
S

A
F

a

A
R
R
2
A
A

K
S
D
V

1

s
t
t
i
m
a
t
s
t
t
s

i
d
t
r
O
a
o

I
o
M

0
h

The Journal of Systems and Software 88 (2014) 87– 101

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

oftware architecture review by association�

ntony Tang ∗, Man F. Lau
aculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn 3122, Australia

 r t i c l e i n f o

rticle history:
eceived 11 March 2013
eceived in revised form
6 September 2013
ccepted 26 September 2013
vailable online 8 November 2013

a b s t r a c t

During the process of software design, software architects have their reasons to choose certain software
components to address particular software requirements and constraints. However, existing software
architecture review techniques often rely on the design reviewers’ knowledge and experience, and per-
haps using some checklists, to identify design gaps and issues, without questioning the reasoning behind
the decisions made by the architects. In this paper, we approach design reviews from a design reasoning
eywords:
oftware architecture review
esign reasoning
erification of software architecture

perspective. We propose to use an association-based review procedure to identify design issues by first
associating all the relevant design concerns, problems and solutions systematically; and then verifying
if the causal relationships between these design elements are valid. Using this procedure, we discovered
new design issues in all three industrial cases, despite their internal architecture reviews and one of the
three systems being operational. With the newly found design issues, we derive eight general design
reasoning failure scenarios.
. Introduction

Software architecture is one of the many important artifacts in
oftware development. It is defined as “the fundamental organiza-
ion of a system embodied in its components, their relationships
o each other and to the environment and the principles guiding
ts design and evolution.” (ISO/IEC, 2010), or it is a model of ele-

ents, form and rationale (Perry and Wolf, 1992) where (1) elements
re processing, data or connecting elements, (2) form is defined in
erms of the properties of the elements as well as their relation-
hips, and (3) rationale is the constraints of the system that provide
he underlying basis of the architecture. Basically, software archi-
ecture is an abstract model of a software system that aims to satisfy
ome software requirements.

As software systems are becoming increasingly complex and
nvolving more and more stakeholders, it is widely acceptable to
evelop software architectures via iterations. During each itera-
ion, the architecture is refined to address specific concerns and
equirements. The word “iteration” here is used in a generic sense.

n one hand, it may refer to different levels of abstractions in the
rchitecture. For example, at the early stage of the design process,
ne of the main concerns is on the satisfaction of the software

� This work was supported in part by a grant from the DCRG scheme, Faculty of
nformation and Communication Technologies, Swinburne University of Technol-
gy. We thank the three companies which supported our research. We also thank
s. Alice Yip for her efforts in collecting and analyzing the specifications.
∗ Corresponding author. Tel.: +61 3 92148739.

E-mail addresses: atang@swin.edu.au (A. Tang), elau@swin.edu.au (M.F. Lau).

164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.09.044
© 2013 Elsevier Inc. All rights reserved.

requirements. At a later stage, software architects may need to use
quantifiable means to ensure that various hardware and software
components can interact with each other to satisfy certain non-
functional requirements such as system performance. On the other
hand, it may refer to different viewpoints such as business, data and
technology in the TOGAF (The Open Group, 2003). For example, the
focus of the business viewpoint is on the satisfaction of the busi-
ness requirements; whereas that of the technology viewpoint is
whether the choice of technologies and networking infrastructure
can together satisfy the software requirements.

During each design iteration, architectural design decisions are
made and these decisions impact different aspects of an archi-
tecture design and future design decisions and choices. These
decisions can be explicitly discussed or implicitly made. They can
be documented or they may be tacit. They can come from one and,
often, many designers. The design decisions with their assump-
tions, inter-relationships, reasoning and impacts are often intricate.
These are important information to assuring a consistent and valid
software architecture. Without them, reasoning flaws such as the
following can happen:

1. the impacts and assumptions of a decision are not necessarily
known to decision makers who deal with other parts of a system
(Parnas and Weiss, 1987),

2. the goals, requirements and design concerns are unknown or not
communicated to the people who need to know (Guindon et al.,

1987; Brooks, 2010),

3. a decision maker is not aware of the implications of their deci-
sions when they state a goal or a requirement (Guindon et al.,
1987),

dx.doi.org/10.1016/j.jss.2013.09.044
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.09.044&domain=pdf
mailto:atang@swin.edu.au
mailto:elau@swin.edu.au
dx.doi.org/10.1016/j.jss.2013.09.044

8 ystem

4

5

6

o
a
p
(
t
b
t
a

w
d
f
r

s
d
a
h
t
r
w
(
a
fi
r
a

t
e
d
b
D
t
b
r
f
d
m
h
d
d
t
“

t
d
r
a
m
F
g
n
r
d

a
t

8 A. Tang, M.F. Lau / The Journal of S

. a decision maker is not aware of the implications of their design
(Guindon and Curtis, 1988),

. a chosen design creates conflicts in other parts of the system
because not all constraints are integrated (Guindon and Curtis,
1988),

. designers make biased and uninformed decisions (Stacy and
MacMillan, 1995; Tang, 2011).

Since software architecture is developed through iterations and
ver time, it is customary to review the proposed architecture
t the end of each iteration to ensure its validity. Such a review
rocess is usually referred to as the software architecture review
Maranzano et al., 2005). Depending on the policies of the organiza-
ions, a software architecture review can be performed informally
y some architects themselves or formally by quality assurance
eams. Reviews aim to reduce the chance and the costs of correcting
ny major errors at later stages of development.

Despite the importance of design decision making, current soft-
are architecture review techniques are not effective in addressing
esign reasoning flaws. It is because general review techniques
ocus on architecture design artifacts instead of the logical design
easoning behind an architecture design.

Ideally, to address the aforementioned design reasoning flaws,
oftware architects need to share “everything” related to design
ecision and reasoning so that architecture reviewers could track
nd trace those design decisions easily, and then reviewers would
ave the knowledge to help find design issues. In this paper, the
erm “design issue” is used in a generic sense. Whenever a causal
elationship is illogical, it implies a potential issue in a design. Soft-
are architects usually use text documents with design diagrams

e.g. UML diagrams) to record and communicate their designs. If
n important design assumption is not documented, it can be dif-
cult for a reviewer to know that such an assumption exists, and
elate its relevance to a design. It is also difficult to trace an implicit
ssumption back to a particular design artifact or requirements.

In view of these situations, we propose to review software archi-
ectures by analyzing the association between different design
lements, hoping to identify (or, “re-identify”) and verify those
esign assumptions, reasoning, decisions and tacit knowledge used
y the architects in designing. Formally, we propose the concept of
esign Association Theory which theorizes that a software archi-

ecture design is a network of associations of causal relationships
etween design elements in a meaningful way. The associations
epresent the causal relationships in a design, that is, software arti-
acts and the way they are constructed exist for good reasons. A
esign must have logical causes between a solution and the require-
ents and context that it serves. Loosely speaking, our approach

elps reviewers to capture or “re-discover” those implicit and hid-
en reasoning and decisions made by software architects while
esigning. Once these “decisions” were represented as casual rela-
ionships, reviewers could then easily trace and track all these
decisions”, and review them to see whether they are reasonable.

We have two contributions. Firstly, based on Design Associa-
ion Theory, we describe a procedure for reviewing an architecture
esign to find design issues. This procedure is based on graphical
epresentation of design associations. Secondly, our aim is to help
rchitecture reviewers and designers identify missing design ele-
ents and systematically discover design issues through reasoning.

rom the design issues identified in our industrial case studies, we
eneralize them into eight different design reasoning failure sce-
arios. These eight reasoning failure scenarios depict how design
easoning can fail when vital information is not associated to key

esign elements.

Detailed discussions of our method is described in Section 3. We
pplied this method to review three industrial software architec-
ures and we found 31 new design issues and 90 scenario instances
s and Software 88 (2014) 87– 101

(Section 4). We discuss the lessons learned from these case studies
in Section 5, validity of our case studies in Section 6. Finally, Section
7 concludes the article.

2. Related work

Software design is a tricky business, especially designing highly
complex software systems. Design is said to be wicked (Rittel and
Webber, 1973), chaotic and ill-structured (Simon, 1973). The issue
of designing software is not only about its design complexity, it is
also about the ways people design. Humans are subject to cogni-
tive biases during design (Stacy and MacMillan, 1995; Tang, 2011)
and that can also cause design failures, resulting in poor quality
software systems.

Many software architecture review techniques have been pro-
posed in the research literature to validate architecture design and
address the issues mentioned. On one hand, there are qualitative
techniques such as Scenario-Based Analysis of Software Architec-
ture (SAAM) (Kazman et al., 1994), Software Architecture Review
and Assessment (SARA) (Obbink et al., 2002), Architecture Tradeoff
Analysis Method (ATAM) (Bass et al., 2003), Lightweight Architec-
ture Alternative Assessment Method (LAAAM) (Carriere, 2012) and
Tiny Architectural Review Approach (TARA) (Woods, 2012). On the
other hand, there are quantitative techniques such as Scenario-
Based Architecture Reengineering (SBAR) (Bengtsson and Bosch,
1998) and Cost Benefit Analysis Method (CBAM) (Kazman et al.,
2001). In this article, we propose an approach to qualitatively
review an architecture design. We will give a brief overview of
qualitative design review techniques and discuss their issues.

