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1 By a prediction system we mean some f(xi) to estim
an input vector that describes characteristics of the tar
the sense of being defined by explicit rules so estim
included in this definition. Nor need such systems be
required that a prediction system utilises information
distinguishes it from guessing at random. In other word
definition, perform better than random.
Context: Software engineering has a problem in that when we empirically evaluate competing prediction
systems we obtain conflicting results.
Objective: To reduce the inconsistency amongst validation study results and provide a more formal foun-
dation to interpret results with a particular focus on continuous prediction systems.
Method: A new framework is proposed for evaluating competing prediction systems based upon (1) an
unbiased statistic, Standardised Accuracy, (2) testing the result likelihood relative to the baseline tech-
nique of random ‘predictions’, that is guessing, and (3) calculation of effect sizes.
Results: Previously published empirical evaluations of prediction systems are re-examined and the origi-
nal conclusions shown to be unsafe. Additionally, even the strongest results are shown to have no more
than a medium effect size relative to random guessing.
Conclusions: Biased accuracy statistics such as MMRE are deprecated. By contrast this new empirical val-
idation framework leads to meaningful results. Such steps will assist in performing future meta-analyses
and in providing more robust and usable recommendations to practitioners.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Being able to predict is a hallmark of any meaningful engineer-
ing discipline and software engineering is no exception. Research-
ers have been exploring prediction systems1 for areas such as cost,
schedule and defect-proneness for more than 40 years. And whilst
considerable sophistication and ingenuity has been brought to bear
on the construction of such systems, empirical evaluation has not
led to consistent or easy to interpret results. This matters because
it is hard to know what advice to offer practitioners who are — or
who ought to be — the major beneficiaries of software engineering
research.

There has been an enormous growth in interest and empirical
research into building prediction systems in software engineering.
Many different techniques have been proposed e.g. statistical
methods including regression analysis, instance-based learners
including case-based reasoners, Bayesian classifiers, support vector
machines and ensembles of learners. For an overview see the 2007
ll rights reserved.

. Shepperd).
ate the variable yi where xi is
get i. It need not be formal in

ation by humans might be
deterministic, however, it is
contained within xi and this

s prediction systems must, by
mapping study by Jørgensen and Shepperd [16] which identified
more than 300 journal papers that examined cost or effort
prediction (and this number has continued to grow and, of course,
excludes conference publications). Other topics such as defect
prediction have generated as much, if not more, attention. It is
self-evident that there is a large body of research work.

Given that there are many competing prediction techniques
many researchers have set about empirically comparing their per-
formance on different data sets. Unfortunately, not only does no
single prediction technique dominate, but there are many contra-
dictory results [34]. To help make more sense of these varied
results there has been a recent move to pooling results through
systematic reviews and meta-analyses. However, we still tend to
find inconclusive results from systematic reviews (or meta-analy-
ses) [19]. Three such examples of inconsistent systematic review
findings are:

� Jørgensen [13] reviewed 15 studies comparing model-based
to expert-based estimation. Five of those studies found in
favour of expert-based methods, five found no difference,
and five found in favour of model-based estimation.

� Mair and Shepperd [25] compared regression to analogy
methods for effort estimation and similarly found conflicting
evidence. From a total of 20 empirical studies, seven favoured
regression, four were indifferent and nine favoured analogy.

� Kitchenham et al. [21] found seven relevant empirical studies
for the question is it better to predict using local, as opposed
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to cross-company, data. Three studies reported it made no
significant difference, whilst four found it was better.

In order to make progress in our research software engineers
need to explore the underlying reasons for these inconsistencies
and how this unwelcome situation might be resolved. This is extre-
mely important as otherwise it is difficult to make safe recommen-
dations to practitioners. However, I do wish to stress the purpose
of this paper is to consider how best to compare competing predic-
tion systems, not to argue in favour of any particular prediction
technique.

The remainder of this paper is organised as follows. The next
section describes a formal framework to provide a context within
which to analyse empirical results. I show how randomisation
techniques can provide a baseline for interpreting individual pri-
mary studies. This serves two purposes. First it can determine
the likelihood of a reported level of accuracy not being due to
chance. Second, it can be used as an input to calculate the effect
size of any change in accuracy relative to chance. Section 3 uses
three published, refereed studies [35,36,18] as examples to show
how the framework enables unsafe conclusions to be uncovered.
These three studies are not intended as a random sample, but
rather they are chosen to illustrate that validation problems exist
in empirical software engineering and how they may be remedied.
In the Discussion Section we conclude that this framework for
empirical evaluation of prediction systems provides a basis for rig-
orous appraisal of results and their significance plus a means of
visually combining and interpreting multiple results.
2. A validation framework

In this paper the discussion is restricted to predicting some con-
tinuous2 output that is denoted Y. However, in principle the argu-
ments also apply to classifiers, that is prediction systems where
the output is categorical e.g. the module does or does not contain de-
fects. The reason for this distinction is that for accuracy assessment
continuous prediction systems deal with residuals [30] whilst classi-
fiers deal with confusion matrices [8].

