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Abstract—Due to significant industrial demands toward software systems with increasing complexity and challenging quality

requirements, software architecture design has become an important development activity and the research domain is rapidly evolving.

In the last decades, software architecture optimization methods, which aim to automate the search for an optimal architecture design

with respect to a (set of) quality attribute(s), have proliferated. However, the reported results are fragmented over different research

communities, multiple system domains, and multiple quality attributes. To integrate the existing research results, we have performed a

systematic literature review and analyzed the results of 188 research papers from the different research communities. Based on this

survey, a taxonomy has been created which is used to classify the existing research. Furthermore, the systematic analysis of the

research literature provided in this review aims to help the research community in consolidating the existing research efforts and

deriving a research agenda for future developments.

Index Terms—Software architecture optimization, systematic literature review, optimization methods, problem overview
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1 INTRODUCTION

ARCHITECTURE specifications and models [120] are used to
structure complex software systems and to provide a

blueprint that is the foundation for later software engineer-
ing activities. Thanks to architecture specifications, software
engineers are better supported in coping with the increasing
complexity of today’s software systems. Thus, the archi-
tecture design phase is considered one of the most
important activities in a software engineering project [24].
The decisions made during architecture design have
significant implications for economic and quality goals.
Examples of architecture-level decisions include the selec-
tion of software and hardware components, their replica-
tion, the mapping of software components to available
hardware nodes, and the overall system topology.

1.1 Problem Description and Motivation

Due to the increasing system complexity, software archi-
tects have to choose from a combinatorially growing
number of design options when searching for an optimal

architecture design with respect to a defined (set of)
quality attribute(s) and constraints. This results in a design
space search that is often beyond human capabilities and
makes the architectural design a challenging task [105]. The
need for automated design space exploration that improves
an existing architecture specification has been recognized
[191] and a plethora of architecture optimization ap-
proaches based on formal architecture specifications have
been developed. To handle the complexity of the task, the
optimization approaches restrict the variability of archi-
tectural decisions, optimizing the architecture by modify-
ing one of its specific aspects (allocation, replication,
selection of architectural elements, etc.). Hence, the
research activities are scattered across many research
communities, system domains (such as Embedded Systems
(ESs) or Information Systems (ISs)), and quality attributes.
Similar approaches are proposed in multiple domains
without being aware of each other.

1.2 Research Approach and Contribution

To connect the knowledge and provide a comprehensive
overview of the current state of the art, this paper provides
a systematic literature review of the existing architecture
optimization approaches. As a result, a gateway to new
approaches of architecture optimization can be opened,
combining different types of architectural decisions during
the optimization or using unconventional optimization
techniques. Moreover, new tradeoff analysis techniques
can be developed by combining results from different
optimization domains. All this can bring significant
benefits to the general practice of architecture optimiza-
tion. In general, with the survey we aim to achieve the
following objectives:

. Provide a basic classification framework in form of
a taxonomy to classify existing architecture optimi-
zation approaches.

. Provide an overview of the current state of the art in
the architecture optimization domain.
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. Point out current trends, gaps, and directions for
future research.

We examined 188 papers from multiple research sub-
areas, published in software engineering journals and
conferences. Initially, we derived a taxonomy by perform-
ing a formal content analysis. More specifically, based on
the initial set of keywords and defined inclusion and
exclusion criteria, we collected a set of papers which we
iteratively analyzed to identify the taxonomy concepts. The
taxonomy was then used to classify and analyze the papers,
which provided a comprehensive overview of the current
research in architecture optimization. The data were then
used to perform a cross analysis of different concepts in the
taxonomy and derive gaps and possible directions for
further research.

1.3 Related Surveys

Architecture optimization can be categorized into the
general research discipline of Search-Based Software En-
gineering (SBSE) [110] as it applies efficient search strategies
to identify an optimal or near-optimal architecture specifi-
cation. SBSE is applied in all phases of the software
engineering process, including requirements engineering,
project management, design, maintenance, reverse engi-
neering, and software testing. A comprehensive survey of
different optimization techniques applied to software
engineering tasks is provided by Harman et al. [111].
The survey indicates that in the past years, a particular
increase in SBSE activity has been witnessed, with many
new applications being addressed. The paper identifies
research trends and relationships between the search
techniques and the applications to which they have been
applied. The focus of Harman et al.’s survey is on the broad
field of SBSE, especially on approaches in the software
testing phase which are also covered in detailed surveys
[156], [163]. However, the area of architecture optimization
has not been investigated in detail. The SBSE survey lists
several approaches to optimizing software design, but does
not analyze properties of these approaches except naming
the used optimization strategy.

Beside this general SBSE survey, other surveys describe
subareas of architecture optimization and design-space
exploration that are only concerned with specific system
domains or a specific optimization method. For instance, the
survey of Grunske et al. [105] is concerned with the domain
of safety-critical Embedded Systems and compares 15
architecture optimization methods. Another example is the
survey of Villegas et al. [230], which evaluates 16 approaches
that target runtime (RT) architecture optimizations with a
focus on self-adaptive systems. In the research subarea of
systems with high reliability demands, Kuo and Wan [140]
have published a survey in 2007 comparing different
redundancy allocation approaches. Finally, several surveys
are concerned with the application of a specific optimization
technique, typically related to Genetic Algorithms [4], [125]
or metaheuristics in general [195].

Although these surveys provide a good overview of a
specific application domain, optimization method, or even
a design phase, none of them is suitable for giving a
comprehensive overview of the existing research in the area
of architecture optimization.

1.4 Organization

The rest of the paper is organized as follows: First, Section 2
outlines the research method and the underlying protocol
for the systematic literature review. The first contribution of
this paper, a taxonomy for architecture optimization
approaches that has been derived from an iterative analysis
of the existing research literature is presented in Section 3.
The second contribution, a classification of existing archi-
tecture optimization approaches according to this taxon-
omy, is presented in Section 4. This section contains both a
classification into the categories of the taxonomy including
some descriptive statistics as well as a cross-category
analysis between the different taxonomy areas. Finally,
Section 5 identifies future research directions based on the
survey results and Section 6 presents the conclusions.

2 RESEARCH METHOD

Our literature review follows the guidelines proposed by
Kitchenham [129], which structure the stages involved in a
systematic literature review into three phases: planning,
conducting, and reporting the review. Based on the guide-
lines, this section details the research questions, the
performed research steps, and the protocol of the literature
review. First, Section 2.1 describes the research questions
underlying our survey. Next, Section 2.2 derives the
research tasks we conducted and thus describes our
procedure. Section 2.3 then details the literature search step
and highlights the inclusion and exclusion criteria. Finally,
Section 2.4 discusses threats to the validity of our study.

2.1 Research Questions

Based on the objectives described in the introduction, the
following research questions have been derived, which
form the basis for the literature review:

. RQ1. How can the current research on software
architecture optimization be classified?

. RQ2. What is the current state of software architec-
ture optimization research with respect to this
classification?

. RQ3. What can be learned from the current
research results that will lead to topics for further
investigation?

2.2 Research Tasks

To answer the three research questions RQ1-3, four
research tasks have been conducted: one task to set up
the literature review, and three research tasks dedicated to
the identified research questions. The tasks have been
conducted in a sequential manner and interconnected
through a number of artifacts generated by their subtasks.
The overall research method is outlined in Fig. 1 and
detailed in the following text.

