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The objective of this paper is to investigate the evidence for symbolic regression using genetic program-
ming (GP) being an effective method for prediction and estimation in software engineering, when com-
pared with regression/machine learning models and other comparison groups (including comparisons
with different improvements over the standard GP algorithm). We performed a systematic review of lit-
erature that compared genetic programming models with comparative techniques based on different
independent project variables. A total of 23 primary studies were obtained after searching different infor-
mation sources in the time span 1995–2008. The results of the review show that symbolic regression
using genetic programming has been applied in three domains within software engineering predictive
modeling: (i) Software quality classification (eight primary studies). (ii) Software cost/effort/size estima-
tion (seven primary studies). (iii) Software fault prediction/software reliability growth modeling (eight
primary studies). While there is evidence in support of using genetic programming for software quality
classification, software fault prediction and software reliability growth modeling; the results are incon-
clusive for software cost/effort/size estimation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary algorithms represent a subset of the metaheuristic
approaches inspired by evolution in nature, (Burke & Kendall,
2005) such as reproduction, mutation, cross-over, natural selection
and survival of the fittest. All evolutionary algorithms share a set of
common properties (Bäck, Fogel, & Michalewicz, 2000):

1. These algorithms work with a population of solutions, utilizing
a collective learning process. This population of solutions make-
up the search space for the evolutionary algorithms.

2. The solutions are evaluated by means of a quality or fitness
value whereby the selection process promotes better solutions
than those that are worse.

3. New solutions are generated by random variation operators
intended to model mutation and recombination.

The above process is iterated over successive generations of
evaluation, selection and variation, with a hope that increasingly
suitable solutions would be found, i.e., the search is guided to more
feasible locations of the search space. Examples of typical evolu-
tionary algorithms include genetic algorithms, evolution strategies
ll rights reserved.
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and evolutionary programming. The structure of an evolutionary
algorithm is given below (Michalewicz & Fogel, 2004):

procedure evolutionary algorithm

P(t): population of solutions; t: iteration number;
begin

t 0
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin

t t + 1
select P(t) from P(t � 1)
alter P(t)
evaluate P(t)

end
end
The evolutionary algorithm maintains a population of solutions

P(t) for iteration t. Each solution in the population is evaluated for
its fitness (the ‘‘evaluate step’’). A new population at iteration t + 1
is formed by selecting the more fitter solutions (the ‘‘select step’’).
Some solutions of the new population undergo transformations
(the ‘‘alter step’’) using the variation operators. The algorithm is
iterated until a predefined termination criterion is reached.
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Genetic programming (GP) (Banzhaf, Nordin, Keller, & Francone,
1998; Koza, 1992; Poli, Langdon, & McPhee, 2008) is an extension
of genetic algorithms. It is a systematic, domain-independent method
for getting computers to solve problems automatically starting from a
high-level statement of what needs to be done (Poli et al., 2008). Like
other evolutionary algorithms, GP applies iterative, random varia-
tion to an existing pool of computer programs (potential solutions
to the problem) to form a new generation of programs by applying
analogs of naturally occurring genetic operations (Koza & Poli,
2005). Programs may be expressed in GP as syntax trees, with
the nodes indicating the instructions to execute (called functions),
while the tree leaves are called terminals and may consist of inde-
pendent variables of the problem and random constants. To use GP
one usually needs to take five preparatory steps (Koza & Poli,
2005):

1. Specifying the set of terminals.
2. Specifying the set of functions.
3. Specifying the fitness measure.
4. Specifying the parameters for controlling the run.
5. Specifying the termination criterion and designating the result

of the run.

The first two steps define the search space that will be ex-
plored by GP. The fitness measure guides the search in promising
areas of the search space and is a way of communicating a prob-
lem’s requirements to a GP algorithm. The fitness evaluation of a
particular individual is determined by the correctness of the out-
put produced for all of the fitness cases (Bäck et al., 2000). The
last two steps are administrative in their nature. The control
parameters limit and control how the search is performed like
setting the population size and probabilities of performing the ge-
netic operations, while the termination criterion specifies the
ending condition for the GP run and typically includes a maxi-
mum number of generations (Koza & Poli, 2005). Genetic opera-
tors of mutation, crossover and reproduction are mainly
responsible for introducing variation in successive generations.
The crossover operator recombines randomly chosen parts from
two selected programs and creates new program(s) for the new
population. The mutation operator selects a point in a parent tree
and generates a new random sub-tree to replace the selected sub-
tree, while the reproduction operator simply replicates a selected
individual to a new population.

Symbolic regression is one of the many application areas of GP
which finds a function, with the outputs having desired outcomes.
It has the advantage of being independent of making any assump-
tions about the function structure. Another potential advantage is
that models built using symbolic regression application of GP can
also help in identifying the significant variables which might be
used in subsequent modeling attempts (Kotanchek, Smits, & Kor-
don, 2003).

This paper reviews the available literature on the application
of symbolic regression using GP for predictions and estimations
within software engineering. The performance of symbolic regres-
sion using GP is assessed in terms of its comparison with compet-
ing models which might include common machine learning
models, statistical models, models based on expert opinion and
models generated using different improvements over the stan-
dard GP algorithm. There are two reasons for carrying out this
study:

1. To be able to draw (if possible) general conclusions about the
extent of application of symbolic regression using GP for predic-
tions and estimations in software engineering.

2. To summarize the benefits and limitations of using symbolic
regression as a prediction and estimation tool.
The authors are not aware of any study having goals similar to
ours. Prediction and estimation in software engineering has been
applied to measure different attributes. A non-exhaustive list in-
cludes prediction and estimation of software quality, e.g. Lanubile
and Visaggio (1997), software size, e.g. Low and Jeffery (1990),
software development cost/effort, e.g. Jørgensen and Shepperd
(2007), maintenance task effort, e.g. Jørgensen (1995), correction
cost, e.g. de Almeida, Lounis, and Melo (1998), software fault,
e.g. Thelin (2004), and software release timing, e.g. Dohi, Nishio,
and Osaki (1999). A bulk of the literature contributes to software
cost/effort and software fault prediction. A systematic review of
software fault prediction studies is given by Catal and Diri
(2009), while a systematic review of software development cost
estimation studies is provided by Jørgensen and Shepperd
(2007). The current study differs from these systematic reviews
in several ways. Firstly, the studies as in Catal and Diri (2009)
and Jørgensen and Shepperd (2007) are more concerned with
classification of primary studies and capturing different trends.
This is not the primary purpose of this study which is more con-
cerned with investigating the comparative efficacy of using sym-
bolic regression across software engineering predictive studies.
Secondly, Catal and Diri (2009) and Jørgensen and Shepperd
(2007) review the subject area irrespective of the applied method,
resulting in being more broad in their coverage of the specific
area. This is not the case with this study as it is narrowly focused
in terms of the applied technique and open in terms of capturing
prediction and estimation of different attributes (as will be evi-
dent from the addressed research question in Section 2.1).
Thirdly, one additional concern, which makes this study different
from studies of Catal and Diri (2009) and Jørgensen and Shepperd
(2007), is that it also assesses the evidence of comparative anal-
ysis of applying symbolic regression using GP with other compet-
ing techniques.

A paper by Crespo, Cuadrado, Garcia, Marban, and Sanchez-
Segura (2003) presents a classification of software development
effort estimation into artificial intelligence (AI) methods of neural
networks, case-based reasoning, regression trees, fuzzy logic,
dynamical agents and genetic programming. While the authors
were able to present a classification scheme, it is not complete
in terms of its coverage of studies within each AI method.

