
A

M
a

b

c

d

a

A
R
R
A
A

K
S
S
V

1

s
u

p

h
0

The Journal of Systems and Software 94 (2014) 161–185

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

 systematic review of software architecture visualization techniques

ojtaba Shahina,b, Peng Lianga,c,∗, Muhammad Ali Babard

State Key Lab of Software Engineering, School of Computer, Wuhan University, China
Department of Computer Engineering, Neyriz Branch, Islamic Azad University, Iran
Department of Computer Science, VU University Amsterdam, Netherlands
CREST – The Centre for Research on Engineering Software Technologies, The University of Adelaide, Australia

 r t i c l e i n f o

rticle history:
eceived 31 August 2013
eceived in revised form 4 February 2014
ccepted 22 March 2014
vailable online 30 March 2014

eywords:
oftware architecture
oftware architecture visualization
isualization techniques

a b s t r a c t

Context: Given the increased interest in using visualization techniques (VTs) to help communicate and
understand software architecture (SA) of large scale complex systems, several VTs and tools have been
reported to represent architectural elements (such as architecture design, architectural patterns, and
architectural design decisions). However, there is no attempt to systematically review and classify the
VTs and associated tools reported for SA, and how they have been assessed and applied.
Objective: This work aimed at systematically reviewing the literature on software architecture visualiza-
tion to develop a classification of VTs in SA, analyze the level of reported evidence and the use of different
VTs for representing SA in different application domains, and identify the gaps for future research in the
area.
Method: We used systematic literature review (SLR) method of the evidence-based software engineering
(EBSE) for reviewing the literature on VTs for SA. We used both manual and automatic search strategies
for searching the relevant papers published between 1 February 1999 and 1 July 2011.
Results: We selected 53 papers from the initially retrieved 23,056 articles for data extraction, analysis,
and synthesis based on pre-defined inclusion and exclusion criteria. The results from the data analysis
enabled us to classify the identified VTs into four types based on the usage popularity: graph-based,
notation-based, matrix-based, and metaphor-based VTs. The VTs in SA are mostly used for architecture
recovery and architectural evolution activities. We have also identified ten purposes of using VTs in SA.
Our results also revealed that VTs in SA have been applied to a wide range of application domains, among
which “graphics software” and “distributed system” have received the most attention.
Conclusion: SA visualization has gained significant importance in understanding and evolving software-
intensive systems. However, only a few VTs have been employed in industrial practice. This review has
enabled us to identify the following areas for further research and improvement: (i) it is necessary to per-
form more research on applying visualization techniques in architectural analysis, architectural synthesis,

architectural implementation, and architecture reuse activities; (ii) it is essential to pay more attention
to use more objective evaluation methods (e.g., controlled experiment) for providing more convincing
evidence to support the promised benefits of using VTs in SA; (iii) it is important to conduct industrial
surveys for investigating how software architecture practitioners actually employ VTs in architecting
process and what are the issues that hinder and prevent them from adopting VTs in SA.

© 2014 Elsevier Inc. All rights reserved.
. Introduction
With increasing size and complexity of software-intensive
ystems, the role of software architecture (SA) as a means of
nderstanding and managing large-scale software intensive

∗ Corresponding author at: State Key Lab of Software Engineering, School of Com-
uter, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27 68776027.

E-mail address: liangp@whu.edu.cn (P. Liang).

ttp://dx.doi.org/10.1016/j.jss.2014.03.071
164-1212/© 2014 Elsevier Inc. All rights reserved.
systems has been increasingly becoming important. The high
level design description of a large system can help a system’s
stakeholders to understand and reason about the designed archi-
tecture with regards to architecturally significant requirements
(ASRs) of a software-intensive system (Bass et al., 2012). SA
community has been developing various approaches, techniques,

and tools for improving software architecture communication
and understanding among all the key stakeholders of large-scale
software-intensive systems. One of the increasingly popular
ways of making software architecture design decisions and their

dx.doi.org/10.1016/j.jss.2014.03.071
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.03.071&domain=pdf
mailto:liangp@whu.edu.cn
dx.doi.org/10.1016/j.jss.2014.03.071

1 stems

r
L
K
f
i
i
t
u

f
s
v
u
d
w
i
s
e
e
v
p
2
t
o
a
h
t
a
p
2
e
a
g
(

t
i
t
l
o
t
a
F
r
f
t
S
f
t
u
s
r
i
s

1

2

62 M. Shahin et al. / The Journal of Sy

ationale easily understandable is visualizing SA (Shahin and
iang, 2010; de Boer et al., 2009; López et al., 2009; Lee and
ruchten, 2008). Visualization in computer graphics is a technique

or creating images, diagrams, or animations to communicate
nformation, which may not be easy to describe and understand
n other formats, such as textual (Spence, 2000). Visualization
ransfers information into visual forms and enhances information
nderstanding in software development (Diehl, 2007).

Software visualization is defined as visual representation of arti-
acts (such as requirements, design, and program code) related to
oftware and its development process (Diehl, 2007). The main moti-
ation for using software visualization is to help stakeholders to
nderstand and comprehend different aspects of software systems
uring software development process and reduce the cost of soft-
are evolution (Diehl, 2007; Gallagher et al., 2008). SA visualization

s defined as a visual representation of architectural models and
ome or all of the architectural design decisions about the mod-
ls (Taylor et al., 2009). The importance of visualizing SA has been
xtensively investigated as SA visualization can be of interest to
arious stakeholders such as architects, developers, testers, and
roject managers (Gallagher et al., 2008; Sharafi, 2011; Telea et al.,
010; Shahin and Liang, 2010). SA visualization, e.g., decomposi-
ion of a software system’s architecture into layers, components,
r slices in a structural viewpoint, is critical in understanding
nd communicating the architecture to a variety of project stake-
olders (Cleland-Huang et al., 2013). Due to the recognition of
he importance of visualizing SA, an increasing amount of liter-
ture describing SA visualization approaches and tools has been
ublished through diverse venues (Gallagher et al., 2008; Sharafi,
011; Telea et al., 2010). However, there has been no dedicated
ffort to systematically identify and select, and rigorously analyze
nd synthesize the SA visualization literature. In order to fill this
ap, we decided to carry out a systematic literature review (SLR)
Kitchenham and Charters, 2007) of the SA visualization.

This article reports the design, execution, and findings of the SLR
hat aimed at systematically identifying, selecting, and summariz-
ng a comprehensive set of SA visualization techniques, associated
ools, and the supporting evidence published in the peer-reviewed
iterature. This SLR enabled us to enumerate a comprehensive set
f papers describing SA visualization techniques and tools in order
o reveal the key motivators for their development, their evolution-
ry paths, foundational principles, and assessment mechanisms.
or this review, we have systematically identified and rigorously
eviewed 53 relevant papers and synthesized the data extracted
rom those papers in order to answer a set of research questions
hat had motivated this review. We assert that the results from this
LR can provide important benefits to researchers and practitioners
rom both software architecture as well as software visualiza-
ion communities. This review can enable them to gain a better
nderstanding of the available SA visualization techniques, their
uitability for different architecting activities, the level of evidence
eported for each of them, and the gaps that need further research
n this area. The two significant contributions of this paper to the
oftware architecture visualization body of knowledge are:

. It reports the design, execution, and results of a review aimed
at systematically identifying a comprehensive set of relevant
papers on SA visualization techniques based on pre-defined
selection criteria and rigorously analyzing and synthesizing the
reported techniques, associate tools, and reported evidence in
an easily accessible format.

. It structures and classifies the reviewed SA visualization tech-

niques and tools, and the available evidence using different
formats that are expected to be useful for practitioners interested
in using visualization for communicating and understanding
SA design and design decisions. The findings can be used as
 and Software 94 (2014) 161–185

an evidence-based guide to select appropriate SA visualization
techniques and tools based on the required suitability for differ-
ent activities of the software architecting process. The findings
also identify the issues relevant to researchers who are inter-
ested in knowing the state-of-the-art of and the areas of future
research in SA visualization.

1.1. Background and related work

Software architecture has emerged as an important area of soft-
ware engineering research and practice over the last two decades.
The increasing size of, complexity of, and demand for quality in
software systems are some of the most important factors that have
resulted in sustained interests in SA research and practice. It is
widely recognized that a high level design description can play
an important role in successfully understanding and managing
large and complex software systems (Bass et al., 2012). SA com-
munity has developed several methods, approaches, and tools to
help understand and reason about high level architecture design.
Software architecture can be described and viewed from multiple
perspectives. Two of the most commonly used perspectives of SA
are architectural viewpoint and architecting process perspective.

There are two distinct viewpoints on SA, structural and deci-
sional (Poort and van Vliet, 2012): the structural viewpoint
expresses SA with components and connectors and considers it as
a high-level software structure of a system (Bass et al., 2012). This
viewpoint mainly focuses on the end products (e.g., components
and connectors) of software architecting process. The decisional
viewpoint considers decisions made during architecting as the first
class entities and defines SA as a set of design decisions, including
their rationale (Jansen and Bosch, 2005). In this SLR, both view-
points of SA have been considered as visualization techniques can
be used to support both kinds of viewpoints of SA. The struc-
tural elements (e.g., components and connectors) and decisional
elements (e.g., decisions) are generally termed as “architectural ele-
ments” or “architectural entities” that are interchangeably used in
this paper.

Architecting is a process of conceiving, defining, expressing, doc-
umenting, communicating, certifying proper implementation of,
maintaining and improving an architecture throughout a system’s
life cycle (ISo, 2011). From an architecting process perspective,
software architecting is composed of a set of general and specific
activities (Li et al., 2013; Hofmeister et al., 2007), which can be sup-
ported by various visualization techniques and tools. The specific
architecting activities cover the entire architecture lifecycle and
the general architecting activities provide support to achieve the
goals of the specific activities of software architecting. For exam-
ple, architectural evolution, as a specific architecting activity, copes
with correcting faults, responding to new changes, and implemen-
ting new requirements in architecture. Architecture recovery, as a
general architecting activity, examines existing available sources
of a system (such as implementation and documentation of a
system) to uncover and extract architecture design and design
decisions. Architecture recovery can support architecture evolution
by recovering the architecture design and design decisions when
architecture documentation is not well documented or unavailable,
or architectural design decisions have been lost.

Through this review, we are interested to know how various
visualization techniques can facilitate these general and specific
architecting activities. It is generally considered that SA visu-
alization techniques can be used to support any stage of the
software architecting process, i.e., analyzing, synthesizing, evalu-

ating, implementing, and evolving architecture (Telea et al., 2010).
In a decisional viewpoint, visualization of architectural design
decisions (ADDs) can improve the understanding of ADDs and
their rationale, and this kind of understanding becomes more

stems

i
m
s
k
o
a
p

b
(
a
o
o
c
a
o
a
t
m
b
g
i
i
t
n
t
a
a
a
s
e
p
t
T
m
(

2
w
g
s

T
R

M. Shahin et al. / The Journal of Sy

mportant in a collaborative and distributed development environ-
ent as it supports better communication of ADDs made during

oftware architecting (Shahin and Liang, 2010). To the best of our
nowledge, there have only been three previous secondary studies
n VTs for SA, however, none of them was aimed at using a system-
tic approach (i.e., SLR) to carry out the reported review studies. We
rovide brief overviews of these studies as the related work here.

Gallagher and his colleagues have provided a criteria-
ased framework to evaluate six architecture visualization tools
Gallagher et al., 2008). The framework is composed of 31 criteria
nd each criterion might be relevant to one or some stakeholders
f SA (such as developer, maintainer, architect, and tester). None
f existing six tools can support all criteria, but the framework
an be employed as a template to develop comprehensive SA visu-
lization tools. The framework also suggests the areas that were
pen for further research in the existing six tools. Sharfi proposed

 methodology to evaluate the effectiveness and usability of archi-
ecture visualization techniques (Sharafi, 2011). To achieve this, the

ethodology starts with classifying the visualization techniques
ased on different audiences of architecture visualization and their
oals. The audiences include both researchers who are interested
n new software visualization techniques and developers who are
nterested in better understanding of a system using visualization
echniques. Then the methodology determines what functional and
on-functional requirements are needed for architecture visualiza-
ions. Telea and colleagues conducted a review and evaluation of
rchitecture understanding visualization tools and techniques from

 stakeholder perspective (Telea et al., 2010). The perception of the
dded value of a visualization tool for stakeholders is essential to
how the usefulness of that tool. To achieve this, Telea et al. (Telea
t al., 2010) distinguish three stakeholder types (i.e., technical user,
roject manager, and consultant) and determine what functionali-
ies these stakeholders expect from architecture visualization tools.
hey conclude that the existing architecture visualization tools are
ore suitable for technical users and less suitable for consultants

Telea et al., 2010).
The remainder of the paper is structured as follows. Section
 describes the systematic literature review method used in this
ork and defines the review protocol. Section 3 presents the demo-

raphic information and the quality assessment of the included
tudies, and answers the research questions through the analysis

able 1
esearch questions of this SLR.

Research question Motivation

RQ1: What visualization techniques are used in
software architecture?

This research question has be

RQ1.1: Which types of visualization techniques are
used in architecting process?

To get an overview of differen
identify the visualization tech

RQ1.2: Which architecting activities are supported by
visualization techniques?

To gain an understanding of t
various architecting activities

RQ1.2.1: What is the relationship between different
visualization techniques and architecting activities?

To investigate whether there

example, a specific type of vis
RQ1.3: What architecture visualization tools are

available to support visualization techniques?
To investigate whether tool su
critical for practical applicabil

RQ2: How much evidence is available to support the
adoption of different visualization techniques in
software architecture?

To gain an understanding of t
research question is of interes
evaluate existing visualization
the evidence levels described

RQ3: What are the different purposes of using
visualization techniques in software architecture?

To identify the major purpose
which are especially useful fo

RQ4: What are the domains in which architecture
visualization techniques have been applied to
support architecting activities?

The use of architecture visual
domains. Through this researc
visualization techniques have
applied to each domain. This i
gained more interest in apply

RQ5: Which are the architecture visualization
techniques mostly used in industry?

To understand which architec
industrial practitioners can co
application domains that rece
and Software 94 (2014) 161–185 163

of selected studies. The threats to validity are discussed in Section
4 with further discussion of the review results in Section 5. Finally,
we present our conclusions in Section 6.

2. Research method

As previously stated, we used Systematic Literature Review
(SLR) that is one of the most widely used research methods of
Evidence-Based Software Engineering (EBSE). The SLR research
method provides a well-defined process for identifying, evaluat-
ing, and interpreting all available evidence relevant to a particular
research question or topic (Kitchenham and Charters, 2007). A SLR
evaluates existing studies on a specific phenomenon fairly and
creditably. For this review, we followed Kitchenham and Charters’s
guidelines (Kitchenham and Charters, 2007) that involve three
main phases: defining a review protocol, conducting the review,
and reporting the review. Our review protocol consists of these
elements: (i) research questions, (ii) search strategy, (iii) inclusion
and exclusion criteria, (iv) study selection, (v) study quality assess-
ment, and (vi) data extraction and synthesis. These steps are further
discussed in the following subsections.

2.1. Research questions

This SLR aimed to summarize and provide an overview of the
current research on “what software architecture visualization tech-
niques have been reported in the peer-reviewed literature?” To obtain
this goal, we formulated a set of research questions (RQs) to be
answered through this SLR. Table 1 shows the research questions
as well as the motivations we asked them. The answers to these
research questions can be directly linked to the objective of this
SLR: an understanding of the available SA visualization techniques
in literature and their industrial applications (RQ1.1, RQ1.3, RQ4,
and RQ5), their suitability for various architecting activities (RQ1.2
and RQ1.2.1), the purposes of using them in SA (RQ3), and the level
of evidence reported for each of them (RQ2). Investigation of these

research questions can provide a systematic overview of SA visu-
alization techniques which is beneficial for researchers to identify
the missing gap in this area and practitioners to use evidence-based
best practices of SA visualization.

en broken down into four sub-RQs (RQ1.1, RQ1.2, RQ1.2.1, and RQ1.3)

t types of visualization techniques used in various architecting activities, and
niques that is mostly used and least used in the literature.
he distribution and the gaps of the application of visualization techniques over
.
is a correlation between visualization techniques and architecting activities, for
ualization technique is most frequently employed in an architecting activity.
pport is available for a proposed visualization technique since tool support is
ity of the visualization technique.
he maturity of proposed visualization techniques in software architecture. This
t for both practitioners and researchers when they want to adopt or further

 techniques. The maturity of the visualization techniques is measured based on
 in data item D10 in Section 2.5
s and merits of applying visualization techniques in software architecture,
r practitioners to know what they can do with SA visualization.
ization techniques in architecting activities may take place in various application
h question, we want to know the application domains in which the architecture

 been applied and how often the architecture visualization techniques have been
nformation can help practitioners to identify the application domains that have
ing architecture visualization.
ture visualization techniques are more popularly used in industry, so that
nsider them with a high priority. This research question identifies the
ive more attention in applying architecture visualization techniques in industry.