In order to bring some generality to our discussion and to avoid
becoming bogged down with the minutiae of individual studies we
propose the following framework. Researchers validate some pre-
diction system Pi over a data set D using some accuracy statistic
S according to a validation scheme V. Empirical evaluation can be
seen as an attempt to establish an order (or partial order) from bin-
ary preference relations such as P1 � P2 over the set P of candidate
prediction systems. The preference relation may be read as P2 is
preferred to P1 or P1 is less preferable than P2. It is also useful to
combine an indifference relation � with a preference relation so
one might re-express the previous relation as a non-strict order,
thus P1 ^ P2 denotes that P2 is not worse than P1 (for a more
detailed overview see Davey and Priestley [6]).

The validation scheme V, irrespective of the specific choice of
accuracy statistic, can be thought of as an estimator3 of S. In
other words, bS is the best guess of the population or true (but
generally unknowable) value of S. It is an estimate because, usu-
ally it is not practical to try out a prediction system on all soft-
ware projects, moreover in practice we are most concerned with
predicting future projects. Therefore researchers need to simulate
how the prediction system would behave when dealing with
new unseen cases by ‘‘holding out’’ some cases within D to test
its ability to predict.
2 Strictly speaking we also include the absolute scalar type i.e. counting.
3 An estimator is a statistical procedure for estimating some population parameter

from a sample.
The estimator uses rules such as a leave-one out scheme or an
m � n cross-validation. For a discussion and empirical analysis of
cross-validation see Kohavi [22]. Although this might seem rather
arcane, a study by Song et al. [37] illustrates how important using
an unbiased estimator is. They reveal that a previous study re-
ported defect prediction system accuracy results that were the re-
verse of those obtained when a better validation scheme (one that
preserved the integrity of the hold-out sample) was deployed.

More problematic is how we interpret the meaning of the data
set D used for validation. Although this is not the usual stance of
researchers, it must be seen as a sample drawn from some under-
lying population over which we wish to say something about S.
Clearly our data sets are not random samples since this would im-
ply that all projects have an equal chance of being drawn. Another
difficulty is the tendency of researchers to avoid making any expli-
cit statement about the population under consideration. Does the
researcher mean all software projects? All large projects? All
non-student projects? This is an area that needs urgent attention.

When establishing these preference relations researchers need
to be concerned with three fundamental questions. For a given
accuracy statistic S and candidate prediction systems P1 and P2

one must ask:

1. Does the prediction system Pi outperform a baseline of ran-
dom guessing, a special case of a prediction system denoted
P0, that is does P0 � Pi? If the answer is not yes then it cannot
even be claimed that Pi is predicting at all since it does worse
than random.

2. Is the difference P1 � P2 statistically significant for some pre-
determined value of a? In other words how likely is any
observed effect to have occurred by chance?

3. Is the effect size large enough to justify P1 � P2 in practice? It
may be that any improvement that P2 offers is so inconse-
quential as to not be worth the effort hence P1 ^ P2 or in
other words despite the potential additional effort and
sophistication all that can be asserted is P2 is not worse than
an existing P1.

2.1. Baselines

Generally the notion of some fundamental baseline or bench-
mark has been absent from validation studies of prediction sys-
tems, which is not to say researchers have not made
comparisons between competing approaches. However, the inter-
pretation depends upon the choice of approaches which is gener-
ally ad hoc.

Examples of studies that have employed a baseline are Jørgen-
sen [12] who used sample mean productivity multiplied by esti-
mated size as a fairly simple benchmark to compare the
performance of ten other software maintenance effort prediction
systems. Interestingly this baseline approach did not always per-
form worst. However, it still makes some assumptions about mea-
suring size and productivity so it is more a competing prediction
system than a fundamental baseline. Another example is, Mendes
and Kitchenham [29] who use the sample median as a benchmark
for their analysis. Likewise Bi and Bennett [1] suggest the use of the
sample mean as the baseline for their proposed anologue of the
ROC curve, namely a regression error characteristic curve.

