Software Architecture Optimization Methods: A Systematic Literature Review

Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, Member, IEEE, and Indika Meedeniya

Abstract—Due to significant industrial demands toward software systems with increasing complexity and challenging quality requirements, software architecture design has become an important development activity and the research domain is rapidly evolving. In the last decades, software architecture optimization methods, which aim to automate the search for an optimal architecture design with respect to a (set of) quality attribute(s), have proliferated. However, the reported results are fragmented over different research communities, multiple system domains, and multiple quality attributes. To integrate the existing research results, we have performed a systematic literature review and analyzed the results of 188 research papers from the different research communities. Based on this survey, a taxonomy has been created which is used to classify the existing research. Furthermore, the systematic analysis of the research literature provided in this review aims to help the research community in consolidating the existing research efforts and deriving a research agenda for future developments.

Index Terms—Software architecture optimization, systematic literature review, optimization methods, problem overview

1 INTRODUCTION

A RCHITECTURE specifications and models [120] are used to structure complex software systems and to provide a blueprint that is the foundation for later software engineering activities. Thanks to architecture specifications, software engineers are better supported in coping with the increasing complexity of today's software systems. Thus, the architecture design phase is considered one of the most important activities in a software engineering project [24]. The decisions made during architecture design have significant implications for economic and quality goals. Examples of architecture-level decisions include the selection of software and hardware components, their replication, the mapping of software components to available hardware nodes, and the overall system topology.

1.1 Problem Description and Motivation

Due to the increasing system complexity, software architects have to choose from a combinatorially growing number of design options when searching for an optimal

- A. Aleti is with the Faculty of Information Technology, Clayton School of IT, Monash University, Clayton, Victoria 3800, Australia. E-mail: aldeida.aleti@monash.edu.
- B. Buhnova is with the Faculty of Informatics, Masaryk University, Botanicka 68a, 602 00 BRNO, Czech Republic. E-mail: buhnova@fi.muni.cz.
- L. Grunske is with the Faculty of Computer Science, University of Kaiserslautern, Building 32, Room 430, Germany. E-mail: grunske@cs.uni-kl.de.
- A. Koziolek is with the Department of Informatics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zürich, Switzerland. E-mail: koziolek@ifi.uzh.ch.
- I. Meedeniya is with the Faculty of ICT, Swinburne University of Technology, John Street, Hawthorn, Melbourne, Victoria 3122, Australia. E-mail: imeedeniya@swin.edu.au.

Manuscript received 17 Nov. 2011; revised 21 May 2012; accepted 13 Sept. 2012; published online 22 Sept. 2012.

Recommended for acceptance by N. Medvidovic.

For information on obtaining reprints of this article, please send e-mail to: tse@computer.org, and reference IEEECS Log Number TSE-2011-11-0320. Digital Object Identifier no. 10.1109/TSE.2012.64.

architecture design with respect to a defined (set of) quality attribute(s) and constraints. This results in a design space search that is often beyond human capabilities and makes the architectural design a challenging task [105]. The need for automated design space exploration that improves an existing architecture specification has been recognized [191] and a plethora of architecture optimization approaches based on formal architecture specifications have been developed. To handle the complexity of the task, the optimization approaches restrict the variability of architectural decisions, optimizing the architecture by modifying one of its specific aspects (allocation, replication, selection of architectural elements, etc.). Hence, the research activities are scattered across many research communities, system domains (such as Embedded Systems (ESs) or Information Systems (ISs)), and quality attributes. Similar approaches are proposed in multiple domains without being aware of each other.

1.2 Research Approach and Contribution

To connect the knowledge and provide a comprehensive overview of the current state of the art, this paper provides a systematic literature review of the existing architecture optimization approaches. As a result, a gateway to new approaches of architecture optimization can be opened, combining different types of architectural decisions during the optimization or using unconventional optimization techniques. Moreover, new tradeoff analysis techniques can be developed by combining results from different optimization domains. All this can bring significant benefits to the general practice of architecture optimization. In general, with the survey we aim to achieve the following objectives:

- Provide a basic classification framework in form of a taxonomy to classify existing architecture optimization approaches.
- Provide an overview of the current state of the art in the architecture optimization domain.

• Point out current trends, gaps, and directions for future research.

We examined 188 papers from multiple research subareas, published in software engineering journals and conferences. Initially, we derived a taxonomy by performing a formal content analysis. More specifically, based on the initial set of keywords and defined inclusion and exclusion criteria, we collected a set of papers which we iteratively analyzed to identify the taxonomy concepts. The taxonomy was then used to classify and analyze the papers, which provided a comprehensive overview of the current research in architecture optimization. The data were then used to perform a cross analysis of different concepts in the taxonomy and derive gaps and possible directions for further research.