The setup task includes the definition of the review
protocol, the selection of search engines, the definition of a
keyword list, a keyword-based collection of published
architecture optimization papers, and a review filtering the
papers according to a defined set of inclusion and exclusion
criteria. The search step and the inclusion/exclusion review
step are explained in more detail in Section 2.3.
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Based on the set of selected papers, we performed a
content analysis [135] of the papers in the first research task
(RQ1). The goal was to derive a taxonomy to classify the
current architecture optimization approaches. We used an
iterative coding process to identify the main categories of
the taxonomy. The coding process was based on the
grounded theory [94] qualitative research method. First, we
analyzed each paper with the goal to identify new
concepts for the taxonomy. Second, after all papers had
been reviewed and the taxonomy updated with newly
identified concepts, we consolidated the taxonomy terms,
mainly by merging the synonyms and unifying the
concepts on different levels of abstraction. Section 3
presents the findings.

In the second research task (RQ2), each paper collected
in the setup task was classified based on the taxonomy
derived in the first research task. Within our team of
authors, one person was nominated as a data extractor for
each paper. Furthermore, one person was nominated as a
data checker for each top-level taxonomy category. While
the responsibility of the data extractors was to classify the
papers, data checkers crosschecked the classification and
discussed any inconsistencies with data extractors. Ex-
tracted data were stored in a database, which enabled a
descriptive quantitative analysis. The aim of the data
extraction and the resulting classification was to provide a
significant overview of the current research effort and the
archived results in this domain. Sections 4.1, 4.2, and 4.3
present the findings.

In the third research task (RQ3), we cross analyzed the
survey results and synthesized possible directions for
further research. The derivation of possible future research
directions was specifically enabled by the variety of papers
from multiple research subareas, each of which has its own
strengths. Consequently, the survey enables the knowledge
transfer from one research subarea to another and thus aims
at improving the overall research area. Section 4.4 presents

the cross-analysis results, while Section 5 provides our
recommendations for future research.

2.3 Literature Search Process

The search strategy for the review was primarily directed
toward finding published papers in journals and conference
proceedings via the widely accepted literature search
engines and databases Google Scholar, IEEE XPlore, ACM
Digital Library, Springer Digital Library, and Elsevier
ScienceDirect.

For the search, we focused on selected keywords, based
on the aimed scope of the literature review. Examples of
the keywords are automated selection of software compo-
nents, component deployment optimization, energy con-
sumption optimization, component selection optimization,
automated component selection, reliability optimization,

software safety optimization, redundancy allocation, opti-
mal scheduling, hardware-software co-synthesis, search-
based software engineering, runtime (RT) and design-time
(DT) architecture optimization, software engineering opti-
mization, self-adaptive software systems. The keywords
were refined and extended during the search process. The

final keyword list is available at the project website [6].
In the subsequent phase, we reviewed the abstracts

(and keywords) of the collected papers with respect to the
defined set of inclusion and exclusion criteria (Sec-
tions 2.3.1 and 2.3.2 below), and further extended the
collection with additional papers based on an analysis of
the cited papers and the ones citing it (forward and
backward citation search). As a result, we included 188
peer-reviewed papers in the survey comprised of papers
from 1992 to 2011, with more than 50 percent of the
papers published in the last years between 2005 and 2010.

Although the selection process was primarily based on

the review of paper abstracts and keywords, in the cases
where these two were insufficient we also considered parts
of the introduction, contribution, and conclusion sections.
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2.3.1 Inclusion Criteria

The focus of this literature review is on software architecture

optimization. We understand the architecture of a software

system to be “the fundamental organization of a system

embodied in its components, their relationships to each

other, and to the environment, and the principles guiding its

design and evolution” [120]. Software architecture optimiza-

tion is understood as an automated method aiming to reach

an optimal architecture design with respect to a (set of)

quality attribute(s). The main criteria for inclusion were

based on the automation of software architecture optimiza-

tion, both at runtime and at design time. To enable automated

optimization of software architectures, three basic prerequi-

sites need to be fulfilled:

1. A machine-processable representation of the soft-
ware architecture must be available as an input for
automated search (e.g., a UML model with agreed
semantics, models described in any architecture
description language, or representations in formal-
isms such as Markov chains). Such a representation
may be an architecture model as defined in [120], but
can also be another machine-processable representa-
tion such as a Markov chain.

2. A function or procedure that automatically evalu-
ates an aspect of quality for a given software
architecture is required (called quality evaluation
function/procedure in this work). Different quality
attributes used during the optimization process
were included as long as they were quantifiable
by such a quality evaluation function/procedure.
Cost was also considered since it is a commonly
addressed optimization objective in conjunction
with quality attributes. Both single-objective and
multi-objective problems were taken into account.
Furthermore, papers that solved any type of
constrained problem were included, not excluding
the papers that did not include constraints.

3. A definition of the considered design space is
required that describes how a given software
architecture representation can be changed or
enhanced by the optimization. We call this informa-
tion “architectural degrees of freedom” [132] in this
work as there is no other agreed term in the context
of architecture optimization. Example architectural
degrees of freedom are allocation, component selec-
tion, or hardware parameter change.

Papers that provide these three aspects are included in

our review.

2.3.2 Exclusion Criteria

We excluded papers that

1. optimize a single component without integrating
context and interactions with other architectural
elements,

2. focus on an architecture-irrelevant problem (e.g.,
requirements prioritization, compiler optimization,
or task allocation to agents that cooperate in
executing and finishing the tasks),

3. optimize hardware with no relation to software
(e.g., FPGA optimization), or

4. solely optimize cost without considering any other
quality attribute.

Moreover, due to the goal of approach classification, we
excluded the papers discussing an approach already in-
cluded in the collection (recognized based on the author list
and approach attributes) and we excluded nonreviewed
papers. We did not exclude papers for quality reasons
because the quality of the papers was generally acceptable.
Evidence for the quality of the papers can be found in a
postselection analysis of the citations of each paper via
Google Scholar, which in 2012 revealed that each of the papers
has been cited at least once and the average citation count for
the papers included in the survey was 76.5. The h-index and
g-index of the included papers were 57 and 128, respectively.

2.4 Threats to Validity

One of the main threats to the validity of this systematic
literature review is incompleteness. The risk of this threat
highly depends on the selected list of keywords and the
limitations of the employed search engines. To decrease
the risk of an incomplete keyword list, we have used an
iterative approach to keyword-list construction. A well-
known set of papers was used to build the initial
taxonomy, which evolved over time. New keywords were
added when the keyword list was not able to find the state
of the art in the respective area of study. In order to omit
the limitations implied by employing a particular search
engine, we used multiple search engines. Moreover, the
authors’ expertise in different system domains, quality
attributes, and optimization approaches reduced the
search bias.

Another important issue is whether our taxonomy is
robust enough for the analysis and classification of the
papers. To avoid a taxonomy with insufficient capability to
classify the selected papers, we used an iterative content
analysis method to continuously evolve the taxonomy for
every new concept encountered in the papers. New
concepts were introduced into the taxonomy and changes
were made in the related taxonomy categories.

Furthermore, in order to make the taxonomy a better
foundation for analyzing the selected papers, we allowed
multiple abstraction levels for selected taxonomy concepts.
As a result, one of the concepts (namely, the used
optimization strategy) has different levels of detail, where
the highest level is abstract with few classes, whereas lower
levels have more details with more classes used to classify
the papers. The appropriate level was selected when
presenting the results. In order to reduce the classification
bias, paper classification results were checked by all the
authors. The classification according to the remaining
abstraction levels is recorded in the survey database, which
can be accessed at [6].