A more naı̈ve and general approach is simply to randomly as-
sign the y value of another case to the target case. This is a form
of permutation and has the advantage of not requiring any param-
eter estimates. We refer to this as random guessing. Any prediction
system should outperform random guessing over time; to do other-
wise calls into question the systematic nature of the prediction
system. An inability to predict better than random implies the



Table 1
MMRE example.

yi byi Residual yi � byi Absolute residual jyi � byi j MRE % jyi�byi j
yi
� 100

Project 1 10 100 �90 90 900
Project 2 100 10 90 90 90
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‘predictor’ is not using, or not meaningfully, any target case
information.

Next we consider what types of statistic S have been used in
empirical validation studies. A wide range of different statistics
have been proposed over the years. For example Lo and Gao [24]
review more than 10 different accuracy statistics and then intro-
duce two new statistics of their own (weighted mean of quartiles
of relative errors and the standard deviation of the ratios of the
predicted to true value). They classify accuracy statistics as either
(i) difference measures based on the difference between the ‘true’
and predicted value, or (ii) ratio measures where the difference is
normalised in some way, for instance mean relative error.
Although the ratio accuracy statistics clearly have undesirable
properties such as asymmetry, choices will most likely depend
upon the goals of the users who might for instance be risk averse
or alternatively seeking to minimise total error.

2.2. Significance testing

Some researchers have focused on the second question, that of
statistical significance by sometimes, but not always, testing for
the difference in means or medians for the particular S being used
in the empirical validation. Typically statistics such as MMRE have
been used as the accuracy statistic S for continuous prediction sys-
tems,4 where MMRE is given as:
Pn

1jðyi � byiÞj=yi

n
ð1Þ

yi is the ith value of the variable being predicted, byi its estimate,
yi � byi the ith residual and n the number of cases in D. Unfortunately
it has been shown that this popular prediction accuracy statistic is
flawed in that it is a biased estimator of central tendency of the
residuals of a prediction system because it is an asymmetric mea-
sure. This was pointed out more than ten years ago by Kitchenham
et al. [20] and subsequently by Foss et al. [9] and Myrtveit et al. [32].
Table 1 gives an example of two projects where the first project is
an over-estimate and the second project is an under-estimate. Both
estimates have identical absolute residuals yet the MMRE values
differ by an order of magnitude. One consequence is MMRE will
be biased towards prediction systems that under-estimate. Ironi-
cally this is exactly what researchers observe in real-world predic-
tions, namely over-optimism [15].

The fundamental variable of interest is the residual or predic-
tion error, yi � byi . Accuracy statistics are based upon residuals,
whether they be percentage errors, sum of the squared residuals,
ratios or whatever. There are potentially a number properties of
the residuals, however, for the present the focus is upon central
tendency rather than, say, bias or spread. As prediction system bias
is not a concern for the present discussion (although it might be
important if one were dealing with a portfolio of projects),
researchers can use absolute residuals (which implies indifference
to the direction of the error) and for a set of predictions, mean
absolute residual (MAR):
Pn

1jðyi � byiÞj
n

ð2Þ
4 Classifiers require different accuracy statistics derived from the associated
confusion matrix e.g. such as the F-measure [23,8].
This measure of centre is unbiased since it is not based on ratios,
unlike MMRE, which leads to the asymmetry illustrated by Table 1.
However, MAR does have the disadvantage that it is hard to inter-
pret and comparisons cannot be made across data sets since the
residuals are not standardised. Therefore we propose to measure
accuracy as the MAR relative to random guessing P0 hence we
suggest a standardised accuracy measure SA for prediction
technique Pi:

SAPi
¼ 1� MARPi

MARP0

� 100 ð3Þ

where MARP0 is the mean value of a large number, typically 1000,
runs of random guessing. This is defined as, predict a ŷ for the target
case t by randomly sampling (with equal probability) over all the
remaining n � 1 cases and take byt ¼ yr where r is drawn randomly
from 1 . . .n ^ r – t. This is the most naı̈ve approach possible without
being perverse. It is in many senses equivalent to the random walk
which is a naı̈ve means of forecasting for time series [27,11]. It also
provides a relevant baseline irrespective of the exact form of Pi.
Over many runs the MARP0 will converge on simply using the sam-
ple mean. Analogous approaches have been used for classifiers
where the y = x line on a ROC chart represents random performance
and can serve as some visual benchmark [8]. The advantage of using
a randomisation technique [28], and not simply using the sample
mean is one can estimate the distribution of MARs for determining
likelihood of any observed MAR value along with the variance of
MAR. The cumulative distribution of the accuracy statistic, S (for
example see Fig. 1) from a large number of random predictions
can then be used to estimate the likelihood of non-random predic-
tion. This is achieved by comparing the observed S(P) with the ith

quantile from the cumulative distribution of random prediction P0

errors. Note that whilst SA, like MMRE is a ratio, this is not problem-
atic since we are only interested in one direction i.e. better than
random.