164 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Table 2
Electronic databases for the automatic search included in this SLR.

Electronic Database Search terms are matched with Web address

ED1 ACM Digital Library Paper title, keywords http://portal.acm.org
ED2 IEEE Explore Paper title, keywords, abstract http://www.ieee.org/web/publications/xplore
ED3 ScienceDirect Paper title, keywords, abstract http://www.elsevier.com
ED4 SpringerLink Paper title, keywords http://www.springerlink.com
ED5 Wiley InterScience Paper title, keywords http://www3.interscience.wiley.com
ED6 EI Compendex Paper title, keywords, abstract http://www.engineeringvillage.com

ywor

2

e
a
T
l
T
r

a

b

d

e

2

a
e
a
a
T

2

w
a
a
m
r
a
C
m

1

2

3
4
5

ED7 ISI Web of Science Paper title, ke

.2. Search strategy

For a SLR, it is an important pre-requisite to define a search strat-
gy that can help researchers to retrieve as many relevant studies
s possible (Kitchenham and Charters, 2007; Zhang et al., 2011).
he search strategy used for this review was composed of the fol-
owing elements: search methods, search terms, and data sources.
he search starts with following initial steps in order to identify the
elevant data sources and search terms:

. Preliminary search to retrieve existing reviews and potential rel-
evant studies (e.g., Gallagher et al., 2008; Sharafi, 2011; Telea
et al., 2010).

. Check the research results published in leading software archi-
tecture conferences and workshops such as WICSA, ECSA, QoSA,
and SHARK.

c. Trial search using various combinations of the initial search
terms derived from the research questions.

. Consult with the experts and authors who have experiences in
applying the visualization techniques in SA to get related sources
(e.g., conferences and journals) and literature on software archi-
tecture visualization.

. Use our own experience and knowledge on visualization of SA.

.2.1. Search method
Our search strategy used two search methods: manual search

nd automatic search. These search methods are complementary to
ach other (Zhang et al., 2011). With the manual search, we checked
ll of the papers published in the venues enlisted in Table 3. For the
utomatic search, we searched the electronic data sources listed in
able 2 using the search terms mentioned in Section 2.2.2.

.2.2. Search terms
The search terms are used to match with paper titles, key-

ords, and abstracts in the electronic data sources during the
utomatic search, and the exceptional cases are ACM, Springer,
nd Wiley databases (see Table 2) in which search terms are only
atched with paper titles and keywords since these databases

eturn an excessively large number of papers when including
bstracts. According to the guidelines provided in (Kitchenham and
harters, 2007), we used the following strategies for forming the
ost relevant search terms for the automatic search:

. Derive major terms according to the study topic and research
questions.

. List the keywords mentioned in the articles (primary studies) we

already knew about.

. Identify synonyms and related terms for major terms.

. Use the Boolean “AND” to join major terms.

. Use the Boolean “OR” to join alternative terms and synonyms.
ds, abstract http://www.webofknowledge.com

The resulting search terms are composed of the synonyms and
related terms about “architecture” AND “visualization”. We used
the following search terms:

(architecture OR architectural OR architecting OR structure) AND (visual OR
visualize OR visualization OR visualizing OR diagram OR picture OR graphic OR
graphical)

It is worth noting that in the initial set of search terms, we also
used “model”, “modeling”, “representation”, and “illustration” as
related terms to “visualization”, but we found that these terms
were too general in architecture studies and led to many irrelevant
search results during the trial searches and it was not feasible for
checking them all. Therefore, we decided to exclude these terms
from the final search terms. The search terms also did not include
“software” for two reasons: (1) many studies on software archi-
tecture did not really use “software” in the title, especially in
venues like WICSA, ECSA, and SHARK because authors assumed
that the audiences are from the “software” architecture commu-
nity. For example, most architectural knowledge researchers talk
about “architectural knowledge” instead of “software architectural
knowledge”. (2) It was meant to avoid the situations where rele-
vant studies may not be retrieved because authors were targeting
system level architecture therefore they did not use “software” in
the title.

2.2.3. Data sources
Table 2 shows that we used seven electronic databases. These

are considered the primary sources of literature for potentially rel-
evant studies on software architecture, software visualization, and
software engineering in general (Chen and Babar, 2010). We did not
include Google Scholar in the data sources since it could produce
search results with low precision, generate many irrelevant results,
and have considerable overlap with ACM and IEEE on software engi-
neering literature (Chen and Babar, 2010). Table 3 enlists relevant
and representative journals, conferences, and workshops on soft-
ware architecture and software visualization, which publish high
quality papers. The selection of journals, conferences, and work-
shops for the manual search may not be comprehensive since we
regarded the manual search as a supplementary, but not exhaus-
tive, source to the database (automatic) search. The conferences and
workshops such as C9, C10, C11, and W1 are considered high qual-
ity and most relevant venues for software architecture literature.
The journal such as J7 and the conferences such as C13, C16, and
C19 and the workshop such as W3 are the venues relevant for the
literature on visualization techniques in software domain. Other
journals, conferences, and workshops are related to the general top-
ics of software engineering in which 10 of them are considered as
leading venues in software engineering (Sjoberg et al., 2005).
2.3. Inclusion and exclusion criteria

The inclusion and exclusion criteria are used for selecting rel-
evant primary studies to answer the research questions in a SLR.

http://portal.acm.org/
http://www.ieee.org/web/publications/xplore
http://www.elsevier.com/
http://www.springerlink.com/
http://www3.interscience.wiley.com/
http://www.engineeringvillage.com/
http://www.webofknowledge.com/

M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185 165

Table 3
Target venues for the manual search included in this SLR.

Venue Acronym

J1 Information and Software Technology IST
J2 Journal of Systems and Software JSS
J3 IEEE Transactions on Software Engineering TSE
J4 IEEE Software IEEE SW
J5 ACM Computer Surveys CSUR
J6 ACM Transactions on Software Engineering and Methodologies TOSEM
J7 IEEE Transactions on Visualization and Computer Graphics TVCG
J8 Software: Practice and Experience SPE
J9 Journal of Software Maintenance and Evolution: Research and Practice SMPR
J10 Empirical Software Engineering Journal ESE
J12 Software and Systems Modeling SoSyM
J11 IEE Proceedings Software (now IET Software) IET Software
C1 ACM/IEEE International Conference on Software Engineering ICSE
C2 ACM International Symposium on Foundations of Software Engineering FSE
C3 IEEE/ACM International Conference on Automated Software Engineering ASE
C4 Working Conference on Reverse Engineering WCRE
C5 IEEE International Conference on Software Maintenance ICSM
C6 International Symposium on Empirical Software Engineering and Measurement ESEM
C7 Australian Conference on Software Engineering ASWEC
C8 Asia-Pacific Software Engineering Conference APSEC
C9 Working IEEE/IFIP Conference on Software Architecture WICSA
C10 Conference on the Quality of Software Architectures QoSA
C11 European Conference on Software Architectures ECSA
C12 European Conference on Software Maintenance and Reengineering CSMR
C13 IEEE/ACM Symposium on Software Visualization SoftVis
C14 Annual International Computer Software and Applications Conference COMPSAC
C15 International Conference on Quality Software QSIC
C16 IEEE Symposium on Visual Languages and Human-Centric Computing VLHCC
C17 International Workshop/Conference on Program Comprehension IWPC
C18 International Conference on Engineering of Complex Computer Systems ICECCS
C19 IEEE Pacific Visualization Symposium PacificVis
W1 Workshop on Sharing and Reusing Architectural Knowledge Architecture SHARK
W2 IEEE International Software Engineering Workshop SEW
W3 IEEE International Workshop on Visualizing Software for Understanding and Analysis VISSOFT

N= 53

N= 20,16 9

N1= 89

2nd Round

N= 23,056

N= 103

Apply inclu sio n and exclu sio n crit eria
by read ing abstract and c onclus ion

Automatic S earch Manual Search

N= 2,88 7

N= 300

Apply inclu sion and exclu sion criteri a
by read ing title and keywor ds

1st Round

Read full pape r and critically appraise
work

3rd Ro und

N2= 14

Snowball ing: Scan the refere nces of
selec ted pape rs got in 2nd rou nd

2nd Round

Fig. 1. Stages of the search process and number of selected studies in each stage.

166 M. Shahin et al. / The Journal of Systems

Table 4
Inclusion and exclusion criteria of this SLR.

Inclusion criteria
I1 A study that is peer-reviewed and available in full-text
I2 A study that introduces a visualization technique used in

software architecture
Exclusion criteria
E1 Editorials, position papers, keynotes, reviews, tutorial

summaries, and panel discussions
E2 A study that is not written in English
E3 A study that introduces visualization techniques on other

software development activities instead of software
architecting (e.g., program comprehension)

T
s
F
s
s
t
i
1
d
o
s
s
i
s
f
a
(
o
w

2

b
a
t
t
c
s
k
t
f
l
r
t
t
s
2
p
b
r
o
m
r
a
w
t
n
p
a
5

E4 Duplicated studies
E5 A study that has no validation (i.e., no evidence)

he inclusion and exclusion criteria are applied to all retrieved
tudies from databases and target venues at different steps (see
ig. 1). The inclusion and exclusion criteria used in our SLR are
pecified in Table 4. We limited the time period of our search to
tudies published between 1 February 1999 and 1 July 2011 because
he first flagship software architecture conference WICSA (Work-
ng IEEE/IFIP Conference on Software Architecture) was held in
999. The selected studies should have case studies or empirical
ata that can validate the proposed techniques and the papers that
nly present approaches or research plan without any validations
hould be excluded. The evidence levels are used to show how a
tudy validates its proposed visualization techniques. One of our
nclusion criteria was that a study should have at least provided a
o-called “toy example/demonstration” to support the claims made
or the presented technique and tool (see Section 2.5). If two papers
ddressed the same topic and were published in different venues
e.g., in a conference and a journal respectively), the less mature
ne is excluded. All duplicated studies found from different sources
ere to be detected and removed.

.4. Study selection

The number of studies selected at each stage of this SLR has
een shown in Fig. 1. During the search phase, we retrieved 2887
nd 20,169 papers through automatic and manual searches respec-
ively. Because a large number of papers were retrieved during
his step, we performed the first round of paper selection when
onducting the manual and automatic searches. When there were
ome papers that we could not decide by reading the titles and
eywords, these papers were retained to the next round of selec-
ion for further investigation. At the end of the second step, we
ound that 89 papers met all the inclusion criteria. Then we fol-
owed a snowballing technique (Budgen et al., 2008) to scan the
eferences of these 89 selected papers in order to find more poten-
ial primary studies. We found 22 potentially relevant papers by
itle from the references of these 89 papers. We applied the inclu-
ion and exclusion criteria on the abstracts and conclusions of those
2 potentially relevant papers and selected 14 papers for the next
hase. It is worth noting that we excluded the studies published
efore 1 February 1999 got by snowballing technique. We also
ecorded the reasons of inclusion or exclusion decision for each
f the papers, which were used for further discussion and reassess-
ent whether a paper was to be included or not. The selection

esults in the second round were verified by two of the authors and
ny disagreements were resolved. Like the first round of selection,
hen there were some papers that we could not decide through

he abstracts and conclusions, these papers were retained for the

ext round of selection. In the last (third) round of selection, if a
aper satisfied all the inclusion criteria, this paper was considered
s a primary study to be included in this SLR. Finally, we selected
3 papers for this review.
 and Software 94 (2014) 161–185

2.5. Data extraction and synthesis

The data extraction step of SLR purports to identify the rele-
vant information that should be extracted from each of the primary
studies in order to answer the research questions of a SLR. Table 5
presents the data items for which the relevant information was
extracted from the selected papers. It also shows the research
question(s) (described in Section 2.1) that were supposed to be
answered using different pieces of the extracted data. A record of
the extracted information from a study was stored in a spread-
sheet for subsequent analysis. Some of the extracted data items are
described below:

• D10 evaluates the evidence level of the reported visualization
technique. The obtained results can help researchers to assess the
maturity of a visualization technique. We used a five level scheme
for assessing the reported evidence as proposed in (Alves et al.,
2010). These evidence levels are listed below:

1. Toy examples/demonstration: Evidence obtained from demon-
stration or working out with toy examples.

2. Expert opinions/observations: Evidence obtained from expert
opinions or observations.

3. Academic studies: Evidence obtained from academic studies
(e.g., controlled lab experiments)

4. Industrial studies: Evidence obtained from industrial studies
(e.g., causal case studies)

5. Industrial practice: Evidence obtained from industrial practice.
According to (Alves et al., 2010), “this evidence level indicates
that a method has already been approved and adopted by an
industrial organization”.

• D12 records the level of tool support, which is classified as
automatic, semi-automatic, and manual. Automatic refers to the
tool support level when human intervention is not necessary or
minimal for using a particular visualization technique. If partial
human intervention is needed, the tool level will be considered as
semi-automatic. If there is no tool support or using the reported
visualization technique completely depends on human interven-
tion, the level is rated as manual. The level of tool support is
obtained based on the description of the underlying tool support
in the study or by referring to the relevant tool website.

• D13 documents the type of applications used as a case study
with aim of validating the reported visualization technique. For
example, a type of application can be an embedded system, a
distributed system, or an information management system. This
type of information can help practitioners to identify and under-
stand the domain specific implications of a particular technique
for visualizing architecture before deciding to use that technique.

3. Results

In following subsections, we are going to report the results from
the synthesis and analysis of the data extracted from the primary
studies to answer the research questions. Most of the results pre-
sented in this section are based on synthesizing the data directly
collected from the reviewed studies. We have limited our own
interpretations of the results to a minimum in order to mainly
keep our focus on what has been reported in the reviewed primary
studies. However, some of the reviewed primary studies might not
have provided enough information for answering some RQs, hence,
interpretations and inferences to some extent were unavoidable. In

these situations, we have tried to examine other available resources
about the reviewed studies (e.g., authors homepage and tool train-
ing movie) to make our interpretations and inferences as reliable
as possible in this kind of effort.

M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185 167

Table 5
Data items extracted from each study and related research questions.

Data item Description Research questions (Section 2.1)

D1 Author(s) The author(s) of the paper.
D2 Year In which year was the study published? Overview of studies
D3 Title The title of the paper.
D4 Venue Publication type of the study: including Journal, Conference, Workshop, etc. Overview of studies
D5 Citation count (Google Scholar) The citation count of the study in Google Scholar. RQ2, Overview of studies
D6 Architecting activity(ies) What architecting activity(ies) are supported by the proposed visualization

technique(s) in the study?
RQ1.2, RQ1.2.1

D7 Visualization technique(s) The visualization technique(s) proposed and/or used in the study. RQ1.1, RQ1.2.1, RQ5
D8 Solved problem(s) What problem(s) in software architecting do the visualization technique(s) try to

solve?
RQ3

D9 Merit Advantages and benefits of the proposed visualization technique(s) in comparison
with other techniques.

RQ3

D10 Evidence level The evidence level of visualization technique used. RQ2, RQ4, RQ5
D11 Study findings The major findings about using visualization technique(s) in software architecting. RQ3
D12 Level of tool support The level of tool support for architecture visualization provided in the study:

automatic, semi-automatic, or manual.
RQ1.3

D13 Application domain The type of application used as a case study for validating visualization RQ4, RQ5

ructur
nique

3

o
S
s
t
A

3

o
r
e
i
S
2
s
c
v
9
t
(
i
i
a
i
a
S
b
(
j
t
(
(
C
S
n
V
h
a
d
e
e

technique(s).
D14 Viewpoint The architecture viewpoint (i.e., st

by the proposed visualization tech

.1. Demographic data

Before reporting the results from the synthesis and analysis
f the relevant data extracted from the studies included in this
LR, we report the demographic information about the included
tudies: the publication venues and types, the citation status and
he chronological view. All of the included studies are listed in
ppendix A.