1.3 Related Surveys

Architecture optimization can be categorized into the general research discipline of Search-Based Software Engineering (SBSE) [110] as it applies efficient search strategies to identify an optimal or near-optimal architecture specification. SBSE is applied in all phases of the software engineering process, including requirements engineering, project management, design, maintenance, reverse engineering, and software testing. A comprehensive survey of different optimization techniques applied to software engineering tasks is provided by Harman et al. [111]. The survey indicates that in the past years, a particular increase in SBSE activity has been witnessed, with many new applications being addressed. The paper identifies research trends and relationships between the search techniques and the applications to which they have been applied. The focus of Harman et al.'s survey is on the broad field of SBSE, especially on approaches in the software testing phase which are also covered in detailed surveys [156], [163]. However, the area of architecture optimization has not been investigated in detail. The SBSE survey lists several approaches to optimizing software design, but does not analyze properties of these approaches except naming the used optimization strategy.

Beside this general SBSE survey, other surveys describe subareas of architecture optimization and design-space exploration that are only concerned with specific system domains or a specific optimization method. For instance, the survey of Grunske et al. [105] is concerned with the domain of safety-critical Embedded Systems and compares 15 architecture optimization methods. Another example is the survey of Villegas et al. [230], which evaluates 16 approaches that target runtime (RT) architecture optimizations with a focus on self-adaptive systems. In the research subarea of systems with high reliability demands, Kuo and Wan [140] have published a survey in 2007 comparing different redundancy allocation approaches. Finally, several surveys are concerned with the application of a specific optimization technique, typically related to Genetic Algorithms [4], [125] or metaheuristics in general [195].

Although these surveys provide a good overview of a specific application domain, optimization method, or even a design phase, none of them is suitable for giving a comprehensive overview of the existing research in the area of architecture optimization.

1.4 Organization

The rest of the paper is organized as follows: First, Section 2 outlines the research method and the underlying protocol for the systematic literature review. The first contribution of this paper, a taxonomy for architecture optimization approaches that has been derived from an iterative analysis of the existing research literature is presented in Section 3. The second contribution, a classification of existing architecture optimization approaches according to this taxonomy, is presented in Section 4. This section contains both a classification into the categories of the taxonomy including some descriptive statistics as well as a cross-category analysis between the different taxonomy areas. Finally, Section 5 identifies future research directions based on the survey results and Section 6 presents the conclusions.

2 RESEARCH METHOD

Our literature review follows the guidelines proposed by Kitchenham [129], which structure the stages involved in a systematic literature review into three phases: planning, conducting, and reporting the review. Based on the guidelines, this section details the research questions, the performed research steps, and the protocol of the literature review. First, Section 2.1 describes the research questions underlying our survey. Next, Section 2.2 derives the research tasks we conducted and thus describes our procedure. Section 2.3 then details the literature search step and highlights the inclusion and exclusion criteria. Finally, Section 2.4 discusses threats to the validity of our study.

2.1 Research Questions

Based on the objectives described in the introduction, the following research questions have been derived, which form the basis for the literature review:

- **RQ1.** How can the current research on software architecture optimization be classified?
- **RQ2.** What is the current state of software architecture optimization research with respect to this classification?
- **RQ3.** What can be learned from the current research results that will lead to topics for further investigation?

2.2 Research Tasks

To answer the three research questions RQ1-3, four research tasks have been conducted: one task to set up the literature review, and three research tasks dedicated to the identified research questions. The tasks have been conducted in a sequential manner and interconnected through a number of artifacts generated by their subtasks. The overall research method is outlined in Fig. 1 and detailed in the following text.

The setup task includes the definition of the review protocol, the selection of search engines, the definition of a keyword list, a keyword-based collection of published architecture optimization papers, and a review filtering the papers according to a defined set of inclusion and exclusion criteria. The search step and the inclusion/exclusion review step are explained in more detail in Section 2.3.

Fig. 1. The process model of our research method.

Based on the set of selected papers, we performed a *content analysis* [135] of the papers in the first research task (RQ1). The goal was to derive a taxonomy to classify the current architecture optimization approaches. We used an iterative coding process to identify the main categories of the taxonomy. The coding process was based on the *grounded theory* [94] qualitative research method. First, we analyzed each paper with the goal to identify new concepts for the taxonomy. Second, after all papers had been reviewed and the taxonomy updated with newly identified concepts, we consolidated the taxonomy terms, mainly by merging the synonyms and unifying the concepts on different levels of abstraction. Section 3 presents the findings.