One other motivation of us carrying out this systematic review
is the general growing interest in search-based approaches to solve
software engineering problems (Harman & Jones, 2001). In this re-
gards, it is interesting to investigate the extent of application of ge-
netic programming (a search-technique) within software
engineering predictive modeling. This presents an opportunity to
assess different attributes which can be measured using GP. It also
allows us to gain an understanding of different improvements/
variations used by these studies to predict and estimate in a better
way.

In rest of the text below, wherever we refer to GP, we mean the
symbolic regression application of it.

This paper is organized as follows: Section 2 describes the re-
search method including the research question, the search strat-
egy, the study selection procedure, the study quality assessment
and the data extraction. Results are presented in Section 3, while
Section 4 discusses the results and future work. Validity threats
and conclusions appear in Sections 5 and 6, respectively.
2. Method

This section describes our review protocol, which is a multi-
step process following the guidelines outlined in Kitchenham
(2007).
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2.1. Research question

We formulated the following research question for this study:

RQ Is there evidence that symbolic regression using genetic pro-
gramming is an effective method for prediction and estima-
tion, in comparison with regression, machine learning and
other models (including expert opinion and different
improvements over the standard GP algorithm)?

The research questions can conveniently be structured in the
form of PICOC (Population, Intervention, Comparison, Outcome,
Context) criteria (Petticrew & Roberts, 2005). The population is
this study is the domain of software projects. Intervention in-
cludes models evolved using symbolic regression application of
GP. The comparison intervention includes the models built using
regression, machine learning and other methods. The outcome of
our interest represents the comparative effectiveness of predic-
tion/estimation using symbolic regression and machine learn-
ing/regression/other models (including different improvements
over the standard GP algorithm). We do not pose any restrictions
in terms of context and experimental design.
2.2. The search strategy

Balancing comprehensiveness and precision in the search
strategy is both an important and difficult task. We used the fol-
lowing approach for minimizing the threat of missing relevant
studies:

1. Breaking down the research question into PICOC criteria. This is
done to manage the complexity of a search string that can get
sophisticated in pursuit of comprehensiveness.

2. Identification of alternate words and synonyms for each of PICOC
criterion. First, since it is common that terminologies differ in
referring to the same concept, derivation of alternate words
and synonyms helps ensuring completeness of search. The
genetic programming bibliography maintained by Langdon,
Gustafson, and Koza (2009) and Alander’s bibliography of
genetic programming (Alander, 2009) turned out to be valu-
able sources for deriving the alternate words and synonyms.
Secondly our experience of conducting studies in a similar
domain was also helpful (Afzal, Torkar, & Feldt, 2009).

3. Use of Boolean OR to join alternate words and synonyms.
4. Use of Boolean AND to join major terms.

We came up with the following search terms (divided according
to the PICOC criteria given in Section 2.1):

� Population. Software, application, product, web, Internet,
World-Wide Web, project, development.
� Intervention. Symbolic regression, genetic programming.
� Comparison intervention. Regression, machine learning,

machine-learning, model, modeling, modelling, system identifi-
cation, time series, time-series.
� Outcomes. Prediction, assessment, estimation, forecasting.

Hence, leading to the following search string: (software OR
application OR product OR Web OR Internet OR ‘‘World-Wide
Web’’ OR project OR development) AND (‘‘symbolic regression’’
OR ‘‘genetic programming’’) AND (regression OR ‘‘machine learn-
ing’’ OR machine-learning OR model OR modeling OR modelling
OR ‘‘system identification’’ OR ‘‘time series’’ OR time-series)
AND (prediction OR assessment OR estimation or forecasting).
The search string was applied to the following digital libraries,
while searching within all the available fields:

� INSPEC
� EI Compendex
� ScienceDirect
� IEEEXplore
� ISI Web of Science (WoS)
� ACM Digital Library

In order to ensure the completeness of the search strategy, we
compared the results with a small core set of primary studies we
found relevant, i.e. (Burgess & Lefley, 2001; Costa, de Souza, Pozo,
& Vergilio, 2007; Dolado, 2001). All of the known papers were
found using multiple digital libraries.

We additionally scanned the online GP bibliography maintained
by Langdon et al. (2009) by using the search-term symbolic regres-
sion. We also searched an online data base of software cost and ef-
fort estimation called BESTweb (Jørgensen, 2009), using the
search-term genetic programming.

The initial automatic search of publication sources was comple-
mented with manual search of selected journals (J) and conference
proceedings (C). These journals and conference proceedings were
selected due to their relevance within the subject area and in-
cluded: Genetic Programming and Evolvable Machines (J),
European Conference on Genetic Programming (C), Genetic and
Evolutionary Computation Conference (C), Empirical Software
Engineering (J), Information and Software Technology (J), Journal
of Systems and Software (J), IEEE Transactions on Software Engi-
neering (J) and IEEE Transactions on Evolutionary Computation
(J). We then also scanned the reference lists of all the studies gath-
ered as a result of the above search strategy to further ensure a
more complete set of primary studies.

The time span of the search had a range of 1995–2008. The
selection of 1995 as the starting year was motivated by the fact
that we did not find any relevant study prior to 1995 from our
search of relevant GP bibliographies (Alander, 2009; Langdon
et al., 2009). In addition, we also did not find any relevant study
published before 1995 as a result of scanning of the reference lists
of studies found by searching the electronic databases.

2.3. The study selection procedure

The purpose of the study selection procedure is to identify pri-
mary studies that are directly related to answering the research
question (Kitchenham, 2007). We excluded studies that:

1. Do not relate to software engineering or software development,
e.g. Alfaro-Cid, McGookin, Murray-Smith, and Fossen (2008).

2. Do not relate to prediction/estimation of software cost/effort/
size, faults, quality, maintenance, correction cost and release
timing, e.g. Abraham (2008).

3. Report performance of a particular technique/algorithmic
improvement without being applied to software engineering,
e.g. Andersson, Svensson, Nordin, and Nordahl (1999).

4. Do not relate to symbolic regression (or any of its variants)
using genetic programming, e.g. Shukla (2000).

5. Do not include a comparison group, e.g. Khoshgoftaar and Liu
(2007).

6. Do not include a valid comparison group, e.g. in Evett,
Khoshgoftar, der Chien, and Allen (1998) where GP is compared
with random rank ordering of software modules which is not a
valid technique for software quality classification.

7. Use genetic programming only for feature selection prior to using
some other technique, e.g. Ratzinger, Gall, and Pinzger, 2007.



Table 1
Count of papers before and after duplicate removal for the digital search in different
publication sources. The numbers within parenthesis indicates the counts after
duplicate removal.

Source Count

EI Compendex & Inspec 578 (390)
ScienceDirect 496 (494)
IEEE Xplore 55 (55)
ISI Web of Science 176 (176)
ACM Digital Library 1081 (1081)
Langdon et al. GP bibliography (Langdon et al., 2009) 342 (342)
BESTweb (Jørgensen, 2009) 4 (4)
Total 2732 (2542)
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8. Represent similar studies, i.e., when a conference paper pre-
cedes a journal paper. As an example, we include the journal
article by Costa et al. (2007) but exclude two of their conference
papers (Costa, Pozo, & Vergilio, 2006; Costa, Vergilio, Pozo, & de
Souza, 2005).

Table 1 presents the count of papers and the distribution before
and after duplicate removal as a result of the automatic search in
the digital libraries.

The exclusion was done using a multi-step approach. First, ref-
erences were excluded based on title and abstract which were
clearly not relevant to our research question. The remaining refer-
ences were subject to a detailed exclusion criteria (see above) and,
finally, consensus was reached among the authors in including 23
references as primary studies for this review.
Table 2
Distribution of primary studies per predicted/estimated attribute.

Domain Ref.