.1.1. Publication venues and types
An attempt to identify the types and venues for publications

f a particular topic/theme can potentially be very useful for
esearchers who may be interested in conducting research on a rel-
vant topic. That is why one of the silent reporting elements of a SLR
s the demographic information about the papers included in that
LR. Table 6 shows how the 53 primary studies are distributed over
6 publication venues including journals, conferences, and work-
hops. It is clear from Table 6 that ECSA, IWPC, and VISSOFT can be
onsidered the leading venues for publishing work on architecture
isualization techniques as they have published 11.3% (6 studies),
.4% (5 studies), and 9.4% (5 studies) of the selected studies respec-
ively. There are 13 venues with only one paper selected and 49.05%
26 studies) of the selected studies were published in only 6 venues
ncluding ECSA, IWPC, VISSOFT, WICSA, SoftVis, and WCRE. 14 stud-
es (26.4%) have been published in relevant venues on software
rchitecture (i.e., ECSA, WICSA, QoSA, and SHARK) and 12 stud-
es (22.6%) have been published in the venues that are relevant to
pplying visualization techniques in software domain (i.e., VISSOFT,
oftVis, VLHCC, PacificVis, VL, and VisSym). Most of studies have
een published in conferences (39 studies, 73.5%) and workshops
8 studies, 15%), while only 6 studies (11.3%) have been published in
ournals. Five venues (the last five in Table 6) which are not listed in
he target venues for manual search in Table 3, published 5 studies
9.4%) that were retrieved through automatic search, including SCP
Journal of Science of Computer Programming), SEKE (International
onference on Software Engineering and Knowledge Engineering),
AC-SE (ACM Symposium on Applied Computing - Software Engi-
eering Track), VisSym (IEEE Symposium on Visualization), and
L (IEEE Symposium on Visual Languages). The selected studies
ave been published in both general software engineering venues

nd specific venues on SA and software visualization. This finding
emonstrates that this research topic has been broadly consid-
red by software architecture, software visualization, and software
ngineering researchers with different research interests.
al, decisional, or both) that is supported
(s).

RQ1.1, RQ1.3, RQ3

3.1.2. Citation status and chronological view
The citation status of a paper can partially show the quality of

the reported work and also the maturity of the proposed techniques
in a study. It can also show the impact of a study on the reviewed
topic. Table 7 provides a general overview of the citation status
including citation counts, citation counts excluding self-citations,
and average citation count per year (i.e., citation counts exclud-
ing self-citations/[2013-publication year]) of the included studies.
These numbers have been obtained from Google Scholar on 12
July 2013. As shown in Table 8, 15 studies (28.3%) have been cited
by more than 20 sources and meanwhile 31 studies (58.4%) have
been cited by less than 10 sources, considering 19 out of these 31
papers were published between 2009 to 2011, a low citation count
is understandable. Note that 7 studies (13.2%) got 0 citation count
excluding self-citations and this finding is not a surprise as all these
7 studies were published in the last two years of the review period,
i.e., 2010 and 2011. The top 5 studies that got the highest citation
counts in range of 77–186 are [S32, S38, S41, S43, S49], in which
four out of them were published in conferences and only one [S32]
was published in journal. Three studies [S32, S38, S41] in the top
5 studies that were published after 2006 are all about visualiza-
tion of architecture decisional viewpoint (e.g., architectural design
decisions and rationale), which shows that this new trend to focus
on design decisions in SA is gaining significant popularity in SA
community.

Fig. 2 presents the number of the selected studies published per
year within the review period from 1999 to 2011. Note that for
year 1999 and 2011, the review only covers the studies published
after 1 February 1999 and before 1 July 2011, which are not a full
year. Trend line in Fig. 2 shows the number of selected studies per
year has been increasing since 1999. This trend has more ascend-
ing slope since 2005, and we noticed that 35 studies (66%) were
published during the last 5 years which means the role and appli-
cation of visualization techniques to support software architecting
process are gaining increasing interest and attention.

3.2. Study quality assessment

The 53 primary studies were evaluated by two of the authors
against a set of study quality assessment questions listed in

Table 9. These questions were adopted and adjusted from (Dybå
and Dingsøyr, 2008). In contrast to the study quality assessment
described in (Kitchenham and Charters, 2007), these questions
were not used for the study selection but they were employed for

168 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Table 6
Distribution of the selected studies on publication venues.

Pub. Venue # % Pub. Venue # % Pub. Venue # %

ECSA 6 11.3 ICSM 2 3.7 PacificVis 1 1.8
IWPC 5 9.4 QoSA 2 3.7 SEW 1 1.8
VISSOFT 5 9.4 CSMR 2 3.7 ESE 1 1.8
WICSA 4 7.5 SHARK 2 3.7 SCP 1 1.8
SoftVis 3 5.6 ICECCS 1 1.8 SEKE 1 1.8
WCRE 3 5.6 ASE 1 1.8 SAC-SE 1 1.8
JSS 2 3.7 APSEC 1 1.8 VisSym 1 1.8
SMPR 2 3.7 QSIC 1 1.8 VL 1 1.8
ICSE 2 3.7 VLHCC 1 1.8

Table 7
An overiew of citation status of the selected studies.

Studies ID Citation
counts

Citation counts
excluding self-citations

Average citation
count per year

Studies ID Citation
counts

Citation counts
excluding self-citations

Average citation
count per year

S1 0 0 0.0 S28 1 0 0.0
S2 1 1 0.3 S29 2 1 0.5
S3 4 0 0.0 S30 10 10 2.5
S4 0 0 0.0 S31 5 4 1.0
S5 0 0 0.0 S32 124 111 18.5
S6 17 13 2.2 S33 10 8 4.0
S7 31 26 3.7 S34 4 1 0.5
S8 6 2 0.7 S35 7 1 0.3
S9 4 1 0.3 S36 5 5 2.5
S10 4 2 0.5 S37 23 21 4.2
S11 34 28 4.0 S38 214 186 26.6
S12 21 12 2.0 S39 4 4 1.3
S13 14 13 2.2 S40 29 22 2.2
S14 2 2 1.0 S41 101 88 14.7
S15 55 48 3.4 S42 10 7 0.9
S16 18 16 2.0 S43 109 103 9.4
S17 9 9 0.8 S44 34 29 5.8
S18 6 6 1.5 S45 24 23 3.3
S19 1 1 0.2 S46 8 8 1.1
S20 8 6 1.0 S47 2 2 0.3
S21 44 36 4.5 S48 64 59 6.6
S22 0 0 0.0 S49 77 77 6.4
S23 17 15 2.5 S50 9 8 2.7
S24 0 0 0.0 S51 43 35 2.7
S25 6 2 0.3 S52 5 4 0.3
S26 6 5 0.6 S53 6 4 0.8
S27 11 10 1.7

Table 8
Citation counts of the selected studies excluding self-citations.

Cited by <10 10–20 20–30 30–40 40–50 50–60 >60
No. of studies 31 7 6 2 1 1 5

Fig. 2. Number of selected studies published per year.

M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185 169

Table 9
Study quality assessment questions.

Study quality assessment question Yes Partially No

Q1 Are the aims and objectives of the study clearly specified? 34 (64.1%) 19 (35.8%) 0 (0.0%)
Q2 Is the context of the study clearly stated? 34 (64.1%) 18 (33.9%) 1 (1.8%)
Q3 Does the research design support the aims of the study? 39 (73.5%) 14 (26.4%) 0 (0.0%)
Q4 Has the study an adequate description of the technique for visualization? 40 (75.4%) 13 (24.5%) 0 (0.0%)

ique i
ce to

v
b
d
f
i
i
r
C

o
a
a
a
s
a
e
t
(
t
a
a
t
i
i
i
i
a

3

c
I
a
r
D
m
s

Q5 Is there a clear statement of findings by applying visualization techn
Q6 Do the researchers critically examine their potential bias and influen
Q7 Are limitations of the study discussed explicitly?

alidating the results of the selected studies. Each question could
e answered according to a ratio scale: “Yes”, “No”, and “Partially”
uring the data extraction process (see Section 2.5). The answers
or each study show the quality of a selected study and the credibil-
ty of the study’s results. The result of the quality assessment of the
ncluded studies can reveal the potential limitations of the current
esearch and guide the future research in the field (Kitchenham and
harters, 2007; Dybå and Dingsøyr, 2008).

As shown in Table 9, all studies state the aims and objectives
f the conducted research (Q1) and provide research design to
chieve these objectives (Q3). The Q2 was answered positively by
ll studies (except one), which means the reviewed studies have
n adequate description of context (e.g., industry and laboratory
etting) in which the research was carried out. The answers of Q4
nd Q5 can reflect the accuracy of the data extraction results (Li
t al., 2013). Concerning Q4, 40 out of 53 studies (75.4%) described
heir proposed visualization techniques adequately and 13 studies
24.5%) could address this issue to some extent. About Q5, more
han half of the studies explicitly discussed what findings had been
chieved by applying the reported visualization techniques in SA;
nd others explained the findings partially. It is clear from Table 9
hat, the Q6 was answered with “No” by a majority of the stud-
es, and only two studies (3.7%) examined the researchers’ bias and
nfluence on the outcomes of the study. Almost half of the stud-
es (49%) did not discuss any limitations, drawbacks, or required
mprovement in the proposed visualization techniques in software
rchitecture.

.3. Types of visualization techniques used in architecting process

To better answer RQ1.1, we did not employ a pre-defined
lassification of visualization techniques (Novais et al., 2013).
nstead, we employed thematic analysis (Braun and Clarke, 2006),

 qualitative analytic method for identifying, analyzing, and

eporting patterns (themes) within collected data (i.e., data item
7 in Table 6). We followed the five steps of the thematic analysis
ethod as detailed below: (1) familiarizing with the data: in this

tep, we tried to read and examine the extracted data item D7

Fig. 3. Types of visualization techniques employed and th
n software architecture? 27 (50.9%) 26 (49%) 0 (0.0%)
the study? 2 (3.7%) 2 (3.7%) 49 (92.4%)

4 (7.5%) 23 (43.3%) 26 (49%)

“visualization technique(s)” to be well acquainted with the VTs
used in each study; (2) generating initial codes: in this step the
initial list of employed VTs in selected studies were extracted from
collected data; (3) searching for VTs (i.e., themes): we tried to com-
bine different initial VTs generated from the second step to form
an overarching VT since the studies may use different terms to pro-
pose and describe their employed VTs, which might be essentially
the same; (4) reviewing and refining VTs: the VTs identified from
the previous step were checked against each other. For example,
two apparently separate VTs might form one VT; (5) defining and
naming VTs: in this step, we defined the VTs to describe the essence
of each VT and a clear and concise name for each VT was provided.
By using the thematic analysis method, a classification with four
types of VTs (i.e., themes in thematic analysis) was recognized.

Fig. 3 shows the status of various visualization techniques that
are currently used in software architecting over time. The number
in each column of Fig. 3 reveals that how many studies employ
a specific visualization technique in each year. There is a signif-
icant difference in terms of the popularity of these visualization
techniques. Note that some studies may use more than one visual-
ization techniques. That is why the sum in Fig. 3 (57) exceeds the
number of the reviewed studies (53). The visualization techniques
(VTs) in SA reported in the reviewed studies are described below:

3.3.1. Graph-based visualization
The most popular VT used in software architecture is the graph-

based technique as it has been reported in 26 studies (49.1%).
As shown in Fig. 3, the graph-based visualization has been used
steadily except years 2000 and 2004. The graph-based visualiza-
tion uses nodes and links to represent the structural relationships
between architecture elements and it puts more emphasis on the
overall properties of a structure than the types of nodes. For exam-
ple, Su and colleagues [S10] report an approach to capturing and
visualizing architecture document elements and their relationships

produced by an attribute-driven design method using a graph that
results in non-linear exploration and better finding needed infor-
mation. The work reported in [S22] uses a graph to represent both
hierarchal and usage-relation (dependency) of software entities

eir distribution in primary studies over time period.

170 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

 techn

(
e
s
u
t
u
v
i
S
v
T
s

3

S
g
g
d
i

Fig. 4. Examples of four visualization

e.g., modules, packages, classes, and files) in one view. Software
ntity types and usage-relations are indicated by different color
chemes and color gradients. Gray and blue nodes represent mod-
les and files respectively and a color gradient (e.g., from green
o red) represents a dependency direction between software mod-
les. Fig. 4.a provides a screenshot of a graph-based VT used for SA
isualization [S22]. Tree is a special kind of graph in which there
s no loop between nodes (Diehl, 2007). It was employed in [S9,
11, S12, S29, S43]. The studies [S9, S11, S12, S43] use a tree-based
isualization to represent hierarchical decompositions of a system.
he work reported in [S29] visualizes users’ exploitation paths in
oftware architecture documents as tree-based visualization.

.3.2. Notation-based visualization
This category is a combination of three modeling techniques:

ysML (systems modeling language), UML (unified modeling lan-

uage), and specific notation-based visualization. SysML is a
eneral-purpose modeling language for specification, analysis,
esign, verification, and validation of complex systems, includ-

ng software, hardware, and information systems (OMG System,
iques used in software architecture.

2007). UML is an industry standard and general-purpose visual
modeling language to specify, design, construct, and document
software-intensive systems (OMG, 2007). SysML is built on UML
and reuses and extends it for system engineering applications
(OMG System, 2007). Tsadimas and colleagues [S4] provides only
study that uses SysML and extends SysML profile to visualize and
evaluate SA. Kamal and Avgeriou [S2] create a specific UML pro-
file including stereotypes and constraints to express and model
architectural pattern variants. The specific-notation refers to new
notations developed for special purposes in software architecting.
These notations are customized notations, but not standardized as
SysML and UML. To give an example, Zalewski and colleagues [S33]
define two architecture diagrams: architectural decisions rela-
tionship diagram (ADRD) and architecture decision problem map
(ADPM). The former visually represents architectural decisions,
their possible states (e.g., defined and solved), and the relationships

between them; while the latter represents the internal structure
of architectural decision problem. Both diagrams use customized
notations. A screenshot of the ADPM diagram is shown in Fig. 4b.
There are 22 studies (41.5%) that employ this kind of VT, including

M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185 171

ion te

U
o
i
s
g
i
t
v
r
(
m
p
a

3

s
a
p
e
a
e
m
d
e
i
m
n
T
“
s
t
b
m
r
o
e
c
L
d

3

t
2
t
r
s
T
fi

the selected studies (53). We adopted the classification of archi-
tecting activities proposed in (Li et al., 2013), in which general
architecting activities include architecture recovery, architecture
description, architecture understanding, change impact analysis,

Table 10
Distribution of architecting activities supported by visualization techniques.

Architecting activity Number of studies

Architecture recovery (AR) 25
Architectural evolution (AEV) 16
Architectural evaluation (AE) 11
Change impact analysis (CIA) 10
Fig. 5. Relationship between visualizat

ML, SysML, and specific notations. Fig. 3 reveals that 81.8% (18 out
f 22) studies that employ the notation-based VT were published
n the last 5 years, which means notation-based VTs were gaining
ignificant popularity to visualize SA over the last five years. The
raph-based and notation-based VTs are dominant VTs for visual-
zing SA except year 2004. The notation-based VT tries to present
he relationship between and role of elements in a structure and
arious notations are provided to represent different elements and
elationships, and that is why the name and type of the nodes
elements) and links (relationships) are important pieces of infor-

ation. Conversely, the graph-based VT intends to show the overall
roperties of a structure, hence, the name and label of the nodes
nd links are not as important as in notation-based VT.

.3.3. Matrix-based visualization
Matrix-based visualization can act as a complementary repre-

entation of a graph. In comparison with graph-based visualization,
 matrix-based representation is less intuitive but it provides com-
lementary information when the graph is large or dense. For
xample, Beck and Diehl [S8] use matrix to compare SA descriptions
nd Lungu and Lanza [S12] use matrix to display detailed depend-
ncy between two modules. de Boer and colleagues [S30] employ
atrix to support auditor in architectural decision-making process

uring assessment of product quality. To achieve this, the study
mploys architectural decisions in software product audits as qual-
ty criteria and provides two matrices: effective matrix and criteria

atrix. Effective matrix shows quality criteria that have positive or
egative effect on quality attributes of interest in the current audit.
he auditor can employ effective matrix in “trade-off analysis” and
if-then” scenarios in decision-making process. The criteria matrix
hows the relationships between quality criteria so it can assist
he auditor in determining the impact of a decision. Fig. 4c shows
oth effective and criteria matrices used in [S30]. Tables as a kind of
atrix are used in [S17, S37]. Bril and Postma [S17] use tabular rep-

esentation to visualize the decomposition of architecture entities
f a system and the architectural connectivity metrics between the
ntities. Architectural connectivity metrics indicate the degree of
onnectivity between or within architectural entities in a system.
ee and Kruchten [S37] use table view to show architecture design
ecisions and their relationships.