SAAM is a scenario-based review technique. The review of the
architecture is based on the scenarios of the intended uses of the
software. Since it is impractical, possibly infeasible, to generate all
possible scenarios, architecture reviewers evaluate an architecture
based on certain pre-selected scenarios. These scenarios are con-
sidered to be crucial to the quality of the architecture. As a result,
the quality of the review depends heavily on the selected scenarios
(Dobrica and Niemelä, 2002). For example, if the selected scenarios
could not be used to identify or reveal the flaws in some critical
assumptions and weaknesses of the architecture, there are prob-
lems in the “good-looking” architecture. Moreover, if the selected
scenarios are incomplete in the sense that they cannot coherently
address a particular requirement or their relative priorities are
unclear, the reviewers need to make a lot of assumptions that may
lead to biased results. Last, but not least, the selection of the sce-
narios might be biased as well.

The SARA Report (Obbink et al., 2002) provides guidance on
conducting architectural reviews. The report describes the review
inputs and outcomes in a review process and it suggests a checklist
of assessments. The report has highlighted the complexity of such
reviews.

The ATAM method is a scenario-based approach, and it faces the
same scenario-dependent issues as SAAM. ATAM’s focus is different
from SAAM. It aims at helping stakeholders understand the trade-
offs of architecture decisions with respect to the system’s quality
attribute requirements. LAAAM is a variation of ATAM in which
reviewers assess architectural strategies or principles against sce-
narios to evaluate architectural decisions (Carriere, 2012). This
method does not specifically address the often complex interre-
lated design issues. TARA is a less formal approach than SAAM
or ATAM. It is a lightweight architectural evaluation approach in

which the reviewers explore and evaluate the context, require-
ments, software implementation and deployment of a system
(Woods, 2012). This approach relies heavily on expert judgments
and revealing deep architectural issues depends on their expertise.

ystem

s
s
d
a
n
f
e
t
d
T
a
l
d
a

t
e
T
m
a
e
t
d
t
r
e
a
2
f
c

3

s
d
d
o
n
i
a

c
s
t
c
r
n
d
(
c
d

t
i
v
d
i
d
d

3

a

A. Tang, M.F. Lau / The Journal of S

Zannier et al. (2007) have found that the structure of problem
pace is important to design. The more structured the problem
pace is, the more rational the approach is taken by designers. Some
esigners use problem framing as a strategy to plan design activities
nd to manage complexity and the interplay of design compo-
ents. Hall et al. (2002) and Nuseibeh (2001) suggest that problem

rames provide a means of analyzing and decomposing problems,
nabling a designer to iterate between the problem structure and
he solution structure. Maher et al. (1996) suggest that solutions are
eveloped as problems are identified during design explorations.
hese research have suggested that structuring problem space is
n important element of design. However, the tracing of the prob-
ems and validating the proposed solutions against the identified
esign problems have not been a key element of any of the software
rchitecture review methods.

Reviewers typically review architecture solutions, and not how
he solutions are derived. This can be problematic as some design-
rs do not explicitly identify the problems that they need to solve.
here are implications in such situations. Firstly, design problems
ay be over simplified and not explored thoroughly. Secondly,

 designer may anchor on a solution, and is reluctant to shift
ven in view of contradictory information. This has been found in
he behavior of professional designers (Tang et al., 2010). Thirdly,
esigners may react to design issues instead of tracing the issues to
heir root causes. The synthesis of the problem and solution spaces
equires software design knowledge as well as domain knowl-
dge, that requires reflection-in-action (Schön, 1983). Design is also

 critical conversation between ideation and evaluation (McCall,
010). Reflecting on what problems a design must solve is there-
ore essential, especially when a reviewer is faced with a new and
omplex situation.

. Architecture design decisions review framework

Large software systems require many architectural design deci-
ions to be made, and many stakeholders make them. Some
ecisions are made in the early stages of a project, some are made
uring design, and even in implementation. As decisions are made
ver time by many different stakeholders, the decision makers may
ot be aware that there might be issues in them. These issues

nclude incomplete information, ambiguous problem definition
nd so on. They can affect the quality of an architecture.

The methods software architects commonly used to record and
ommunicate a design are text documents with design diagrams
uch as UML diagrams. Some organizations use CASE tools and
raceability tools. However, design knowledge is often not suffi-
iently documented and communicated, they do not contain design
easoning. Many researchers have argued that designers are ratio-
ally bounded (Simon, 1996) and instead of rationalizing with a
esign, designers behave in an opportunistic way when designing
Guindon, 1990). One of the reasons is due to the limited cognitive
apacity of designers and reviewers to process all requirements and
esign information simultaneously.

On this premise, designers can miss essential knowledge needed
o design. If this essential knowledge can be readily accessed, such
ssues may potentially be avoided. In this proposed framework, we
iew a design as the result of many interrelated rational design
ecisions. Each design artifact is justified by the useful purposes

t serves, such as some requirements. In this section, we describe
esign causal relationships and the different ways in which missing
esign knowledge negatively impacts on a design.
.1. Design association

Design is a creative process (Simon, 1996). It is the ability of
 designer to associate all relevant information and knowledge
s and Software 88 (2014) 87– 101 89

that they can access. In Design Association Theory (DAT), we
theorize that architecture design is about associating key design
elements and decisions, and reasoning with them to create a
design.

An association is the establishment of causal relationships
between key design elements. It has been suggested that design
rationale should be created as a first class entity (Tyree and
Akerman, 2005). Frameworks and standards are invented to depict
the elements and the relationships in a design model. The main
elements are design concerns (ISO/IEC, 2010), design decisions
(Zimmermann, 2012; Jansen and Bosch, 2005) and design outcomes
(ISO/IEC, 2010; de Boer et al., 2007). Some models such as the one
suggested by Kruchten depict associations in terms of an ontology
for design decisions (Kruchten, 2004). He suggests that decisions
relate to each other in many ways such as constraining, subsuming
and overriding. On the other hand, there are some general models
that leave out specific relationship details. They model the causal
relationships between design concerns and outcomes. One such
model is Tang et al. (2006). We choose to use causal relationships
to represent the causes and effects of a design because of its logi-
cality and simplicity. For instance, a requirement motivates some
design problems to be solved, and thus we end up with a software
package. We suggest that such associations allow designers and
reviewers to reason logically.

There are three design elements represented in DAT: (a) system
concerns; (b) design problems; (c) design solution options. These
are based on the ISO/IEC-42010 architecture rationale model shown
in Fig. 1.

System concerns are the things that specify the goals of a
design and influence design decisions. Examples are functional
requirements, non-functional requirements, project contexts and
technical constraints from a chosen operating platform. An Archi-
tecture Decision is about solving some kind of design problem. Design
is a process of co-evolving between creating solutions and defining
design problems (Dorst and Cross, 2001). As such, it is important to
explicitly represent design problem in order for a solution to make
sense. The outcome of a design is a design solution and some solution
alternatives or options.

A typical architecture document describes the outcome of a
design, using text, UML or other description languages. These
design descriptions typically do not describe how a design is cre-
ated, nor do they describe the implications of a design change. Little
design rationale is provided. There is typically little information
on whether all requirements are satisfied without any contra-
dictions. Design Association Theory is aimed at overcoming this
issue.

Although associations between key design elements are used,
we differentiate between DAT and the idea of traceability such as
Spanoudakis et al. (2004), Pinheiro (2000), and Ramesh and Jarke
(2001). The former concept is aimed at discovering ideas and asso-
ciating them together to reason with a design. The latter is aimed
at creating and using trace links to help retrieve requirements and
design information. The use of associations allows designers and
reviewers to reason with a design, and additionally, it enhances
the traceability of a design.

3.2. Graphical representation of design association

In order to apply DAT, we use the Architecture Rationale and
Elements Linkage (AREL) meta-model to represent design decisions
graphically (Tang and van Vliet, 2009), then we verify the architec-

ture design by checking the associations and the design elements.
Architecture design has many cross-cutting concerns, some of them
can be easily omitted if an architect does not associate these con-
cerns. To find any issues in an architecture design, architects and

90 A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101

Fig. 1. ISO/IEC 42010 – architecture rationale.

 of arc

r
h
d
A
i
E

t
r
a
a
i
r
s
g
d

w

i
d

h

Fig. 2. A causal relationship

eviewers1 need to understand design problems, realize what and
ow requirements can be satisfied, and assess the suitability of a
esign solution in achieving related goals and requirements. The
REL meta-model shown in Fig. 2 depicts a causal relationship. Its

mplementation is by using stereotyped classes in a UML tool called
nterprise Architect (EA).2

Design concern comprises design requirements and design con-
exts. By requirements we refer to architecturally significant
equirements (ASRs) that have a major impact on the design of

 software system (Bass et al., 2003). Both functional and quality
ttribute requirements are ASRs. Design contexts are conditions that
nfluence design decisions but they are not specified explicitly as
equirements. For instance, prior design choices, existing IT policy,
kill-sets of the workforce, time-to-market needs and limited bud-
et often create constraints and assumptions that influence design

ecisions.