SW quality classification (34.78%) Robinson and McIlroy (1995)
Khoshgoftaar et al. (2003)
Liu and Khoshgoftaar (2001)
Khoshgoftaar et al. (2004)
Khoshgoftaar et al. (2004)
Liu and Khoshgoftaar (2004)
Reformat et al. (2003)
Liu et al. (2006)

SW CES estimation (30.43%) Dolado et al. (1998)
Dolado (2000)
Regolin et al. (2003)
Dolado (2001)
Burgess and Lefley (2001)
Shan et al. (2002)
Lefley and Shepperd (2003)

SW fault prediction and reliability growth
(34.78%)

Kaminsky and Boetticher
(2004)
Kaminsky and Boetticher
(2004)
Tsakonas and Dounias
(2008)
Zhang and Chen (2006)
Zhang and Yin (2008)
Afzal and Torkar (2008)
Costa et al. (2007)
Costa and Pozo (2006)
2.4. Study quality assessment and data extraction

The study quality assessment can be used to devise a detailed
inclusion/exclusion criteria and/or to assist data analysis and syn-
thesis (Kitchenham, 2007). We did not rank the studies according
to an overall quality score but used a simple ‘yes’ or ‘no’ scale
(Dybå, Dingsøyr, & Hanssen, 2007). Table 10, in Appendix A, shows
the application of the study quality assessment criteria where a (

p
)

indicates ‘yes’ and (�) indicates ‘no’. Further a (�
p

) shows that we
were not sure as not enough information was provided but our
inclination is towards ‘yes’ based on reading full text. A (��) shows
that we were not sure as not enough information was provided but
our inclination is towards ‘no’ based on reading full text. We devel-
oped the following study quality assessment criteria, taking guide-
lines from Kitchenham (2007) and Kitchenham, Mendes, and
Travassos (2007):

� Are the aims of the research/research questions clearly stated?
� Do the study measures allow the research questions to be

answered?
� Is the sample representative of the population to which the

results will generalize?
� Is there a comparison group?
� Is there an adequate description of the data collection methods?
� Is there a description of the method used to analyze data?
� Was statistical hypothesis undertaken?
� Are all study questions answered?
� Are the findings clearly stated and relate to the aims of

research?
� Are the parameter settings for the algorithms given?
� Is there a description of the training and testing sets used for

the model construction methods?

The study quality assessment assisted us in making the data
extraction form containing data needed to answer the research
question. In this way, the quality evaluation was used in informing
the different sections of data extraction. For example, once our
quality criterion confirmed that there were comparison groups
present in a particular study (according to criterion D in the Table
10 in Appendix A), the data extraction form used this information
to extract which of the comparison groups were selected. Similarly
the criterion K in the study quality assessment in the Table 10 in
Appendix A allowed us to further extract data about the exact nat-
ure of the testing and training sets used.

The data extraction was done using a data extraction form for
answering the research question and for data synthesis. One part
of the data extraction form included the standard information of ti-
tle, author(s), journal and publication detail. The second part of the
form recorded the following information from each primary study:
stated hypotheses, number of data sets used, nature of data sets
(public or private), comparison group(s), the measured attribute
(dependent variable), evaluation measures used, independent vari-
ables, training and testing sets, major results and future research
directions.
3. Results

The 23 identified primary studies were related to the prediction
and estimation of the following attributes:

1. Software fault proneness (software quality classification).
2. Software cost/effort/size (CES) estimation.
3. Software fault prediction and software reliability growth

modeling.

Table 2 describes the relevant information regarding the in-
cluded primary studies. The 23 primary studies were related to
the application of GP for software quality classification (8 primary
studies), software CES estimation (7 primary studies) and software
fault prediction and software reliability growth modeling (8 pri-
mary studies).
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Fig. 1. Distribution of primary studies over range of applied comparison groups and time period.
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Fig. 1 shows the year-wise distribution of primary studies with-
in each category as well as the frequency of application of the dif-
ferent comparison groups. The bubble at the intersection of axes
contains the number of primary studies. It is evident from the left
division in this figure that the application of GP to prediction/esti-
mation problems in software engineering has been scarce. This
finding is perhaps little surprising; considering that the proponents
of symbolic regression application of GP have highlighted several
advantages of using it (Poli er al., 2007).

In the right division of Fig. 1, it is also clear that statistical
regression techniques (linear, logistic, logarithmic, cubic, etc.)
and artificial neural networks have been used as a comparison
group for most of the studies.

Next we present the description of the primary studies in rela-
tion to the research question.
3.1. Software quality classification

Our literature search found 8 studies on the application of sym-
bolic regression using GP for software quality classification. Six out
of these eight studies were co-authored by similar authors to a
large extent, where one author was found to be part of each of
these six studies. The data sets also over-lapped between studies
which provides an indication that the conclusion of these studies
were tied to the nature of the data sets used. However, these seven
studies were marked with different variations of the GP fitness
function and also used different comparison groups. This in our
opinion indicates distinct contribution and thus worthy of inclu-
sion as primary studies for this review. The importance of good fit-
ness functions is also highlighted by Harman (2007): ‘‘. . . no matter
what search technique is employed, it is the fitness function that cap-
tures the crucial information; it differentiates a good solution from a
poor one, thereby guiding the search.’’

A software quality classification model predicts the fault-prone-
ness of a software module as being either fault-prone (fp) or not
fault-prone (nfp). A fault-prone module is one in which the number
of faults are higher than a selected threshold. The use of these
models leads to knowledge about problematic areas of a software
system, that in turn can trigger focused testing of fault-prone mod-
ules. With limited quality assurance resources, such knowledge
can potentially yield cost-effective verification and validation
activities with high return on investment.

The general concept of a software quality classification model is
that it is built based on the historical information of software met-
rics for program modules with known classification as fault-prone
or not fault-prone. The generated model is then tested to predict
the risk-based class membership of modules with known software
metrics in the testing set.

Studies making use of GP for software quality classification ar-
gue that GP carries certain advantages for quality classification in
comparison with traditional techniques because of its white-box
and comprehensible classification model (Khoshgoftaar, Seliya, &
Liu, 2003). This means that the GP models can potentially show
the significant software metrics affecting the quality of modules.
Additionally, by following a natural evolution process, GP can auto-
matically extract the underlying relationships between the soft-
ware metrics and the software quality, without relying on the
assumption of the form and structure of the model.

In Robinson and McIlroy (1995), the authors use GP to identify
fault-prone software modules. A software module is taken to com-
prise of a single source code file. Different software metrics were
used as independent variables, with predictions assessed using five
and nine independent variables. GP was compared with neural net-
works, k-nearest neighbor and linear regression. The methods were
compared using two evaluation measures, accuracy and coverage.
Accuracy was defined as the proportion of ‘files predicted to be
faulty’ which were faulty, while coverage was defined as the pro-
portion of ‘files which were faulty’ which were accurately pre-
dicted to be faulty. Using a measurement data corresponding to
163 software files, it was observed that in comparison with other
techniques, GP results were reasonably accurate but lacked
coverage.

Khoshgoftaar, Liu, and Seliya (2004) used a multi-objective fit-
ness value that (i) maximized the best percentage of the actual
faults averaged over the percentile level of interest (95%, 90%,
80%, 70% modules for quality enhancement) and (ii) restricted
the size of the GP tree. The data set used in the study came from
an embedded software system and five software metrics were used
for quality prediction. The data set was divided into three random
splits of the training and the testing data sets to avoid biased re-
sults. Based on the comparison of models ranked according to lines
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of multiple projects is 1 data set.
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of code (LOC), the GP-models ranked the modules closer to the ac-
tual ranking on two of the three data splits. The results were not
much different in an extension of this study (Khoshgoftaar, Liu, &
Seliya, 2004), where in an additional case study of a legacy tele-
communication system with 28 independent variables, GP outper-
formed the module ranking based on LOC.