3 TAXONOMY

The quality of a literature review project highly depends on
the selected taxonomy scheme, which influences the
depth of knowledge recorded about each studied ap-
proach. In this paper, an iterative coding process has been
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employed to identify the taxonomy categories (see Section 2
for details) and to provide an answer to the first research
question (RQ1). The resulting taxonomy hierarchy is
depicted in Fig. 2.

The first level of the taxonomy hierarchy structures the
existing work according to three fundamental questions
characterizing the approaches. These are:

1. What is the formulation of the optimization problem
being addressed?

2. What techniques are applied to the solution of the
problem?

3. How is the validity of the approach assessed?

We discuss each of these questions in detail, and define
the implied taxonomy scheme. For each of the questions,
we derive the subcategories of the taxonomy related to the
question. Each category has a number of possible values
used to characterize the optimization approaches. For
example, the category Domain has the three values
Embedded Systems (ES), Information Systems (IS), and General.
We only briefly discuss the possible values of categories in
the following, while the complete structured list of all the
values is in Tables 1, 3, and 6, while full details can be
found in the wiki page.1

3.1 The Problem Category

The first category is related to the problem the approaches
aim to solve in the real world. Generally speaking, the
approaches try to achieve a certain optimization goal in a
specific context. For example, an optimization goal is to
minimize the response time of an architecture given costs
constraints. An example context is to consider Embedded
Systems at design time. While the context of the problem is
determined by the subcategories domain (i.e., the type of
targeted systems) and phase (i.e., place in the development
process) of the problem, the subcategories related to the
optimization goal include quality attributes, constraints, and
the dimensionality of the optimization problem, which is

governed by the question if the set of optimized quality
attributes is aggregated into a single mathematical function
(single objective optimization (SOO)) or decoupled into
conflicting objectives (multi-objective optimization (MOO)).

In particular, the domain has three possible values:
Information systems are business-related systems oper-
ated on a general purpose computer that include, for

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 5, MAY 2013
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TABLE 1
Problem Category—Quantitative Summary of the Results

1. https://sdqweb.ipd.kit.edu/wiki/OptimizationSurvey.



instance, e-business applications, enterprise, and govern-
ment Information Systems. Embedded systems, in con-
trast, are realized on a dedicated hardware to perform a
specific function in a technical system. They scale from
small portable devices like mobile phones to large
factories and power plants. If an approach is designed
for both domains, the third possible value “general” is
used. The phase category specifies whether the problem is
occurring at design time or runtime. The main difference
between the two is that while the setting of a design-time
problem is known in advance, the setting of a runtime
problem changes dynamically (e.g., new tasks can arrive
during runtime scheduling). Again, the value “General”
can be used here to denote approaches that address both
design time (DT) and runtime (RT).

The goal of the optimization task is typically the
maximization of the software-architecture quality under
given constraints. Since the quality of a software system as
a concept is difficult to define due to its subjective nature,
software experts do not define the quality directly but
relate it to a number of system attributes, called quality
attributes [119]. In this work, we only consider quantifiable
quality attributes (cf., Section 2.3.1). Examples are perfor-
mance, reliability, cost, availability, and other well estab-
lished quality attributes (find the full list in Table 1 and in
[6]). When categorizing quality attributes, we followed
widely accepted definitions and quality attribute taxo-
nomies [16], [24], [103], [241]. In our taxonomy, we
distinguish quality attributes to be optimized (category
quality attributes) from additional constraints on quality
attributes or other system properties (category constraints).
For example, reducing the response time and the costs of a
system as much as possible is a setting with two quality
attributes to be optimized. Increasing the availability while
keeping the response time lower than 5 seconds and
adhering to structural constraints is a setting with one
quality attribute to be optimized (availability) and two
constraints (for performance and structural).

Finally, the dimensionality category reflects if the
approach addresses a single-objective optimization (SOO)
or multi-objective optimization (MOO) problem. The SOO
optimizes a single quality attribute only. The MOO
optimizes multiple quality attributes at once so that the
quality of every architecture model is a vector of values.
As quality attributes often conflict, usually there is no
single optimal result but a set of solutions nondominated
by the others from the point of view of the optimized
qualities—i.e., solutions that are Pareto-optimal [70]. Since
in MOO a decision has to be taken on the final
architecture design selected from the set of resulting
candidates, one can also use the multi-objective trans-
formed to single-objective optimization (MTS) approaches,
which encode the selection criteria following MOO into a
single mathematical function (e.g., a weighted sum),
which is then optimized as a single objective.

For a structured view on all the values of the discussed
subcategories, see Table 1.

3.2 The Solution Category

The solution category classifies the approaches according to
how they achieve the optimization goal and thus describes
the main step of the optimization process, which is depicted

in Fig. 3. First, the subcategory architecture representation is
the process input that describes the architecture to optimize.
Second, the subcategory degrees of freedom describes what
changes of the architecture are considered as variables in
the optimization. Third, the subcategory quality evaluation
describes the used quality evaluation procedures which
make up the objective function(s) of the optimization
process. Furthermore, this category contains the techniques
used to solve the formulated optimization problem:
Subcategories are the overall optimization strategy and
constraint handling.

The architecture representation category classifies the
approaches based on the information used to describe the
software architecture. Any architecture optimization ap-
proach takes some representation of the system’s architec-
ture as an input (cf., Fig. 3). This representation may be an
architecture model [120] documenting the architecture by
defining components and connectors. To predict more
complex quality attributes, a quality evaluation model such
as a Layered Queueing Network or a Markov chain may be
derived from an architecture model or may be used directly
as an input. Finally, in order to employ optimization
techniques, the architecture and the design decisions have
to be encoded into an optimization model describing the
decision variables and the objective function. This optimiza-
tion model may be derived from an architecture model or
from a quality evaluation model, or may directly be required
as an input. To assess the used architecture representation
relevant for the user, we classify the approaches based on the
input they require so that the possible values are “archi-
tecture model” (an architecture model is used as the input),
“quality evaluation model” (a quality evaluation model is
used as the input, no architecture model is used), and
“optimization model” (an optimization model is used as the
input, no architecture model or quality evaluation model is
used). Note that several approaches that start with an
architecture model also internally use a quality evaluation
model, and that all approaches also internally use an
optimization model. If quality evaluation models or optimi-
zation models are used as an input, it needs to be guaranteed
that an optimal found solution can be traced back to a
meaningful solution on the architecture level.

Furthermore, we drill into the used architecture models
in more detail, also distinguishing the used modeling
formalism as follows: “UML” denotes architecture models

ALETI ET AL.: SOFTWARE ARCHITECTURE OPTIMIZATION METHODS: A SYSTEMATIC LITERATURE REVIEW 663

Fig. 3. Optimization process.



defined in any modeling formalism of the Unified Modeling
Language. Other architecture description languages such as
AADL [203] or PCM [25] are subsumed in the value “ADL.”
A specific form of architecture description for service-based
systems is “workflow specifications.” By “custom architec-
ture models” (custom AM), we denote approaches that
define a custom model to describe the architecture which, in
contrast to ADLs, does not have the purpose to document
the architecture but is more tailored toward a specific
purpose (such as the architecture middleware PRISM-MW
[154]). Finally, approaches that allow exchanging the used
architecture model, e.g., by reasoning in the metamodel
level or by offering plug-ins for handling different ADLs,
are classified with the value “General.”