Design problems arise from addressing design concerns. As soft-
are architecture design is about creating software artifacts to

1 Architects can use such associations in their own design and decision mak-
ng processes whereas reviewers can use the associations to evaluate the proposed
esign solutions.
2 EA is available from Sparx and the AREL stereotype package can be found in
ttp://www.ict.swin.edu.au/personal/atang/ArelStereotypePackage.zip.
hitecture decision making.

perform some actions, a design problem is about how to create
those artifacts and define the behaviors of those artifacts. Postulat-
ing a design problem is an important step to exploring the solution
(Maher et al., 1996). Explicit representation of the problem space
is also an important step (Goldschmidt, 1997). For instance, a com-
mon design task of an architect is how to allow users to input
some data. During the development of this solution, an architect
needs to ask how to create a user interface that allows efficient
data input, or reduce eye movements across the screen, or how
to make this software flexible for data inputs in different business
areas.

3.3. Design review procedure based on association

One objective of this research is to find a review procedure to
help identify design issues based on causal relationships. To do so,
we need to build causal relationships from existing system specifi-
cations. DAT underpins this model with which we construct a causal
relationship model. We followed an iterative five-step review pro-

cedure: (1) extraction of requirements; (2) extraction of design;
(3) construction of causal relationships; (4) discovery of potential
design issues; (5) verification and confirmation of design issues. We
suggest that parts of this procedure can be used during architectural
design phase as well as for preparing a design.

http://www.ict.swin.edu.au/personal/atang/ArelStereotypePackage.zip

A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101 91

ing fai

1

2

3

Fig. 3. Design reason

. Extraction of requirements – The process of transforming
from textual specifications to requirement nodes in a causal
relationship took place semi-automatically. For requirements
specifications that are well-structured and requirements sys-
tematically labeled, a tool was created to scan the specifications,
in Microsoft Word format, and to extract the requirements auto-
matically. The extracted requirements are created as Design
Concerns nodes in a UML tool called Enterprise Architect (EA).
Some requirement specifications are not systematically struc-
tured. If a requirement cannot be automatically identified by the
scanning tool because they do not have a clear requirement label
in the specification, they are manually added to the AREL model
in EA. The requirements are manually grouped by functional
requirements (FR) and non-functional requirements (NFR) under
separate folders with the UML model, and then they are further
manually sub-grouped by sub-systems or different types of NFRs.
The grouping helps reviewers organize and find information.

. Extraction of design – an extraction process is manually applied
to the architecture design specifications, to transform textual
specifications to design nodes in a causal relationship. Solution
and solution alternative nodes are created in AREL models. The
design nodes are grouped in accordance to the logical design of
the system, such as by sub-systems, layers or components.

. Construction of causal relationships – when the requirements

and design models are in place, the associations between the
causes and effects are reconstructed manually. The review-
ers go through the graphs and reason how the requirements

Fig. 4. Design reasoning failu
lure – scenarios 1–3.

are causally related to the design. The design problems are
constructed according to the requirements and contexts. The
requirements and contexts are associated with design problems.
If reviewers suspect that certain requirements or contexts might
be missing, they can check with the architects. Reviewers asso-
ciate each design problem to its design solutions. It is a process of
visiting each node in a graph and asking ourselves some simple
questions:
• Design concern – what design problem this design concern

might imply?
• Design problem – what potential requirements or contexts

might affect a design problem? What possible solutions are
available?

• Design solution – what problem does this solution solve? What
requirements do this solution satisfy? What design problems
matter to this solution?

4. Discovery of potential design issues – the basic premise of Design
Association Theory is that a design solution is a logical con-
sequence of the goals and problems that it is trying to solve.
An AREL graph is constructed and analyzed to find relation-
ships that do not make sense. At this stage, common design
issues such as missing requirements and conflicting require-
ments are example issues to be mindful of. Any design concerns
and design solutions, in the form of notes, that are considered

illogical or doubtful are tagged. For instance, a solution that
does not serve any particular requirement or a design problem
is tagged with notes to indicate ambiguity (see the notes on the

re – scenarios 4 and 5.

92 A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101

Fig. 5. Design reasoning failu

5

Fig. 6. Design reasoning failure – scenario 8.

right-hand-side in Fig. 7). Through this step, the associations and
the design elements in the graph are questioned. It is possible to
not find a logical answer using the documented elements in the
graph. Such situations raise suspicions that something might be
missing. The missing element might be a requirement, context,
a problem or a solution option. These situations are flagged as
potential issues for verification, and they can be checked with
the architects through regular interactions such as conversations
and meetings.

. Verification and confirmation of design issues with architects –
with a list of the suspected design issues, reviewers can discuss
with software architects and designers to verify if these issues

are real or not. The architects may confirm or reject the issues
with explanations. In case of a confirmed issue, an architect can
help to identify the root causes that lead to the issue, and explain
the missing associations, or clarify the design considerations.
re – scenarios 6 and 7.

Some issues that we have found in our study are rejected, they
are issues that might be due to information missing from the
specifications or it might be that reviewers misread the situation.
Missing information maybe due to undocumented knowledge or
misunderstanding. Such tacit knowledge can be stored as email,
contained in someone’s heads, and meeting minutes etc. In case
of a confirmed issue, an architect can help to identify the root
causes that lead to the design issue, and identify the missing
associations and/or missing elements in the logical reasoning.

3.4. Common design reasoning failure scenarios

Meyer (1985) observed that common mistakes are made in
design documentation. Design can have contradictions; require-
ments can be ambiguous; there are noises in design description,
some aspects of a design can be omitted. Standard architectural
description languages such as UML cannot fix these mistakes. Some
researchers have investigated using formalism to help design. For-
mal representation of architecture model has limited success so
far because it is hard to use. It is also difficult, if not impossible,
to represent certain requirements and contexts (e.g., representing
usability requirements formally). Informal architectural descrip-
tion such as text and diagrams are insufficient and imprecise, and
formal architectural description cannot represent all architectural
significant requirements. So what representation should be used
by architects?

Architects and reviewers need to explore how design issues
exhibit themselves in terms of missing design concerns, design
problems, design solutions or the links between them. Our premise
is that a coherent and logical design can be explained by its
key design elements. So if some important premises or prob-
lem definitions are missing, architectural design issues may arise.
Potential design issues could be identified through the lack of
logical explanations of a design. For instance, the behavior of a
solution does not satisfy any requirements or solve any problems.
The identification of design issues is possible by viewing design
concerns, design problems and design solutions together as causal
relationships.

We anticipate some common design reasoning failures that
cause design issues. We call them design reasoning failure sce-

narios. If architects and reviewers could easily recognize these
failure scenarios, it might help them to identify design issues more
easily. Below we outline eight design reasoning failure scenar-
ios that are found in this study. The first five scenarios are easily

A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101 93

e veri

r
f

1

d

Fig. 7. Architectur

ecognized. Actual design issues are found in all eight reasoning
ailure scenarios in our case studies.

 DI1-ReqMissing Requirement is missing or ambiguous – when a
requirement is missing in a design problem (meaning that it has
not been specified), the architects and designers would have no
knowledge about its existence and, hence, could not make the
right design decisions. On the other hand, when a requirement is
ambiguously defined in a design problem so that the architects
and designers choose not to consider it when making the design
decision (meaning that there is a missing association, denoted by
dotted line/arrow, between the requirement and the design deci-
sion), the architects and designers again could not make the right
design decisions. Another possibility of ambiguous requirement
is that the requirement is not specified with regards to the design
problem definition. Hence, certain details of a requirement are
implicitly known to some architects and designers only. Such
implicit details may contradict to or conflict with other design
problem, requirement, context and solution. This situation could
not create the right design decisions.

In summary, when a requirement is ambiguous or missing
in the design problem, the corresponding design solution is

either incomplete or inaccurate. Scenario 1 in Fig. 3 depicts this
situation.3 A design solution was proposed by architects to sat-
isfy known requirement (e.g., Requirement 2 in the figure). This

3 In these AREL graphs, the shaded boxes depict problematic areas. Dotted lines
epict missing associations.
fication example.

solution may not work with missing or ambiguous requirements,
and so its suitability becomes doubtful.