In the second research task (RQ2), each paper collected in the setup task was classified based on the taxonomy derived in the first research task. Within our team of authors, one person was nominated as a data extractor for each paper. Furthermore, one person was nominated as a data checker for each top-level taxonomy category. While the responsibility of the data extractors was to classify the papers, data checkers crosschecked the classification and discussed any inconsistencies with data extractors. Extracted data were stored in a database, which enabled a descriptive quantitative analysis. The aim of the data extraction and the resulting classification was to provide a significant overview of the current research effort and the archived results in this domain. Sections 4.1, 4.2, and 4.3 present the findings.

In the third research task (RQ3), we cross analyzed the survey results and synthesized possible directions for further research. The derivation of possible future research directions was specifically enabled by the variety of papers from multiple research subareas, each of which has its own strengths. Consequently, the survey enables the knowledge transfer from one research subarea to another and thus aims at improving the overall research area. Section 4.4 presents

the cross-analysis results, while Section 5 provides our recommendations for future research.

2.3 Literature Search Process

The search strategy for the review was primarily directed toward finding published papers in journals and conference proceedings via the widely accepted literature search engines and databases Google Scholar, IEEE XPlore, ACM Digital Library, Springer Digital Library, and Elsevier ScienceDirect.

For the search, we focused on selected keywords, based on the aimed scope of the literature review. Examples of the keywords are automated selection of software components, component deployment optimization, energy consumption optimization, component selection optimization, automated component selection, reliability optimization, software safety optimization, redundancy allocation, optimal scheduling, hardware-software co-synthesis, searchbased software engineering, runtime (RT) and design-time (DT) architecture optimization, software engineering optimization, self-adaptive software systems. The keywords were refined and extended during the search process. The final keyword list is available at the project website [6].

In the subsequent phase, we reviewed the abstracts (and keywords) of the collected papers with respect to the defined set of inclusion and exclusion criteria (Sections 2.3.1 and 2.3.2 below), and further extended the collection with additional papers based on an analysis of the cited papers and the ones citing it (forward and backward citation search). As a result, we included 188 peer-reviewed papers in the survey comprised of papers from 1992 to 2011, with more than 50 percent of the papers published in the last years between 2005 and 2010.

Although the selection process was primarily based on the review of paper abstracts and keywords, in the cases where these two were insufficient we also considered parts of the introduction, contribution, and conclusion sections.

2.3.1 Inclusion Criteria

The focus of this literature review is on software architecture optimization. We understand the architecture of a software system to be "the fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principles guiding its design and evolution" [120]. Software architecture optimization is understood as an automated method aiming to reach an optimal architecture design with respect to a (set of) quality attribute(s). The main criteria for inclusion were based on the *automation* of software architecture optimization, both at runtime and at design time. To enable automated optimization of software architectures, three basic prerequisites need to be fulfilled:

- 1. A machine-processable representation of the software architecture must be available as an input for automated search (e.g., a UML model with agreed semantics, models described in any architecture description language, or representations in formalisms such as Markov chains). Such a representation may be an *architecture model* as defined in [120], but can also be another machine-processable representation such as a Markov chain.
- 2. A function or procedure that automatically evaluates an aspect of quality for a given software architecture is required (called quality evaluation function/procedure in this work). Different quality attributes used during the optimization process were included as long as they were quantifiable by such a quality evaluation function/procedure. Cost was also considered since it is a commonly addressed optimization objective in conjunction with quality attributes. Both single-objective and multi-objective problems were taken into account. Furthermore, papers that solved any type of constrained problem were included, not excluding the papers that did not include constraints.
- 3. A definition of the considered design space is required that describes how a given software architecture representation can be changed or enhanced by the optimization. We call this information "architectural degrees of freedom" [132] in this work as there is no other agreed term in the context of architecture optimization. Example architectural degrees of freedom are allocation, component selection, or hardware parameter change.

Papers that provide these three aspects are included in our review.

2.3.2 Exclusion Criteria

We excluded papers that

- 1. optimize a single component without integrating context and interactions with other architectural elements,
- 2. focus on an architecture-irrelevant problem (e.g., requirements prioritization, compiler optimization, or task allocation to agents that cooperate in executing and finishing the tasks),

- 3. optimize hardware with no relation to software (e.g., FPGA optimization), or
- 4. solely optimize cost without considering any other quality attribute.

Moreover, due to the goal of approach classification, we excluded the papers discussing an approach already included in the collection (recognized based on the author list and approach attributes) and we excluded nonreviewed papers. We did not exclude papers for quality reasons because the quality of the papers was generally acceptable. Evidence for the quality of the papers can be found in a postselection analysis of the citations of each paper via Google Scholar, which in 2012 revealed that each of the papers has been cited at least once and the average citation count for the papers included in the survey was 76.5. The h-index and g-index of the included papers were 57 and 128, respectively.