The quality evaluation category differentiates the ap-
proaches in those formalizing the optimized criteria with
a simple additive function (SAF), with a nonlinear
mathematical function (NMF), or with a more complex
evaluation function and model that, for example, cannot be
expressed with closed formulas and are solved numerically
or with simulations. We denote this latter case as model-
based (MB). For example, consider the quality attribute
performance. A simple additive function that calculates
the response time of a specific function would sum up the
response times of used individual services. A more complex
nonlinear mathematical function is used if a queuing
behavior of the system analyzed using exact queuing theory
formulae. Finally, a model-based procedure is used if the
system is represented as an extended queuing network and
the performance is evaluated with approximative or
simulation-based techniques. In essence, the optimization
process aims at optimizing the quality attribute(s) whose
evaluation constitutes the objective function(s), also referred
to as fitness function(s) in the optimization domain.

The architectural degrees of freedom category defines how
the architecture representation can be changed to make it
optimal with respect to the optimization goal. Example
architectural degrees of freedom are component selection,
allocation, or hardware parameter change. Thus, this
category describes the types of variables of the optimiza-
tion, i.e., it describes the types of design decision that can be
varied by the optimization and thus defines the considered
subset of the design space [132]. Another synonymous term
is “architecture transformation operators” [101], [105]. More
general terms describing the same idea are “design
decisions” or “dimensions of variation” [166]. The possible
values are those found in the reviewed papers, grouped by
synonyms, since no existing classification (such as for
quality attributes) is available to use; hence, we explain
them in more detail in the next paragraphs.

The selection degrees of freedom are concerned with
selecting entities in the architecture. These entities can be
software entities (such as modules) or hardware entities
(such as servers or devices), resulting in “software
selection” and “hardware selection” values. We explicitly
distinguish “component selection” because some domains
have a certain notion of a component. For example, in
Embedded Systems design, component selection could
mean deciding between a component realizing a function-
ality in hardware and a component with general-purpose
hardware realizing functionality in software. Furthermore,

we explicitly distinguish “service selection” because, next
to selecting the software to execute, selecting a service also
includes selecting the service provider (thus including
hardware aspects as well).

Replication degrees of freedom are concerned with changing
the multiplicity of an architectural element. Under the term
“hardware replication,” we subsume all degrees of freedom
that concern the number of a hardware entity’s copies,
while possibly also changing the multiplicity of software
elements (e.g., software components deployed to the
replicated servers). The popular term redundancy alloca-
tion is thus included in “hardware replication.” Under the
term “software replication,” we subsume degrees of free-
dom that change the number of copies of software entities
only. For brevity, we include both identical copies of the
software and different implementations of the same
functionality (e.g., n-version programming) in the term
“software replication” in this paper.

Parameter degrees of freedom refer to other parameters of
architectural elements. We distinguish “software para-
meters” (e.g., number of threads of an application server)
and “hardware parameters” (e.g., parameters for the hard
disk drive). Hardware parameters may overlap with
hardware selection because the choice (e.g., of a CPU with
different speed) can be modeled both as hardware selection
or as a parameter of the hosting server. Here, we classified a
paper based on the presentation of the degree of freedom in
that paper.

Further common degrees of freedom are the following:
“Scheduling” is concerned with deciding about the order of
execution. “Service composition” changes how services are
composed by changing service topology and/or the service
workflow. “Allocation” (a broader term to “Deployment”)
changes the mapping of software entities (components or
tasks) to processing elements, for example, to servers.
Other, less common degrees of freedom are architectural
patterns, maintenance schedules, partitioning, and cluster-
ing. We do not explicitly name degrees of freedom that are
used by fewer than two papers, but treat them commonly
as “problem-specific degrees of freedom.” Some ap-
proaches allow for applying any degree of freedom and
are classified as “general.” Finally, some approaches do not
explicitly present the considered degrees of freedom and
are classified under “not presented.”

For the optimization strategy, we provide three levels of
classification. First, we distinguish whether the used
optimization strategy guarantees exact solutions (the best
available architecture design with respect to the objective
function) or only finds approximate solutions. As a
subclassification, among the exact methods, we distinguish
standard methods (such as standard mixed integer linear
programming tools) and problem-specific methods
(e.g., operating on graph representations of the problems
and exploiting problem properties). Among the approx-
imate methods, we distinguish methods that guarantee a
lower bound of the solution, such as some branch-and-
bound approaches, methods that require problem or
domain-specific information to perform the search, i.e.,
problem-specific heuristics, and methods that apply high-
level strategies, i.e., metaheuristics, which are not problem-
specific, but can use domain or problem-specific knowledge
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to guide the search [34], such as evolutionary algorithms
(EAs). The lowest level of the optimization strategy category
describes the concrete used optimization strategy, such as
evolutionary algorithms, standard linear integer program-
ming solvers, or problem-specific heuristics.

The constraint handling category describes the used
strategies to handle constraints. Based on the insightful
surveys of Michalewicz [172] and Coello Coello [50],
possible strategies are encoded with the following values:
“Penalty” refers to the strategy that converts the con-
strained optimization problem into a series of uncon-
strained problems by adding a penalty parameter to the
objective function which reflects the violation of the
constraints. “Prohibit” refers to the constraint handling
strategy that discards solutions that violate constraints. A
“repair” mechanism is employed during the optimization
process to fix any violation of constraints before the solution
is evaluated. Finally, “General” describes any or a variety of
constraint handling techniques.

For a structured view on all the values of the discussed
subcategories, see Table 3.

3.3 The Validation Category

For the validation classification of the taxonomy, two
subcategories are considered, approach validation and opti-

mization validation.
The approach validation describes techniques used to

assess the practicality and accuracy of the approach. This
includes specifically the effort spent on the modeling of
quality prediction functions and evaluating their accuracy.
Possible validation types found in the reviewed approaches
include demonstration with a simple example, validation
with dedicated benchmark problems or experiments with
randomly generated problems, and validation with an
academic or industrial case study. As industrial case studies,
we have classified systems that are used in practice with a
clear commercial aim. An academic case study is different
from a simple example in that it invents a somewhat realistic
system with a clear purpose but without a commercial
background, while a simple example describes an abstract
small example (e.g., an architecture built from components
C1 to C4). Besides these, the possible validation types also
include mathematical proofs of the accuracy of the results
and comparison with related literature.

In contrast to the approach validation, the optimization

validation specifically validates the used optimization
strategy. Such a validation may evaluate 1) how well an
approach approximates the global optimum and/or 2) the
performance of an approach compared to other ap-
proaches. A possible type of an optimization validation for
an approach that uses a heuristic is a comparison with a
random search strategy, an exact algorithm, or a baseline
heuristic algorithm. Alternatively, internal comparison is
typically employed in the reviewed papers that propose
multiple optimization strategies. Then, only the proposed
strategies are compared with each other. Some problem-
specific approaches also use mathematical proofs to
validate the correctness of the optimization strategy. For
a structured view on all the values of the discussed
subcategories, see Table 6.

4 RESULTS

In this section, we aim to answer the second research
question RQ2. The 188 reviewed papers are classified based
on the taxonomy described in Section 3. The quantitative
results are presented in Tables 1, 3, and 6.