The interpretation of SA is that the ratio represents how much
better Pi is than random guessing. Clearly a value close to zero is
discouraging and a negative value would be worrisome!
Fig. 1. Histogram of MAR values from Naıve guessing for the Atkinson data set.



Table 2
Summary of problems with three example empirical validation studies where SWR is stepwise regression, EBA is estimation by analogy, EBA+ is EBA using feature subset selection
and EBA++ is EBA+ with case subset selection.

Study Source Dataset n Year Accuracy Statistic Benchmark Reported Finding Problem with reported findings

1 [35] Atkinson 16 2005 MAR EBA0 EBA0 � R2M (Q1) Prediction systems worse than random
2 [36] Telecom1 18 1997 MMRE pred (n) Stepwise

regression
SWR � EBA (Q2) Biased accuracy statistic misleads; statistical test of

residuals shows preference reversal
3 [18] Desharnais 77 2002 SAR (sum of

absolute residuals)
EBA EBA � EBA+ � EBA++ (Q3) Improvement from new technique significant but

effects too small to have practical impact

Table 3
Comparing PEBA0 and PR2M accuracy results.

Prediction method MAR MMRE (%) SA (%)

PEBA0 331.6 99 �17
PR2M 291.6 84 �3
P0 50% quantile, i.e. median 283.0 86.2 0
P0 5% quantile 210.8 56.8 26
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2.3. Effect size

To judge the effect size we use a standardised measure due to
Glass [33] which is:

D ¼ MARPi
�MARP0

sP0

ð4Þ

where sP0 is the sample standard deviation of the random guessing
strategy. Note we do not use a pooled measure as in Cohen’s d since
(i) we cannot assume the variances of Pi and P0 are homogenous and
(ii) the comparison is with respect to the control i.e. random guess-
ing. One note of caution is that Glass’s D is known to be a biased
estimator for small sample sizes or if there are large discrepancies
in sample sizes, in which case Hedges’s g might be preferred (for
a more detailed discussion see [7]). Even if comparing between
two prediction systems the rationale still tends to be P1 represents
the status quo with which P2 is to be contrasted and hence P1 is
effectively a control and one wishes to assert P1 � P2.

Glass’s D does two things, it standardises the difference
between the two treatments, in this case prediction systems and
it also contextualises the difference in terms of amount of variation
in the two measures of S. Informally we can appreciate that a dif-
ference in accuracy statistic has less impact if it is in a situation of
huge variability whereas if there is almost no variation in accuracy
even a small improvement would attract attention.

We interpret the effect size which is standardised i.e. scale-free,
in terms of the categories proposed by Cohen [5] of small (�0.2),
medium (�0.5) and large (�0.8). It is an interesting question as
to what the operational meanings might be and there has been
much discussion of the limitations of a rigid interpretation [10,4].
The D has a unit of a standard deviation so the effect is a reduction
in the mean absolute residual of n person hours or whatever is the
unit for Y.

Having defined a standardised accuracy measure SA and an ef-
fect size measure D we are now in a position to revisit some typical
empirical validation studies of project effort prediction systems
and pose our three questions, in order to identify potential pitfalls
and solutions.
5 Note that both techniques used the productivity level of the donor project and
thus implicitly assume a linear relationship between size and effort which is a non-
standard interpretation of EBA. Thus these results should not be interpreted to
suggest that R2M or EBA are necessarily poor prediction techniques.
3. Three examples

In the previous section we identified three fundamental ques-
tions any empirical validation study proposing or validating a pre-
diction system should address. Now we consider how this might
work in practice. In each case we use real results from rigorously
reviewed research articles to which MJS has contributed. The rea-
son for this is simply to show that I [MJS] believe myself to be as
‘culpable’ as any other member of the empirical software engineer-
ing research community. To reiterate, the three primary studies
used in the following analysis (and summarised by Table 2) are
not a random sample and so cannot be used to judge the extent
of problems. They can be used, however, to show problems exist
and can be used to show how such problems may be fixed. We re-
turn to the question of generalisation in the Discussion Section.
3.1. Q1: Is the prediction system better than guessing?