2.4 Threats to Validity

One of the main threats to the validity of this systematic literature review is incompleteness. The risk of this threat highly depends on the selected list of keywords and the limitations of the employed search engines. To decrease the risk of an incomplete keyword list, we have used an iterative approach to keyword-list construction. A wellknown set of papers was used to build the initial taxonomy, which evolved over time. New keywords were added when the keyword list was not able to find the state of the art in the respective area of study. In order to omit the limitations implied by employing a particular search engine, we used multiple search engines. Moreover, the authors' expertise in different system domains, quality attributes, and optimization approaches reduced the search bias.

Another important issue is whether our taxonomy is robust enough for the analysis and classification of the papers. To avoid a taxonomy with insufficient capability to classify the selected papers, we used an iterative content analysis method to continuously evolve the taxonomy for every new concept encountered in the papers. New concepts were introduced into the taxonomy and changes were made in the related taxonomy categories.

Furthermore, in order to make the taxonomy a better foundation for analyzing the selected papers, we allowed multiple abstraction levels for selected taxonomy concepts. As a result, one of the concepts (namely, the used optimization strategy) has different levels of detail, where the highest level is abstract with few classes, whereas lower levels have more details with more classes used to classify the papers. The appropriate level was selected when presenting the results. In order to reduce the classification bias, paper classification results were checked by all the authors. The classification according to the remaining abstraction levels is recorded in the survey database, which can be accessed at [6].

3 TAXONOMY

The quality of a literature review project highly depends on the selected taxonomy scheme, which influences the depth of knowledge recorded about each studied approach. In this paper, an iterative coding process has been

Fig. 2. The taxonomy for architecture optimization approaches, derived from the reviewed literature.

employed to identify the taxonomy categories (see Section 2 for details) and to provide an answer to the first research question (**RQ1**). The resulting taxonomy hierarchy is depicted in Fig. 2.

The first level of the taxonomy hierarchy structures the existing work according to three fundamental questions characterizing the approaches. These are:

- 1. What is the formulation of the optimization *problem* being addressed?
- 2. What techniques are applied to the *solution* of the problem?
- 3. How is the *validity* of the approach assessed?

We discuss each of these questions in detail, and define the implied taxonomy scheme. For each of the questions, we derive the subcategories of the taxonomy related to the question. Each category has a number of possible values used to characterize the optimization approaches. For example, the category *Domain* has the three values *Embedded Systems* (ES), *Information Systems* (IS), and *General*. We only briefly discuss the possible values of categories in the following, while the complete structured list of all the values is in Tables 1, 3, and 6, while full details can be found in the wiki page.¹

3.1 The Problem Category

The first category is related to the problem the approaches aim to solve in the real world. Generally speaking, the approaches try to achieve a certain optimization goal in a specific context. For example, an optimization goal is to minimize the response time of an architecture given costs constraints. An example context is to consider Embedded Systems at design time. While the context of the problem is determined by the subcategories *domain* (i.e., the type of targeted systems) and *phase* (i.e., place in the development process) of the problem, the subcategories related to the optimization goal include *quality attributes, constraints,* and the *dimensionality* of the optimization problem, which is governed by the question if the set of optimized quality attributes is aggregated into a single mathematical function (single objective optimization (SOO)) or decoupled into conflicting objectives (multi-objective optimization (MOO)).

In particular, the *domain* has three possible values: Information systems are business-related systems operated on a general purpose computer that include, for

TABLE 1 Problem Category—Quantitative Summary of the Results

Quality Attributes			Constraints			
Performance	84	44%	Not presented	49	26%	
Cost	74	39%	Cost	32	17%	
Reliability	71	37%	Performance	26	14%	
Availability	25	13%	General	25	13%	
General	22	12%	Weight	20	11%	
Energy	18	9%	Physical	13	7%	
Weight	5	3%	Timing	10	5%	
Safety	4	2%	QoS Values	10	5%	
Reputation	4	2%	Memory	9	5%	
Modifiability	3	2%	Precedence	9	5%	
Area	3	2%	Mapping	8	4%	
Security	1	< 1 %	Reliability	7	4%	
			Requirements	6	3%	
			Volume	6	3%	
Dor	Domain		Structural	5	3%	
ES	100	53%	Area	3	2%	
GENERAL	49	26%	Redundancy level	3	2%	
IS	41	22%	Delivery time	3	2%	
			Availability	2	1%	
Ph	ase		Throughput	2	1%	
DT	128	67%	Processing power	1	< 1 %	
RT	60	32%	Stability	1	< 1 %	
GENERAL	3	2%	Path loss	1	< 1 %	
			Functional correctness	1	< 1 %	
Dimens	ionalit	y	Design	1	< 1 %	
SOO	75	39%				
MOO	58	31%				
MTS	51	27%				
GENERAL	7	4%				

instance, e-business applications, enterprise, and government Information Systems. Embedded systems, in contrast, are realized on a dedicated hardware to perform a specific function in a technical system. They scale from small portable devices like mobile phones to large factories and power plants. If an approach is designed for both domains, the third possible value "general" is used. The *phase* category specifies whether the problem is occurring at design time or runtime. The main difference between the two is that while the setting of a design-time problem is known in advance, the setting of a runtime problem changes dynamically (e.g., new tasks can arrive during runtime scheduling). Again, the value "General" can be used here to denote approaches that address both design time (DT) and runtime (RT).