.3.4. Metaphor-based visualization
This category uses familiar physical world contexts (e.g., cities)

o visualize SA entities and their relationships (Wettel and Lanza,
007). The use of metaphors makes the visualization process par-
icularly intuitive and effective (Balzer et al., 2004). The works

eported in [S6, S13, S44] use city metaphor and [S48] uses land-
cape metaphor to represent SA entities and their relationships.
o give an example, the study reported in [S6] represents source
les as basic modules in SA by different textures of building. For
chniques and architectual viewpoints.

instance, a source file with more than 200 LOC (lines of code) is
represented as “office building” and the number of floors in each
building indicates the number of global variables declared in the
file. Header file is represented as “city hall” and the number of
functions in the header file determines the height of the “city hall”.
Panas and colleagues [S13] use single-view metaphor visualization
(see Fig. 4d) to represent multiple aspects of large-scale software
systems, which contributes to reduced visual complexity.

3.3.5. Visualization techniques and architectural viewpoints
To show how VTs are related to structural and decisional view-

points of software architecture, we examined the data items D7
(visualization technique) and D14 (viewpoint) in Table 5 simul-
taneously, which is shown in Fig. 5. Note that some studies may
support both structural and decisional viewpoints as well as use
more than one visualization techniques. That is why the sum
in Fig. 5 (63) exceeds the number of the selected studies (53).
From Fig. 5, we can see that (1) VTs in SA are mostly used to
visualize structural architectural viewpoint (50 studies), which is
supported by all VTs; (2) decisional viewpoint is mostly visualized
by notation-based visualization; and (3) metaphor-based visual-
ization has never been used to visualize decisional architectural
viewpoint.

3.4. The architecting activities supported by the visualization
techniques

This section presents the findings to answer RQ1.2. These
findings are based on our examination of the results about the archi-
tecting activities, general and specific, that are being supported
by various VTs discussed in Section 3.3 To achieve this, the data
item D6 from Table 5 were analyzed. Note that some studies intro-
duce the VTs that support several architecting activities and this
is the reason that the sum in Table 10 (87) exceeds the number of
Architectural analysis (AA) 9
Architectural synthesis (AS) 7
Architectural implementation (AI) 5
Architecture reuse (ARU) 4

172 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

cting a

a
a
u
T
l
e
t
i
d
t
v
p
(
t

b
S
r
v
s
t
t
a
v
c
w
p
K
[

Fig. 6. Studies distribution over the range of archite

nd architecture reuse, and specific architecting activities are
rchitectural analysis, architectural synthesis, architectural eval-
ation, architectural implementation, and architectural evolution.
he specific architecting activities construct the entire architecture
ifecycle, and are supported by the general architecting activities (Li
t al., 2013). Note that two general architecting activities “architec-
ure understanding” and “architecture description” are not taken
nto account in this review because of the following reasons. The
ominant function of visualization is to improve understanding
herefore we ignore “architecture understanding” activity because
isualization techniques by default are expected to always sup-
ort this activity. Meanwhile, architecture visualization is a kind
part) of architecture description, therefore “architecture descrip-
ion” activity is also not explicitly considered in this review.

We found that architectural implementation (AI) has seldom
een supported by using VTs in SA that only 5 studies [S9, S25, S28,
41, S51] support this architecting activity. Buchgeher and Wein-
eich [S9] developed a tool suite to support the design, analysis,
isualization, and implementation of component-based software
ystems. The architectural structure diagrams visualized by the
ool suite are used to synchronize between architecture descrip-
ion and implementation. Demirli and Tekinerdogan [S28] propose
n approach with an accompanying tool to define, model, and
isualize executable architectural views based on domain spe-
ific language, and further support architectural implementation

ith model-driven development. Architecture reuse (ARU) is sup-
orted by VTs reported in 4 studies (Shahin and Liang, 2009;
ruchten and Lago, 2006) [S29, S30, S31, S36]. The work reported in

S30, S31] provides functionality to reuse architectural knowledge
ctivities, visualization techniques, and time period.

(i.e., decision, rationale and quality criteria) through architectural
knowledge visualization. Su and colleagues [S29] capture and visu-
alize the users’ exploration paths in architecture documents and
allows searching and reusing the analyzed exploration paths. Ciraci
and colleagues [S36] represent possible architectural evolution
paths using graph and provides guidelines to select the best evolu-
tion path, and further provides functionality to reuse architecture
changes during the architectural evolution. Architecture recovery
(AR) is the most popular architecting activity for applying VTs with
25 studies. Architectural evolution (AEV) in 16 studies, architec-
tural evaluation (AE) in 11 studies, change impact analysis (CIA) in
10 studies, architectural analysis (AA) in 9 studies, and architectural
synthesis (AS) in 7 studies have been supported by VTs respectively.
The distribution of various architecting activities supported by VTs
has been presented in Table 10.

3.5. Relationships between visualization techniques and
architecting activities

To answer RQ1.2.1, we examined the results obtained from
RQ1.1 and RQ1.2. Fig. 6 shows the correlation between VTs and
architecting activities. A bubble on the left side of Fig. 6 indicates
one study or several studies over an architecting activity (y-axis)
in a specific year (left x-axis) and a bubble on the right side speci-
fies one study or several studies applying a certain VT (right x-axis)

for an architecting activity (y-axis). The numbers in a bubble denote
the identification numbers of the studies (see Appendix A). Because
of limited space in the figure, we have excluded “S” in the study
identification numbers in Fig. 6.

M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185 173

Table 11
Number and percentage of papers associated to each visualization technique and architecting activity.

Graph-based Notation-based Matrix-based Metaphor-based

Architecture recovery 17 (32.1%) 3 (5.6%) 3 (5.6%) 4 (7.5%)
Architectural evolution 8 (15.1%) 7 (13.2%) 2 (3.7%) 1 (1.8%)
Architectural evaluation 3 (5.6%) 7 (13.2%) 1 (1.8%) 0 (0.0%)
Change impact analysis 4 (7.5%) 6 (11.3%) 2 (3.7%) 0 (0.0%)
Architectural analysis 1 (1.8%) 7 (13.2%) 1 (1.8%) 0 (0.0%)

5 (9.4
5 (9.4
0 (0.0

i
t
o
h
i
p
n
r
i
i
w
V
a

3

T
v
i
i
n
t
i
p
s
a

Architectural synthesis 1 (1.8%)

Architectural implementation 1 (1.8%)

Architecture reuse 3 (5.6%)

As we can see in Table 11, graph-based VT is mostly employed
n AR and AEV activities with 17 (32%) and 8 (15%) studies respec-
ively. However, this technique is less popular in AA, AS, and AI with
nly one study for each. Graph-based VT is the only one VT which
as been applied to all architecting activities. Metaphor-based VT

s only used for AR and AEV activities. AA, AS, and AE are the most
opular architecting activities for applying notation-based VT, but
otation-based technique is not used for supporting ARU. Fig. 6
eveals that AR and AEV are supported by all types of VTs, but there
s no VT that can support all architecting activities. Note that 8 stud-
es [S2, S10, S18, S19, S21, S26, S34, S52] did not explicitly specify

hat architecting activities have been supported by the reported
Ts. Hence, they have been mapped as “not specified” in the axis of
rchitecting activity in Fig. 6.

.6. Level of tool support

In order to answer RQ1.3, we analyzed the data item of D12 from
able 5 to get an understanding of the level of tool support for the
isualization techniques reported in the primary studies reviewed
n this SLR. An investigation of tool support can be considered an
ndicator of the limitations of the proposed SA visualization tech-
iques. It can also indicate whether the reported techniques are
heoretical (e.g., proposal or plan) or practical (i.e., implemented

n appropriate tools), which can be interesting information for
ractitioners. Fig. 7 shows that 6 studies (11.3%) provide manual
upport including 4 studies [S1, S2, S19, S34] that do not provide
ny tools and 2 studies [S5, S39] provide tools, which completely

Fig. 7. Status of tool support provided by selected studies.
%) 1 (1.8%) 0 (0.0%)
%) 0 (0.0%) 0 (0.0%)
%) 1 (1.8%) 0 (0.0%)

depend on human effort. There are 25 studies (47.1%) that provide
semi-automatic tools, and 22 studies (41.5%) have automatic tool
support. Some tools have been developed from scratch and others
have been extended from existing tools, for example, Eclipse visual-
ization plug-in. Since most of the studies (49, 92.4%) provide various
kinds of tools (including two tools that provide manual support), it
can be concluded that tool support is a very important concern of
stakeholders, who use visualization techniques in SA.

3.7. The available evidence for adoption of visualization
techniques in software architecture

To answer RQ2 (the evidence available to adopt a proposed VT),
we analyzed the data collected for data item D10 in Table 5. Table 12
presents the distribution of the studies according to the five lev-
els of evidence as described in Section 2.5. As shown in Table 12,
the main method for evaluating architecture visualization tech-
niques is industrial study. There are 26 studies (49%) that have been
evaluated in industrial software projects (e.g., medium or large
projects) as case studies. The so-called “toy example and demon-
stration” have been used by 23 studies to demonstrate how to use
the reported VTs. According to Table 12, little attention has been
paid to academic study (e.g., controlled experiment), which is also
revealed in general software engineering research (Sjoberg et al.,
2005) and software evolution visualization research (Novais et al.,
2013). There are only 3 studies [S5, S53, S37] that used controlled
experiments in academic settings and expert opinions respectively
to evaluate their proposed techniques. [S23] and [S35] used both
expert opinions and industrial case study to validate the reported
techniques, but we chose the higher one (i.e., industrial study) as
their evidence level because the objective we analyzed the evidence
levels of the selected studies was to investigate the maturity of the
reviewed studies. None of the selected studies employed indus-
trial controlled experiments. The possible reasons can be that it is
difficult to find motivated industrial participants to do experiments
(Cornelissen et al., 2011) as well as conducting the controlled exper-
iment needs an excessive amount of effort and resources (Sjoberg
et al., 2005); on the contrary, industrial partners try to use the VTs
directly in their work (i.e., most studies have the evidence level of
“industrial study”). The proposed VT in [S50] is ranked as industrial

practice, in which the technique has been adopted by several indus-
trial organizations. Table 12 reveals that most of the studies (27
studies, 50.9%) have used industrial study and industrial practice
to evaluate the proposed VTs. The practitioners are always faced

Table 12
Evidence available in the selected studies to adopt the proposed visualization
techniques.

Evidence levels Number of studies %

Toy example/demonstration 23 43.3
Expert opinion/observation 1 1.8
Academic study 2 3.7
Industrial study 26 49.1
Industrial practice 1 1.8

174 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Cate gory 6 : Detect viola �ons , fla ws, and fa ult i n
architect ure design (6 studi es)

[S8, S17, S22, S25, S34, S52]

Cat egory 7: Provid e tra cea bility between
architec ture en��es and so�ware ar�facts

(6 studi es)
[S1, S3, S 5, S32, S35, S41]

Category 8: Improve the understanding of
behavioral char acte ris�cs o f architect ure

(3 studi es)
[S19, S20, S51]

Category 9: Check compa�bili�es and
synchroniza�on betwee n archi tecture design

and impleme nta�on (3 st udies)
[S9, S25, S41]

Cate gory 10 : Supp ort fo r model-driven
development using architecture design

(1 study) [S28]

Cat egory 5: Suppo rt archit ecture ree ngineer ing
and rever se enginee ring (7 studies)

[S11, S12, S17, S22 , S42, S49, S50]

Category 2: Improve the understanding of sta�c
charac teris� cs of arc hitect ure (13 stud ies)

[S2, S4, S1 8, S19, S21 , S24 , S3 2, S35, S40, S41, S5 1,
S52, S5 3]

Category 3: Improve search, naviga�on and
explora�on of architecture design (13 studies)
[S6, S7, S10, S13, S15, S16, S26, S29, S42, S47, S48,

S49, S50]

Cate gory 4: Improve t he understanding of
architectu re desi gn thr ough desi gn decision

visuali za� on (11 studies)
[S1, S3, S5 , S30, S31 , S32, S33, S35, S37 , S38, S41]

Category 1: Improve the understanding of
architect ure ev olu�on (14 studies)

[S1, S3, S12, S 14, S23, S27 , S3 2, S 33, S 36, S39, S4 3,
S44, S45, S46]

Purposes
of usi ng

VTs in SA

g visua

w
i
c
t
s
o
h
c
u

3
s

D
a
t
a
2
i
s
t
t
d
a

3
e

i
a
S
s
i
r
s
a
t
a
m
t
c
s

Fig. 8. Categorization of the purposes of usin

ith challenges whether to adopt a new technology, because there
s little objective evidence to confirm its suitability, limits, qualities,
osts, and inherent risks (Dyba et al., 2005). This can potentially lead
o less industrial acceptance. However, the high evidence levels of
elected studies reported in this SLR with the moderate quality (i.e.,
btained from quality assessment questions in Section 3.2) and the
igh percentage of tool support (in Section 3.6) improve the practi-
al applicability of the reported results and enable practitioners to
se and apply the results into daily software architecting practice.

.8. Different purposes of using visualization techniques in
oftware architecture

This section reports the results from analyzing the data item
8 (solved problem(s)), D9 (merit), and D11 (study findings) for
nswering RQ3, “What are the different purposes of using visualiza-
ion techniques in software architecture?” These data items were also
nalyzed using the thematic analysis method (Braun and Clarke,
006), as describe in Section 3.3, for identifying and synthesiz-

ng the purposes of applying visualization techniques to support
oftware architecting process. Our analysis resulted in the iden-
ification of ten categories of the purposes of using VTs in SA (i.e.,
hemes in thematic analysis), which are shown in Fig. 8. We provide
etailed descriptions of the categories of the identified purposes of
pplying visualization techniques in software architecting.

.8.1. Category 1: Improve the understanding of architecture
volution

This category of the reviewed studies report the use of visual-
zation to help stakeholders to understand the changes during an
rchitecture’s evolution [S1, S3, S12, S14, S23, S27, S32, S33, S36,
39, S43, S44, S45, S46]. Orlic and colleagues [S1] have developed a
et of specific notations as building blocks for architectural reason-
ng diagrams (AR-diagram) to capture and visualize architectural
easoning process. Their AR-diagram has four structural layers:
takeholder layer, requirement layer, analysis and decision layer, and
rchitecture layer. The key element in an AR-diagram is an architec-
ural decision, which is specified as a special case of requirement. An
rchitectural artifact is considered as a specific kind of decision. The

ain objective of an AR-diagram is to supplement existing architec-

ural description methods. It supports architectural evolution and
hange impact analysis. The VTs used in [S12] and [S23] can repre-
ent how the relations (e.g., dependency edges) between modules
lization techniques in software architecture.

or subsystems get evolved over time. Lungu and Lanza [S12] have
introduced a “filmstrip” VT to display the evolution of inter-module
relations through multiple versions of a system. According to this
technique, a pattern of architecture evolution showing the rela-
tionships between modules are extracted. A visual representation
of this information can be used to filter and reduce the number
(information overload) of visible inter-module relations depending
on the type of design activity a user is doing. Hindle and colleagues
have reported a VT that can be used to show how dependency
between two subsystems has changed before and after changes
made [S23].

The approaches reported in [S45, S46] use version history to
recover structure of a software system and visualize co-changes
of software entities (e.g., modules and files) over time. Both
approaches shows how structural dependencies have changed over
time; however, the work reported in [S45] emphasizes more on the
actual structural dependencies that are the reasons for co-changes.
In both studies, the size of a node indicates how many co-changes
have happened to that node. Fischer and Gall [S45] state that if two
file-pairs (i.e., files are changed simultaneously) have a high co-
change rate, they should be placed close to each other. The approach
reported in [S46] asserts that if two subsystems have been changed
together, they will be placed close to each other because they are
likely to be more inter-dependent.

3.8.2. Category 2: Improve the understanding of static
characteristics of architecture

This category includes the studies that report VTs purport to
help understand the static aspects of SA [S2, S4, S18, S19, S21,
S24, S32, S35, S40, S41, S51, S52, S53]. The static characteristics
of SA do not change during execution of a system, e.g., topologies,
assignment of components and connectors (Taylor et al., 2009). The
work reported in [S2] proposes to reuse architectural primitives in
combination with an extended UML meta-model using UML pro-
files. This approach explicitly represents architectural patterns for
a better understanding of variability in architectural patterns. To
integrate enterprise information system (EIS) architecture design
with architectural solutions evaluation, the research reported in
[S4] extends SysML to incorporate solution evaluation view in EIS

design process. The proposed solution view can help an architect to
better understand the effects of his/her re-design and requirement
readjustment decisions. Software metric information is useful for
analyzing SA (Fenton and Pfleeger, 1996), but most architecture

stems

m
a

d
o
m
(
u
r
a
t
c
m

a
o
u

3
a

v
t
s
a
p
m
t
o
w
t
m
a
t
i
w

n
i
i
t
p
c
p
p
h
e
t
i
t

3
d

S
d
u
l
t
t
c
p
p
o
c

M. Shahin et al. / The Journal of Sy

odeling tools do not support correlation analysis between metric
nd architecture diagrams.