2 DI2-ReqConflict Requirements conflicting each other – when no
possible solution is available to satisfy two requirements simul-
taneously, then we say that these two requirements are in
conflict with each other. This situation happens when architects
and designers never think to consider these two requirements
together, or they do not frame the design problem correctly to
bring them together. It may also be that requirements were pro-
posed by different stakeholders, and if no one associates them as
a single design problem, the conflict goes unnoticed. Scenario 2
in Fig. 3 depicts this situation. Reviewers using AREL could pick
this up, whenever there is a need to simultaneously satisfy two
requirements and there is no such design solution documented
in the design. A more generalized situation would be multiple
requirements conflicting with each other.

3 DI3-ReqDesignConflict Requirements conflicting with design –
when a chosen solution does not satisfy a requirement. Assuming
that a requirement is well specified, this can happen if a solu-
tion is created without considerations of the requirement it tries
to fulfill. Hence, there is no justification of the chosen solution.
Scenario 3 in Fig. 3 depicts this situation. Once the reviewers
establish a causal relationship between a chosen solution and
a requirement using AREL, they would then check whether the
chosen solution could satisfy the requirement it needs to satisfy.
If it could not, it falls into this design issue. A more generalized

situation would be a chosen solution not being able to satisfy
multiple requirements.

4 DI4-ContextMissing Design context is missing or ambiguous
– design context describes factors that can shape a design

9 ystem

5

6

7

8

4 A. Tang, M.F. Lau / The Journal of S

problem and a solution. A context is an environmental factor that
influences a decision. Contexts are not specified as requirements.
Examples of contexts are: a technical constraint from a previously
chosen design; a scheduled deadline; technological knowledge
of personnel. They can influence a decision and make a large
impact. Similar to the situation of missing requirements above,
if a relevant context is missing resulting in making an implicit
assumption, an architect may not have considered the context in
their design problem definition. The resulting solution may not
satisfy the needs. Scenario 4 in Fig. 4 depicts this situation.

Similar to the situation of ambiguous requirements, when a
design context is ambiguous so that an architect chooses not to
consider it when making the design decision (meaning that there
is a missing association between the context and the decision).
The resulting solution may not meet the demands. A more gen-
eralized situation would be multiple design contexts are missing
or ambiguous.

 DI5-SolnConflict Design solutions conflicting each other – two
design solutions can conflict with each other. This can happen,
whenever two design solutions are applied together, their behav-
ior are inconsistent with each other or some functionality would
not work properly, and there is no feasible solution to make them
co-exist. Scenario 5 in Fig. 4 depicts this situation. A more gen-
eralized situation would be multiple design solutions conflicting
with each other.

 DI6-ProblemMissing Design problem is missing or ambiguous – a
design problem is missing, ambiguous, ill-defined, undefined or
irrelevant. Most of the time, reviewer has a solution but needs to
associate the solution with the problem it tries to satisfy. When
they tried to associate a solution to some design requirements or
contexts, they had to reason what problems the architects were
trying to solve. This issue occurs whenever a solution does not
address relevant requirements and contexts, or it was unclear
why the solution should exist. It could be because an architect
does not clearly understand what design problem to solve. This
is sometimes called a solution begging for a problem (see scenario
6, Fig. 5).

 DI7-NoAlternative No alternative design option – this happens
when one and only one single design option is considered where
multiple and equally feasible options exist. Typically an architect
does not justify the reason for choosing a solution. Alterna-
tively, reviewers could find this out by asking why a particular
solution was chosen where there could have been alterna-
tive(s); whether the architects considered alternative options;
or whether they discarded any alternatives for real good rea-
sons. The lack of considerations for other potential options limit
the opportunity to find a more suitable solution, and to explore
other related design problems, requirements and contexts that
exist. This may be a result of an anchoring bias (see scenario 7,
Fig. 5).

An architect may have considered the alternatives but not doc-
ument them. A reviewer may then raise this as a design issue
because as there is no way to tell whether design alternatives
have been considered or not. If architects can demonstrate their
considerations and alternatives, it is not an issue. Otherwise it is
a potential issue.

 DI8-IgnoreConseq No consideration of further potential negative
consequences – when a solution is chosen, the impact of this solu-
tion on the rest of the design is not well considered. A chosen
solution adds new contexts that influence further design, and
some of these contexts may have negative impacts. Architects
must consider what these implications are and what design prob-

lems might arise. If architects do not look-ahead, potential design
problems can be ignored initially to surface later. For instance,
choosing an open source software may have implications on soft-
ware maintainability (see scenario 8, Fig. 6).
s and Software 88 (2014) 87– 101

4. Industry case studies

Causal association between design elements such as require-
ments, design context, design problems and solutions underpins
the Design Association Theory. In order to test the theory and the
procedure, we chose to use a multiple-case study research method-
ology. Case studies require collecting empirical data in a real-life
context for investigating some phenomenon (Yin, 2003; Verner
et al., 2009).

We carried out three industry case studies. In each case study,
the specifications were provided by the participating company,
they were the up-to-date specifications of the systems. Three com-
panies agreed to participate in this research. We obfuscate the
information to assure confidentiality.

Case-Manufacturer was a system designed to monitor vehicle
fleets. The system gathered data such as GPS location and vehi-
cle information from Electronic Control Units (ECUs) in a fleet.
Users interacted with the vehicles remotely through some com-
munication networks. When we studied the case, this system was
undergoing user acceptance testing phase.

Case-Engineering was a knowledge management system that
supports collection and dissemination of engineering documents.
Workflow processes were designed to manage document approvals
and access. The requirement specification had been signed off but
the design specification was yet to be reviewed.

Case-Travel was a loyalty system to monitor customers’ activi-
ties and to support customers claiming rewards. When we studied
the case, the system was already in production.

4.1. Case study method

In each case study, we spent approximately six man weeks in
total. We used the five-step procedure defined in Section 3.3. We
spent approximately four man weeks to extract the design concerns
and the design solutions from the documented specifications in
each case study (step 1 and step 2). A lot of time was spent on read-
ing the specifications to ensure the correctness of data elicitation.
The specifications were transformed into AREL models and causal
relationships were constructed (step 3). When we had questions,
we either phoned or met the architects to clarify the issues.

During model construction, we analyzed the model to discover
potential issues (step 4). The identification of potential issues was
continuous during the study. The verification of the results with the
architects were through face-to-face meetings and telephone con-
ferences. The AREL graphs were shown to the architects to explain
the relationships we found during the study period and at the end
of the study period. Any issues discovered were validated by the
architects (step 5). At the end of each case study, we conducted
a final meeting to summarize our findings and had the architects
validate all of our findings.

Fig. 7 shows a typical example of an AREL graph that was
constructed. The top left side of the graph shows the association
between users’ geography and the types of equipment they use
and the architecture style (i.e. the choice of using web-based solu-
tion). The notes (partial) on the right hand side are annotations of
a potential design issue to be verified.

After the design issues were confirmed with the architects, we
analyzed the reasoning failures behind each identified issue. This is
a step to generalize the issues into design reasoning failure sce-
narios by how a design issue comes to exist. The objective was
to understand how the causal relationships in design broke down.
Were some requirements missing? Or were some associations that

should have existed between requirements and design problem
went missing? From the analysis of the design issues, we have iden-
tified a total of eight general design reasoning failure scenarios.
These design issues are instances of failure scenarios, we also call

ystems and Software 88 (2014) 87– 101 95

t
i

1

2

3

r
n
N

4

t
d
p
c
s
a
c
e

i
p
m
t
s
c
f
i
d
d

4

o
w
t
w

r
m
a
t
A
a
w
r
t

1

2

A. Tang, M.F. Lau / The Journal of S

hem scenario instances. The process of identifying the scenario
nstances are as follows:

. Examine a confirmed design issue to determine what was miss-
ing in the reasoning, in terms of the causal relationship.

. Analyze the missing associations and information for mapping
design issue to one or more design reasoning failure scenar-
ios (see Table 2). For each issue, we often map to more than
one design reasoning failure scenarios. For instance, a missing
context is often coupled with ambiguous design problem.

. In the cases of DI6-ProblemMissing, DI7-NoAlternative, and DI8-
Ignore-Conseq, we started to see instances of these scenarios,
and that allowed us to deduce that they are general scenarios.

Through this analysis, we confirmed the first five general design
easoning failure scenarios, and we discovered another three
ew design reasoning failure scenarios, DI6-ProblemMissing, DI7-
oAlternative, and DI8-IgnoreConseq, discussed in Section 3.4.

.2. Research findings

With the graphs that were constructed, architects were asked
o confirm or refute those identified potential design issues. The
iscussion between the architects and us then focused on the inter-
retations of the causal relationships. The explanatory power in the
ausal relationships helped to review the design correctness. This
tep seemed to avoid discussions based on subjective opinions such
s a particular design choice is better or worse than another design
hoice, and allowed the discussions to focus on why the design
xisted.

Table 1 shows the summary statistics of the three case stud-
es. Design concerns are design requirements and contexts. Design
roblems are the nodes that we constructed based on the require-
ents, contexts and solutions. Design solutions are elicited from

he specifications. Documented alternatives are the alternative
olutions that have been considered and documented in the specifi-
ations. Number of associations is a tally of the associations that we
ound. Potential issues are the issues that we discovered. If potential
ssues were confirmed by the architects, they become confirmed
esign issues. The AREL graphs were updated as we verified the
esign issues with the architects.