The goal of the optimization task is typically the maximization of the software-architecture quality under given constraints. Since the quality of a software system as a concept is difficult to define due to its subjective nature, software experts do not define the quality directly but relate it to a number of system attributes, called quality attributes [119]. In this work, we only consider quantifiable quality attributes (cf., Section 2.3.1). Examples are performance, reliability, cost, availability, and other well established quality attributes (find the full list in Table 1 and in [6]). When categorizing quality attributes, we followed widely accepted definitions and quality attribute taxonomies [16], [24], [103], [241]. In our taxonomy, we distinguish quality attributes to be optimized (category quality attributes) from additional constraints on quality attributes or other system properties (category constraints). For example, reducing the response time and the costs of a system as much as possible is a setting with two quality attributes to be optimized. Increasing the availability while keeping the response time lower than 5 seconds and adhering to structural constraints is a setting with one quality attribute to be optimized (availability) and two constraints (for performance and structural).

Finally, the dimensionality category reflects if the approach addresses a single-objective optimization (SOO) or multi-objective optimization (MOO) problem. The SOO optimizes a single quality attribute only. The MOO optimizes multiple quality attributes at once so that the quality of every architecture model is a vector of values. As quality attributes often conflict, usually there is no single optimal result but a set of solutions nondominated by the others from the point of view of the optimized qualities—i.e., solutions that are Pareto-optimal [70]. Since in MOO a decision has to be taken on the final architecture design selected from the set of resulting candidates, one can also use the multi-objective transformed to single-objective optimization (MTS) approaches, which encode the selection criteria following MOO into a single mathematical function (e.g., a weighted sum), which is then optimized as a single objective.

For a structured view on all the values of the discussed subcategories, see Table 1.

3.2 The Solution Category

The solution category classifies the approaches according to how they achieve the optimization goal and thus describes the main step of the optimization process, which is depicted

Fig. 3. Optimization process.

in Fig. 3. First, the subcategory *architecture representation* is the process input that describes the architecture to optimize. Second, the subcategory *degrees of freedom* describes what changes of the architecture are considered as variables in the optimization. Third, the subcategory *quality evaluation* describes the used quality evaluation procedures which make up the objective function(s) of the optimization process. Furthermore, this category contains the techniques used to solve the formulated optimization problem: Subcategories are the overall *optimization strategy* and *constraint handling*.

The *architecture representation* category classifies the approaches based on the information used to describe the software architecture. Any architecture optimization approach takes some representation of the system's architecture as an input (cf., Fig. 3). This representation may be an architecture model [120] documenting the architecture by defining components and connectors. To predict more complex quality attributes, a quality evaluation model such as a Layered Queueing Network or a Markov chain may be derived from an architecture model or may be used directly as an input. Finally, in order to employ optimization techniques, the architecture and the design decisions have to be encoded into an optimization model describing the decision variables and the objective function. This optimization model may be derived from an architecture model or from a quality evaluation model, or may directly be required as an input. To assess the used architecture representation relevant for the user, we classify the approaches based on the input they require so that the possible values are "architecture model" (an architecture model is used as the input), "quality evaluation model" (a quality evaluation model is used as the input, no architecture model is used), and "optimization model" (an optimization model is used as the input, no architecture model or quality evaluation model is used). Note that several approaches that start with an architecture model also internally use a quality evaluation model, and that all approaches also internally use an optimization model. If quality evaluation models or optimization models are used as an input, it needs to be guaranteed that an optimal found solution can be traced back to a meaningful solution on the architecture level.

Furthermore, we drill into the used architecture models in more detail, also distinguishing the used modeling formalism as follows: "UML" denotes architecture models defined in any modeling formalism of the Unified Modeling Language. Other architecture description languages such as AADL [203] or PCM [25] are subsumed in the value "ADL." A specific form of architecture description for service-based systems is "workflow specifications." By "custom architecture models" (custom AM), we denote approaches that define a custom model to describe the architecture which, in contrast to ADLs, does not have the purpose to document the architecture but is more tailored toward a specific purpose (such as the architecture middleware PRISM-MW [154]). Finally, approaches that allow exchanging the used architecture model, e.g., by reasoning in the metamodel level or by offering plug-ins for handling different ADLs, are classified with the value "General."