Here we examine an example [35] of an empirical result that is
no better (actually worse) than guessing. The problem is the failure
to use a fundamental baseline so whilst there was a difference in
performance between the two prediction systems, neither was
actually predicting in any meaningful sense!

The validation used a small data set of telecoms projects
(known as the Atkinson data set and included as an appendix in
[35]) that collected real-time function points as a size estimator.
It was one of two data sets employed by the replication study
(Study 1) of a proposed regression to the mean (R2M) prediction
method [14]. The details are not important, suffice to say that
the aim of the validation was to empirically compare the accuracy
of R2M with a variant of estimation-by-analogy (EBA’) prediction
system as a baseline to see if the results reported by Jørgensen that
PEBA � PR2M could be replicated using different data sets (samples).5

The reported accuracy statistics were MAR (and MMRE for interpre-
tation but not inference purposes).

Table 3 gives the accuracy results for the two prediction systems
evaluated in Study 1 and in addition, a baseline of random guessing
(P0) and the 5% quantile from the cumulative distribution of MAR
values from 1000 runs of P0 (the histogram of the permutation dis-
tribution is shown in Fig. 1 and, as to be expected, it is approxi-
mately symmetrical). The interpretation of the 5% quantile for P0

is similar to the use of a for conventional statistical inference, that
is any accuracy value that is better than this threshold has a less
than one in twenty chance of being a random occurrence. Therefore
to have reasonable confidence that our Pi is actually predicting and
not guessing we expect an accuracy statistic S value of better
(generally this will mean lower than, though for some statistics
such as pred (n) this will be in the opposite direction since a higher
value is to be preferred) than this threshold value. Note that this
randomisation procedure is robust since it makes no assumptions
and requires no knowledge concerning population parameters.

Observe that three accuracy statistics are reported in Table 3,
namely MAR and MMRE from the original study and, in addition,
the unbiased statistic SA. First, note that whilst PR2M offers some
improvement over PEBA0 — and all three statistics agree on this —
the main point is both techniques are worse than guessing! In fact
not only are they worse than the 5% quantile, they are actually



Table 4
Comparing PSWR and PEBA accuracy results.

Prediction method MAR MMRE (%) SA (%)

P0 269.2 237.1 0
P0 5% quantile 201.2 122.8 25.3
PEBA 136.0 38.8 49.5
PSWR 124.7 85.6 53.7

Fig. 2. Histogram of EBA residuals for Telecom1 data set.
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worse than the median value. So it is clear that neither approach is
predicting in any meaningful sense and therefore any ‘improve-
ment’ offered by PR2M is irrelevant since one could still do better
by guessing. One of the reasons this was not apparent in the origi-
nal study is that there is no particular sense of what is a ‘reason-
able’ value for either MMRE or MAR. Clearly researchers need a
baseline and the most fundamental baseline is guessing, moreover
this is something with which all prediction systems can be
compared.

The accuracy statistic SA indicates the relative improvement or
otherwise from merely guessing and thus it is immediately clear
that PR2M and PEBA0 are not generating meaningful predictions in
this particular study.
3.2. Q2: Is the difference due to chance?

Having addressed the first question of whether the prediction
system is even predicting, the next question is how likely is the ob-
served difference due to chance. Unlike Q1 this has been increas-
ingly addressed by researchers, typically by using an inferential
test such as the t-test to compare means of accuracy statistics de-
rived from competing prediction systems. One of the first examples
of such a validation procedure is from Myrtveit and Stensrud [31]
where they tested whether the difference in treatment mean accu-
racies from EBA, regression analysis and expert judgement were
significant. However, such statistical testing has only recently be-
come the norm so there are many studies where no such test has
been performed.

To illustrate the issues and how this can dramatically change
the interpretation of empirical results consider the following
example (Study 2). In a paper MJS co-authored [36] we compared
the prediction technique EBA (using a case-based reasoning tool
we had developed called ANGEL) with a benchmark based on step-
wise regression (SWR) analysis. We compared the accuracy of both
techniques for nine different data sets and used two accuracy sta-
tistics including what is now known to be an unsafe measure,
namely MMRE.