.2.1. Instances of design reasoning failure scenarios
After confirming the design issues with the architects, we

btained a list of real design issues. We then analyzed the data to
ork out which design reasoning failure scenario an issue belongs

o. This is a step to classify an issue by scenario to indicate what
ent wrong in terms of design reasoning.

Let us consider an example in Case-Engineering. One of the
equirements was to let user access the data through the document
anagement system (DMS) as well as using existing software such

s email and through equipment such as mobile devices to get to
hat data. We questioned how the mobile devices could access DMS.
fter some exploration, it was found that current mobile devices
re incompatible with the new DMS. Certain types of documents
ithin the DMS such as emails and engineering drawings cannot be

endered to a mobile device. In this particular issue, we could see
hat it is a failure that can be explained by a number of scenarios:

 The requirement is ambiguous (DI1-ReqMissing) – there is a blan-
ket statement which states that all data in DMS can be accessed
via mobile devices. There are no specifics to distinguish the dif-

ferent types of documents that need to be rendered to mobile
devices.

 Requirement conflicting with design (DI3-ReqDesignConflict) –
when the requirement is clarified, it is found that the existing
Fig. 8. An instance of ReqMissing in Case-Manufacturer.

design cannot satisfy the requirements because some document
types such as engineering drawings need specialized rendering
software and cannot be shown on mobile devices.

3 No alternative solution (DI7-NoAlternative) – when deciding on
which software to use to render to mobile devices, the chosen
solution is the standard one offered by the DMS, there was no
consideration of any other plugins that could be used to render
the data.

4 No consideration of consequences (DI8-IgnoreConseq) – there is
no consideration of how the DMS can integrate with the email
system to extract the email item, or how special type of draw-
ings such as AutoCAD can be rendered. It was also found that
there was no consideration of the usability of the system on data
conversion. These issues form a chain of questions that affect the
viability of a solution.

When we analyzed each design issue using Design Associa-
tion Theory, we observe that a design issue may have more than
one design reasoning failure causes. Each of our proposed design
reasoning failure scenario shows a cause of why a design issue hap-
pens. In the following, we selectively describe some of these failure
scenario instances as examples.

Requirement is missing or ambiguous. This selected instance
explains why a design solution is doubtful. In Case-Manufacturer,
many files are required to be uploaded into the system. There is also
a general requirement for security. When considering the require-
ment for uploading files, the architects did not consider the security
requirement at the same time. The architects had not interpreted
the general security requirement in terms of upload threat, and
the architects did not specify, implicitly or explicitly, that there
would be a design problem of tackling virus check in file uploads. As
no virus checking requirement was specified, there is no design to
cater for it. This is a case of a missing requirement. The highlighted
areas in Fig. 8 show the issue.

Requirements conflicting each other. In Case-Engineering, one of
the requirements for newly created documents in the knowledge
management system (KMS) is to inherit document access control
properties from the parent folder. However, there is a special type
of document which access control properties cannot be inherited.
Another requirement stated that the control properties of such spe-

cial documents must be manually set-up and approved. These two
requirements were in conflict with each other. This conflict was
not noticed before our review. As a result of this discovery, the first
requirement was modified to exclude the inheritance of the special

96 A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101

Table 1
Summary statistics (in total number) from the three case studies.

Design concerns Design problems Design solns Document’d alternatives No. of Assoc’ns Potential issues Confirmed issues

Case-Manuf. 65 38 57 16 192 11 9
Case-Eng. 419 49 86 0 304 92 19a

Case-Travel 74 34 50 2 195 11 3

, and the architects were not available to continue with the review dues to resignation.
O been further improved.

d
f

r
n
k
t
W
w
n
t
d

i
t
s
t
H
s
s
s
c

T
D

a We managed to confirm 19 design issues out of the 45 potential design issues
therwise, more design issues could possibly be found and our analysis could have

ocument type. The conflict was resolved and a new solution was
ound (Fig. 9).

Requirements conflicting with design. In Case-Engineering, one
equirement was to allow users to retrieve documents from a
etwork drive. The proposed solution was to use the standard
nowledge management system (KMS) user interface to access
he network drive for the retrieval. This solution was infeasible.

hen we asked how documents could be transferred to the net-
ork drive, the architects then realized that the KMS package had
o facilities to synchronize the files in KMS to the network drive in
he current design. The requirement is in conflict with the design
ue to this newly discovered issue.

Design context is missing or ambiguous. One instance we found
n Case-Manufacturer was the decision to use a dropdown list box
hat consisted of over 300 items prompting for user selection. In
ome applications such a design may be fine. For instance, when
he items in the dropdown list box are ordered alphabetically.
owever, when this decision was made, the architect did not con-

ider the limitation of the development framework that they had

elected. The development framework provided a list box class that
upport displaying only 20 items at a time for user selection. Such a
onstraint in the development framework together with the design

able 2
esign issues classified by scenario.

Issue Id DI1 DI2 DI3 DI4

Case-Manufacturer
Issue 1

Issue 2

Issue 3 X

Issue 4

Issue 5 X X
Issue 6 X

Issue 7 X

Issue 8 X X
Issue 9 X

Case-Engineering
Issue 1 X

Issue 2 X X

Issue 3 X X
Issue 4 X X X

Issue 5 X X

Issue 6 X X
Issue 7 X X

Issue 8 X X X

Issue 9 X X

Issue 10 X X X

Issue 11

Issue 12 X X X

Issue 13

Issue 14 X X

Issue 15 X X X

Issue 16

Issue 17 X X X

Issue 18

Issue 19 X

Case-Travel
Issue 1 X X
Issue 2 X X

Issue 3
Fig. 9. An instance of ReqConflict in Case-Engineering.

 DI5 DI6 DI7 DI8

X
X X

X
X X

X X
X X X

X X X

X X
X X

X
X

X
X
X
X

X X
X X X

X X
X
X

X
X X
X X X
X X

X
X X

ystems and Software 88 (2014) 87– 101 97

d
h
T
o
t
r
t

E
s
p
fi
H
w
b
s

m
T
a
p
t
s
s
a

i
a
t
d
u
i
T
t
g
w
w
d

C
m
t
t
a
X
p
a
F

4

r
t
o

s
i
m
i

1

A. Tang, M.F. Lau / The Journal of S

ecision had created an usability issue for the users because users
ad to keep paging down 20 items at a time to the right selection.
he presence or absence of the context (i.e. the display limitation
f the list box) had made a difference to usability design. The selec-
ion of a solution would have been quite different had the designer
ealized the constraint of the development framework, i.e. taking
his constraint as a context.

Design solutions conflicting each other. An example is from Case-
ngineering. The knowledge management system (KMS) has to
ynchronize with Lightweight Directory Access Protocol (LDAP)
eriodically in order to update with the latest user security pro-
les. In order for this to happen, public access has to be enabled.
owever, enabling public access would mean that external users
ould have more privilege to access the KMS than should have

een allowed during the synchronization process. The KMS and the
ynchronization process were in conflict with each other.

Design problem is missing or ambiguous. In Case-Travel, a require-
ent was for the website to achieve a certain performance level.

here was a design to measure performance throughput. A pack-
ged tool had been acquired for monitoring purpose. However, the
roblem of what exactly should be measured was undefined when
he procurement decision was made. It turned out that the web
ervice component needs the monitoring that this tool cannot mea-
ure. So the aim to monitor performance throughput could not be
chieved because of an ill-defined problem.

No alternative design option. An example from Case-Engineering
llustrates this design issue. In a business workflow, users required
dvance notification when certain action was due. When this solu-
ion was designed, the architects thought that this would work and
id not consider another design option. It turned out that the prod-
ct can support this but it required the users to have the expertise

n setting up the facility manually. Not all users were able to do this.
he alternative was considered after product release and it required
o add new software. The new product was not in the original bud-
et and therefore cannot be implemented. The users had to live
ith this shortcoming. In our case studies, we exclude those cases
here the architects did consider alternatives but choose not to
ocument them.

No consideration of further potential negative consequences. In
ase-Manufacturer, an architect wanted to store a group of infor-
ation in a database. For ease of retrieval, he decided to store into

he database in XML format. He did not consider the consequence
hat in doing so, the data scheme had to be updated even with

 minute change. When the schema needs to be maintained, the
ML solution became unusable due to constant maintenance by a
rogrammer. An alternative solution had to be found. In this case,

 one step look-ahead is required to identify the design issue (see
ig. 10).

.2.2. Scenario summary
We analyzed all the design issues in the three case studies to

eason why reasoning failures occur. When a design issue occurs,
here may be more than one reason why it happened. A summary
f the scenario instances by failure scenarios is shown in Table 2.