The studies reported in [S18, S21] attempt to visualize metric
ata of architecture diagrams. The work reported in [S21] has devel-
ped MetricView tool that uses special icons to visualize software
etrics of UML architecture diagrams for making UML diagrams

e.g., class diagrams and collaboration diagrams) more clear and
nderstandable. The MetricView’s limitation of just displaying the
elations of a metric with a single element of architecture has been
ddressed by another tool reported in [S18]; this tool visualizes
he grouping of metrics and the related architecture elements, also
alled area of interest (AOI). It also displays the architecture ele-
ents that are located in an AOI.
The research reported in [S52] uses a formal language LePUS,

 symbolic and visual language, to specify and visualize object-
riented architectures. This reported purports to improve the
nderstanding of patterns used in an architecture.

.8.3. Category 3: Improve search, navigation, and exploration of
rchitecture design

All the studies (except [S10, S29]) reports VTs approaches that
isualize architecture/structure of software systems by extracting
he software architecture/structure from mainly source code. The
tudies reported in [S6, S48] use metaphor-based VTs to explore
nd navigate software architecture/structure. Another study [S6]
rovides navigable visualization of architecture and metrics infor-
ation together in one view. Balzer and colleagues [S48] attempt

o balance between information density and comprehensibility in
rder to reduce visual complexity and information loading. The
ork reported in [S10, S29] uses visualization for better naviga-

ion and exploration in software architecture documents (SAD),
ostly produced using productivity applications such as MS Word

nd Excel Spreadsheet. By this visualization, users can get a bet-
er understandability and readability of SAD. In The VTs presented
n both studies structure and present architecture information in a

ay that can enable users to quickly search/retrieve/navigate.
Su and colleagues [S10] report KaitoroBase tool that provides

on-liner navigation and visualization of structured information
n SAD based on a visual Wiki. To facilitate information retrieval
n SAD, the work reported in [S29] introduces “chuck” concept
hat is defined as a group of related architectural information. The
roposed approach and a supporting tool, called KaitoroCap, [S29]
an capture, retrieve, analyze, and finally visualize the exploration
aths by SAD users in a hierarchical tree view, which is used to sup-
ort the identification of chunks in SAD. The work reported in [S47]
as developed a tool, software architecture browser (SAB), to visually
xplore software systems structure written in Java. In comparison
o UML tools, SAB can show the desired level of detail for each class
n a class diagram (i.e., customizable class diagram), allows users
o declare hierarchical layout, and supports layered architectures.

.8.4. Category 4: Improve the understanding of architecture
esign through design decision visualization

The studies placed in this category [S1, S3, S5, S30, S31, S32, S33,
35, S37, S38, S41] report VTs aimed at visualizing architectural
esign decisions (ADDs) to help concerned stakeholders to better
nderstand and communicate architecture design. Shahin and col-

eagues [S5] have reported a controlled experiment aimed at inves-
igating the usefulness of visualization of ADDs. This work asserts
hat the presented approach to visualizing ADDs and their rationale
an improve the quality of SA design. The visualization approach

roposed in [S30] purports to support software product auditors by
roviding a facility for reusing quality criteria (i.e., a particular type
f design decision) in their early decision making process, espe-
ially in two main tasks: trade-off analysis and if-then scenarios.
and Software 94 (2014) 161–185 175

This approach is expected to help auditors to understand how archi-
tecture design meets the quality criteria with ADD visualization.

An approach combining non-functional requirements (NFRs)
and design rationale (NDR) ontology for visualizing architecture
rationale has been reported in [S31]. The method and an associated
tool reported in [S31] can support architects in (1) understanding
architectural decisions changes and (2) reviewing, comparing, and
reusing architectural rationale of ADDs.

The work reported in [S38] has constructed an ontology to rep-
resent architectural knowledge and related artifacts, which are
essential to construct an architectural knowledge repository. To
determine how an architectural repository can be used and who
will use it, a use case model (i.e., architecture tasks) has been
introduced. A commercial ontology-based visualization tool, called
Aduna Cluster Map Viewer, has been used to support the proposed
use case model and its underlying ontology. However, only some
use cases can be handled by the tool. The ontology-based archi-
tectural knowledge visualization can help architects to understand
architecture design. Another VT approach reported in [S41] explic-
itly represents architectural decisions as first class entities in an
architecture design model. The visualization approach proposed
in [S41] helps architects to assess the consequence of ADDs and
perform change impact analysis of ADDs on architecture design.

3.8.5. Category 5: Support architecture reengineering and reverse
engineering

An architecture reverse engineering process examines an exist-
ing software system and represents its software components and
the relationships between those components at different levels of
abstraction (Harris and Reubenstein, 1995). Software engineering
literature uses the terms like architecture recovery, architecture
reverse engineering, and architecture reconstruction interchange-
ably. However, an architecture recovery is more specific than other
two terms and it can be considered as a subset of architecture
reverse engineering (Ducasse and Pollet, 2009). The architecture
reengineering process focuses on re-architecting existing systems
to satisfy new changes at architecture level and improve quality
attributes such as maintainability and performance (Bengtasson
and Bosch, 1998). In reengineering process, the current system
must be understood (i.e., using reverse engineering process) and
then its structure/architecture and implementation are trans-
formed into a new form (Chikofsky and Cross, 1990). Reverse
engineering is a sub-activity in reengineering. The studies [S11, S12,
S17, S22, S42, S49, S50] report approaches to support reverse archi-
tecting by which SA is recovered first and then some facilities are
provided for exploration and navigation. The work reported in [S11,
S12, S49, S50] represents recovered architecture using dependency
graph, but the studies like [S11, S12] focus more on the arrows in
the graph and the work reported in [S49, S50] pay more attention
to nodes in the graph.

Lungu and colleagues [S11] provide a set of package patterns
that guide reverse engineers during exploration of package decom-
position to decide whether or not all the packages of a view
are relevant for architecture of a system. These package patterns,
extracted automatically from packages’ structure and their rela-
tionships with other packages, provide information to help reverse
engineers to decide about the packages that should be expanded.
The work reported in [S17] introduces a new architectural connec-
tivity metric, called “directed connectivity”, and an existing module
architecture browser (MAB) tool was extended to visualize this new
metric. The directed connectivity provides a means to measure

how many connections exist between an architecture entity to
other entities and supports incremental re-architecting in situa-
tions when existing architectural connectivity metrics of cohesion
and coupling are insufficient.

1 stems

r
a
r
n
a
d
t
i
a
e
f
s
R
o
r
e
i
g
v

3
a

S
e
t
r
t
d
b
d
t
d
t
(
t
e
a
a
w
b
a
a
p
p
[
s
t
a
T
t
a
a
n
m

3
e

t
d
S
p
g
a

76 M. Shahin et al. / The Journal of Sy

Another work reported in [S22] has developed a tool that
epresents software structure hierarchy and inner dependency in

 unified view. The tool enables an architect to visually perform
eengineering tasks such as checking the possibility of a reengi-
eering task and estimating the effort needed for doing that task. An
rchitect can reorganize software structure by using the drag and
rop capability in the tool and can estimate the potential impact of
he desired change on the planned architecture. The VTs reported
n [S49, S50] have developed two tools for static structure visu-
lization, SHriMP and Rigi. Both of the tools can support reverse
ngineering software systems. SHriMP provides multiple views
or enabling users to visualize, explore, browse, and document
oftware structure in both low-level and high-level abstractions.
igi tool facilitates understanding and re-documenting structure
f large-scale software systems by visualizing their structure. In
e-documenting, the low-level entities are grouped into high-level
ntities until appropriate abstraction level is achieved. Rigi tool uses
nteractive graph editor including selecting, layouting, filtering, and
rouping functionality to represent software structure that reduces
isual complexity.

.8.6. Category 6: Detect violations, flaws, and faults in
rchitecture design

The studies placed in this category [S8, S17, S22, S25, S34,
52] report VTs that provide visualization clues to architects to
asily detect violations, flaws, and faults in architecture decomposi-
ions, architecture specifications, and architecture design. The work
eported in [S8] presents an approach to visually compare archi-
ecture descriptions based on software decomposition and code
ependencies. The approach represents similarities and differences
etween architecture descriptions that could reveal architectural
rifts and violations and also shows how much two decomposi-
ions are (not) matched to each other at an appropriate level of
etail. The studies reported in [S22, S25] use visualization to iden-
ify architectural violations in SA design. As discussed in Category 5
Section 3.8.5), the work reported in [S22] has developed a tool
hat represents software structure hierarchy and inner depend-
ncy in a unified view. The tool can help an architect to find what
rchitectural violations exist against an intended architecture and
ssess how much effort is needed to solve these violations. The
ork reported in [S25] can prevent architecture from degenerating

y identifying architectural violations between planned and actual
rchitecture. The study described in [S25] shows architectural devi-
tions on architecture diagrams to inform architects about the
arts of the planned and actual architecture that are not com-
liant and provide guidelines to resolve it. The work reported in
S34] introduces an approach to integrate software system and
oftware process artifacts. Thus, the study defines SA as architec-
ure of software system and process. These artifacts are considered
rchitectural artifacts and organized into a graph-based model.
he approach provides some transformation models on the graph
hat architects can perform bad smell detection, pattern discovery,
nd architecture refactoring. The work reported in [S52] employs

 formal language LePUS, which provides both symbolic and visual
otations, to visually compare and symbolically verify the confor-
ance between architecture design and architecture patterns.

.8.7. Category 7: Provide traceability between architecture
ntities and software artifacts

The studies classified in this category are aimed at cap-
uring and visualizing traceability links between requirements,
esign decisions and architecture artifacts [S1, S3, S5, S32,

35, S41]. Decision-centric-traceability (DCT) meta-model pro-
osed in [S3] provides visual traceability links between quality
oals/requirements and decisions, and also between decisions and
rchitectural elements in design and implementation. DCT results
 and Software 94 (2014) 161–185

in fewer traceability links and facilitates understanding the impact
of a decision. DCT meta-model extracts traceability information
from architectural analysis documents and transforms it into a
reusable format. The work reported in [S5] uses ADD visualization
to record traceability links between problem space and solution
space, i.e., from requirement to architecture design or vice verse.
By this way, the origins and targets of an ADD and its rationale are
traceable. The work reported in [S32] provides traceability between
design concerns, design decisions, and design outcomes. The design
concerns are inputs or the causes of a decision, and design outcomes
are the results or effects of a decision. Design concerns and out-
comes are represented by architectural entity (AE) and decisions
are shown by architectural rationale (AR). In other words, the pro-
posed approach always keeps links between an input AE, a decision
AR, and a resulting AE. The work reported in [S35] supports trace-
ability visualization from architecture design to requirements or
design decisions with an accompanying tool. Traceability links are
visualized in architecture diagrams and in source code editors (i.e.,
Eclipse IDE) as well. The traceability visualization provided by [S41]
can capture traces between requirements, decisions, and architec-
tural components by means of formal and informal relationships.
Formal relationships, which are defined in Archium meta-model,
determine the impact of a decision, and also represent which
components in architecture are related to a decision. Informal rela-
tionships represent other types of relationships between a decision
and a requirement, and are defined as decision properties in text
descriptions.

3.8.8. Category 8: Improve the understanding of behavioral
characteristics of architecture

The work reported in [S19, S20, S51] focuses on visualization
of behavioral characteristics of SA. This category emphasizes visu-
alizing the characteristics of running components and monitor
inter-component communication during runtime. The proposed
notations in [S19] are used for describing both structural and
behavioral properties of architecture. The behavioral properties
focus on events and state changes of architectural elements. The
work reported in [S20] developed a tool, DiffArchViz, to visualize
dynamic SA. This tool was used to analyze the runtime profiles
of a data storage server operating system against a set of storage
server performance benchmarks. The work reported in [S20] does
not explicitly discuss what architecting activities are supported by
the dynamic architecture visualization, but it helps users to under-
stand more details about SA, such as showing which components
are the busiest and most active during specific benchmark runs.
Besides visualization of static SA described in Category 2 (Sec-
tion 3.8.2), the VT reported in [S51] also visualizes the dynamic
aspects of SA to support consistency between static and dynamic
aspects of software architecture in one tool. The specific visualiza-
tion notations proposed in [S51] can visualize dynamic architecture
at various levels of abstractions. Software architects and developers
can view the processes created at architecture level and can request
information about the inter-process communication of a selected
set of architectural elements.

3.8.9. Category 9: Check compatibilities and synchronization
between architecture design and implementation

It is very well known that architecture design and implemen-
tation may not be compatible, especially when implementation
evolves over time. The studies [S9, S25, S41] in this category
focus on using visualization to verify designed architecture against
implementation. The work reported in [S9] provides a visualization

tool, LISA, with underlying meta-model to support continuous syn-
chronization between architecture and implementation based on a
defined meta-model. It means the tool provides real-time updates
on the changes made at the architecture or implementation levels.

stems

W
t
a
T
a
w
c
p
r
a
o
T
a
T
n
t
w
t

3
a

d
c
v
m
M
b
t
t
e
t
p
a

3

d
t
a
v
i
s
i
r
d
a
e
c
b
c
f
e
s
s
s
T
s
r
i
m
t
e
c

M. Shahin et al. / The Journal of Sy

hen architecture description and implementation are changed,
he tool will annotate corresponding implementation elements
nd architectural elements that should be updated respectively.
he tool always ensures compatibility between component-level
bstraction and low-level architectural elements. The SAVE (soft-
are architecture visualization and evaluation) tool [S25] aims at

hecking the compliance between a planned architecture (i.e.,
lanned architecture is defined based on the knowledge of a cur-
ent system and it includes architectural goals and rationale) and
n actual architecture (i.e., extracted from source code). The results
f compliance checking are visualized on architecture diagrams.
he SAVE tool claims to help keep an alignment between actual
rchitecture and planed architecture during software evolution.
he Archium tool [S41] can help architects to examine whether or
ot the agreed architecture decisions have been implemented. If
he made architecture decisions are ignored, the Archium tool will
arn the concerned stakeholders about the violations of architec-

ure decisions.

.8.10. Category 10: Support for model-driven development using
rchitecture design

This category includes VTs aimed at supporting model-driven
evelopment (MDD) through architecture visualization, e.g., exe-
utable architectural view. Existing architectural views with
iewpoints cannot be characterized and interpreted as executable
odels because they lack precision. Therefore, they cannot support
DD. The work reported in [S28] defines architectural viewpoints

ased on a domain specific language that provides executable archi-
ectural views. The SAVE tool developed in [S28] supports both
extual and visual modeling of executable architecture views. The
xecutable viewpoints and views in SAVE are not just documen-
ation but represent executable models that can be interpreted,
rocessed, and mapped onto other software models. Hence, these
pproaches support MDD based on architectural views.

.9. Domain based architecture visualization techniques

The last two questions of our SLR, RQ4 and RQ5, were specifically
esigned for providing potentially useful information for practi-
ioners. The results are expected to be quite beneficial to those who
re interested in the domain specific aspects of the architecture
isualization techniques. To answer RQ4, “What are the domains
n which architecture visualization techniques have been applied to
upport architecting activities?”, we analyzed the data item D13
n Table 5. Table 13 shows the application domains in which the
eviewed VTs can be placed. As shown in Table 13, 11 studies
id not explicitly report the application domains for which the
rchitecture visualization techniques have been developed and/or
mployed. The remaining studies have been classified in 18 appli-
ation domains. Note that, the VT introduced in one study can
e applied in more than one application domains with several
ases (e.g., the VT reported in [S40] has been applied in six dif-
erent domains such as graphics software (including both image
diting software and visualization tools), information management
ystem, operating system, web server software, and email server
oftware) and if one study uses more than one system as a case
tudy, then we count this study N (number of systems) times in
able 13 and 11 (e.g., the work reported in [S8] uses two distributed
ystems and two general software libraries as case studies, and x
epresents the number of cases in S8(x)). It is clear from our find-
ngs that graphics software, distributed system, and information
anagement system have gained more attention in applying VTs
o their SA. For example, the studies [S3] and [S45] use NASA crew
xploration vehicle system and Mozilla web browser software as
ase studies to validate their proposed VTs.
and Software 94 (2014) 161–185 177

Table 14 shows that how VTs have been employed for what
purposes (i.e., the 10 purposes of using VTs categorized and dis-
cussed in Section 3.8) and in which application domains. The results
reported in Table 14 have been extracted and combined from Fig. 8
and Table 13 in Sections 3.8 and 3.9. According to Table 13, the
VTs reported in [S6, S7, S16] use architecture visualization in “web
browser software” domain, and according to Fig. 8 and Section
3.8, the studies [S6, S7, S16] use VTs to “improve search, naviga-
tion, and exploration of architecture design”, therefore, we put
“3” in Table 14, which means 3 studies have applied architec-
ture visualization techniques in “web browser software” domain
to “improve search, navigation, and exploration of architecture
design”. It is clear from Table 14 that the objectives “improve search,
navigation, and exploration of architecture design” and “support
architecture reengineering and reverse engineering” of using archi-
tecture visualization have been supported in most of application
domains. The VTs applied in “distributed system” domain sup-
port all objectives except two (i.e., “improve the understanding of
behavioral characteristics of architecture” and “support for model-
driven development using architecture design”).