Table 4 shows in detail the results for one particular data set
known as Telecom1 and reproduced in full in the appendix of
[36]. The third column gives the MMRE values and shows on the
face of it — since 38.8% is substantially better than 85.6% — that
there are good grounds for believing PSWR � PEBA. And indeed that
is what Study 2 concluded. However, when one looks at an unbi-
ased statistic such as MAR (the second column of Table 4) there
is a different story. The mean absolute residual is actually slightly
smaller for SWR (the benchmark) than for EBA. However observe
from the final column displaying the Standardised Accuracy that
both represent about a 50% improvement over random guessing
(P0) and fall comfortably beyond the 5% quantile suggesting that
such results are highly unlikely to have arisen by chance.

Although something of a formality since we can see that the
mean absolute residual from PSWR is less than that for EBA, using
a Mann–Whitney U-test yields p = 0.714 making it highly likely
that there is no difference in the size of the residuals from the
two samples, in other words, we cannot reliably differentiate be-
tween the two techniques, i.e. PSWR � PEBA.
There are two reasons why the MMRE accuracy statistic is so
misleading. First, as the histogram in Fig. 2 shows the distribution
of residuals is skewed, however, the large residual from the 7th
project cy7 contributes little to the value of MMRE due to the pre-
diction being a large under-estimate which leads only to an MRE
value of 89% due to the fact that the divisor is much larger than
the predicted value ðcy7 ¼ 123; y7 = 992). Second, since SWR seeks
to minimise the sum of the squares of the residuals it is inappropri-
ate to assess it in terms of a very different accuracy statistic.

Some researchers, for example Jørgensen [12] and Briand et al.
[2], have endeavoured to overcome these difficulties with the
MMRE statistic by using its more robust form MdMRE. Whilst this
offers some improvement we still have SWR MdMRE = 36.2% and
EBA MdMRE = 30.4%. The underlying problem remains that it is
an asymmetric measure. The clear message is that inappropriate
accuracy statistics can lead researchers to misinterpret their
results.
3.3. Q3: Does the effect size have any practical significance?

The third question looks at small effects that are statistically
significant but not worth bothering about. Typically empirical soft-
ware engineering studies adopt a null-hypothesis testing perspec-
tive [39] where the focus is upon refuting the null hypothesis and
finding support for the alternate and hypothesis of interest. The
strength of the finding is often interpreted in terms of p values
so a low value, below some threshold a is viewed as statistically
significant and therefore important.

In other fields this approach to null hypothesis testing has been
criticised for some time [3,5,4]. More recently, researchers from
software engineering have likewise argued that attention should
also be given to the effect size and not just the likelihood of it
not occurring by chance [17]. One reason why p values by them-
selves may not be informative is that if the sample size is large
then even very small or inconsequential differences may be de-
tected and reported as being significant. Another reason may be
that if many months of research effort have been spent in fine tun-
ing a prediction system to achieve a modest improvement in accu-
racy, this might be considered a good investment in a university
setting. It might be considered less so in industry. Consequently,
statistically significant differences may not necessarily mean use-
ful differences.

We explore the issue of effect size in prediction systems as our
third question using as an example another study (Study 3) in
which MJS participated [18]. In this paper we report the results
of an empirical comparison of using standard EBA (as per Study
2) and EBA enhanced through the use of meta-heuristic search to



Table 5
Results using the Desharnais data set to compare PEBA, PEBA+ and PEBA++.

Prediction method MAR MMRE (%) SA (%)

P0 4149 142 0
P0 5% quantile 3556 110 13.9
PEBA, k = 2 2265 52 45.4
PEBA+, k = 2 1794 46 56.8
PEBA++, k = 2 1346 31 67.6

Table 6
EBA effect sizes using the Desharnais data set.

Prediction method MAR MAR SD D wrt P0 D wrt EBA

P0 4149 4220 n.a. n.a.
EBA, k = 2 2265 2664 0.446 n.a.
EBA+, k = 2 1794 2435 0.558 0.177
EBA++, k = 2 1346 2097 0.664 0.345

Fig. 3. Hasse diagram of preference relations from Study 3 (with acknowledge-
ments to the lattice drawing applet of Ralph Freese).
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find better feature subsets (FSS) since using all features (variables)
is seldom the optimal strategy for building prediction systems. We
refer to this as EBA+. By the same reasoning one can also search for
better case subsets (CSS) to try to eliminate noisy or unhelpful do-
nors e.g. where a project is highly atypical or perhaps data were re-
corded erroneously. We refer to this as EBA++. In all cases k = 2 and
inverse distance weighting employed. The new algorithms were
tested against a baseline of using standard EBA using the sum of
absolute residuals6 as the accuracy statistic for two different data
sets.