We group the confirmed design issues into eight design rea-
oning failure scenarios. A tally of the reasoning failure scenario
nstances found in each case study is listed in Table 3. From the sum-

ary of design issues in Table 1 and the reasoning failure scenario
nstances in Table 3, we make a number of observations:

 We note that architectural problems existed in all systems. Thus
architectural reviews that the architects performed in these three

systems do not guarantee to catch all design issues. We note fur-
ther that the more mature a system is, the fewer design issues
it contains. There are more confirmed design issues in Case-
Engineering (total of 19) which was undergoing construction
Fig. 10. An instance of IgnoreConsequence in Case-Manufacturer.

during our research period. In Case-Travel, which was a mature
system that had undergone architectural reviews and had been in
production for a few years, architectural design issues are fewer
(a total of 3).

2 For DI1-ReqMissing and DI2-ReqConflict, there were more sce-
nario instances in developing system (Case-Engineering and
Case-Manufacturer) but no instances in the production system
(Case-Travel). It is an indication that before a system is in place
for production use, some reasoning issues that are caused by (1)
ambiguous or missing requirements, and (2) conflicting require-
ments can be undetected.

3 For DI3-ReqDesignConflict, it is about requirements and design
conflicting with each other. This scenario was subtle and, most of
the time, was overlooked by designers and reviewers. However,
when the system was in testing or production stages, and more
information became available, there were fewer such failures.

4 For DI4-ContextMissing, it is about missing or ambiguous design
context. There is a total of 18 scenario instances, which is approx-
imately 20% of all scenario instances found. This is the most
common scenario found in our studies. This design issues were
subtle. It required the associating information from the context,
problem and solution spaces to find them.

5 DI5-SolnConflict concerns about conflicting design solutions. It
happened more often in new system than in mature system as
the new system had not undergone testing.

6 DI6-ProblemMissing is about missing or ambiguous design prob-
lems. In our case studies, we identified many such instances in
which the reason for a solution to exist was unclear. In other
words, a solution is begging for a problem. This scenario was com-

mon to all three case studies. When we interviewed the architects
to understand the contexts of their design, the architects also had
difficulties tracking these design reasoning issues.

98 A. Tang, M.F. Lau / The Journal of Systems and Software 88 (2014) 87– 101

Table 3
Number of design reasoning failure scenario instances identified in the case studies.

Case/stage DI1 DI2 DI3 DI4 DI5 DI6 DI7 DI8 Total

Case-Manuf./testing 2 0 1 5 0 5 5 4 22
Case-Eng./design 7 7 9 11 9 6 4 8 61

2

18

7

8

9

5

k
s
a
d
a
a
d
a
r

o
d
u
n
s
e
r
h
M
r
i
s
t
d

l
i
b
t
i
b
m

i
d
t

•

Case-Travel/production 0 0 2

Total 9 7 12

 DI7-NoAlternative is about the lack of design options. This sce-
nario was quite common in the design and testing stage. In our
case studies, we could not find any such instance in the produc-
tion system.

 DI8-IgnoreConseq is about a shortfall of reasoning that ignores
the consequences of a design decision. In such cases, this sce-
nario is subtle, it happens frequently and it exists in all three
case studies.

 Among the 90 scenario instances, 56 of them belong to
the first five scenarios, namely from DI1-ReqMissing to DI5-
SolnConflict, and 34 belong to the last three scenarios, namely
DI6-ProblemMissing, DI7-NoAlternative and DI8-IgnoreConseq.
Design issues from this latter group are approximately one-third
of the total instances found.

. Discussions and insights

Traditionally, architectural design review relies on (1) the
nowledge and experience of reviewers, (2) their ability to under-
tand the application domain, the technical issues and the range of
vailable solutions, and (3) their ability to judge if an architecture
esign is viable and can achieve the goals. Modern systems are large
nd complex, and hence, have many requirements, assumptions
nd constraints permeating throughout the systems, and many
esigners and stakeholders are involved. In such an environment,
n ad-hoc human-based architectural review approach may not
eveal deep design issues which are buried deep into a system.

In this study, we verified the software architecture designs
f three real-life systems by checking the causal relationships of
esign reasoning. Before carrying out the verification, we were
nfamiliar with the domains of the industry cases and so we can-
ot attribute our finding of design issues to our prior domain or
oftware design experience. Through constructing the AREL mod-
ls to represent the causal relationships of a design and systematic
easoning about the associations of various design elements, we
ave uncovered new design issues. Two of the three systems (Case-
anufacturer and Case-Travel) had already undergone architecture

eview process prior to our study, and yet we found new design
ssues via our association-based design review process. After the
tudy, we learned that some of our findings helped the architects
o improve their designs but we did not know how the architects
ealt with the other findings.

The results of this study indicate that (a) not all design prob-
ems can be found after software testing or even when a system is
n production; (b) conventional architectural review methods used
y designers of these systems were insufficient to uncover all archi-
ectural design issues; and (c) almost 20% (18 scenario instances
n DI4-ContextMissing out of all DIs) of the issues were caused
y missing or ambiguous context. Therefore, tacit, ambiguous or
issing context is one major cause of design reasoning issues.
Based on the results, we suggest that a systematic reason-

ng approach using associations can help to identify architectural
esign issues. In order to use this approach for software architec-

ure review, there are four key considerations:

Architectural knowledge can be tacit, and when they are not
explicitly associated to relevant design problems, design gaps
 1 1 0 1 7

 10 12 9 13 90

would occur. As such, explicit associations of design concerns,
problems and solutions allow reviewers to identify issues that
directly and indirectly influence decisions. This is especially use-
ful in situations where (a) the design itself is complex and interim
design decisions that are made by other designers are convoluted
and tacit; (b) the contexts of a design decision is tacit.

• An explicit causal relationship helps to associate related concepts.
Such association supports a creative process (Mednick, 1962) in
which designers and reviewers would consider more associa-
tions.

• A graphical representation of hierarchical information has shown
potentials to provide effective use of information because it helps
users to understand complex structure relationships (Robertson
et al., 1991) by reducing the cognitive load. A designer can see
more of the concerns and problems at a glance. As one of the
participating architects put it, “with this diagram, we can now
explain to our business users why such a design decision has been
made through a series of early design decisions”.

• Eight general design reasoning failure scenarios, in a causal rela-
tionship form, have been identified. Five of the scenarios are
known and three of the scenarios are new. They can be used as a
checklist or reminders in design reviews.

A software architect who designs a new system needs all
the relevant knowledge to make the right design decisions. This
model helps designers and reviewers to associate architectural
knowledge. However, if an architect lacks domain or technical
knowledge, or does not communicate well with other stakehold-
ers to get the relevant information, then failure scenarios like
DI1-ReqMissing to DI4-ContextMissing would still occur. If an
architect is knowledgeable, this method would provide a system-
atic method to help check for reasoning issues when dealing with
complex and unfamiliar problems. This method would be less use-
ful if a designer is already familiar with a design domain (Tang
and van Vliet, 2012). Such a situation may be a bit too ideal.
Nonetheless, our case studies demonstrate that our association-
based approach helps design reviewers with less experience and
domain knowledge than the architects identify important and new
design issues.

The examples used in this article to illustrate design reason-
ing failures reflect complex real-life situations. We would like to
further discuss the following points.

First, we explicitly define requirement (for the purpose of this
study) as user needs that are documented in requirement specifi-
cations. On the other hand, a context can be many things including
undocumented requirement, or conditions that simply influence
decisions. A context is discovered when a designer or reviewer
comes across an issue and recognizes that certain unsaid things
are factors that influence a decision. During our discussions with
the architects, some of these contexts were discovered, and some
of them could have been documented requirements.

Second, on many occasions we questioned missing require-
ments and contexts. The knowledge was tacit and undocumented,

but known by the architects. We did not record how many of these
instances were found. However, the existence of these incidents
demonstrated that when other stakeholders do not have the rele-
vant tacit knowledge about a decision, they cannot trace or follow

ystem

t
b
i
i
t
r
t

i
c
a
d
b
i
i
t
a

a
p
a
m
t
a
b
u
i
m
t
f
a
a
a
r

i
r
e
a
o
m
f

t
d
t
t
t
t
e
2

c
r
d
r
t
f

i
g
t
a
t
w
r

A. Tang, M.F. Lau / The Journal of S

he original logical design reasoning. As such, it may be useful to
uild the associations and causal relationships via AREL graphs dur-

ng a design decision process to (a) capture important decision
nformation whilst the tacit knowledge or the people who know
hat knowledge are still available; and (b) reduce the efforts of
ediscovering the causal relationships by someone less intimate to
he decisions.

Third, reasoning failure scenarios can be compounded. For
nstance, in DI8-IgnoreConseq, designers did not look ahead to
onsider the consequences of a design. This reasoning issue can
lso be attributed to missing context (DI4-ContextMissing) or to
esign question not been articulated (DI6-ProblemMissing). It may
e difficult to argue what is the root cause of a design reasoning

ssue. Whilst such philosophical arguments might be intellectually
ntriguing to software design researchers, we believe that practi-
ioners’ focus is to recognize design reasoning failure scenarios so
s to avoid design issues.