To provide an overview of the current state of the art in
software architecture optimization and to guide the reader
to a specific set of approaches that is of interest, the
approaches in the different categories including references
to the papers are presented in Tables 2, 4, and 5. The
references in all the three tables have been structured
according to common characteristics (index) to simplify the
orientation in the tables. Since the overall goal of
any software architecture optimization approach is to
identify candidate architectures with better quality, the
quality attribute has been used as the index in the tables. For
each of the top seven quality attributes, a row presents the
references for the approaches addressing this quality
attribute q. The total number of the papers is given in
parentheses in the first column. Each column provides the
results for one taxonomy category t. Then, each cell ðq; tÞ
lists the papers that address quality attribute q, grouped by
the values of t. To show the quality attributes that are
optimized together, the “other quality attributes” column
lists the quality attributes being optimized together with q,
instead of presenting the quality-attribute taxonomy cate-
gory itself (i.e., all combinations of quality attributes
optimized together).

Papers may appear in multiple rows if they address
several quality attributes. Because all of the reviewed
papers optimize at least one of the top seven quality
attributes, all papers appear in the tables. Furthermore, for
some other taxonomy categories such as constraints, papers
may have multiple values and thus be listed several times.
As a result, percentages in the tables may sum up to more
than 100 percent.

The rest of this section presents the observations that can
be derived from both Tables 1, 3, and 6, as well as other
views on the data distilled from the paper collection.

4.1 Problem

A summary of the problem-specific aspects that are
extracted from the set of papers included in the survey is
given in Table 1. In the following, we summarize the main
results for each problem subcategory.

Quality attributes. The architecture optimization ap-
proaches investigated in this literature review have
covered diverse types of design goals. Based on the
analysis of the existing approaches, it is evident that some
quality attributes are addressed more frequently than
others. Examples of frequently addresses quality attributes
are performance, cost, and reliability. Other quality
attributes that are harder to quantify, such as security,
are not considered very often, comprising less than
1 percent of the papers. An interesting result is the number
of papers which use generic approaches to allow for the
definition of customized quality functions, which was
encountered in 22 papers (12 percent of the overall papers).
Since quality attributes are often in conflict with each other,
many approaches consider multiple quality attributes
during the optimization. Details about the combination of
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the considered quality attributes can be found and
extracted from the column “other quality attributes” in
Table 2. Among the quality attributes studied together, the
combinations reliability-performance, reliability-cost, avail-
ability-cost, and cost-energy-consumption have received
the greatest attention.

Domain, dimensionality, and phase. It can be ob-
served from Table 1 that the majority of architecture level
optimization approaches have been applied in the
Embedded Systems domain, comprising 53 percent of
the overall set of papers collected for this literature
review, while a comparatively low number of approaches
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(22 percent) have been applied to enterprise Information
Systems. The remaining approaches (26 percent) are either
generic (i.e., have not clearly specified an application
domain) or, from the evidence provided in the papers,
apply to systems from both domains.

Concerning the dimensionality of the optimization pro-
blem, the approaches are almost evenly distributed between
single-objective (SOO 39 percent) and multi-objective opti-
mization problems (MTS 27 percent and MOO 31 percent).

Concerning the phase, the number of research contribu-
tions for design-time architecture optimization (67 percent)
is significantly larger than that of runtime contributions
(32 percent). With respect to quality attributes, reliability
and safety are widely addressed at design time.

Constraints. One major influence on the architecture of
software systems used in the industry are constraints that
need to be satisfied in order for the system to be accepted.
However, a high number of papers (26 percent of overall
collected papers) solve the architecture optimization pro-
blem without considering any constraints. It is important to
note that constraint satisfaction is a crucial aspect of
optimization, especially in the design of embedded system.
However, constraints add more complexity to the problem.
If constraints are not considered, designers might have to
rework the architecture in order to satisfy the constraints
after the optimization process, which affects the quality of
the system.

In the papers that consider constraints, the main focus
was on cost, comprising 17 percent of the papers. This is not
a surprising result since cost is often an important concern
of the system architect. Other popular constraints are
performance (14 percent), weight (11 percent), and physical
constraints (7 percent). Little importance is given to some
critical constraints such as memory (5 percent) and
reliability (only 4 percent of the papers).

4.2 Solution

A summary of the solution-specific aspects that are extracted
from the set of papers included in the literature review is
given in Table 3. In the following, we summarize the main
results for each solution subcategory, observable in Tables 4
and 5.

Architecture representation. We observe that most
approaches directly use either a quality evaluation model
(34 percent) or a optimization model (39 percent) as an
input. Only 23 percent of the approaches take an architec-
ture model as an input. Among them, most models are
workflow languages for service-based systems (9 percent).
UML, ADLs, and custom architecture models are used
similarly often with 3, 4, and 5 percent, respectively. Some
of the architecture model-based optimization approaches
are general (3 percent), i.e., designed to be extendable to
other than the mentioned modeling language.

Quality evaluation. Quality evaluation is an important
part of the architecture optimization process since it
provides a quantitative metric for the quality of the system
based on the architecture specification, which in turn is
used as an indicator of the fitness of the solutions produced
by the optimization algorithm. The majority of the studies
use a Simple Aggregation Function (42 percent), a Model-
Based technique (32 percent), or a Nonlinear Mathematical
Function (21 percent). In comparison, SAF and NMF are
easier to model and to integrate into the optimization
problem. However, they often are not as accurate and as
realistic as Model-Based techniques since they omit details
and dependencies.

For the model-based approaches, different quality
evaluation techniques have been used, implied by the
models used for specific quality attributes. As an example,
reliability block diagrams [57], [58], [63], [121], [136], [137],
[149], [208], [217], discrete-time Markov chains [61], [96],
[97], [165], [232], and fault trees [67], [184], [199] are used for
reliability; queuing networks [35], [80], [143], [144], [168],
[169], [171], [245], execution graphs [85], [107], [115], and
discrete-time Markov chains [210] are used to evaluate
performance; fault trees [8], [180], [184], [185], [201], [223]
and binary decision diagrams [8], [185] are used for safety
evaluation; continuous-time Markov chains [193], Markov
decision processes [212], Petri-nets [194], and Markov
reward models [165] are used for evaluation of a system’s
energy consumption. Quantitative metrics of the quality
attributes are obtained by either mathematically analyzing
or simulating the models. For an overview of the different
evaluation models and techniques, several surveys can be
recommended, e.g., for reliability [99], performance [22],
[134], energy consumption [27], and safety [104].

Degrees of freedom. Allocation, hardware replication,
and hardware selection are the most intensively studied
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degrees of freedom with 31, 21, and 20 percent of the overall
papers, respectively. Other popular degrees of freedom are
software replication (18 percent), scheduling (17 percent),
component selection (16 percent), and service selection
(15 percent). A small number of papers (9 percent) present a
problem-specific degree of freedom, such as changing the
transmission power in communicating Embedded Systems
or decisions on whether to implement a certain function-
ality in software or hardware.

Optimization strategy. When the search time and
resources used to perform the optimization process are
limited and near-optimal solutions are good enough for the
given problem, then approximate algorithms are the right
optimization tool. However, if the goal is to find the optimal
solutions and if the resources and time are unlimited, then
one should choose exact optimization algorithms. This is an
important tradeoff that should be made when choosing an
optimization algorithm. Assuming problems of nontrivial
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size, the complexity of the problem is the most important
factor that needs to be taken into account.