The quality evaluation category differentiates the approaches in those formalizing the optimized criteria with a simple additive function (SAF), with a nonlinear mathematical function (NMF), or with a more complex evaluation function and model that, for example, cannot be expressed with closed formulas and are solved numerically or with simulations. We denote this latter case as modelbased (MB). For example, consider the quality attribute performance. A simple additive function that calculates the response time of a specific function would sum up the response times of used individual services. A more complex nonlinear mathematical function is used if a queuing behavior of the system analyzed using exact queuing theory formulae. Finally, a model-based procedure is used if the system is represented as an extended queuing network and the performance is evaluated with approximative or simulation-based techniques. In essence, the optimization process aims at optimizing the quality attribute(s) whose evaluation constitutes the objective function(s), also referred to as fitness function(s) in the optimization domain.

The architectural degrees of freedom category defines how the architecture representation can be changed to make it optimal with respect to the optimization goal. Example architectural degrees of freedom are component selection, allocation, or hardware parameter change. Thus, this category describes the types of variables of the optimization, i.e., it describes the types of design decision that can be varied by the optimization and thus defines the considered subset of the design space [132]. Another synonymous term is "architecture transformation operators" [101], [105]. More general terms describing the same idea are "design decisions" or "dimensions of variation" [166]. The possible values are those found in the reviewed papers, grouped by synonyms, since no existing classification (such as for quality attributes) is available to use; hence, we explain them in more detail in the next paragraphs.

The selection degrees of freedom are concerned with selecting entities in the architecture. These entities can be software entities (such as modules) or hardware entities (such as servers or devices), resulting in "software selection" and "hardware selection" values. We explicitly distinguish "component selection" because some domains have a certain notion of a component. For example, in Embedded Systems design, component selection could mean deciding between a component realizing a functionality in hardware and a component with general-purpose hardware realizing functionality in software. Furthermore, we explicitly distinguish "service selection" because, next to selecting the software to execute, selecting a service also includes selecting the service provider (thus including hardware aspects as well).

Replication degrees of freedom are concerned with changing the multiplicity of an architectural element. Under the term "hardware replication," we subsume all degrees of freedom that concern the number of a hardware entity's copies, while possibly also changing the multiplicity of software elements (e.g., software components deployed to the replicated servers). The popular term redundancy allocation is thus included in "hardware replication." Under the term "software replication," we subsume degrees of freedom that change the number of copies of software entities only. For brevity, we include both identical copies of the software and different implementations of the same functionality (e.g., n-version programming) in the term "software replication" in this paper.

Parameter degrees of freedom refer to other parameters of architectural elements. We distinguish "software parameters" (e.g., number of threads of an application server) and "hardware parameters" (e.g., parameters for the hard disk drive). Hardware parameters may overlap with hardware selection because the choice (e.g., of a CPU with different speed) can be modeled both as hardware selection or as a parameter of the hosting server. Here, we classified a paper based on the presentation of the degree of freedom in that paper.

Further common degrees of freedom are the following: "Scheduling" is concerned with deciding about the order of execution. "Service composition" changes how services are composed by changing service topology and/or the service workflow. "Allocation" (a broader term to "Deployment") changes the mapping of software entities (components or tasks) to processing elements, for example, to servers. Other, less common degrees of freedom are architectural patterns, maintenance schedules, partitioning, and clustering. We do not explicitly name degrees of freedom that are used by fewer than two papers, but treat them commonly as "problem-specific degrees of freedom." Some approaches allow for applying any degree of freedom and are classified as "general." Finally, some approaches do not explicitly present the considered degrees of freedom and are classified under "not presented."

For the optimization strategy, we provide three levels of classification. First, we distinguish whether the used optimization strategy guarantees exact solutions (the best available architecture design with respect to the objective function) or only finds approximate solutions. As a subclassification, among the exact methods, we distinguish standard methods (such as standard mixed integer linear programming tools) and problem-specific methods (e.g., operating on graph representations of the problems and exploiting problem properties). Among the approximate methods, we distinguish methods that guarantee a lower bound of the solution, such as some branch-andbound approaches, methods that require problem or domain-specific information to perform the search, i.e., problem-specific heuristics, and methods that apply highlevel strategies, i.e., metaheuristics, which are not problemspecific, but can use domain or problem-specific knowledge

to guide the search [34], such as evolutionary algorithms (EAs). The lowest level of the optimization strategy category describes the concrete used optimization strategy, such as evolutionary algorithms, standard linear integer programming solvers, or problem-specific heuristics.