Another study by Khoshgoftaar et al. (2003) used a different
multi-objective fitness function for generating the software quality
model. First the average weighted cost of misclassification was
minimized and subsequently the trees were simplified by control-
ling their size. The average weighted cost of misclassification was
formulated to penalize Type-II error (a fp module misclassified as
nfp) more than Type-I error (a nfp module misclassified as fp). This
was done by normalizing the cost of Type-II error with respect to
the cost of Type-I error. Data was collected from two embedded
systems applications which consisted of five different metrics for
different modules. In comparison with standard GP, the perfor-
mance of multi-objective GP was found to be better with multi-
objective GP finding lower Type-I and Type-II error rates with
smaller tree sizes. A similar study was carried out by Liu and
Khoshgoftaar (2001) in which a single objective fitness function
was used which took into account the average weighted cost of
misclassification. Random subset selection was chosen which eval-
uated GP individuals in each generation on a randomly selected
subset of the fit data set. Random subset selection helped to reduce
the problem of over-fitting in GP solutions. Comparisons with lo-
gistic regression showed that Type-I and Type-II error rates for
GP model were found to be better than for logistic regression.
The same authors extended the study by adding a case study with
data from a legacy telecommunication system in Liu and Khoshgof-
taar (2004). This time the fitness function was multi-objective with
minimization of expected cost of misclassification and also control
of the tree size of GP solutions. The results of applying the random
subset selection showed that over-fitting was reduced in compar-
ison with when there was no random subset selection, hence,
yielding solutions with better generalizability in the testing part
of the data set.

In Reformat, Pedrycz, and Pizzi (2003), evolutionary decision
trees were proposed for classifying software objects. The compari-
son group in this case was the classification done by two architects
working on the project under study. The data set consisted of 312
objects whose quality was ranked by two architects as high, med-
ium and low. The independent variables included 19 different soft-
ware metrics for each object. Both genetic algorithms and GP were
used to get best splitting of attribute domains for the decision tree
and to get a best decision tree. The GA chromosome was repre-
sented by a possible splitting for all attributes. The fitness of the
chromosome was evaluated using GP with two possibilities of
the fitness function: (i) When the number of data samples in each
class was comparable, K

N, where K= number of correctly specified
data and N = number of data samples in a training set. (ii) When
the number of data samples in each class were not comparable,Qc

i¼1
kiþ1

ni
, where c = number of different classes, ni = number of data

samples belonging to a class i and, finally, ki = number of correctly
classified data of a class i. The results showed that in comparison
with architects’ classification of objects’ quality, the rate of suc-
cessful classification for training data was around 66%–72% for
the first and the second architect respectively.

In Liu, Khoshgoftaar, and Yao (2006), the performance of GP
based software quality classification is improved by using a multi
data set validation process. In this process, the hundred best mod-
els were selected after training on a single data set. These models
were then validated on 5 validation data sets. The models that per-
formed the best on these validation data sets were applied to the
testing data set. The application of this technique to seven different
NASA software projects showed that the misclassification costs
were reduced in comparison with standard genetic programming
solution.

Tables 3 and 41 show the relevant summary data extracted to an-
swer the research question from each of the primary studies within
software quality classification.

3.2. Software cost/effort/size (CES) estimation

In line with what Jørgensen and Shepperd suggest in Jørgensen
and Shepperd (2007), we will use the term ‘‘cost’’ and ‘‘effort’’
interchangeably since effort is a typical cost driver in software
development. We additionally take software size estimation to be
related to either effort or cost and discuss these studies in this
same section. According to Crespo et al. (2003), six different artifi-
cial intelligence methods are common in software development ef-
fort estimation. These are neural networks, case-based, regression
trees, fuzzy logic, dynamical agents and genetic programming. We
are here concerned with the application of symbolic regression
using genetic programming as the base technique.

In Dolado et al. (1998), five different data sets were used to esti-
mate software effort with line of code (LOC) and function points as
the independent variables. Using the evaluation measures of pred
(0.25) and MMRE (mean magnitude of relative error), it was ob-
served that with respect to predictive accuracy, no technique was
clearly superior. However, neural networks and GP were found to
be flexible approaches as compared with classical statistics.

In Dolado (2000), different hypotheses were tested for estimat-
ing the size of the software in terms of LOC. Specifically, the com-
ponent-based method was validated using three different
techniques of multiple linear regression, neural networks and GP.
Three different components were identified which included me-
nus, input and reports. The independent variables were taken to
be the number of choices within the menus and the number of data
elements and relations for inputs and reports. For evaluating the
component-based methodology in each project, six projects were
selected having largest independent variables within each type of
the component. Using the evaluation measures of MMRE and pred
(0.25), it was observed that for linear relationships, small improve-
ments obtained by GP in comparison with multiple linear regres-
sion came at the expense of the simplicity of the equations.
However, it was also observed that the majority of the linear equa-
tions were rediscovered by GP. Also GP and neural networks (NN)
showed superiority over multiple linear regression in case of non-
linear relationship between the independent variables. The conclu-
sion with respect to GP was that it provided similar or better values
than regression equations and the GP solutions were also found to
be transparent. Regolin, de Souza, Pozo, and Vergilio (2003) used a
similar approach of estimating LOC from function points and num-
ber of components (NOC) metric. Using GP and NN, the prediction
models using function points did not satisfy the criteria
MMRE 6 0.25 and pred (0.25) P 0.75. However, the prediction
models for estimating lines of code from NOC metric were accept-
able from both the NN and the GP point of view.

In Dolado (2001), genetic programming and different types of
standard regression analysis (linear, logarithmic, inverse quadratic,
cubic, power, exponential, growth and logistic) were used to find a
relationship between software size (independent variable) and
cost (dependent variable). The predictive accuracy measures of
pred (0.25) and MMRE showed that linear regression consistently
obtained the best predictive values, with GP achieving a significant
improvement over classical regression in 2 out of 12 data sets. GP
performed well, pred (0.25), on most of the data sets but
)



Table 3
Summary data for primary studies on GP application for software quality classification. (?) indicates absence of information and (�) indicates indifferent results.

Article Dependent variable Fitness function Comparison group Evaluation measures GP
better?

Robinson and McIlroy
(1995)

Fault proneness based
on number of faults

Minimization of root mean square Neural networks, k-nearest
neighbor, linear regression

Accuracy & coverage �

Khoshgoftaar et al.
(2003)

Fault proneness based
on number of faults

Minimization of average cost of
misclassification and minimization of
tree size

Standard GP Type I, Type II and overall error
rates

p

Liu and Khoshgoftaar
(2001)

Fault proneness based
on number of faults

Minimization of the average cost of
misclassification

Logistic regression Type I, Type II and overall error
rates

p

Khoshgoftaar et al.
(2004)

Number of faults for
each software module

Maximization of the best percentage
of actual faults averaged over the
percentiles level of interest and
controlling the tree size

Ranking based on lines of
code

Number of faults accounted by
different cut-off percentiles

p

Khoshgoftaar et al.
(2004)

Number of faults for
each software module

Maximization of the best percentage
of actual faults averaged over the
percentiles level of interest and
controlling the tree size

Ranking based on lines of
code

Number of faults accounted by
different cut-off percentiles

p

Liu and Khoshgoftaar
(2004)

Fault proneness based
on number of faults

Minimization of expected cost of
misclassification and controlling the
tree size

Standard GP Number of over-fitting models
and Type I, Type II error rates

p

Reformat et al. (2003) Ranking of object’s
quality

(a) K
N (b)

Qc
i¼1

kiþ1
ni

Quality ranking of an object
assessed by the architects

Rate of successful classification
for training and testing set

�

Liu et al. (2006) Fault proneness based
on number of faults

Minimization of the expected cost of
misclassification and controlling the
tree size

Standard GP Type I and Type II error rates
p

Table 4
Data set characteristics for primary studies on GP application for software quality classification. (?) indicates absence of information.