Fourth, DAT and its casual relationships are useful to validate
 design. Through a structured reasoning approach, this method
rovides a means for architects to reason their design objectively
nd for reviewers to evaluate the chosen solutions objectively. The
ethod may reduce decision biases. The creation of the casual rela-

ionship depends on many factors such as reviewer’s experiences
nd their familiarity with the problem domain. This issue is faced
y all architects and reviewers despite which review method they
se. DAT has the advantage of depicting associations clearly so that

t is easier for architects to trace ideas. This could help highlight
issing design ideas. As shown in our case studies, our architec-

ure reviewer(s) are considered to be less experienced and less
amiliar with the problem domain than the practicing architects,
nd yet with the causal relationship generated by DAT, we were
ble to identify new design issues that were overlooked by the
rchitects. This demonstrates the usefulness of DAT and the causal
elationships.

Fifth, even though DAT is proposed to support design review,
t could also be used as a design technique in which architects
eason their design and document the associations of their design
lements. In fact, we would argue that, while designing, there are
lways reasons for architects to choose a design solution instead
f another. Ideally, these reasons should all be captured and docu-
ented for review, and they should all be “objective” and “suitable

or the purposes of the organizations”.
Sixth, a key component of building causal relationships is

he identification and articulation of design problems. This step
epends largely on the knowledge and experience of an archi-
ect. Often this is performed implicitly by a software architect and
hey often do just enough to satisfice the goals. This way of design
hinking can be explained by the opportunistic nature of an archi-
ect (Guindon and Curtis, 1988). As such, architects may not fully
xplore or articulate all the problems that need solving (Tang et al.,
010).

Seventh, this method requires architects to articulate design
ontexts, design problems and associations, on top of documented
equirements and solutions. These are extra efforts to current
esign processes. However, the outcomes help designers and
eviewers to analyze and review architecture design more effec-
ively. The costs and benefits of such are good research for the
uture.

Finally, our proposed list of design reasoning failure scenarios
s by no means exhaustive. We expect this topic to be investi-
ated further and the list to be enhanced by us and others so that
he entire software community will benefit from its existence. We

lso note that the procedures undertaken in our research is only
he first step to demonstrate the use of such a method. Further
ork is required to refine the procedures for systematic design

eview.
s and Software 88 (2014) 87– 101 99

6. Research validity

In this study, we used a multiple-case study to understand how
reasoning failures might have caused software architecture design
issues. We gathered design information to demonstrate that design
issues can be revealed by inspecting design causal relationships.
The construct of this study is underpinned by the Design Associa-
tion Theory. The basic sources for architecture design validation
are: (a) existing system specifications; (b) reconstruction of the
causal relationships; and (c) verification of design reasoning by the
architects. In all three case studies, the architects confirmed that
the design issues that we identified, after eliminating false posi-
tives, were legitimate and they hope they could pick these issues
up earlier.

Internal validity is concerned with the examination of the rela-
tionships between the research method (i.e. research steps) and
the research data to ensure that there are no hidden variables that
silently affect the investigated objects. In all three case studies, the
method had shown to consistently helped to elicit the reasoning
failure scenarios. The design issues found by the researchers were
confirmed. Our research method was described to the architects as
part of the research design.

External validity concerns the extent, to which the findings
of the study are relevant for other situations and generalizable.
As far as we can tell, there is no similar study on reasoning and
software architecture design issues. However, results from cog-
nitive psychology may explain why architects and reviewers had
missed these issues. System complexity puts a high cognitive load
on a designer, and missing knowledge creates reasoning gaps. Our
method aims to detect reasoning failures and design shortfalls due
to these reasons. However, this method relies on the knowledge
and experience of the architects who employ it.

To provide independence of our research and analysis, we used
an independent researcher (i.e. non-author) to interpret the spec-
ifications and to create the reasoning graphs. This independent
researcher is a senior software architect who has been working
in the IT industry for eighteen years. After the AREL graphs were
created, all researchers checked the reasoning graphs before con-
ducting interviews with the architects. The experience level of the
researchers may have helped to identify some issues in these case
studies. However, all the identified issues were based on the miss-
ing associations. Our findings have shown that it is feasible to
logically identify design gaps through an association and reasoning
process. When the architects walked through the associations, they
checked and confirmed the design reasoning contained within.

7. Conclusion and future work

Software architecture reviews often depend on the experience
and knowledge of the reviewers. As not all design knowledge is
documented or shared, some knowledge that is essential to allow
reviewers to identify design issues can be missing, and some knowl-
edge that is available but not associated to the relevant design
issues can also be missing. This can hamper the effectiveness of
a design review.

We propose Design Association Theory in this paper. Design
association is for associating design concerns, design problems and
design solutions to show the causal relationships of why a design
should exist. Associations also has the useful side effect of allowing
designers and reviewers to trace design decisions. Through con-
structing such graphical models, we are able to discover new design

issues in two systems that have gone through architecture review.

We propose an association-based design review process. It
involves five steps, namely the extraction of requirements, extrac-
tion of design, construction of causal relationships between design

1 ystem

e
a
O
t
d
c
s

i
t
r
f
T
p

i
F
t
s
g

a
r
a
s
a

R

B

B

B

C

d

D

D

G

G

G

G

H

I

J

K

K

K

M

00 A. Tang, M.F. Lau / The Journal of S

lements and design solutions, discovery of potential design issues,
nd verification and confirmation of design issues with architects.
ur approach of using DAT is to help the reviewers to “re-capture”

he design reasoning and decisions made by the architects while
esigning, and evaluate them objectively. In addition, architects
ould also use DAT to document their design decision, design rea-
oning to help evaluate their design objectively.

In this article, we performed and reported our findings of three
ndustrial case studies, two of them had undergone internal archi-
ecture review. Our case study finds 90 design issues in these three
eal-life systems. Approximately one-third of these issues were
ound in the two systems that had gone through internal review.
his shows that our technique is capable of finding a significant
ortion of new design issues that could not be found otherwise.

Using the discovered design issues of all three cases, we have
dentified and generalized eight design reasoning failure scenarios.
ive of these eight scenarios are well known whereas the remaining
hree scenarios are found by reasoning about the causal relation-
hips between design elements. These eight scenarios can help
uide reviewers and designers to avoid reasoning failures.

Last, but not least, these eight design reasoning failure scenarios
re by no means exhaustive. We would like to explore other design
easoning failure scenarios to help designers and reviewers. We
lso recognize that the procedures to elicit the design issues are
implistic. We would like to refine our procedures so that designers
nd reviewers can use them systematically for better reasoning.

eferences

ass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. Addison
Wesley, Boston.

engtsson, P., Bosch, J., 1998. Scenario-based software architecture reenginee-
ring. In: Proceedings of Fifth International Conference on Software Reuse, pp.
308–317.

rooks, F., 2010. The Design of Design: Essays from a Computer Scientist. Addison-
Wesley Professional, Upper Saddle River, NJ.

arriere, J., 2005. Lightweight Architecture Alternative Assessment Method
(LAAAM). http://blogs.msdn.com/jeromyc/archive/2005/08/27/457081.aspx

e Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H., Clerc, V., Jansen, A., 2007. Archi-
tectural knowledge: Getting to the core. In: 3rd International Conference on the
Quality of Software-Architectures (QoSA), pp. 197–214.

obrica, L., Niemelä, E., 2002. A survey on software architecture analy-
sis methods. IEEE Transactions on Software Engineering 28 (7), 638–653,
http://dx.doi.org/10.1109/TSE.2002.1019479.

orst, K., Cross, N., 2001. Creativity in the design space: co-evolution of problem-
solution. Design Studies 22 (5), 425–437.

oldschmidt, G., 1997. Capturing indeterminism: representation in the design prob-
lem space. Design Studies 18 (4), 441–455.

uindon, R., Curtis, B.,1988. Control of cognitive processes during software design:
what tools are needed? In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, pp. 263–268.

uindon, R., Krasner, H., Curtis, B., 1987. Breakdowns and Processes During the
Early Activities of Software Design by Professionals. Ablex Publishing Corp.,
Norwood, NJ, pp. 65–82.

uindon, R., 1990. Designing the design process: exploiting opportunistic thoughts.
Human-Computer Interaction 5 (2), 305–344.

all, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L., 2002. Relating software
requirements and architectures using problem frames. In: IEEE Joint Interna-
tional Conference on Requirements Engineering, pp. 137–144.