The *constraint handling* category describes the used strategies to handle constraints. Based on the insightful surveys of Michalewicz [172] and Coello Coello [50], possible strategies are encoded with the following values: "Penalty" refers to the strategy that converts the constrained optimization problem into a series of unconstrained problems by adding a penalty parameter to the objective function which reflects the violation of the constraints. "Prohibit" refers to the constraint handling strategy that discards solutions that violate constraints. A "repair" mechanism is employed during the optimization process to fix any violation of constraints before the solution is evaluated. Finally, "General" describes any or a variety of constraint handling techniques.

For a structured view on all the values of the discussed subcategories, see Table 3.

3.3 The Validation Category

For the validation classification of the taxonomy, two subcategories are considered, *approach validation* and *optimization validation*.

The approach validation describes techniques used to assess the practicality and accuracy of the approach. This includes specifically the effort spent on the modeling of quality prediction functions and evaluating their accuracy. Possible validation types found in the reviewed approaches include demonstration with a simple example, validation with dedicated benchmark problems or experiments with randomly generated problems, and validation with an academic or industrial case study. As industrial case studies, we have classified systems that are used in practice with a clear commercial aim. An academic case study is different from a simple example in that it invents a somewhat realistic system with a clear purpose but without a commercial background, while a simple example describes an abstract small example (e.g., an architecture built from components C1 to C4). Besides these, the possible validation types also include mathematical proofs of the accuracy of the results and comparison with related literature.

In contrast to the approach validation, the optimization validation specifically validates the used optimization strategy. Such a validation may evaluate 1) how well an approach approximates the global optimum and/or 2) the performance of an approach compared to other approaches. A possible type of an optimization validation for an approach that uses a heuristic is a comparison with a random search strategy, an exact algorithm, or a baseline heuristic algorithm. Alternatively, internal comparison is typically employed in the reviewed papers that propose multiple optimization strategies. Then, only the proposed strategies are compared with each other. Some problemspecific approaches also use mathematical proofs to validate the correctness of the optimization strategy. For a structured view on all the values of the discussed subcategories, see Table 6.

4 **R**ESULTS

In this section, we aim to answer the second research question **RQ2**. The 188 reviewed papers are classified based on the taxonomy described in Section 3. The quantitative results are presented in Tables 1, 3, and 6.

To provide an overview of the current state of the art in software architecture optimization and to guide the reader to a specific set of approaches that is of interest, the approaches in the different categories including references to the papers are presented in Tables 2, 4, and 5. The references in all the three tables have been structured according to common characteristics (index) to simplify the orientation in the tables. Since the overall goal of any software architecture optimization approach is to identify candidate architectures with better quality, the quality attribute has been used as the index in the tables. For each of the top seven quality attributes, a row presents the references for the approaches addressing this quality attribute q. The total number of the papers is given in parentheses in the first column. Each column provides the results for one taxonomy category t. Then, each cell (q, t)lists the papers that address quality attribute *q*, grouped by the values of t. To show the quality attributes that are optimized together, the "other quality attributes" column lists the quality attributes being optimized together with q_i instead of presenting the quality-attribute taxonomy category itself (i.e., all combinations of quality attributes optimized together).

Papers may appear in multiple rows if they address several quality attributes. Because all of the reviewed papers optimize at least one of the top seven quality attributes, all papers appear in the tables. Furthermore, for some other taxonomy categories such as constraints, papers may have multiple values and thus be listed several times. As a result, percentages in the tables may sum up to more than 100 percent.

The rest of this section presents the observations that can be derived from both Tables 1, 3, and 6, as well as other views on the data distilled from the paper collection.

4.1 Problem

A summary of the problem-specific aspects that are extracted from the set of papers included in the survey is given in Table 1. In the following, we summarize the main results for each problem subcategory.

Quality attributes. The architecture optimization approaches investigated in this literature review have covered diverse types of design goals. Based on the analysis of the existing approaches, it is evident that some quality attributes are addressed more frequently than others. Examples of frequently addresses quality attributes are performance, cost, and reliability. Other quality attributes that are harder to quantify, such as security, are not considered very often, comprising less than 1 percent of the papers. An interesting result is the number of papers which use generic approaches to allow for the definition of customized quality functions, which was encountered in 22 papers (12 percent of the overall papers). Since quality attributes are often in conflict with each other, many approaches consider multiple quality attributes during the optimization. Details about the combination of

TABLE 2 Problem Category—Problem Specific Categorization of the Reviewed Approaches