3.10. Most frequently used visualization techniques in industry

Our RQ5, “Which are the architecture visualization techniques
mostly used in industry?”, was aimed at revealing the number of
times a particular VT had been applied to an industrial environ-
ment. Table 15 presents the primary studies along with the domain
and the number of times a particular VT has been applied to dif-
ferent domains. It becomes clear from Table 15 that the reported
industrial practices have been validated in 16 application domains.
Only two application domains (“telecommunication system” and
“aerospace system”) in Table 13 do not have any validations of using
VTs in SA in an industrial setting. The “graphics software” domain
has gained the most attention in applying VTs to architecture in
industry. One possible reason can be that “graphics software” has
more interest to visualize architecture design because of its nature.
A VT proposed in a study represented as [X] in Table 15 (for example,
S18 [NV] means study [S18] employs a notation-based VT. Because
of the limited space in the table, we use the abbreviations of the
visualization techniques proposed in Fig. 6). By investigating the
proposed VTs reported in the studies in Table 15, it is clear that
graph-based VT (38 cases) is the dominant and most popular archi-
tecture visualization technique used in industry, and matrix-based
VT (9 cases), notation-based VT (7 cases), and metaphor-based VT
(6 cases) are used but less popular in industry. The results reveal
that the distribution of VTs in SA used in industry is different from
the overall distribution of VTs in the selected studies described in
Section 3.3. As shown in Fig. 3, the notation-based VT is in the sec-
ond place in terms of popularity with 22 studies, but as shown in
Table 15, the notation-based VTs are applied to 6 industrial cases,
which places the notation-based VTs in the last place (i.e., graph-
based, matrix-based, and metaphor-based VTs are used in 38, 9,
and 6 industrial cases respectively) in industrial applications. Both
distributions have some similarities, for example, graph-based VT
is still dominant in both industrial and overall applications, because
graph-based VT intends to show the overall properties of a struc-
ture, which is useful for all types of projects to get an overview of
the architecture.

4. Threats to validity
This SLR has two main threats to validity: bias in the study selec-
tion and bias in the data extraction. Because the study selection
and data extraction are quite subjective, researchers’ bias could
affect the results of this SLR. To reduce the potential bias in the

178 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Table 13
Distribution of application domains of the selected studies.

Application domain No. of cases Cases

Not specified 11 S13, S14, S19, S21, S28, S29, S33, S34, S37, S47, S51
Graphics software 12 S2, S18, S22, S27(2), S39, S40(2), S44(2), S48, S49
Distributed system 9 S1, S8(2), S11, S12, S24(2), S41, S50
Information management system 8 S4, S11(2), S30, S31, S35, S36, S40
General software library 5 S8(2), S42(2), S52
Web browser software 4 S6, S7, S16, S45
Operating system 4 S15, S16, S20, S40
Web server software 4 S8, S16, S40, S53
Aerospace system 3 S3, S25, S38
Text editor 3 S8, S11, S16
Financial software 3 S9, S22, S32
Software modeling tool 3 S11, S12, S44
Database system 3 S23, S46, S50
Embedded software 2 S5, S10
Email server software 2 S11, S40
Compiler software 2 S26, S43
Software development tool 2 S22, S48

s
t
d
r
r
a
t
m
c
l
a
t
f
t
2
b
a
t
s
e
m
t
i
t
a
a
s
k
v
t
D
b
t
p
t
p
d
2
o
s
t
t
m
t
s

Telecommunication system 1

Spreadsheet software 1

tudy selection as much as possible, we developed and validated
he review protocol in the following way. This protocol was initially
efined by two researchers and was further evaluated by a third
esearcher on software architecture who had an extensive expe-
ience of research and practice on empirical software engineering
nd systematic literature review. After finalizing the review pro-
ocol, we strictly followed it for conducting the review. To further

itigate the effect of researchers’ bias in the study selection, we
hose a three-step (round) study selection process so that there is
ess likely chance of excluding the relevant studies unintention-
lly. The first author performed the study selection process and
he second author examined all the included and excluded studies
rom the second step of the selection process as described in Sec-
ion 2.4. For the input of the first round of paper selection, we got
3,056 papers (as shown in Fig. 1), and we decided to select papers
ased on the title and keywords only because reading abstract of
ll the papers will cost a huge amount of effort, but the threat is
hat we may have excluded some relevant papers. In the second
tep of the study selection process, the reasons for inclusion or
xclusion decisions for each paper were recorded and any disagree-
ents were resolved through discussions (there were 18 papers

hat the two authors had different opinions on whether includ-
ng or excluding them and finally the disagreements were resolved
hrough discussions between the two authors). A cross-check using

 random number of the selected papers was performed by the third
uthor. The search strategy includes both automatic and manual
earches. The automatic search was limited to title, abstract, and
eywords of papers to get a reasonable number of potentially rele-
ant papers. Search terms were improved iteratively based on the
rial search and were tested carefully before executing the review.
espite this, it is possible that some relevant papers might not have
een retrieved by the used search terms. We employed two ways
o mitigate this threat: (1) a manual search was conducted to com-
lement the results from the automatic search; (2) a snowballing
echnique was employed in the second round of the study search
rocess (see Fig. 1) to identify related studies. According to the
ata sources for automatic and manual searches listed in Section
.2.3, we might have two threats, which may cause the missing
f related studies: (1) we did not include Google Scholar as a data
ource for the automatic search; (2) the list of target venues for
he manual search in Table 3 might not be comprehensive due

o the limitation of our knowledge. The later threat is partially

itigated by including the general intervention terms “architec-
ure” and “visualization” in the search terms for the automatic
earch.
S17
S16

To reduce the threat of inaccuracies in the data extraction, we
created a data extraction form to extract and analyze the needed
data consistently for answering the research questions of this SLR.
To reduce the bias, the data extraction process was conducted by
two researchers, the first author acted as the data extractor, and
the second author as the data checker of the selected studies. Any
disagreements among all the researchers were resolved through
discussions. Because of the page limitation of several included stud-
ies, especially those published in conferences and workshops, they
have not provided enough and detailed information about the data
items to be extracted. In this kind of situations, a subjective inter-
pretation about the extracted data by researchers was needed. It
might have had an effect on the data extraction outcomes. For
example, some studies did not discuss the level of tool support, and
some studies did not explicitly discuss what architecting activities
and in which application domains the VTs had been applied. To
reduce the researchers’ bias in interpretation of the results, in the
case of the level of tool support, besides reading the given study,
we also referred the tool’s website and any training movie (if it was
available) to get more reliable information. In the case of archi-
tecting activities and application domains, we did not have any
appropriate interpretation unless we were sure that the proposed
VT supports certain architecting activities and has been applied in
a specific application domain. The study quality assessment pre-
sented in Section 3.2 also helped us to increase the correctness and
accuracy of the data extraction results because as we discussed in
Section 3.2, the quality assessment ensures that the extracted data
are from credible studies.

5. Discussions

There has been an increasing interest in approaches and tools
for understanding and reasoning about software architecture of
that system. Visualization approaches are increasingly becoming
popular for communicating and understanding software architec-
ture of a system. Several dozens of approaches and tools have been
developed and reported for visualizing architectural elements (i.e.,
components, connectors, design patterns, and rationale) of a soft-
ware intensive system. It is equally important to systematically
review and thoroughly document the reported software archi-
tecture visualization approaches and tools in form that can help

understand their nature and potential areas of applications and
identify the areas of future research direction. This study was moti-
vated to address the abovementioned needs that were described as
the five key research questions. The previously section presented

M
.

 Shahin
 et

 al.
 /

 The
 Journal

 of
 System

s
 and

 Softw
are

 94
 (2014)

 161–185

179
Table 14
Number of studies assigned to each application domain and purpose of using visualization techniques.

Application domain

Purpose of using visualization techniques Graphics
software

Distributed
system

Information
management system

General software
library

Web browser
software

Operating
system

Aerospace
system

Text
editor

Web server
software

Category 1: Improve the understanding of
architecture evolution

3 2 1 1 1

Category 2: Improve the understanding of
static characteristics of architecture

3 2 3 1 1 2

Category 3: Improve search, navigation, and
exploration of architecture design

2 1 1 3 2 1 1

Category 4: Improve the understanding of
architecture design through design decision
visualization

2 3 2

Category 5: Support architecture
reengineering and reverse engineering

2 3 1 1 1

Category 6: Detect violations, flaws, and faults
in architecture design

1 1 2 1 1 1

Category 7: Provide traceability between
architecture entities and software artifacts

2 1 1

Category 8: Improve the understanding of
behavioral characteristics of architecture

1

Category 9: Check compatibilities and
synchronization between architecture
design and implementation

1 1

Category 10: Support for model-driven
development using architecture design

Application domain

Purpose of using visualization techniques Financial
software

Software
modeling
tool

Database
system

Embedded
software

Email
server
software

Compiler
software

Software
devel-
opment
tool

Telecommunication
system

Spreadsheet
software

Not
specified

Category 1: Improve the understanding of
architecture evolution

1 2 2 1 1

Category 2: Improve the understanding of
static characteristics of architecture

1 1 1

Category 3: Improve search, navigation, and
exploration of architecture design

1 1 1 1 1 3

Category 4: Improve the understanding of
architecture design through design decision
visualization

1 1 2

Category 5: Support architecture
reengineering and reverse engineering

1 2 1 1 1 1

Category 6: Detect violations, flaws, and faults
in architecture design

1 1 1 1

Category 7: Provide traceability between
architecture entities and software artifacts

1 1

Category 8: Improve the understanding of
behavioral characteristics of architecture

2

Category 9: Check compatibilities and
synchronization between architecture
design and implementation

1

Category 10: Support for model-driven
development using architecture design

1

180 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Table 15
Frequencies of the reported VTs applied to different domains.

Application domain No. of cases Cases

Graphics software 9 S18 [NV], S22 [GV], S27(2) [NV, GV], S40(2) [GV], S44(2) [MEV], S48 [MEV]
Distributed system 7 S8(2) [MV], S11 [GV], S12 [MV, GV], S24(2) [GV], S50 [GV]
Information management system 6 S4 [NV], S11(2) [GV], S31 [GV], S35 [NV], S40 [GV]
General software library 4 S8(2) [MV], S42(2) [GV]
Web browser software 4 S6 [MEV], S7 [GV], S16 [GV], S45 [GV]
Operating system 4 S15 [GV], S16 [GV], S20 [GV], S40 [GV]
Web server software 4 S8 [MV], S16 [GV], S40 [GV], S53 [NV]
Text editor 3 S8 [MV], S11 [GV], S16 [GV]
Software modeling tool 3 S11 [GV], S12 [MV, GV], S44 [MEV]
Database system 3 S23 [GV], S46 [GV], S50 [GV]
Financial software 2 S22 [GV], S32 [NV]
Email server software 2 S11 [GV], S40 [GV]
Software development tool 2 S22 [GV], S48 [MEV]

t
r
l
r

(

(

T
C

Telecommunication system 1

Compiler software 1

Spreadsheet software 1

he findings from this literature review with respect to those key
esearch questions. We discuss the findings from this systematic
iterature review and reflect upon the potential areas for further
esearch in architecture visualization techniques and tools:

1) Architecting activities and VTs: According to the results
reported in Section 3.4, the VTs support architecture recovery
(AR) and architectural evolution (AEV) activities frequently, and
support architectural evaluation (AE), change impact analysis
(CIA), and architectural analysis (AA) activities to some extent,
but they rarely support architectural synthesis (AS), archi-
tectural implementation (AI), and architecture reuse (ARU)
activities. We assert that for the architecting activities such as
AR, AEV, AE, and CIA, the value of “understanding” of architec-
tural elements including structural and decisional elements is
more visible and therefore in these activities architects need
more “visualization” support (as we know, the dominant func-
tion of visualization is to improve understanding). For example,
to evolve a given software architecture (AEV), an architect
needs to understand the structure of software, and then she/he
can change the architecture in an informed way. To perform
AR, as a sub-activity in reverse/re-engineering, it is necessary to
get a clear understanding of a system before performing other
reverse/re-engineering activities. We argue that the research
area (i.e., applying VTs in AA, AS, AI, and ARU activities) should
be more investigated in the future, for example, whether these
architecting activities can be well-supported by SA visualiza-
tion? What are the underlying reasons that these architecting
activities receive little attention of using SA visualization?
2) VTs in SA and tool support: Table 16 shows what VTs for SA
visualization are provided with which level of tool support. To
give an example, the study reported in [S34] uses graph-based
VT with manual level of tool support in software architecting.

able 16
lassification of studies by visualization technique and level of tool support.

Level of tool support

Visualization technique Manual Semi-automatic

Graph-based S34 [1 Study] S7, S10, S11, S12, S20, S23, S24, S29, S
[13 Studies]

Notation-based S1, S2, S5, S19, S39
[5 Studies]

S21, S28, S32, S33, S35, S41, S47, S51
[10 Studies]

Matrix-based S12, S30
[2 Studies]

Metaphor-based S44
[1 Study]

Total studies 6 25
S17 [MV]
S43 [GV]
S16 [GV]

Note that the studies, which provide a certain level of tool sup-
port to more than one VTs (e.g., S12), are only counted once
to the number of “Total Studies” in Table 16. All the four VTs
are mainly provided with “semi-automatic” and “automatic”
tool support. It shows that (semi-)automatic tool support is an
important driver to employ VTs in SA. It is clear from Table 16
that matrix- and metaphor-based VTs do not fall under the
manual level of tool support, and manual tools mostly sup-
port notation-based VT (5 out of 6 studies). Notation-based
VT can be both used in manual and (semi-)automatic tools,
e.g., manual ADD visualization using ADD notations has been
reported in [S5], and automated UML model construction from
source code has been reported in [S25]. We further investi-
gated what differences exist in the functionality provided by
semi-automatic tools and automatic tools in SA visualization.
We identified three main features that were performed manu-
ally in semi-automatic tools compared to automatic tools in SA
visualization:
• User involvement: in some studies, there is a need of

user involvement such as user analysis, user inspection,
and user decision that can provide users with the knowl-
edge to produce better results. The user involvement makes
architecture visualization clearer, more understandable, and
accurate. For example, Sartipi and Kontogianni [S40] provide
a user-assisted technique for components clustering to bet-
ter partition large systems. The study in [S11] has employed
a graph-based VT to assist reverse engineers during package
decomposition of systems, but the system decomposition
process in [S11] is not fully automated because there are some

cases in which user decisions are needed to choose which
packages should (not) be further decomposed.

• User configuration: some semi-automatic architecture visu-
alization tools require users to input initial data and provide

Total studies

Automatic

31, S38, S40, S43, S50 S9, S15, S16, S22,
S26, S27, S36, S37, S42, S45, S46, S49
[12 Studies]

26

, S52, S53 S3, S4, S9, S14, S18, S25, S27
[7 Studies]

22

S8, S17, S37
[3 Studies]

5

S6, S13, S48
[3 Studies]

4

22

stems

(

T
C

T
C

M. Shahin et al. / The Journal of Sy

initial configurations to be triggered for visualization. In [S38
and S41], the initial data could be ADDs, their attributes, and
the relations between them, which are manually defined and
provided by architects, and then the tools developed in [S38
and S41] can automatically visualize these ADDs with other
features. The work in [S28] developed a tool to visualize exe-
cutable architectural views for model-driven development,
but it requires that architects write a grammar for construc-
ting and visualizing the architectural views.

• User layout: In some studies, the layout of architecture
visualization output is not supported by visualization tools
sufficiently. A user should manually adjust the layout. For
example, the semi-automatic tool reported in [S52] provides
a basic layout algorithm, therefore, some manual layout is
needed.