Article Data sets No. Sampling of training and testing sets Industrial (I) or academic (A) Data sets public or private

Robinson and McIlroy (1995) 1 103 records for training and 60 records for
testing

? Private

Khoshgoftaar et al. (2003) 1 Approximately 2
3 for training and the rest

for testing

I Private

Liu and Khoshgoftaar (2001) 1 Approximately 2
3 for training and the rest

for testing and random subset selection

I Private

Khoshgoftaar et al. (2004) 1 2
3 for training and the rest for testing, three
splits

I Private

Khoshgoftaar et al. (2004) 2 2
3 for training and the rest for testing, three
splits

I Private

Liu and Khoshgoftaar (2004) 1 Training on release 1 data set, testing on
release 2,3,4 data sets

I Private

Reformat et al. (2003) 1 10-fold cross-validation I Private
Liu et al. (2006) 7 1 training data set, 5 validation data sets

and 1 testing data set
I Private

2 The data sets in Table 6 are taken at a coarser level, e.g. ISBSG data (ISBSG, 2009)
of multiple projects is 1 data set.
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sometimes at the expense of MMRE. This also indicated the poten-
tial existence of over-fitting in GP solutions. It was also found that
size alone as an independent variable for predicting software cost
is not enough since it did not define the types of economies of scale
or marginal return with clarity.

The study by Burgess and Lefley (2001) extends the previous
study from Dolado (2001) by using 9 independent variables to pre-
dict the dependent variable of effort measured in person hours.
Using the Desharnais data set of 81 software projects, the study
showed that GP is consistently more accurate for MMRE but not
for adjusted mean square error (AMSE), pred (0.25) and balanced
mean magnitude of relative error (BMMRE). The study concluded
that while GP and NN can provide better accuracy, they required
more effort in setting up and training.

In Shan, McKay, Lokan, and Essam (2002) the authors used
grammar-guided GP on 423 projects from release 7 of the ISBSG
(The International Software Benchmarking Standards Group Lim-
ited (ISBSG, 2009)) data set to predict software project effort. The
evaluation measures used were R-squared, MSE, MMRE, pred
(0.25) and pred (0.5). In comparison with linear and log–log regres-
sion, the study showed that GP was far more accurate than simple
linear regression. With respect to MMRE, log–log regression was
better than GP which led to the conclusion that GP maximizes
one evaluation criterion at the expense of the other. The study
showed that grammar guided GP provides both a way to represent
syntactical constraints on the solutions and a mechanism to incor-
porate domain knowledge to guide the search process.

Lefley and Shepperd (2003) used several independent variables
from 407 cases to predict the total project effort comparing GP,
ANN, least squares regression, nearest neighbor and random selec-
tion of project effort. With respect to the accuracy of the predic-
tions, GP achieved the best level of accuracy the most often,
although GP was found hard to configure and the resulting models
could be more complex.

Tables 5 and 62 present the relevant summary data extracted to
answer the research question from each of the primary studies with-
in software CES estimation.



Table 5
Summary data for primary studies on GP application for software CES estimation. (�) indicates indifferent results.

Article Dependent
variable

Fitness
function

Comparison group Evaluation measures GP
better?

Dolado et al. (1998) Software
effort

Mean
squared
error

Neural networks & linear
regression

pred (0.25)a and MMREb
�

Dolado (2000) Software
size

Mean
squared
error

Neural networks & multiple linear
regression

pred (0.25) and MMRE �

Regolin et al. (2003) Software
size

MMRE Neural networks pred (0.25) and MMRE �

Dolado (2001) Software
cost

Mean
square
error

Linear, logarithmic, inverse
quadratic, cubic, power,
exponential, growth and logistic
regression

pred (0.25) and MMRE �

Burgess and Lefley (2001) Software
effort

MMRE Neural networks MMRE, AMSEc, pred (0.25), BMMREd
�

Shan et al. (2002) Software
effort

Mean
square
error

Linear regression, log–log
regression

R-squarede, MMRE, pred (0.25) and pred (0.5) �

Lefley and Shepperd (2003) Software
effort

? ANN, least squares regression,
nearest neighbor and random
selection of project effort

Pearson correlation coefficient of actual and predicted,
AMSE, pred (0.25), MMRE, BMMRE, worst case error, the
ease of set up and the explanatory value

�

a Prediction at level 0.25.
b Mean magnitude of relative error.
c Adjusted mean magnitude of relative error.
d Balanced mean magnitude of relative error.
e Coefficient of multiple determination.
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3.3. Software fault prediction and reliability growth

Apart from studies on software quality classification (Section
3.1), where the program modules are classified as being either fp
or nfp, there are studies which are concerned with prediction of
either the fault content or software reliability growth.

In Kaminsky and Boetticher (2004) the authors proposed the
incorporation of existing equations as a way to include domain
knowledge for improving the standard GP algorithm for software
fault prediction. They specifically used Akiyama’s equations
(Akiyama, 1971), Halstead’s equation (Halstead, 1977), Lipow’s
equation (Lipow, 1982), Gaffney’s equation (Gaffney, 1984) and
Compton’s equation (Compton & Withrow, 1990) to add domain
knowledge to a simple GP algorithm which is based on mathemat-
ical operators. Using the fitness function (1-standard error), six
experiments were performed using a NASA data set of 379 C func-
tions. Five of these experiments compared standard GP with GP en-
hanced with Akiyama’s, Halstead’s, Lipow’s, Gaffney’s and
Compton’s equations. The last experiment compared standard GP
with GP enhanced with all these equations simultaneously. The re-
sults showed that by including explicit knowledge in the GP solu-
tions, the fitness values for the GP solutions increased.

In another study, Kaminsky and Boetticher (2004), the same
authors used another approach called data equalization to com-
pensate for data skewness. Specifically, duplicates of interesting
training instances (in this case functions with greater than zero
faults) were added to the training set until the total reached the
frequency of most occurring instance (in this case functions with
zero faults). The fitness function used was: 1þ
eð7�ð1�n�kÞ=ðn�1Þ�Se2=Sy2Þ, where k = number of inputs, n = number of va-
lid results, Se = standard error and Sy = standard deviation. Using
the same data sets as before, the experimental results showed that
the average fitness values for the equalized data set were better
than for the original data set.

In Tsakonas and Dounias (2008), grammar-guided GP was used
on NASA’s data set consisting of four projects to measure the prob-
ability of detection, PD (the ratio of faulty modules found to all
known faulty modules) and false alarm rate, PF (the ratio of num-
ber of non-faulty modules misclassified as faulty to all known
non-faulty modules). The fitness function represented the coverage
of knowledge represented in the individual, and equaled

tp
ðtpþfnÞ � tn

ðtnþfpÞ where fp is the number of false positives, tp the num-
ber of true positives, tn the number of true negatives and fn the
number of false negatives. The study showed that grammar-guided
GP performed better than naive Bayes on both measures (PD and
PF) in two of the projects’ data while in the rest of the two data,
it was better in one of the two measures.

We were also able to find a series of studies where the compar-
ison group included traditional software reliability growth models.

Zhang and Chen (2006) used mean time between failures
(MTBF) time series to model software reliability growth using ge-
netic programming, neural networks (NN) and traditional software
reliability models, i.e. Schick–Wolverton, Goel–Okumoto, Jelinki–
Moranda and Moranda. Using multiple evaluation measures of
short-term range error, prequential likelihood, model bias, model
bias trend, goodness of fit and model noise; the GP approach was
found better than the traditional software reliability growth mod-
els. However, it is not clear from the study how neural networks
performed against all the evaluation measures (except for the
short-term range error where GP was better than neural net-
works). Also it is not clear from the study what sampling strategy
was used to split the data set into training and testing set. The fit-
ness function information is also lacking from the study. The study
is however extended in Zhang and Yin (2008) with adaptive cross-
over and mutation probabilities, and the corresponding GP was
named adaptive genetic programming. In comparison with stan-
dard GP and the same reliability growth models (as used in the
previous study), the mean time between failures (MTBF) and the
next mean time to failure (MTTF) values for adaptive GP were
found to be more accurate.

