
points-to data. In Proceedings of the 10th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-02). ACM Press, New York, 71–80.

MOORE, E. F. 1956. Gedanken experiments on sequential machines. In Automata Studies, Princeton Univer-
sity Press, Princeton, NJ, 129–153.

MULLER-OLM, M., SCHMIDT, D., AND STEFFEN, B. 1999. Model-checking: A tutorial introduction. In Proceedings
of the 6th International Static Analysis Symposium. Vol. 1694, 331–354.

NOBE, C. AND BINGLE, M. 1998. Model-based development: Five processes used at boeing. In Proceedings of
the IEEE International Conference and Workshop: Engineering of Computer-Based Systems.

OJALA, V. 2007. A slicer for UML state machines. Tech. rep. HUT-TCS-25, Helsinki University of Technology
Laboratory for Theoretical Computer Science, Espoo, Finland.

OMG. 2001. OMG unified modeling language specification 1.4. http://www.omg.org/cgi-bin/doc?formal/01-09-
67.

OTTENSTEIN, K. J. AND OTTENSTEIN, L. M. 1984. The program dependence graph in software development
environments. ACM/SIGPLAN Not. 19, 5, 177–184.

PELLICCIONE, P., MUCCINI, H., BUCCHIARONE, A., AND FACCHINI, F. 2005. Testor: Deriving test sequences from
model-based specifications. In Proceedings of the 8th International SIGSOFT Symposium on Component
Based Software Engineering. Lecture Notes in Computer Science, vol. 3489, Springer, 267–282.

PRAXIS LTD. 2008. The SPADE program analyser. http://docs.adacore.com/sparkdocs-docs/Checker UM.htm.
RANGANATH, V. P., AMTOFT, T., BANERJEE, A., HATCLIFF, J., AND DWYER, M. B. 2007. A new foundation for control

dependence and slicing for modern program structures. ACM Trans. Program. Lang. Syst. 29, 5, 27.
SILVA, J. 2012. A vocabulary of program slicing-based techniques. ACM Comput. Surv. 44, 3, 12:1–12:41.
TIP, F. 1995. A survey of program slicing techniques. J. Program. Lang. 3, 3, 121–189.
VENKATESH, G. A. 1991. The semantic approach to program slicing. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’91). ACM Press, New York,
107–119.

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

53:36 K. Androutsopoulos et al.

WANG, J., DONG, W., AND QI, Z.-C. 2002. Slicing hierarchical automata for model checking UML statecharts. In
Proceedings of the 4th International Conference on Formal Engineering Methods (ICFEM’02). Springer,
435–446.

WANG, T. AND ROYCHOUDHURY, A. 2004. Using compressed byte code traces for slicing java programs. In
Proceedings of the 26th International Conference on Software Engineering (ICSE’04). 512–521.

WANG, T., ROYCHOUDHURY, A., AND GUO, L. 2008. JSlice, version 2.0. http://jslice.sourceforge.net/.
WARD, M. 2003. Slicing the scam mug: A case study in semantic slicing. In Proceedings of the IEEE Interna-

tional Workshop on Source Code Analysis and Manipulation (SCAM’03). IEEE Computer Society Press,
88–97.

WARD, M. AND ZEDAN, H. 2007. Slicing as a program transformation. ACM Trans. Program. Lang. Syst. 29,
2, 7.

WEISER, M. 1979. Program slices: Formal, psychological, and practical investigations of an automatic program
abstraction method. Ph.D. thesis, University of Michigan, Ann Arbor, MI.

XU, B., QIAN, J., ZHANG, X., WU, Z., AND CHEN, L. 2005. A brief survey of program slicing. ACM SIGSOFT Softw.
Engin. Not. 30, 2, 1–36.

Received December 2010; revised July 2012; accepted August 2012

ACM Computing Surveys, Vol. 45, No. 4, Article 53, Publication date: August 2013.