SO/IEC, 2010. ISO/IEC CD1 42010 Systems and software engineering ? Architecture
description).

ansen, A., Bosch, J., 2005. Software architecture as a set of architectural design
decisions. In: Proceedings 5th IEEE/IFIP Working Conference on Software Archi-
tecture, pp. 109–120.

azman, R., Bass, L., Abowd, G., Webb, M., 1994. SAAM: a method for
analyzing the properties of software architectures. In: 16th International
Conference on Software Engineering, 1994, Proceedings. ICSE-16, pp. 81–90,
http://dx.doi.org/10.1109/ICSE.1994.296768.

azman, R., Asundi, J., Klein, M., 2001. Quantifying the costs and benefits of architec-
tural decisions. In: Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pp. 297–306.
ruchten, P., 2004. An ontology of architectural design decisions in software-
intensive systems. In: 2nd Groningen Workshop on Software Variability
Management.

aher, M.L., Poon, J., Boulanger, S., 1996. Formalising design exploration as co-
evolution: a combined gene approach. Tech. Rep. University of Sydney.
s and Software 88 (2014) 87– 101

Maranzano, J.F., Rozsyal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E., Weiss,
D.M., 2005. Architecture reviews: practice and experience. IEEE Software 22 (2),
34–43, http://dx.doi.org/10.1109/MS.2005.28.

McCall, R., 2010. Critical conversations: feedback as a stimulus to a creativity in
software design. Human Technology 6 (1), 11–37.

Mednick, S.A., 1962. The associative basis of the creative process. Psychological
Review 69, 220–232.

Meyer, B., 1985. On formalism in specifications. IEEE Software 2 (1), 6–26.
Nuseibeh, B., 2001. Weaving together requirements and architecture. IEEE Computer

34 (3), 115–119.
Obbink, H., Kruchten, P., Kozaczynski, W., Postema, H., Ran, A., Dominick, L., et al.,

2002. Software architecture review and assessment (SARA) report (version 1.0).
Tech. Rep.

Parnas, D., Weiss, D., 1987. Active design reviews: principles and practices.
Journal of Systems and Software 7 (4), 259–265, http://dx.doi.org/10.1016/
0164-1212(87)90025-2 http://www.sciencedirect.com/science/article/pii/
0164121287900252

Perry, D.E., Wolf, A.L., 1992. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17 (4), 40–52.

Pinheiro, F.A.C., 2000. Formal and informal aspects of requirements tracing. In:
Workshop em Engenharia de Requisitos. Brazil, pp. 1–21.

Ramesh, B., Jarke, M., 2001. Towards reference models for requirements traceability.
IEEE Transactions on Software Engineering 27 (1), 58–93.

Rittel, H.W.J., Webber, M.M., 1973. Dilemmas in a general theory of planning. Policy
Sciences 4 (2), 155–169.

Robertson, G.G., Mackinlay, J.D., Card, S.K.,1991. Cone trees: animated
3D visualizations of hierarchical information. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems: Reach-
ing through Technology, CHI’91. ACM, New York, NY, USA, pp. 189–194,
http://dx.doi.org/10.1145/108844.108883, ISBN 0-89791-383-3.

Schön, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action.
Basic Books, NY, USA.

Simon, H.A., 1973. The structure of ill structured problems. Artificial Intelligence 4
(3–4), 181–201, http://dx.doi.org/10.1016/0004-3702(73)90011-8.

Simon, H., 1996. The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts;
London, England.

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P., 2004. Rule-based genera-
tion of requirements traceability relations. Journal of Systems and Software 72
(2), 105–127.

Stacy, W., MacMillan, J., 1995. Cognitive bias in software engineering. Communica-
tions of the ACM 38 (6), 57–63.

Tang, A., van Vliet, H., 2012. Design strategy and software design effectiveness. IEEE
Software 29 (1), 51–55, http://dx.doi.org/10.1109/MS.2011.130.

Tang, A., van Vliet, H., 2009. Software Architecture Design Reasoning. Springer, Berlin
Heidelberg, pp. 155–174.

Tang, A., Jin, Y., Han, J., 2006. A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80 (6), 918–934.

Tang, A., Aleti, A., Burge, J., van Vliet, H., 2010. What makes software design effective?
Design Studies 31 (6), 614–640, http://dx.doi.org/10.1016/j.destud.2010.09.004.

Tang, A.,2011. Software designers, are you biased? In: Proceeding of the 6th Interna-
tional Workshop on SHAring and Reusing Architectural Knowledge; SHARK’11.
ACM, pp. 1–8, ISBN 978-1-4503-0596-9.

The Open Group, 2003. The Open Group Architecture Framework (v8.1
enterprise edition). The Open Group http://www.opengroup.org/
architecture/togaf/#download

Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying architecture. IEEE
Software 22 (2), 19–27.

Verner, J., Sampson, J., Tosic, V., Bakar, N., Kitchenham, B., 2009. Guidelines for
industrially-based multiple case studies in software engineering. In: Research
Challenges in Information Science, 2009. RCIS 2009. Third International Confer-
ence on, pp. 313–324, http://dx.doi.org/10.1109/RCIS.2009.5089295.

Woods, E., 2012. Industrial architectural assessment using tara. Journal of Systems
and Software 85 (9), 2034–2047.

Yin, R., 2003. Case Study Research Design and Methods. Applied Social Research
Methods Series, 3rd ed. Sage Publications, London.

Zannier, C., Chiasson, M., Maurer, F., 2007. A model of design decision making based
on empirical results of interviews with software designers. Information and
Software Technology 49 (6), 637–653.

Zimmermann, O.,2012. Architectural decision identification in architec-
tural patterns. In: Proceedings of the WICSA/ECSA 2012 Companion
Volume, WICSA/ECSA’12. ACM, New York, NY, USA, pp. 96–103,
http://dx.doi.org/10.1145/2361999.2362021, ISBN 978-1-4503-1568-5.

Antony Tang received the PhD degree in information technology from the
Swinburne University of Technology. He is an associate professor in Swinburne
University of Technology’s Faculty of Information and Communication Technology.
Prior to being a researcher, he had spent many years designing and developing soft-
ware systems. His research interests include software architecture design reasoning,
software development processes, software architecture and knowledge engineer-
ing. He is a member of the ACM and the IEEE.

Dr Man Fai Lau is a Senior Lecturer in the Faculty of Information and Communi-
cation Technologies, Swinburne University of Technology in Australia. He received

his BSc(Hons) degree from the University of Hong Kong and PhD degree in Soft-
ware Engineering from the University of Melbourne. His research interests include
software testing, software quality, enterprise systems, software specification and
computers in education.

http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0015
http://blogs.msdn.com/jeromyc/archive/2005/08/27/457081.aspx
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0025
dx.doi.org/10.1109/TSE.2002.1019479
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0070
dx.doi.org/10.1109/ICSE.1994.296768
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0090
dx.doi.org/10.1109/MS.2005.28
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0120
dx.doi.org/10.1016/0164-1212(87)90025-2
dx.doi.org/10.1016/0164-1212(87)90025-2
http://www.sciencedirect.com/science/article/pii/0164121287900252
http://www.sciencedirect.com/science/article/pii/0164121287900252
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0145
dx.doi.org/10.1145/108844.108883
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0155
dx.doi.org/10.1016/0004-3702(73)90011-8
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0175
dx.doi.org/10.1109/MS.2011.130
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0190
dx.doi.org/10.1016/j.destud.2010.09.004
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0200
http://www.opengroup.org/architecture/togaf/#download
http://www.opengroup.org/architecture/togaf/#download
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0210
dx.doi.org/10.1109/RCIS.2009.5089295
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00240-9/sbref0230
dx.doi.org/10.1145/2361999.2362021

ystem

r
(
G
i
w
L
S

also served as a reviewer of many scholarly journals such as IEEE Transactions on
A. Tang, M.F. Lau / The Journal of S

To date, he has received approximately AUD$800K (equiv.) of competitive
esearch grants including Australian Research Council Discovery Project Scheme
ARC DP) and Hong Kong Research Grants Council Competitive Earmarked Research

rant Scheme (HKRGC CERG). His research publications have appeared in many

nternationally reputable scholarly journals, including ACM Transactions on Soft-
are Engineering and Methodology, The Computer Journal, Information Processing

etters, Information Sciences, Information and Software Technology, The Journal of
ystems and Software, and Software Testing, Verification and Reliability.
s and Software 88 (2014) 87– 101 101

Dr. Lau has been served as an international reader (a reviewer of international
standing) of the ARC grant proposals as well as HK RGC grant proposals. He has
Software Engineering, IEEE Software, Information Processing Letters, Information
and Software Technology, Journal of Systems and Software, and Software Testing,
Verification and Reliability; and serverd as program committee members of various
international conferences and workshops.

	Software architecture review by association
	1 Introduction
	2 Related work
	3 Architecture design decisions review framework
	3.1 Design association
	3.2 Graphical representation of design association
	3.3 Design review procedure based on association
	3.4 Common design reasoning failure scenarios

	4 Industry case studies
	4.1 Case study method
	4.2 Research findings
	4.2.1 Instances of design reasoning failure scenarios
	4.2.2 Scenario summary

	5 Discussions and insights
	6 Research validity
	7 Conclusion and future work
	References