Afzal and Torkar (2008) used fault data from three industrial
software projects to predict the software reliability in terms of
number of faults. Three traditional software reliability growth
models (Goel–Okumoto, Brooks and Motley, and Yamada’s S-
shaped) were chosen for comparison using the fitness function of
sum of absolute differences between the obtained and expected re-
sults in all fitness cases,

Pn
i¼1jei � e0ij, where ei is the actual fault

count data, e0i the estimated value of the fault count data and n



Table 6
Data set characteristics for primary studies on GP application for software CES estimation.

Article Data sets No. Sampling of training and testing sets Industrial (I) or academic (A) Data sets public or private

Dolado et al. (1998) 5 (a) Train and test a model with all the
points. (b) Train a model on 66% of the
data points and test on 34% of the points

I Public & Private

Dolado (2000) 6 Train a model on 60–67% of the data
points and test in 40–37%

A Public

Regolin et al. (2003) 2 Train on 2
3 and test on 1

3
I&A Public

Dolado (2001) 12 Training and testing on all data points I&A Public
Burgess and Lefley (2001) 1 Training on 63 projects, testing on 18

projects
I Public

Shan et al. (2002) 1 Random division of 50% in training set and
50% in testing set

I Public

Lefley and Shepperd (2003) 1 149 projects in the training set and 15
projects in the testing set

I Public

Table 7
Summary data for primary studies on GP application for software fault prediction and reliability growth. (?) indicates absence of information and (�) indicates indifferent results.

Article Dependent
variable

Fitness function Comparison group Evaluation measures GP
better?

Kaminsky and
Boetticher
(2004)

Software
fault
prediction

1-standard error Standard GP Fitness values
p

Kaminsky and
Boetticher
(2004)

Software
fault
prediction

1þ eð7�ð1�n�kÞ=ðn�1Þ�Se2=Sy2Þ Standard GP Fitness values
p

Tsakonas and
Dounias
(2008)

Software
fault
prediction

tp
ðtpþfnÞ �

tn
ðtnþfpÞ

Naive Bayes PD & PF �

Zhang and Chen
(2006)

Software
reliability

? Neural networks and traditional
software reliability growth models

Short-term range error, prequential likelihood, model
bias, model bias trend, goodness of fit and model noise

p

Zhang and Yin
(2008)

Software
reliability

? Traditional software reliability
growth models

Mean time between failures and next mean time to
failure

p

Afzal and Torkar
(2008)

Software
reliability

Pn
i¼1jei � e0ij Traditional software reliability

growth models
Prequential likelihood ratio, AMSE, Braun statistic,
Kolmogorov–Smirnov test and distribution of residuals

p

Costa et al.
(2007)

Software
reliability

WRMSEa Traditional software reliability
growth models and ANN

Maximum deviation, average bias, average error,
prediction error, correlation coefficient, Kolmogorov–
Smirnov

p

Costa and Pozo
(2006)

Software
reliability

RMSEb Standard GP Maximum deviation, average bias, average error,
prediction error and correlation coefficient

p

a Weighted root mean square error.
b Root mean square error.
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the size of the data set used to train the GP models. The faults were
aggregated on weekly basis and the sampling strategy divided the
first 2

3 of the data set into a training set and remaining 1
3 into a test

set. Using prequential likelihood ratio, adjusted mean square error
(AMSE), Braun statistic, Kolmogorov–Smirnov tests and distribu-
tion of residuals, the GP models were found to be more accurate
for prequential likelihood ratio and Braun statistic but not for
AMSE. The goodness of fit of the GP models were found to be either
equivalent or better than the competing models used in the study.
The inspection of the models’ residuals also favored GP.

In Costa et al. (2007), the authors used GP and GP with boost-
ing to model software reliability. The comparisons were done
with time based reliability growth models (Jelinski–Moranda
and geometric), coverage-based reliability growth model (cover-
age-based binomial model) and artificial neural network (ANN).
The evaluation measures used for time-based models included
maximum deviation, average bias, average error, prediction error
and correlation coefficient. For coverage-based models, an addi-
tional Kolmogorov–Smirnov test was also used. The fitness func-
tion used was weighted root mean square error (WRMSE),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1ðxi � xd
i Þ

2Dim
q

where xi = real value, xd
i ¼ estimated value,
Di = weight of each example and m = size of the data set. Using
the first 2

3 of the data set as a training set, it was observed that
GP with boosting (GPB) performed better than traditional models
for models based on time. However, there was no statistical dif-
ference between GP, GPB and ANN models. For models based on
test coverage, the GPB models’ results were found to be
significantly better compared to that of the GP and ANN
models.

In Costa and Pozo (2006), the authors used a modified GP algo-
rithm called the l + k GP algorithm to model software reliability
growth. In the modified algorithm, n% of the best individuals were
applied the genetic operators in each generation. The genetic oper-
ators generated k individuals, which competed with their parents
in the selection of l best individuals to the next generation where
(k > l). The fitness function used was root mean square error

(RMSE), given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
jxi�xd

i
j

n

r
where xi is the real value, xd

i is the

estimated value and n is the size of the data set. Using measures
as maximum deviation, average bias, average error, prediction er-
ror and correlation coefficient; the results favored modified GP
algorithm. Additional paired two-sided t-tests for average error



Table 8
Data set characteristics for primary studies on GP application for software fault prediction and reliability growth. (?) indicates absence of information.

Article Data sets No. Sampling of training and testing sets Industrial (I) or academic (A) Data sets public or private

Kaminsky and Boetticher
(2004)

1 ? I Public

Kaminsky and Boetticher
(2004)

1 ? I Public

Tsakonas and Dounias (2008) 1 10-fold cross-validation I Public
Zhang and Chen (2006) 1 ? I Private
Zhang and Yin (2008) 1 ? I Private
Afzal and Torkar (2008) 3 First 2

3 of the data set for training and the rest for testing I Private

Costa et al. (2007) 2 First 2
3 of the data set for training and the rest for testing I Public & Private

Costa and Pozo (2006) 1 First 2
3 of the data set for training and the rest for testing I Public
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confirmed the results in favor of modified GP with a statistically
significant difference in the majority of the results between the
modified and standard GP algorithm.

Tables 7 and 83 shows the relevant summary data extracted to
answer the research question from each of the primary studies with-
in software fault prediction and reliability growth.

4. Discussion and areas of future research

Our research question was initially posed to assess the efficacy
of using GP for prediction and estimation in comparison with com-
peting techniques. Based on our investigation, this research ques-
tion is answered depending upon the prediction and estimation
of the attribute under question. In this case, the attribute belonged
to three categories:

1. Software fault proneness (software quality classification).
2. Software CES estimation.
3. Software fault prediction and software reliability growth

modeling.

For software quality classification, six out of eight studies re-
ported results in favor of using GP for the classification task. Two
studies were inconclusive in favoring a particular technique either
because the different measures did not converge, as in Robinson
and McIlroy (1995), or the proposed technique used GP for initial
investigative purposes only, without being definitive in the judge-
ment of GP’s efficacy, as in Reformat et al. (2003) (these two stud-
ies are indicated by the sign � in Table 3).