The majority of the approaches use approximate meth-

ods (mostly metaheuristics) as an optimization technique,
comprising 78 percent of the overall approaches. The main
reason for using approximate methods is the difficulty of

the search-space, in which often an exhaustive search is not
feasible in polynomial time. Moreover, the objective
functions are usually computationally expensive and non-

linear. Listing all possible solutions in order to find the best
candidates is a nondeterministic polynomial-time hard (NP-
hard) problem. Evolutionary Algorithms [18], [33], [37],

[38], [41], [57], [58], [59], [60], [71], [73], [76], [88], [92], [102],
[108], [118], [128], [148], [149], [157], [158], [159], [161], [175],
[196], [216], [221], [223], [227], [228], [229], [231], [237] are

some of the most commonly used approximate methods in
architecture optimization. EAs are seen as robust algo-
rithms that exhibit approximately similar performance over

a wide range of problems [98]; hence their popularity in the
software engineering domain.

A considerable number of papers (20 percent of overall
papers) use exact methods, most of which are standard
optimization techniques such as Linear Programming [174],
[193], [208], [211], [212], while some propose problem-
specific exact methods based on knowledge or assumptions
on the problem [8], [29], [55], [116], [171], [245]. Due to the
ever-increasing complexity of software systems and the
growing number of design options, exact approaches

usually are not suitable as optimization techniques; hence
the lower number of papers employ these techniques.

Finally, general methods do not prescribe the optimiza-
tion strategy but let the user select among several options.
Percentages of each main optimization class are shown in
Table 3, while Table 7 also shows the percentages for
subcategories in relation to quality attributes.

Constraint handling. Constraint handling techniques
generally are problem specific and need a separate effort for
their design. This may be one of the reasons why a large
percentage of papers (32 percent) do not introduce a
constraint handling method. In fact, many papers that
mentioned constraints do not describe the constraint
handling technique used.

Among the used constraint handling approaches, con-
straint prohibition is the most studied one (44 percent in
total). Penalty function is another widely used method, with
19 percent of the papers, whereas repair mechanisms are
less preferred, used by only 5 percent of the papers.

4.3 Validation

A summary of the validation-specific aspects that are
extracted from the set of papers included in the literature
review is given in Table 6. In the following, we summarize
the main results for each validation subcategory.

An analysis of the survey results for the validation
category presented in Table 6 reveals that most of the
papers contain at least one form of validation for the overall
approach. Only 10 percent provide no indication about the
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quality of the produced architecture specifications. How-
ever, a significant number of approaches use a simple form
of validation such as simple examples (27 percent) or
academic case studies (16 percent). Only a few approaches
are compared with known results from benchmark pro-
blems (4 percent) or use industrial case studies (16 percent).
However, none of the investigated approaches that use
industrial case studies provide detailed evidence that the
quality of the implemented systems has been improved by
optimizing the architecture specification.

Analyzing the results regarding the validation of the
optimization strategy reveals that only a minority of the
approaches (32 percent) provide detailed results on
the appropriateness of the optimization algorithm. A closer
look into the optimization validation reveals that especially
approaches that employ or present an enhanced heuristic
optimization algorithm use at least one base line heuristic
algorithm (e.g., an evolutionary algorithm) for comparison.

4.4 Cross Analysis

In this section, we are extending the analysis of the survey
data across the different taxonomy categories. Based on the
observations from the reviewing process and the taxonomy
construction, the following cross-analysis questions (CAQs)
are worth a deeper analysis:

. CAQ1. What optimization strategies have been used
with different quality attributes?

. CAQ2. Is there a relationship between the quality
attributes and the quality evaluation method?

. CAQ3. How do quality attributes relate to degrees of
freedom?

. CAQ4. What is the relationship between the quality
attributes and the domain?

. CAQ5. Is there a preference of specific degrees of
freedom in the different domains?

. CAQ6. Are different validation approaches used in
the different domains?

. CAQ7. Is there a relationship between the domain
and the optimization phase?

. CAQ8. Is there a relationship between the dimen-
sionality and the optimization phase?

. CAQ9. Are different quality evaluation methods
used in runtime and design-time approaches?

. CAQ10. Is there a relationship between the con-
straints used in the problem formulation and the
constraint handling strategies used in the optimiza-
tion procedure?

. CAQ11. What is the relationship between the
optimization strategy used and the optimization
validation?

. CAQ12. What is the relationship between the
degrees of freedom and the optimization strategy?

. CAQ13. What types of validation are conducted for
the different types of quality evaluation methods?

CAQ1 Optimization strategy and quality attribute. Due
to the high complexity of optimization problems that arise
in software engineering, metaheuristics are the most
common optimization strategies used by the state-of-the-
art approaches (Table 7). Most of the papers that use
metaheuristics optimize reliability (49 papers, 69 percent of
papers that address reliability), cost (45 papers, 61 percent),
availability (12 papers, 55 percent), and performance
(45 papers, 54 percent). Problem-specific heuristics are also
very common when optimizing quality attributes such as
performance (23 papers, 27 percent), cost (13 papers,
18 percent), and reliability (11 papers, 15 percent).

Exact algorithms, which are divided into problem-
specific exact algorithms and standard exact algorithms,
have also been tackled by the current research. Standard
exact algorithms are in general more frequently used than
problem-specific exact algorithms. Some of the quality
attributes, such as safety, maintainability, and security,
have not been optimized with exact algorithms.

CAQ2 Quality attribute and quality evaluation method.

The quality attributes also exhibit a relation with the
evaluation strategies (cf., Table 7). For instance, model-
based evaluations are widely used for quality attributes
such as safety (75 percent of papers that address safety) and
energy consumption (50 percent). However, model-based
techniques have a lower proportion of the papers that
address reliability (32 percent), performance (32 percent),
and cost (26 percent). Reliability is usually evaluated
with nonlinear mathematical functions (38 percent),
whereas performance and cost are mostly evaluated with
simple aggregation functions (52 percent and 59 percent,
respectively).

CAQ3 Quality attribute and degree of freedom. Table 7
depicts certain patterns with respect to the architecture
degrees of freedom that are used in the optimization
approaches versus the quality attributes. For instance, the
reliability optimization approaches are mostly focused on
hardware replication (41 percent), software replication
(41 percent), hardware selection (37 percent), allocation
(28 percent), and software selection (27 percent). On the
other hand, the most common degrees of freedom for
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performance, which is the most frequent quality attribute,
are allocation (44 percent), scheduling (30 percent), and
service selection (24 percent).

As can be observed from the gaps in Table 7, some
degrees of freedom are not considered to optimize certain
quality attributes. For instance, there are no papers optimiz-
ing availability, safety, or security by varying the schedul-
ing. Furthermore, software selection is only used to optimize
performance, cost, reliability, availability, and weight.

CAQ4 Quality attribute and domain. Results depicted
in Table 8 indicate that there is a relationship between
certain quality attributes and the domain. For instance,
quality attributes such as energy, weight safety, and area
are optimized only in the context of Embedded Systems,
whereas security is considered only with Information
Systems. Modifiability is only presented in a general
setting, without specifying the domain. These observations
confirm that certain quality attributes are important or can
be measured only in a specific domain. For example, safety
is an important quality attribute in Embedded Systems,
especially in life-critical Embedded Systems, whereas

Information Systems typically do not involve life- and
safety-critical functionalities. Still, the most common qual-
ity attributes performance, costs, and reliability, are used in
both domains.