3) Architecting activities and tool support: Table 17 shows the
architecting activities that are supported by the tools reported
in the studies included in this SLR. Table 17 also shows the type
of support (i.e., manual, semi-automatic, and automatic) for SA
visualization provided by each of the tools. To give an exam-

ple, the work reported in [S7] uses a semi-automatic tool to
support the AR activity. Similarly, the studies, which provide a
certain level of tool support to more than one architecting activ-
ities (e.g., S30), are only counted once to the number of “Total

able 17
lassification of studies by architecting activity and level of tool support.

Level of tool support

Architecting activity Manual Semi-automatic

Architecture recovery S7, S11, S12, S20, S23, S24, S40, S43,
[11 Studies]

Architectural evolution S1, S39
[2 Studies]

S12, S23, S32, S33, S43, S44
[6 Studies]

Architectural evaluation S1, S5
[2 Studies]

S30, S31, S32, S33, S35, S38, S41
[7 Studies]

Change impact analysis S1
[1 Study]

S30, S32, S35, S41
[4 Studies]

Architectural analysis S1, S5
[2 Studies]

S30, S31, S32, S33, S35, S53
[6 Studies]

Architectural synthesis S1, S5
[2 Studies]

S30, S31, S32, S33
[4 Studies]

Architectural implementation S28,S41,S51
[3 Studies]

Architecture reuse S29, S30, S31
[3 Studies]

Total studies 6 25

able 18
lassification of studies by visualization technique, level of tool support, and evidence lev

Evidence level

Visualization technique Level 1 Level 2 Lev

Graph-based S9(A), S10(S), S26(A), S29(S),
S34(M), S36(A), S38(S), S49(A)
[8 Studies]

S37(A)
[1 Study]

Notation-based S1(M),S2(M),S3(A),
S9(A),S14(A),S19(M),
S21(S),S25(A),S28(S),
S39(M),S41(S),S47(S),
S51(S),S52(S)
[14 Studies]

S5
[2

Matrix-based S30(S)
[1 Study]

S37(A)
[1 Study]

Metaphor-based S13(A)
[1 Study]

Total Studies 23 1 2
and Software 94 (2014) 161–185 181

Studies” in Table 17. As shown in Table 17, all the architecting
activities are mainly facilitated by “semi-automatic” and “auto-
matic” types of tool support. It has also been shown that
(semi-)automatic tools are fundamentally employed by VTs in
software architecting. SA visualization for AR and AEV are more
facilitated by (semi-)automatic tools, but SA visualization for AI
and ARU are less supported by tools. AA, AE, and AS are mostly
supported by semi-automatic tools. One reason that AA, AS,
and AE are mostly (over 61.5%) supported by semi-automatic
visualization tools can be that these architecting activities are
mainly human-centric and user involvement is needed, such as
inspection in AA, decisions making in AS, and examination in
AE.

(4) Tool support of VTs and evidence level: Table 18 summarizes
the findings from our investigation whether the architecture
visualization techniques supported by (semi-)automatic tools
have a higher level of evidence (mostly in level 4, industrial
studies) than those that only have manual support (mostly in
level 1, toy examples/demonstration). The level of tool sup-
port provided in a study represented as (X) in Table 18 (For

example, S9(A) means [S9] employs an automatic tool to sup-
port graph-based VT in a toy example, i.e., evidence level 1.
The abbreviations used in the Table are as follows: automatic
“A”, semi-automatic “S”, and manual “M”). The studies that

Total studies

Automatic

 S44, S47, S50 S6, S8, S13, S15, S16, S17, S22, S25, S27, S42,
S45, S46, S48, S49
[14 Studies]

25

S14, S17, S22, S25, S27, S36, S45, S46
[8 Studies]

16

S4, S36
[2 Studies]

11

S22, S25, S27, S36, S37
[5 Studies]

10

S3
[1 Study]

9

S4
[1 Study]

7

S9,S25
[2 Studies]

5

S36
[1 Study]

4

22

el.

Total studies

el 3 Level 4 Level 5

S7(S), S11(S), S12(S), S15(A),
S16(A), S20(S), S22(A), S23(S),
S24(S), S27(A), S31(S), S40(S),
S42(A), S43(S), S45(A), S46(A)
[16 Studies]

S50(S)
[1 Study]

26

(M), S53(S)
Studies]

S4(A), S18(A), S27(A), S32(S),
S33(S), S35(S)
[6 Studies]

22

S8(A), S12(S), S17(A)
[3 Studies]

5

S6(A), S44(S), S48(A)
[3 Studies]

4

26 1

1 stems

6

r
t
c
t
o
i
s
s
a

(

(

82 M. Shahin et al. / The Journal of Sy

provide a certain level of evidence to more than one visualiza-
tion techniques (e.g., S37), are only counted once to the number
of “Total Studies” in Table 18. Table 18 indicates that a manual
level of tool support is mostly provided in studies whose evi-
dential support is based on toy examples (i.e., evidence level
1). Moreover, the tools presented in these studies have never
been used in industrial settings. This may indicate that the
VTs in SA supported by manual level tools are not interesting
for industrial settings. We also found that 38% of the studies
reporting (semi-)automatic tool support have provided the evi-
dence based on toy examples and expert opinions/observations
(i.e., evidence level 1 and level 2), and there are 59% of the
studies with (semi-)automatic tool support that have provided
the evidence based on industrial studies and industrial prac-
tices (i.e., evidence level 4 and level 5). As shown in Table 18,
there is a correlation between the level of tool support and the
level of evidence provided, that VTs in SA supported by (semi-
)automatic tools receive a higher level of evidential support (i.e.,
26 studies with (semi-)automatic tool support were validated
with industrial studies, evidence level 4), and toy examples (i.e.,
23 studies with evidence level 1) are usually used to demon-
strate how to use the VTs in SA.

. Conclusions

The aim of this work is to report the design, execution, and
esults of a systematic review of software architecture visualization
echniques. We systematically selected and rigorously analyzed a
omprehensive set of SA visualization techniques and tools in order
o provide an evidential based knowledge about the current state
f SA visualization and the potential areas of research. From the
nitially identified 23,056 papers through manual and automatic
earches, we selected 53 papers based on the inclusion and exclu-
ion criteria for this review. The data extraction from the 53 papers
nd synthesis have enabled us to draw the following conclusions:

1) The results of this SLR show that the reported software archi-
tecture visualization techniques can mainly be classified into
four types: graph-based, notation-based, matrix-based, and
metaphor-based. The graph-based and notation-based VTs
appear to be the most popular ones. The architecting activi-
ties including general and specific activities are supported by
these VTs with a significant difference in terms of the popular-
ity. Whilst AR and AEV are supported more frequently by the
VTs, however, AA, AS, AI, and ARU receive less attention from
using VTs. We can also conclude that AR and AEV are more
facilitated by (semi-)automatic tools, but SA visualization for
AI and ARU are less supported by tools. Our review also reveals
that AA, AS, and AE are more dependent on human involvement
than other architecting activities, therefore, these activities are
mostly supported by semi-automatic tools. Manual tools for
architecture visualization mostly employ notation-based VT,
but they receive less attention from practitioners and have not
been trialed in industrial applications.

2) Our review enables us to conclude that VTs are mainly
employed in SA for ten purposes, in an order of importance:
(i) improving the understanding of architecture evolution; (ii)
improving the understanding of static characteristics of archi-
tecture; (iii) improving search, navigation, and exploration
of architecture design; (iv) improving the understanding of
architecture design through design decision visualization; (v)

supporting architecture reengineering and reverse engineer-
ing; (vi) detecting violations, flaws, and faults in architecture
design; (vii) providing traceability between architecture enti-
ties and software artifacts; (viii) improving the understanding
 and Software 94 (2014) 161–185

of behavioral characteristics of architecture; (ix) checking com-
patibilities and synchronization between architecture design
and implementation; (x) supporting for model-driven devel-
opment using architecture design.

(3) VTs have been applied to the SA in a wide range of application
domains, and the “graphics software” and “distributed system”
domains have received the most attention in industry. This sys-
tematic review also shows that graph-based VT is the most
popular architecture visualization technique in industry; other
VTs are less employed.

(4) A high percentage of papers providing industrial level evidence
(i.e., industrial studies and practices as presented in Section 3.7)
and tool support (Section 3.6) in the selected studies with the
moderate quality (Section 3.2) improves the practical applica-
bility of the reported results and encourages SA practitioners to
adopt and employ these VTs in their daily work. But academic
and industrial controlled experiments, as one of objective eval-
uation methods in empirical software engineering, are rarely
used in the evaluation of the selected studies. This deficiency
has also been demonstrated in secondary study on software
evolution visualization (Novais et al., 2013). We encourage
researchers and practitioners in SA community to pay more
attention to this evaluation method and other high quality
empirical methods (Sjoberg et al., 2007) for gathering and shar-
ing more convincing evidence of the potential benefits of using
VTs in SA.

(5) A comparative analysis of semi-automatic and automatic SA
visualization tools reveals that these tools can be categories
based on three types of features: “user involvement”, “user con-
figuration”, and “user layout”, which are manually performed
in semi-automatic tools. The findings from this review also
enable us to conclude that there is more likelihood to gather and
provide higher level of evidence for architecture visualization
techniques that have associated (semi-)automatic tools com-
pared with the techniques which needs to be applied manually.
One reason for this situation may be that practitioners prefer
those VTs which have (semi-)automatic tool support compared
with manual tool support that may need much more efforts to
use them.

The results of this SLR can have several implications for software
architecture and visualization researchers, practitioners, and tool
developers. For researchers, this review has identified a number
of potentially researchable topics in the area of SA visualiza-
tion. For example, (i) there is a paucity of research aimed at
systematically studying the pros and cons of applying VTs for
architectural analysis, architectural synthesis, architectural imple-
mentation, and architecture reuse activities (as demonstrated in
Table 10); (ii) little attention has been paid to carry out con-
trolled experiments (one of objective evaluation methods used
in empirical software engineering) to evaluate and compare the
usefulness (e.g., ease of use, effectiveness, efficiency, application
cost) of the reported VTs and tools due to the excessive effort
and resources needed (Sjoberg et al., 2005). Hence, researchers
need to systematically design and rigorously carry out suitable
controlled experiment to collect more objective and quantifiable
evidence about the usefulness of reported VTs and tools; (iii)
as reported in Section 3.2, the majority (49%) of the included
studies did not examine the potential researchers bias and influ-
ence on the findings; there is also a general lack of discussions
on the limitations of the reported techniques and tools in the
reviewed papers; we strongly suggest that more attention should

be paid to these issues by researchers which is likely to improve
the quality and credibility of the reported VTs in SA; (iv) since
architectural implementation and architecture reuse activities are
less supported by the reported SA visualization tools, researchers

stems

m
t
a

i
s
a
s
w
t
S
o
s
t
a
i
p
s
v
v
s
s
v
a
v
a
d
l
v

T
S

M. Shahin et al. / The Journal of Sy

ay consider to allocate more research and development effort
o provide appropriate techniques and tools for supporting these
ctivities.

The findings from this review also provide potentially useful
nsights for practitioners and tools developers. For example, (i)
ince VTs without (semi-)automatic tool support have not been tri-
led in industrial applications in order to provide strong evidential
upport, SA visualization tools developers ought to propose VTs
ith (semi-)automatic tool support in order to encourage indus-

ry to try their VTs in architecting practice; (ii) as discussed in
ection 5, “user involvement”, “user configuration”, and “user lay-
ut” are three main features that were performed manually in
emi-automatic tools compared to automatic tools in SA visualiza-
ion. We suggest that these features should better be supported or
ssisted by the future automatic tools. For example, with increas-
ng size and complexity of software systems, layouting SA design
roperly can be out of the capability of architects. To this end, we
uggest that practitioners, who work on developing and using SA
isualization tools, employ more efficient layout algorithms in SA
isualization; (iii) our dataset revealed that there are only 9.4% of
tudies (5 out of 53, [S3, S32, S35, S39, S41]) which provide tools to
upport architecture visualization of both structural and decisional
iewpoints in an integrated tool. The possible reasons for this low
ttention could be that architectural design decision and decisional
iewpoint are emerging topics (Jansen and Bosch, 2005; Duenas
nd Capilla, 2005) in SA community, and documenting architectural

esign decision necessitates high effort as well as establishing the

inks between decisions and other software artifacts (e.g., structural
iew) is time-consuming (Zdun et al., 2013). Since SA practitioners

able 19
elected studies in the review.

ID Title

S1 Concepts and diagram elements for architectural knowledge management

S2 Modeling the variability of architectural patterns
S3 Transforming trace information in architectural documents into re-usable and

effective traceability links
S4 Evaluating software architecture in a model-based approach for enterprise

information system design
S5 Architectural design decision visualization for architecture design: preliminary

results of a controlled experiment
S6 EvoSpaces: 3D visualization of software architecture

S7 Visual exploration of function call graphs for feature location in complex softwa
systems

S8 Visual comparison of software architectures

S9 Tool support for component-based software architectures

S10 KaitoroBase: visual exploration of software architecture documents

S11 Package patterns for visual architecture recovery

S12 Exploring inter-module relationships in evolving software systems

S13 Communicating software architecture using a unified single-view visualization

S14 Evolve: tool support for architecture evolution

S15 Browsing and searching software architectures

S16 Browsing software architectures with LSEdit

S17 An architectural connectivity metric and its support for incremental re-architec
of large legacy systems

S18 Visualizing metrics on areas of interest in software architecture diagrams

S19 Visual software architecture description based on design space

S20 DiffArchViz: a tool to visualize correspondence between multiple representation
a software architecture

S21 Visual exploration of combined architectural and metric information

S22 A visual analysis and design tool for planning software reengineering

S23 YARN: animating software evolution

S24 Reverse engineering object oriented distributed systems

S25 The SAVE tool and process applied to ground software development at JHU/APL:
experience report on technology infusion

S26 Navigating software architectures with constant visual complexity

S27 Visualizing software architecture evolution using change-sets

S28 SAVE: software architecture environment for modeling views
and Software 94 (2014) 161–185 183

confront both structural and decisional elements of architecture
during architecting process, which are intertwined; it is recom-
mended that tools vendor develop the VTs with SA visualization
tools that support simultaneously the visualization of structural
elements and decisional elements in one tool; (iv) this review has
found that only one of the reported VTs, has been employed in
industrial practice, which indicates that the application of VTs in SA
of real-world industrial systems is quite limited. Accordingly, we
suggest that researchers and practitioners can cooperate closely
to conduct industrial surveys and collect empirical data on how
SA practitioners actually employ VTs in architecting process and
what are the issues that hinder and prevent them from adopting
VTs in SA; (v) SA practitioners can use the results of this SLR to
get information about existing VTs and tools in SA and their fea-
tures, which may help them to select appropriate VTs and tools
for a given application context. Furthermore, the results of the
review are also expected to stimulate new research and devel-
opment efforts for developing better architecture visualization
techniques and tools, and facilitating the use of SA visualization in
industry.

Acknowledgement

This research has been partially sponsored by the Natural Sci-
ence Foundation of China (NSFC) under Grant No. 61170025.
Appendix A. Selected studies

See Table 19.