For this example, we use the smaller of the two data sets, that
was provided by Desharnais and is available from the Promise
Repository [38]. The other dataset used was the ‘Finnish’ dataset
which has continued to grow over time. Unfortunately we’re not
confident that this part of the study could be accurately replicated
after ten years which is of course unsatisfactory and suggests that
raw data should be properly archived.

The results, and also for random guessing (P0) and the 5% quan-
tile are given in Table 5. Although not given in the original study
Kirsopp and Shepperd [18] we also provide the corresponding
MMRE values. In this case MMRE does preserve the correct rank
ordering but this is not a reason to recommend this accuracy
statistic.

It is immediately clear that all three variants of EBA are predict-
ing since they yield considerably better (45–67%) accuracy levels
than P0 and lie beyond the 5% quantile. However, the main research
question for Study 3 is how much better are the improvements
EBA+ and EBA++ over standard EBA (which serves as a bench-
mark)? It is clear that the EBA++ method is more accurate than
standard EBA by both accuracy statistics but we need to consider
how likely could these differences be due to chance. A one-tailed
Wilcoxon Signed Ranks test of the absolute residual rejects both
null hypotheses (p = 0.035 and p < 0.0001) so one can be confident
that PEBA � PEBA+ � PEBA++ is not a chance outcome.

The third, and final, question is of what practical import are
these differences? To answer this it is necessary to examine the ef-
fect sizes (defined in Eq. (4)). These are calculated with respect to
P0 and to PEBA and are given in Table 6. It is perhaps sobering to ob-
serve that even the most sophisticated technique based on a mix-
ture of meta-heuristic search and case-based reasoning (EBA++)
only has a medium effect size improvement over guessing. This
alone should suggest some of the limitations of current approaches
and the need to restrain the expectations of users of such predic-
tion systems.

Next, and pertinent to Study 3, we consider the effect sizes of
optimising EBA. The D(EBA, EBA+) does not even reach a small ef-
fect size (D = 0.177) so this is an example of a result that is signif-
icant (recall p = 0.035) but not interesting. In terms of preference
relations, we would most likely conclude PEBA ^ PEBA+. A contribu-
tory factor is the high variance observed in individual prediction
accuracy which to a large extent masks any underlying effect.
However, one can find a D of 0.345 for PEBA � PEBA++ which might
be regarded as a small effect, in other words, worthwhile at the
6 MAR can be simply computed by dividing by n which in this case was 77.
margin but not transformational and this is the strongest effect
that Study 3 was able to discover.

3.4. Hasse diagrams

Having explored the above three questions our refined under-
standing of the empirical results can now be combined as a set
of preference relations over P.

Fig. 3 shows a Hasse diagram [6] of the revised empirical results
from Study 3. The interpretation is that an edge represents an
empirical preference relation and the nodes represent prediction
systems. The vertical axis conveys that the upper node covers (is
the supremum or the least upper bound) of the lower node so,
for example, EBA++ covers EBA but it does not necessarily cover
EBA+. More formally P2 covers P1 whenever P1 � P2 and there is
no Pi such that P1 � Pi � P2.

In terms of preference relations one is indifferent between
EBA++ and EBA+. This is because although EBA++ has been found
(for the Desharnais data set) to be significantly more accurate than
EBA+ the practical effect size is too small (D < 0.2) to lead to any
preference. Of course one might choose to interpret preference less
rigorously, but it should be appreciated that the observed small
differences of central tendency are in the context of high variance
(in other words, there are small differences between treatments
and large differences within the samples). However, these simple
examples show that multiple primary studies of empirical valida-
tions of prediction systems can be integrated in a visual fashion
to promote easy understanding of results.

4. Discussion

The motivation for this paper has been the difficulties in form-
ing a consistent picture of the relative performance of competing
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software engineering prediction systems. Not only does no one
technique dominate, but also different researchers’ validation
studies have often produced inconsistent results as highlighted
by systematic reviews such as [13,25,21]. Until researchers gain a
better understanding of the underlying reasons for this state of
affairs, it is unclear that devising new prediction systems and
conducting more and more primary validation studies will be par-
ticularly illuminating.