CAQ5 Degree of freedom and domain. The cross
analysis between the degrees of freedom and the domain
is presented in Table 8. Some degrees of freedom are often
considered in Embedded Systems, e.g., allocation
(68 percent), hardware replication (80 percent), hardware
selection (82 percent), and scheduling (61 percent). Some
degrees of freedom can only be found in Embedded
Systems, e.g., software replication, clustering, and main-
tenance schedules. On the other hand, service selection and
service composition are only present in Information
Systems.

CAQ6 Validation approach and domain. Table 8
presents the results of the cross analysis between the
domain and the validation approach. The validation
approaches taken in Embedded Systems vary more than
in Information Systems, with examples, benchmark pro-
blems, literature comparison, and mathematical proof being
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used only in ES. In addition, it can be observed that the
proportion of papers that use experiments and academic
case studies as validation techniques is higher in Informa-
tion Systems compared to Embedded Systems. In essence,
“examples” was the most commonly used validation
technique in Embedded Systems, with 38 papers
(75 percent), whereas “experiments” were usually preferred
in Information Systems.

CAQ7 Domain and optimization phase. The cross

analysis of the domain and optimization phase is depicted

in Table 9. It can be observed that the optimization

techniques designed for Embedded Systems are usually
performed at design time (DT) (85 percent of the papers

are at design time), whereas in Information Systems, the

optimization is mostly done at runtime (RT), with 85 percent
of papers in Information Systems performing optimization

at runtime. In the other direction, an analogous relation

from phase to domain can also be observed. While the
popularity of design-time optimization for Embedded

Systems is understandable due to the difficulty of runtime

adaptation of Embedded Systems, the low number
of design-time approaches for Information Systems may

be surprising.
CAQ8 Dimensionality and optimization phase. In a

multi-objective optimization problem, the output of the
optimization process in a set of (near) Pareto-optimal

solutions. As a result, a subsequent selection process is

needed to choose among the near optimal architectures,
which is usually not practical at runtime of a software

system. This explains the low percentage of approaches that

use multi-objective optimization (MOO) at runtime (RT)
(only 5 percent), depicted in Table 9, and the high

percentage of the approaches at runtime that convert a

multi-objective problem into a single-objective problem
(MTS, 71 percent).

CAQ9 Quality evaluation and optimization phase. The
analysis of the quality evaluation methods used at design

and runtime is presented in Table 9. Interestingly, there are

a high number of papers at runtime that use simple additive
functions. Model-based approaches, on the other hand,

are not used as often at runtime (only 20 percent) when

compared to design time. As model-based quality evalua-
tion models are computationally more expensive than

simple additive functions, their applicability may be limited

at runtime. Similarly, there is a higher percentage of papers
that employ nonlinear mathematical function at design time

(90 percent).
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CAQ10 Constraint and constraint handling technique.

Table 10 shows a cross analysis of the different constraints
and the constraint handling techniques used during the
optimization. The majority of the papers handle constraints
with prohibition techniques, such as 73 percent of papers
with performance constraints, 53 percent of papers with
cost constraints, and 62 percent of papers with physical
constraints. Penalty functions are the second most com-
monly used constraint handling technique. A considerable
number of papers used penalty techniques with cost
constraint (41 percent), weight (45 percent), physical
(38 percent), and timing (30 percent). Nevertheless, the
proportion of papers that use penalty function as a
constraint handling technique is lower than prohibition
techniques for all constraints.

From the constraint handling perspective, prohibition
techniques are commonly used with almost all constraints.
On the other hand, constraint handling techniques defined
in general are not very frequent. Repair techniques are very
rarely addressed. One reason for this could be that they
increase the complexity of the optimization process since
they require extra knowledge about the problem to
construct feasible results.

CAQ11 Optimization strategy and validation. Table 11
shows a cross analysis of the optimization strategy and the
optimization validation. Note that not all optimization
validation types are applicable to or meaningful for all

optimization strategies. Not applicable or not meaningful
combinations are marked N/A in the table. For example,
there is no need to validate exact standard algorithms as
their ability to find optimal solutions is already well studied
in optimization literature.

For exact problem-specific approaches, only half of the
papers present some form of validation, mostly a compar-
ison with a baseline heuristic algorithm that is commonly
used for the addressed optimization problem.

Looking at approximate techniques, we observe two
main favorite optimization strategies: Evolutionary
Algorithms as the most commonly used metaheuristic and
constructive heuristics as the most common problem-
specific heuristic. Interestingly, Evolutionary Algorithms
are less frequently validated than many other metaheur-
istics, although it is known that an evolutionary algorithm’s
performance and quality of results can significantly vary for
different optimization parameters and problem formula-
tions [19], [20], [225].

CAQ12 Degree of freedom and optimization strategy.
In optimization, the time and computational complexities
are the aspects that are of interest. If a problem is solvable in
polynomial time, i.e., it is not an NP-optimization problem as
defined by Crescenzi et al. [65], then an exact algorithm
might be the best solution. However, the majority of the
problems in architecture optimization cannot be solved in
polynomial time. The degree of freedom used with a
specific problem is one of the components that defines the
computational complexity of an optimization problem,
among others such as the complexity of the quality
evaluation function/procedure. As can be observed from
the results in Table 12, the majority of the degrees of
freedom in architecture optimization, especially degrees of
freedom that involve hardware, such as hardware replica-
tion (80 percent), hardware selection (82 percent), and
hardware parameters (75 percent), are used in conjunction
with approximate optimization algorithms. Similarly, many
degrees of freedom that involve a change in the software
part of the system are also used with metaheuristics,
e.g., software replication (74 percent) and software selection
(79 percent). On the other hand, clustering is used mostly
with problem-specific heuristics (60 percent). Standard
exact algorithms are not used very frequently in conjunction
with most degrees of freedom, apart from service selection
(36 percent of the papers).

CAQ13 Quality evaluation method and approach
validation. Depending on the quality evaluation method
that the reviewed approaches use, certain approach
validations have been selected as shown in Table 13. For
instance, when using a simple aggregation function,
experiments are the most frequent validation technique,
comprising 40 percent of the overall papers that use this
kind of quality evaluation method. Model-based ap-
proaches instead have been most frequently validated with
industrial case studies (32 percent). It can also be observed
that these approaches have the highest proportion of
papers that use industrial case studies as an approach
validation technique among all other quality evaluation
methods, which may indicate a possible relation among
these two entities.

Another interesting result relates to the validation
technique used for nonlinear mathematical functions. The
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majority of the approaches that use nonlinear mathema-

tical functions use validation by examples (53 percent). A

considerable fraction of papers in this category use

experiments (20 percent), and only a few papers use

industrial case studies (8 percent).
In general, very few papers use benchmarks problems;

more specifically, only 4 percent of the papers that use

Simple Aggregation Functions, 3 percent of all model-based

approaches and 8 percent of papers that consider nonlinear

mathematical functions. This can be due to a lack of

benchmark problems in the software engineering domain,

which may be a research area that requires more attention.

Mathematical proofs and literature comparison are even less

frequently used as validation approaches. The only papers

we found with mathematical proof as a validation technique

use either Simple Aggregation Functions or nonlinear

mathematical functions as quality evaluation methods.

5 RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the results of the literature review presented in
the previous section, it is evident that the research area of
architecture optimization has received a lot of attention
over the last decades and significant progress has been
made. However, the results also reveal a number of
observations that can help to direct future research efforts
in the community. In the following, to address the third
research question (RQ3), we list important goals that
should be achieved by the community in order to advance
the research area.