The other six studies were co-authored by similar authors to a
large extent and the data sets also over-lapped between studies
but these studies contributed in introducing different variations of
the GP fitness function and also used different comparison groups.
These six studies were in agreement that GP is an effective method
for software quality classification based on comparisons with neural
networks, k-nearest neighbor, linear regression and logistic regres-
sion. Also GP was used to successfully rank-order software modules
in a better way than the ranking done on the basis of lines of code.
Also it was shown that numerous enhancements to the GP algorithm
are possible hence improving the evolutionary search in comparison
with standard GP algorithm. These enhancements include random
subset selection and different mechanisms to control excessive code
growth during GP evolution. Improvements to the GP algorithm
gave better results in comparison with standard GP algorithm for
two studies (Khoshgoftaar et al., 2003; Liu & Khoshgoftaar, 2004).
However, one finds that there can be two areas of improvement in
these studies: (i) Increasing the comparisons with more techniques.
(ii) Increasing the use of public data sets.
3 The data sets in Table 8 are taken at a coarser level, e.g. ISBSG data (ISBSG, 2009
of multiple projects is 1 data set.
)

We also observe from Table 3 that multi-objective GP is an
effective way to seek near-optimal solutions for software quality
classification in the presence of competing constraints. This indi-
cates that further problem-dependent objectives can possibly be
represented in the definition of the fitness function which poten-
tially can give better results. We also believe that in order to gen-
eralize the use of GP for software quality classification, the
comparison groups need to increase.

There are many different techniques that have been applied by
researchers to software quality classification, see e.g. (Lessmann,
Baesens, Mues, & Pietsch, 2008). GP needs to be compared with a
more representative set of techniques that have been found suc-
cessful in earlier research—only then are we be able to ascertain
that GP is a competitive technique for software quality classifica-
tion. We see from Table 4 that all the data sets were private. In this
regards, the publication of private data sets needs to be encour-
aged. Publication of data sets would encourage other researchers
to replicate the studies based on similar data sets and hence we
can have greater confidence in the correctness of the results. An-
other aspect that requires improvement is to include statistical
hypothesis testing that is currently very much ignored in studies
of software quality classification. Nevertheless, one encouraging
trend that is observable from Table 4 is that the data sets repre-
sented real world projects which adds to the external validity of
these results.

For software CES estimation, there was no strong evidence of GP
performing consistently on all the evaluation measures used (as
shown in Table 5). The sign � in the last column of Table 5 shows
that the results are inconclusive concerning GP. The study results
indicate that while GP scores higher on one evaluation measure,
it lags behind on others. There is also a trade-off between different
qualitative factors, e.g. complexity of interpreting the end solution,
and the ease of configuration and flexibility to cater for varying
data sets. The impression from these studies is that GP also re-
quires some effort in configuration and training. There can be dif-
ferent reasons related to the experimental design for the
inconsistent results across the studies using GP for software CES
estimation. One reason is that the accuracy measures used for eval-
uation purposes are not near to a standardized use. While the use
of pred (0.25) and MMRE are commonly used, other measures,
including AMSE and BMMRE, are also applied. It is important that
researchers are aware of the merits/demerits of using these evalu-
ation measures (Foss, Stensrud, Kitchenham, & Myrtveit, 2003;
Shepperd, Cartwright, & Kadoda, 2000). Another aspect which dif-
fered between the studies was the sampling strategies used for
training and testing sets (Column 3, Table 6). These different sam-
pling strategies are also a potential contributing factor in inconsis-
tent model results. As with the studies on software quality
classification, statistical hypothesis testing needs to be an essential
part of the study design for software CES estimation. What is also
observable from these studies is that over-fitting is a common



Table 9
Summary of the studies showing inconclusive results in using GP.

Article Quotation

Robinson and McIlroy
(1995)

While generally not as good as the results obtained from other methods, the GP results are reasonably accurate but low on coverage

Reformat et al. (2003) The rate of successful classifications for training data is around 66 and 72% for the first architect and the second architect, respectively. In the
case of testing data the rates are 55 and 63%

Dolado et al. (1998) However, from the point of view of making good predictions, no technique has been proved to be clearly superior
. . . From the values shown in the tables, there is no great superiority of one method versus the others . . . GP can be used as an alternative to
linear regression, or as a complement to it.

Dolado (2000) The final impression is that GP has worked very well with the data used in this study. The equations have provided similar or better values
than the regression equations. Furthermore, the equations are ‘‘intelligible’’, providing confidence in the results.
. . . In the case of linear relationships, some of the small improvements obtained by GP compared to MLR come at the expense of the
simplicity of the equations, but the majority of the linear equations are rediscovered by GP

Regolin et al. (2003) We cannot conclude GP is a better technique than NN
. . . GP and ANN are valid and promising approaches to size estimation
. . . However, GP presents additional advantages with respect to NN. The main advantage of using GP is the easy interpretation of result

Dolado (2001) From the point of view of the capabilities of the two methods, GP achieves better values in the pred (0.25) in eleven out of the twelve data
sets, but sometimes at the cost of having a slight worse value of the MMRE. Only in data sets A and H, GP provides a significant improvement
over classical regression

Burgess and Lefley
(2001)

There is evidence that GP can offer significant improvements in accuracy but this depends on the measure and interpretation of accuracy
used. GP has the potential to be a valid additional tool for software effort estimation but set up and running effort is high and interpretation
difficult . . .

Shan et al. (2002) Log regression models perform much worse than GP on MSE, about the same as GP on R2 and pred (0.25), and better than GP on MMRE and
pred (0.5). One way of viewing this is that GP has more effectively fit the objective, namely minimizing MSE, at the cost of increased error on
other measures

Lefley and Shepperd
(2003)

The results do not find a clear winner but, for this data, GP performs consistently well, but is harder to configure and produces more complex
models

Tsakonas and Dounias
(2008)

In two of the databases, our model is proved superior to the existing literature in both comparison variables, and in the rest two databases,
the system is shown better in one of the two variables
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problem for GP. However, there are different mechanisms to avoid
over-fitting, such as random subset selection on the training set
and placing limits on the size of the GP trees. These mechanisms
should be explored further.

As previously pointed out in Section 3.2, Crespo et al. (2003)
identified six artificial intelligence techniques applicable to soft-
ware development effort estimation. It is interesting to note that
our literature search did not find any study that compares all of
these techniques.

As for the studies related to software fault prediction and soft-
ware reliability growth, seven out of eight studies favor the use of
GP in comparison with neural networks, naive Bayes and tradi-
tional software reliability growth models (this is evident from
the last column in Table 7). However, as Table 8 showed, it was
not clear from four studies which sampling strategies were used
for the training and testing sets. From two of these four studies,
it was also not clear what fitness function was used for the GP algo-
rithm. If, however, we exclude these four studies from our analysis,
GP is still a favorable approach for three out of four studies. With
respect to comparisons with traditional software reliability growth
models, the main advantage of GP is that it is not dependent on the
assumptions that are common in these software reliability growth
models. Also GP promises to be a valid tool in situations where dif-
ferent traditional models have inconsistent results. Besides, we
also observe that several improvements to the standard GP algo-
rithm are possible which provides comparatively better results.
Specifically, we see studies where the incorporation of explicit do-
main knowledge in the GP modeling process has resulted in im-
proved fitness values (Kaminsky & Boetticher, 2004). Table 7 also
shows that the variety of comparison groups is represented poorly;
there is an opportunity to increase the comparisons with more
techniques and also to use a commonly used technique as a
baseline.

For studies which were inconclusive in the use of GP for predic-
tion/estimation, we include quotations from the respective papers
in Table 9 (an approach similar to the one used in Mair & Shepperd
(2005)) that reflects the indifference between GP and other ap-
proaches. What is evident from these studies is the following:
1. The accuracy of GP as a modeling approach is attached to the
evaluation measure used. The impression from these studies
is that GP performs superior on one evaluation measure at the
cost of the other. This indicates that the GP fitness function
should not only be dependent on the minimization of standard
error but also biased in searching those solutions which reflect
properties of other evaluation measures, such as correlation
coefficient.