In response, we have proposed a formal and abstract manner of
understanding validation study results and, how from this have
emerged, three questions that should be posed about the perfor-
mance of any prediction system. First, does it do better than guess-
ing, in other words, is it actually predicting? Second, how likely is it
that any ‘improvement’ in performance is merely the consequence
of chance? Third, how meaningful is the ‘improvement’ in terms of
effect size or how important, practically, are the results? These
question have then been applied to three published and refereed
empirical validation studies of project effort prediction systems.
This has revealed that all three studies contain empirical conclu-
sions that are unsafe. In particular, ignoring effect size can mean
that researchers are overlooking the practical implications of their
work which results in a dissonance between empirical software
engineering researchers and practitioners. For example, we might
be enthusiastic to demonstrate that our new algorithm shows
some small improvement on the current state of the art. However,
from the point of view of practitioners in a volatile and uncertain
business environment, small improvements might not be easily
attainable and when discounted against the cost and risk of change
might inspire little enthusiasm. Ignoring effect size may also lead
to excessive research effort being invested in areas that are only
marginally fruitful.

In terms of the current state of progress in developing effective
prediction systems, effect size is again instructive. The largest ef-
fect we observe (in Study 3) is between guessing and EBA++, but
interestingly even here the D is only 0.664 which means that the
improvement obtained by using the best prediction technique in
this analysis compared with guessing is medium. That is, the larg-
est effect we could uncover relative to guessing is about two thirds
of one standard deviation of the accuracy statistic S. This is quite
sobering and goes some way to explain why the research commu-
nity have such problems of conclusion instability [34]. The situa-
tion is exacerbated if researchers persist in using biased accuracy
statistics as they generate high levels of variance so the effects,
such as they are, are even more difficult to detect.

There are a number of limitations to the above analysis. First,
we have focused on continuous prediction systems and particu-
larly upon project effort or cost prediction. However, we see no
reason why other forms of prediction system, specifically classifi-
ers, are fundamentally different.

Second, the analysis has not been exhaustive; instead it has
merely been illustrative. We have chosen three studies (each con-
ducted using different data sets) mainly on the basis of conve-
nience and on the grounds that MJS was a co-author. These three
studies demonstrate that difficulties exist with current approaches
to empirical validation of prediction systems and that the proposed
framework offers some solutions. They were not selected specifi-
cally to make particular points — indeed it was depressingly easy
to find problems with published conclusions — however, there is
no basis to argue that they are of necessity representative. A thor-
ough audit of empirical results would be invaluable and might also
form a basis for meta-analysis [10].

Third, we have adopted a narrow view of prediction system
preference based merely upon accuracy. Other factors such as bias,
explanatory value and ease of use are often also relevant. Another
factor in Study 3 was computability since some of the search
techniques combined with wrappers are computationally very
challenging. Exchanging a very small positive effect for a great loss
in computational tractability is not necessarily a very practical
proposition.

In addition, the idea that formal prediction systems, unaided by
human intervention, are a desirable goal has been challenged from
several quarters for some time. For example, Myrtveit and Stens-
rud [31] found that a combination of expert and formal prediction
system led to the most accurate predictions. Jørgensen [13] has
consistently argued that there is need to understand the human
element of software engineering predictions in practice. Mair and
Shepperd [26] suggest that in order to unlock real improvement
in predictive practice (i.e. obtain large effects) we need to focus
upon the meta-cognitive needs of software professionals.

So in conclusion, we believe these ideas on how to view and
conduct empirical evaluation contribute towards the goal of
rationalising the present undesirable situation of conclusion insta-
bility. There remain, however, a number of open issues:

Validation schemes: specifically whether some schemes are
better, that is less biased, estimators of whatever population
statistic S, the researchers utilise.
Choice of data set and definition of population: presently a
largely ad hoc approach is adopted for the choice of data set.
Whilst it is appreciated that pragmatic concerns will dominate
as there are still all too few data sets in the public domain,
researchers do need to articulate more clearly the reasons for
particular choices and the extent to which they believe it con-
stitutes a representative sample of the target population.
Reporting protocols: secondary analysis is hindered when the
fine grained details of a validation study are unavailable since
results can be surprisingly sensitive to small changes in param-
eter settings and pre-processing of the data. Devising better
ways of communicating this information would be a useful con-
tribution to progress in this field. Properly archiving data (and
particular versions of datasets) is also essential as revealed by
Study 2 of this paper.

Finally, although not the main message of this article, we would
make a plea to fellow researchers not to use MMRE as an accuracy
indicator. It is unsafe and there is simply no good reason to do so.
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