Evidence on the quality of the resulting architectures
and economic benefit. To further increase the penetration
of architecture optimization approaches in industrial
practice, it would be required to provide detailed success
stories that indicate an economical benefit of applying the
specific architecture optimization approaches. In line with
the idea of evidence-based software engineering [78], this
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requires a systematic analysis of systems that have been
developed with and without the use of architecture
optimization approaches with respect to the achieved
system quality and the spent effort.

Systematic exploration of effective degrees of freedom

for different quality attributes. The more recent ap-
proaches reviewed in this paper focus on exploiting
specific architecture degrees of freedom to achieve a
certain quality goal. Further research effort is required
for analyzing the individual approaches in order to
understand the relationship between the degrees of free-
dom and quality attributes. These studies should identify
the effect of each degree of freedom on different quality
attributes. Furthermore, an investigation of a joint con-
sideration of different degrees of freedom is an interesting
starting point for future studies. Note that joint considera-
tion of any set of degrees of freedom and any quality
attributes requires the use of an architecture model as an
input (cf., taxonomy category “architecture representation”
in Section 3.2) because quality evaluation models are
restricted to certain quality attributes.

Systematic validation of the optimization strategy.

Based on the results presented in Table 6, it is evident that
a majority of approaches do not validate the optimization
strategy. A common theme is that a certain optimization
algorithm is picked and applied without comparing it to
the portfolio of existing optimization approaches. This is
valid for some papers that aim to introduce a new quality
evaluation model; however, to further advance our knowl-
edge on the performance and effectiveness of the optimiza-
tion algorithms, we recommend comparing the
optimization algorithms with the current state-of-the-art
approaches. This will allow for better algorithm selection in
the future. For the comparison, the community should
identify a set of benchmark architecture optimization
problems, similar to the ones already established in the
field of reliability optimization for redundancy allocation
[140]. For metaheuristics, a comparison with random search
and well-established metaheuristics is recommended. Since
most algorithms are probabilistic, experiments with a
sufficient number of runs should be used and analyzed
with statistical tests. For setting up the experiments and
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analyzing them, the recently published guidelines by
Arcuri and Briand [11] can be recommended.

Unified tool support. Tools that can be used to model
software architecture optimization problems and that offer
different optimization strategies could greatly support the
above-mentioned research directions. A general optimiza-
tion framework for software architectures could be devised,
which could make use of 1) plug-ins that interpret different
architecture models (from architecture description languages
to component models) and provide degree of freedom
definitions, and 2) plug-ins to evaluate quality attributes for
a given architecture model. Such frameworks have already
been started with the Archeopteryx [5], PerOpteryx [133],
[161], and AQOSA [145] approaches for metaheuristic
optimization and a fixed software architecture model. Future
research could extend them to be more generically applic-
able, and thus foster better collaboration among researchers,
e.g., by the definition of benchmark problems.

Systematic guidelines for selecting the optimization
approach based on the given problem. In the area of
software architecture optimization, systematic guidelines
for optimization-approach selection are currently lacking.
There is a wide range of optimization algorithms available,
which can be grouped into two main classes: exact and
approximate algorithms. Depending on the available
resources and time, on whether the goal is to find the
optimal or near-optimal solutions, and on the size and
complexity of the problem, the appropriate algorithm needs
to be selected for the given problem.

Assuming problems of nontrivial size, the complexity of
the problem is the most important factor that needs to be
taken into account. For optimization, the time and compu-
tational complexities are the aspects that one is interested
in. If a problem is solvable in polynomial time, i.e., it is not
an NP-optimization problem as defined by Crescenzi et al.
[65], then an exact algorithm might be the best solutions.
However, the majority of the problems in architecture
optimization cannot be solved in polynomial time. The
degrees of freedom considered with a specific problem is
one of the components that defines the computational
complexity of an optimization problem. As can be observed
from the results in Table 12, the majority of the degrees of
freedom in architecture optimization are used in conjunc-
tion with approximate optimization algorithms.

All these aspects need more investigation. The taxonomy
proposed in this paper is an initial step in this direction
since it provides a categorization of software architecture
optimization problems. The investigation of the above
aspects can lead to systematic guidelines for selecting the
optimization approach based on the given problem.

Support for practitioners. To apply a software archi-
tecture optimization approach to a given system architec-
ture, practitioners need to 1) model the software
architecture in the formalism used by the approach and
2) identify the applicable degrees of freedom. Here,
modeling the existing architecture is often the most
difficult step as it includes collecting information about
the quality properties of the architecture. For example, the
resource demands and other performance properties need
to be determined for performance, e.g., by measurements
[167]. For reliability, the values usually are estimated or
based on historical data [48], [89]. Creating an accurate

model requires a considerable effort and seems to hinder
the acceptance of architecture modeling in practice. Thus,
future research should provide support for practitioners
and partial automation to create such models.

Furthermore, most reviewed approaches use a specific
formalism to describe the software architecture (cf., “archi-
tecture representation” category in Sections 3.2 and 4.2).
Thus, even if a practitioner has a formalized model for a
software architecture available, the optimization approaches
are not readily applicable. Here, software architecture
optimization researchers should relate their required input
models of the software architecture to UML or other
widespread modeling languages, e.g., by providing tools
that transform an UML model to the required formalism.

Reporting guidelines for software architecture optimi-
zation. The description of the solved optimization problem
and the used optimization approach varies greatly among
different papers in the surveyed domain. Not all values of
our taxonomy were explicitly presented and could be
quickly identified. Some values were only implicitly
indicated, making it hard to extract them from the
description of the work. Thus, comparing and relating
different works is difficult.

Our taxonomy can serve as a reporting guideline for
future work to improve the reporting standards in the area
of software architecture optimization. Optimization papers
should state explicitly how they relate to the taxonomy by
prominently providing information for all taxonomy
categories. Ideally, the same terms for the values of the
taxonomy (e.g., different degrees of freedom) could be used,
although we have to weigh common software architecture
optimization terms (e.g., “allocation”) against common
terms in different subcommunities (e.g., “binding” in chip
design for Embedded Systems).

6 CONCLUSIONS

In this paper, we have presented the results of a systematic
literature review on architecture optimization which in-
cluded 188 different approaches. Based on this review, we
derived a taxonomy that aims to help researchers to classify
existing and future approaches in this research area. Using
this taxonomy, we have analyzed the current approaches
and presented the results in a way that helps researchers to
relate their work to the existing body of knowledge and
identify future research directions.

During the review process, we acquired knowledge of
different research subareas, and presented the implications
of their cross analysis via recommendations for future
research. We structured the results to a number of tables,
which are aimed to facilitate knowledge transfer among
various research communities working in the architecture-
optimization research area. We learned that although there
are some communities that are already well connected
(through cross citation of their works), e.g., the community
of reliability and performance architecture optimization
(due to the similarities in their models), there still remain a
number of communities that are isolated from others,
e.g., the scheduling community or the community focusing
primarily on the optimization strategies (irrespective of the
optimized qualities). The information presented in this
survey aims to bridge the gap among the communities and
allow for easier knowledge transfer.
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In summary, we believe that the results of our systematic

review will help to advance the architecture-optimization

research area and, since we expect this research area to grow

in the future, we hope that the taxonomy itself will also

become useful in developing and judging new approaches.
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