2. The qualitative scores for GP models are both good and bad.
While they might be harder to configure and result in complex
solutions, the results can nevertheless be interpreted to some
extent. This interpretation can be in the form of identifying
the few significant variables (Kotanchek et al., 2003). But
another key question is that whether or not we are able to have
a reasonable explanation of the relationship between the vari-
ables. As an example, Dolado (2000) provides the following
equation generated by GP:
LOC ¼ 50:7þ 1:501 � data elementsþ data elements

� relations� 0:5581 � relations
While this equation identifies the dependent variables, it is still dif-
ficult to explain the relationships. Simplification of resulting GP
solutions is thus important.

Based on the above discussion, we can conclude that while the
use of GP as a prediction tool has advantages, as presented in Sec-
tion 3, there are, at the same time, challenges to overcome as
points 1 and 2 indicate above. We believe that these challenges of-
fer promising future work to undertake for researchers.
5. Validity threats

We assume that our review is based on studies which were
unbiased. If this is not the case, then the validity of this study is
also expected to suffer (Mair & Shepperd, 2005). Also, like any
other systematic review, this one too is limited to making use of
information given in the primary studies (Kitchenham et al.,
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2007). There is also a threat that we might have missed a relevant
study but we are confident that both automated and manual
searches of the key information sources (Section 2.2) have given
us a complete set. Our study selection procedure (Section 2.3) is
straightforward and the researchers had agreement on which stud-
ies to include/exclude. However, this review does not cover unpub-
lished research that had undesired outcome and company
confidential results.

6. Conclusions

This systematic review investigated whether symbolic regres-
sion using genetic programming is an effective approach in com-
Table 10
Study quality assessment.

Criteria

(a) Study quality assessment criteria
A: Are the aims of the research/research questions clearly stated?
B: Do the study measures allow the research questions to be answered?
C: Is the sample representative of the population to which the results will generalize
D: Is there a comparison group?
E: Is there an adequate description of the data collection methods?
F: Is there a description of the method used to analyze data?
G: Was statistical hypothesis testing undertaken?
H: Are all study questions answered?
I: Are the findings clearly stated and relate to the aims of research?
J: Are the parameter settings for the algorithms given?
K: Is there a description of the training and testing sets used for the model construct

Robinson and
McIlroy (1995)

Khoshgoftaar
et al. (2003)

Liu and
Khoshgoftaar
(2001)

Khoshgoftaar
et al. (2004)

(b) Study quality assessment for software quality classification studies
A

p p p p

B
p p p p

C � � �
p

�
p

�
p

D
p p p p

E �
p

�
p

�
p

�
p

F
p p p p

G � � � �
H

p p p p

I
p p p p

J �
p

�
p p p

K
p p p p

Dolado et al. (1998) Dolado (2000) Regolin et al. (2003) Dolado (2001)

(c) Study quality assessment for software CES estimation
A

p p p p

B
p p p p

C
p

�
p p p

D
p p p p

E �
p p p p

F
p p p p

G � � � �
H

p p p p

I
p p p p

J
p p p p

K
p p p p

Kaminsky and
Boetticher (2004)

Kaminsky and
Boetticher (2004)

Tsakonas and
Dounias (2008)

Zhang a
(2006)

(d) Study quality assessment for software fault prediction and software reliability growth
A

p p p p

B
p p p p

C �
p

�
p

�
p

�
p

D
p p p p

E
p p p �

F
p p p

�
p

G
p p � �

H
p p p p

I
p p p

�
p

J �
p

�
p p

�
p

K � � p �
parison with machine learning, regression techniques and other
competing methods (including different improvements over the
standard GP algorithm). The results of this review resulted in a to-
tal of 23 primary studies; which were further classified into soft-
ware quality classification (eight studies), software CES
estimation (seven studies) and fault prediction/software reliability
growth (eight studies).

Within software quality classification, we found that in six out
of eight studies, GP performed better than competing techniques
(i.e. neural networks, k-nearest neighbor, linear regression and lo-
gistic regression). Different enhancements to the standard GP algo-
rithm also resulted in more accurate quality classification, while
GP was also more successful in rank-ordering of software modules
?

ion methods?

Khoshgoftaar
et al. (2004)

Liu and
Khoshgoftaar
(2004)

Reformat et al.
(2003)

Liu et al.
(2006)

p p p p
p p p p

�
p

�
p

�
p

�
p

p p p p

�
p

�
p

�
p

p p p p

� � � �p p p p
p p p p
p

�
p � p

p p p p

Burgess and Lefley (2001) Shan et al. (2002) Lefley and Shepperd (2003)

p p p
p p p
p p p
p p p
p p p
p p p

�
p � �p p p
p p p
p p p
p p p

nd Chen Zhang and Yin
(2008)

Afzal and Torkar
(2008)

Costa et al.
(2007)

Costa and Pozo
(2006)

modeling p p p p
p p p p

�
p p p

�
p

p p p p

� �
p

�
p p

�
p p p p

� p p p
p p p p

�
p p p p

�
p p p p

� p p p
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in comparison with random ranking and ranking based on lines of
code. We concluded that GP seems to be an effective method for
software quality classification. This is irrespective of the fact that
one author was part of seven out of nine primary studies and the
fact that there was an overlap of data sets used across the studies.
This is because we considered each of these primary studies repre-
senting a distinct contribution in terms of different algorithmic
variations.

For software CES estimation, the study results were inconclu-
sive in the use of GP as an effective approach. The main reason
being that GP optimizes one accuracy measure while degrades oth-
ers. Also the experimental procedures among studies varied, with
different strategies used for sampling the training and testing sets.
We were therefore inconclusive in judging whether or not GP is an
effective technique for software CES estimation.

The results for software fault prediction and software reliabil-
ity growth modeling leaned towards the use of GP, with seven
out of eight studies resulting in GP performing better than neural
networks, naive Bayes and traditional software reliability growth
models. Although four out of these eight studies lacked in some
of the quality instruments used in Table 10 (Appendix A); still
three out of the remaining four studies reported results in sup-
port of GP. We therefore concluded that the current literature
provides evidence in support of GP being an effective technique
for software fault prediction and software reliability growth
modeling.

Based on the results of the primary studies, we can offer the fol-
lowing recommendations. Some of these recommendations refer to
other researchers’ guidelines which are useful to reiterate in the
context of this study.

1. Use public data sets wherever possible. In case of private data
sets, there are ways to transform the data sets to make it public
domain (e.g., one such transformation is discussed in Wood
(1996)).

2. Apply commonly used sampling strategies to help other
researchers replicate, improve or refute the established predic-
tions and estimations. From our sample of primary studies, the
sampling strategy of 2

3 for training, remaining 1
3 for testing and

10-fold cross validation are mostly used. Kitchenham et al.
(2007) recommends using a jackknife approach with leave-
one-out cross-validation process for smaller data sets; this
needs to be validated further.

3. Avoiding over-fitting in GP solutions is possible and is beneficial
to increase the generalizability of model results in the testing
data set. The primary studies in this review offer important
results in this regard.

4. Always report the settings used for the algorithmic parameters
(also suggested in Barr, Golden, Kelly, Resende, & Junior (1995)).

5. Compare the performances against a comparison group that is
both commonly used and currently an active field of research.
For our set of primary studies, comparisons against different
forms of statistical regression and artificial neural networks
can be seen as a baseline for comparisons.

6. Use statistical experimental design techniques to minimize the
threat of differences being caused by chance alone (Myrtveit &
Stensrud, 1999).

7. Report the results even if there is no statistical difference
between the quality of the solutions produced by different
methods (Barr et al., 1995).
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