Author(s) Venue Year

B. Orlic, R. Mak, I. David, J. Lukkien ECSA Companion 2011
A.W. Kamal, P. Avgeriou SAC-SE 2010
M. Mirakhorli, J. Cleland-Huang SHARK 2011

A. Tsadimas, M. Nikolaidou, D.
Anagnostopoulos

SHARK 2010

M. Shahin, P. Liang, Z. Li ECSA Companion 2011

S. Alam, P. Dugerdil SEKE 2007
re J. Bohnet, J. Döllner SoftVis 2006

F. Beck, S. Diehl SoftVis 2010
G. Buchgeher, R. Weinreich APSEC 2009
M.T. Su, C. Hirsch, J. Hosking ASE 2009
M. Lungu, M. Lanza, T. Girba CSMR 2006
M. Lungu, M. Lanza CSMR 2007
T. Panas, T. Epperly, D. Quinlan, A.
Saebjornsen, R. Vuduc

ICECC 2007

A. McVeigh, J. Kramer, J. Magee ICSE 2011
S.E. Sim, C.L. Clarke, R.C. Holt, A.M. Cox ICSM 1999
N. Synytskyy, R.C. Holt, I. Davis IWPC 2005

ting R.J. Bril, A. Postma IWPC 2001

H. Byelas, A. Telea PacificVis 2009
Q. Zhang QSIC 2008

s of A.P. Sawant, N. Bali VISSOFT 2007

M. Termeer, C.F.J. Lange, A. Telea, M.R.V.
Chaudron

VISSOFT 2005

M. Beck, J. Trumper, J. Dollner VISSOFT 2011
A. Hindle, Z.M. Jiang; W. Koleilat, M.W.
Godfrey, R.C. Holt

VISSOFT 2007

D. C. Cosma, R. Marinescu ICSM 2010
 an W.C. Stratton, D.E. Sibol, M. Lindvall, P.

Costa
SEW 2007

W. Li, P. Eades, S.H. Hong VLHCC 2005
A. McNair, D.M. German, J. Weber-Jahnke WCRE 2007
E. Demirli, B. Tekinerdogan WICSA 2011

184 M. Shahin et al. / The Journal of Systems and Software 94 (2014) 161–185

Table 19 (Continued)

ID Title Author(s) Venue Year

S29 KaitoroCap: a document navigation capture and visualization tool M.T. Su; J. Hosking, J. Grundy WICSA 2011
S30 Ontology-driven visualization of architectural design decisions R.C. de Boer, P. Lago, A. Telea, H. van Vliet WICSA/ECSA 2009
S31 Visualization and comparison of architecture rationale with semantic web

technologies
C. López, P. Inostroza, L.M. Cysneiros, H.
Astudillo

JSS 2009

S32 A rationale-based architecture model for design traceability and reasoning A. Tang, Y. Jin, J. Han JSS 2007
S33 Capturing architecture evolution with maps of architectural decisions 2.0 A. Zalewski, S. Kijas, D. Sokoowska ECSA 2011
S34 Software Is a directed multigraph R. Dabrowski, K. Stencel, G. Timoszuk ECSA 2011
S35 Integrating requirements and design decisions in architecture representation R. Weinreich, G. Buchgeher ECSA 2010
S36 Guiding architects in selecting architectural evolution alternatives S. Ciraci, H. Sözer, M. Aksit ECSA 2011
S37 A tool to visualize architectural design decisions L. Lee, P. Kruchten QoSA 2008
S38 Building up and reasoning about architectural knowledge P. Kruchten, P. Lago, H. van Vliet QoSA 2006
S39 Viability for codifying and documenting architectural design decisions with tool

support
R. Capilla, J.C. Dueñas, F. Nava SMPR 2010

S40 A user-assisted approach to component clustering K. Sartipi, K. Kontogianni SMPR 2003
S41 Tool support for architectural decisions A. Jansen, J. van der Ven, P. Avgerious, D.

Hammer
WICSA 2007

S42 Exploring relations within software systems using treemap enhanced hierarchical
graphs

M. Balzer, O.Deussen VISSOFT 2005

S43 An integrated approach for studying architectural evolution Q. Tu, M.W. Godfrey IWPC 2002
S44 Visual exploration of large-scale system evolution R. Wettel, M. Lanza WCRE 2008
S45 EvoGraph: a lightweight approach to evolutionary and structural analysis of large

software systems
M. Fischer, H. Gall WCRE 2006

S46 Evolution storyboards: Visualization of software structure dynamics D. Beyer, A. E. Hassan IWPC 2006
S47 SAB- The software architecture browser N. Erben, K.P. Löhr SoftVis 2005
S48 Software landscapes: visualizing the structure of large software systems M. Balzer, A. Noack, O. Deussen, C.

Lewerentz
VisSym 2004

S49 SHriMP views: an interactive environment for exploring java programs M.D. Storey, C. Best, J. Michuand IWPC 2001
S50 Rigi - An environment for software reverse engineering, exploration, visualization,

and redocumentation
H.M. Kienle, H.A. Müller SCP 2010

S51 High-level static and dynamic visualization of software architectures J. Grundy, J. Hosking VL 2000

tion

A

R

A

B

B

B

B

B

S52 Visualization of object oriented architectures
S53 An experiment on the role of graphical elements in architecture visualiza

ppendix B. Abbreviations used in the review

AA Architectural analysis
ADD Architectural design decision
AE Architectural evaluation
AEV Architectural evolution
AI Architectural implementation
AR Architecture recovery
ARU Architecture reuse
AS Architectural synthesis
ASR Architecturally significant requirement
CIA Change impact analysis
EBSE Evidence-based software engineering
GV Graph-based visualization
MEV Metaphor-based visualization
MV Matrix-based visualization
NV Notation-based visualization
RQ Research question
SA Software architecture
SAD Software architecture document
SysML Systems modeling language
UML Unified modeling language
VT Visualization technique

eferences

lves, V., Niu, N., Alves, C., Valenç a, G., 2010. Requirements engineering for software
product lines: a systematic literature review. Inform. Softw. Technol. 52 (8),
806–820.

alzer, M., Noack, A., Deussen, O., Lewerentz, C., 2004. Software landscapes: visu-
alizing the structure of large software systems. In: Proceedings of the 6th Joint
Eurographics-IEEE TCVG Conference on Visualization (VisSym), pp. 261–266.

ass, L., Clements, P., Kazman, R., 2012. Software Architecture in Practice, 3rd ed.
Addison Wesley, Boston.

engtsson, P., Bosch, J., 1998. Scenario-based software architecture reengineering.
In: Proceedings of the 5th International Conference on Software Reuse (ICSR),
pp. 308–317.
raun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol.
3 (2), 77–101.

udgen, D., Turner, M., Brereton, P., Kitchenham, B., 2008. Using mapping stud-
ies in software engineering. In: Proceedings of the 20th Annual Meeting of the
Psychology of Programming Interest Group (PPIG), pp. 195–204.
A.H. Eden ICSE Workshop 2001
J. Knodel, D. Muthig, M. Naab ESE 2008

Chen, L., Babar, M.A., Zhang, H., 2010. Towards an evidence-based understand-
ing of electronic data sources. In: Proceedings of the 14th International
Conference on Evaluation and Assessment in Software Engineering (EASE),
pp. 135–138.

Chikofsky, E.J., Cross, J.H., 1990. Reverse engineering and design recovery: a taxon-
omy. IEEE Softw. 7 (1), 13–17.

Cleland-Huang, J., Hanmer, R.S., Supakkul, S., Mirakhorli, M., 2013. The twin peaks
of requirements and architecture. IEEE Softw. 30 (2), 24–29.

Cornelissen, B., Zaidman, A., van Deursen, A., 2011. A controlled experiment for pro-
gram comprehension through trace visualization. IEEE Trans. Softw. Eng. 37 (3),
341–355.

de Boer, R.C., Lago, P., Telea, A., van Vliet, H., 2009. Ontology-driven visualization of
architectural design decisions. In: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on Software
Architecture (WICSA/ECSA), pp. 51–60.

Diehl, S., 2007. Software Visualization Visualizing the Structure, Behaviour, and
Evolution of Software. Springer-Verlag, Berlin, Heidelberg.

Ducasse, S., Pollet, D., 2009. A process-oriented software architecture reconstruction
taxonomy. IEEE Trans. Softw. Eng. 35 (4), 573–591.

Dueñas, J.C., Capilla, R., 2005. The decision view of software architecture. In:
Proceedings of the 2nd European Workshop on Software Architecture (EWSA),
pp. 222–230.

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: a
systematic review. Inform. Softw. Technol. 50 (9), 833–859.

Dyba, T., Kitchenham, B.A., Jorgensen, M., 2005. Evidence-based software engineer-
ing for practitioners. IEEE Softw. 22 (1), 58–65.

Fenton, N., Pfleeger, S., 1996. Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, London.

Gallagher, K., Hatch, A., Munro, M., 2008. Software architecture visualization:
an evaluation framework and its application. IEEE Trans. Softw. Eng. 34 (2),
260–270.

Harris, D.R., Reubenstein, H.B., Yeh, A.S., 1995. Reverse engineering to the architec-
tural level. In: Proceedings of the 17th International Conference on Software
engineering (ICSE), pp. 186–195.

Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P., 2007. A
general model of software architecture design derived from five industrial
approaches. J. Syst. Softw. 80 (1), 106–126.

ISO/IEC/IEEE, ISO/IEC/IEEE 42010:2011, 2011. Systems and Software Engineering –
Architecture Description.

Jansen, A., Bosch, J., 2005. Software architecture as a set of architectural design
decisions. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA), pp. 109–120.

Kitchenham, B.A., Charters, S., 2007. Guidelines for Performing Systematic Literature
Reviews in Software Engineering, EBSE Technical Report version 2.3, EBSE-2007-
01, Software Engineering Group. Keele Univ., Univ of Durham.

http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0005
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0010
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0015
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0020
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0025
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0030
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0035
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0040
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0045
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0050
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0055
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0060
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0065
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0070
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0075
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0080
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0085
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0090
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0095
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0100
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0105
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0110
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0115

stems

K

L

L

L

N

O

O

P

S

S

S

S

S

S
T

T

W

Z

Z

committees of several international software engineering and architecture confer-
M. Shahin et al. / The Journal of Sy

ruchten, P., Lago, P., Vliet, H., 2006. Building up and reasoning about architectural
knowledge. In: Proceedings of the 2nd International Conference on Quality of
Software Architectures (QoSA), pp. 43–58.

ee, L., Kruchten, P., 2008. A tool to visualize architectural design decisions. In:
Proceedings of the 4th International Conference on Quality of Software Archi-
tectures (QoSA), pp. 43–54.

i, Z., Liang, P., Avgeriou, P., 2013. Application of knowledge-based approaches in
software architecture: a systematic mapping study. Inform. Softw. Technol. 55
(5), 777–794.

ópez, C., Inostroza, P., Cysneiros, L.M., Astudillo, H., 2009. Visualization and com-
parison of architecture rationale with semantic web technologies. J. Syst. Softw.
82 (8), 1198–1210.

ovais, R.L., Torres, A., Mendes, T.S., Mendonç a, M., Zazworka, N., 2013. Software
evolution visualization: a systematic mapping study. Inform. Softw. Technol. 55
(11), 1860–1883.

MG, 2007. Unified Modeling Language (UML) Specification, Version 2.1.2,
November.

MG, 2007. Systems Modeling Language (SysML) Specification, Version 1.0,
September.

oort, E.R., van Vliet, H., 2012. RCDA. Architecting as a risk- and cost management
discipline. J. Syst. Softw. 85 (9), 1995–2013.

hahin, M., Liang, P., Khayyambashi, M.R., 2009. Architectural design decision:
Existing models and tools. In: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on Software
Architecture (WICSA/ECSA), pp. 293–296.

hahin, M., Liang, P., Khayyambashi, M.R., 2010. Improving understandability of
architecture design through visualization of architectural design decision. In:
Proceedings of the 5th ICSE Workshop on SHAring and Reusing architectural
Knowledge (SHARK), pp. 88–95.

harafi, Z., 2011. A systematic analysis of software architecture visualization tech-
niques. In: Proceedings of the 19th IEEE International Conference on Program
Comprehension (ICPC), pp. 254–257.

joberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.,
Rekdal, A.C., 2005. A survey of controlled experiments in software engineering.
IEEE Trans. Softw. Eng. 31 (9), 733–753.

jøberg, D.I.K., Dybå, T., Jørgensen, M., 2007. The future of empirical methods in
software engineering research. In: Proceedings of the Future of Software Engi-
neering (FOSE), pp. 358–378.

pence, R., 2000. Information visualization, 1st ed. Addison Wesley, Boston.
aylor, R.N., Medvidovic, N., Dashofy, E.M., 2009. Software Architecture: Founda-

tions, Theory and Practice. John Wiley and Sons, Hoboken.
elea, A., Voinea, L., Sassenburg, H., 2010. Visual tools for software architecture

understanding: a stakeholder perspective. IEEE Softw. 27 (6), 46–53.
ettel, R., Lanza, M., 2007. Visualizing software systems as cities. In: Proceedings of

the 4th IEEE International Workshop on Visualizing Software for Understanding

and Analysis (VISSOFT), pp. 92–99.

dun, U., Capilla, R., Tran, H., Zimmermann, O., 2013. Sustainable architectural design
decisions. IEEE Softw. 30 (6), 46–53.

hang, H., Babar, M.A., Tell, P., 2011. Identifying relevant studies in software engi-
neering. Inform. Softw. Technol. 53 (6), 625–637.
and Software 94 (2014) 161–185 185

Mojtaba Shahin is an invited researcher in the State Key
Lab of Software Engineering (SKLSE), School of Computer,
Wuhan University, China, and a lecturer and researcher
in the Department of Computer Engineering at Neyriz
Branch, Islamic Azad University since September 2010.
He got his MS and BS degrees in computer engineering
with software engineering major from Sheikh Bahaei Uni-
versity and Shiraz Islamic Azad University in 2010 and
2006, respectively. His current research mainly focuses on
software architecture, software architecture visualization,
and architectural design decision.

Peng Liang is a professor of software engineering in the
State Key Lab of Software Engineering (SKLSE), School
of Computer, Wuhan University, China. He is currently
a visiting researcher at VU University Amsterdam, the
Netherlands. Between 2007 and 2009, he was a post-
doctoral researcher at the software engineering and
architecture (SEARCH) research group at the University
of Groningen, the Netherlands. His research interests
concern the area of software architecture and require-
ments engineering. He has published more than 50 articles
in peer-reviewed international journals, conference and
workshop proceedings, and books.

Muhammad Ali Babar is a Professor and Chair of Software
Engineering in the School of Computer Science, the Uni-
versity of Adelaide, Australia. He also holds an academic
position with IT University of Copenhagen, Denmark. Prior
to this, he was an Associate Professor (Reader) in Soft-
ware Engineering at Lancaster University UK. Previously,
he worked as a researcher and project leaders in differ-
ent research centers in Ireland and Australia. His research
projects have attracted funding from various agencies in
Denmark, UK, Ireland, and Australia. He has authored/co-
authored more than 150 peer-reviewed research papers
at premier software engineering journals and conferences
such as ACM Trans. on Software Engineering and Methods

(TOSEM), IEEE Software, and ICSE. He has recently co-edited a book on Agile Archi-
tecting published by Morgan Kaufmann, Elsevier. He is a member of the steering
ences such as WICSA, ECSA, and ICGSE. He regularly runs tutorials and gives talks on
topics related to cloud computing, software architecture and empirical approaches
at various international conferences. More information on Prof. M. Ali Babar can be
found at http://malibabar.wordpress.com.

http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0120
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0125
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0130
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0135
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0140
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0145
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0150
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0155
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0160
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0165
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0170
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0175
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0180
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0185
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0190
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0195
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0200
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0205
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://refhub.elsevier.com/S0164-1212(14)00083-1/sbref0210
http://malibabar.wordpress.com/

	A systematic review of software architecture visualization techniques
	1 Introduction
	1.1 Background and related work

	2 Research method
	2.1 Research questions
	2.2 Search strategy
	2.2.1 Search method
	2.2.2 Search terms
	2.2.3 Data sources

	2.3 Inclusion and exclusion criteria
	2.4 Study selection
	2.5 Data extraction and synthesis

	3 Results
	3.1 Demographic data
	3.1.1 Publication venues and types
	3.1.2 Citation status and chronological view

	3.2 Study quality assessment
	3.3 Types of visualization techniques used in architecting process
	3.3.1 Graph-based visualization
	3.3.2 Notation-based visualization
	3.3.3 Matrix-based visualization
	3.3.4 Metaphor-based visualization
	3.3.5 Visualization techniques and architectural viewpoints

	3.4 The architecting activities supported by the visualization techniques
	3.5 Relationships between visualization techniques and architecting activities
	3.6 Level of tool support
	3.7 The available evidence for adoption of visualization techniques in software architecture
	3.8 Different purposes of using visualization techniques in software architecture
	3.8.1 Category 1: Improve the understanding of architecture evolution
	3.8.2 Category 2: Improve the understanding of static characteristics of architecture
	3.8.3 Category 3: Improve search, navigation, and exploration of architecture design
	3.8.4 Category 4: Improve the understanding of architecture design through design decision visualization
	3.8.5 Category 5: Support architecture reengineering and reverse engineering
	3.8.6 Category 6: Detect violations, flaws, and faults in architecture design
	3.8.7 Category 7: Provide traceability between architecture entities and software artifacts
	3.8.8 Category 8: Improve the understanding of behavioral characteristics of architecture
	3.8.9 Category 9: Check compatibilities and synchronization between architecture design and implementation
	3.8.10 Category 10: Support for model-driven development using architecture design

	3.9 Domain based architecture visualization techniques
	3.10 Most frequently used visualization techniques in industry

	4 Threats to validity
	5 Discussions
	6 Conclusions
	Acknowledgement
	Appendix A Selected studies
	Appendix B Abbreviations used in the review
	References