OA	Domain	Phase	Other Ouality Attributes	Dimensionality	Constraints
mance(84)	ES(32) [32], [45], [67]- [69], [80], [83], [84], [90], [93], [109], [112], [114], [117], [121]-[123], [126], [152], [153], [174]-[177], [179], [188], [213], [218], [220], [233], [235], [237], GENERAL(21) [11- [3], [10], [15], [23], [26], [29], [46], [73], [87], [88], [141], [145], [189], [189], [189], [180], [180], [180], [180], [180], [181], [180], [180], [180], [180], [181], [180],	DT(50) [1]-[3], [23], [26], [32], [45], [67]-[69], [73], [80], [83], [84], [88], [90], [93], [109], [112], [114], [117], [121]-[123], [126], [133], [141], [143], [145], [152], [160], [161], [175]-[177], [179], [188], [189], [196]-[198], [210], [213], [218], [220], [245], [231], [233], [234], [245], [24	AREA(3) [45], [218], [220], AVAILABIL- ITY(18) [12], [14], [15], [29], [39], [40], [42], [44], [74], [77], [72], [82], [124], [130], [151], [170], [226], [236], [241], COST(38) [12]-[15], [32], [38]-[40], [42]-[441], [67], [68], [74], [77], [32], [38]-[43], [124], [130], [143]-[145], [151], [152], [160], [161], [168], [177], [188], [200], [218], [220], [226], [231], [236], [237], [241], [237], GENERAL(2) [145], [153], [188], [237], GENERAL(2) [145], [153], MOD- ETABULTY(3), [106], [164], [145], [153], MOD- ETABULTY(3), [106], [164], [145], [153], MOD- [161], [162], [162], [162], [163], [164], [163], [164], [162], [162], [162], [163], [164], [163]	GENERAL(1) [32], MOO(24) [3], [45], [66], [67], [73], [84], [93], [121], [123], [133], [143], [145], [152], [160], [161], [175]-[177], [188], [200], [231], MTS(33) [12]-[15], [20], [237], MTS(33) [12]-[15], [29], [35], [38]-[40], [42]-[44], [74], [77], [82], [123], [124], [130], [151], [153], [153], [164], [77],	AREA(3) [23], [218], [235], COST(6) [3], [123], [144], [168], [218], [233], DEPENDABILITY(1) [176], FUNC- TIONAL CORRECTNESS(1) [43], GENERAL(7) [3], [32], [39], [40], [121], [145], [177], MAPPING(5) [45], [144], [153], [175], [176], MEMORY(6) [45], [153], [175], [176], [220], [226), NOT PRESENTED(28) [13], [29], [38], [46], [66], [77], [82], [87], [88], [90], [109], [112], [124], [126], [133], [143], [125], [160], [161], [170], [196], [198], [200], [210], [211], [241], [245], PATH LOSS(1) [237], PERFORMANCE(14) [26], [35], [67]–[69], [83], [93], [124], [124], [124], [124], [126], [136], [177], [196], [127], [126], [121], [124], [126], [121], [126], [126], [121], [124], [126], [121], [124], [125], [120], [126], [127], [196], [127], PERFORMANCE(14) [26], [35], [67]–[69], [83], [124], [124], [124], [124], [124], [126], [126], [126], [126], [127], PERFORMANCE(14) [26], [26], [27], [26], [83], [126], [27], [27], [27], [27], [27], [27], [27], [28], [27], [28], [27], [28], [27], [28], [27], [27], [27], [27], [27], [27], [27], [27], [28], [27], [28], [27], [28], [2
Perfor	[113] [125] [125] [125] [198] [121] [12]-[14] [33] [38]-[40] [42]-[44] [66] [74] [74] [74] [133] [143] [144] [151] [66] [163] [143] [144] [151] [160] [161] [168]-[170] [200] [226] [231] [236] [241] [245] [245] [245] [245] [245]	GENERAL(1) [66], RT(33) [10], [12]-[15], [29], [38], [40], [42]- [44], [46], [74], [77], [87], [124], [130], [144], [45], [73], [10], [142], [151], [153], [168], [170], [174], [200], [226], [231], [236], [237], [241]	ITY(25) [3], [39], [40], [66], [67], [73], [83], [88], [93], [121]-[124], [130], [133], [151], [153], [160], [161], [175]-[177], [226], [236], [241], REPUTATION(4) [15], [82], [124], [241], SECURITY(1) [170]	[105] [117] [117] [117] [127] [126] [128] [128] [221] [226] [231] [236] [211] SOO(26) [1] [2] [10] [23] [26] [46] [68] [80] [87] (90) (109) [112] [114] [117] [126] [141] [144] [144] [174] [189] [210] [213] [233] [235] [239] [245]	ICAL (8) [11], [21], [1141, [117], [189], [222], [227], [239], PRECEDENCE(8) [11], [21, [26], [73], [117], [141, [189], [239], PROCESSING POWER(1) [226], QSO VAL- UES(10) [12], [14], [42]-[44], [74], [130], [151], [169], [236], REDUNDANCY LEVEL(1) [130], REQUIRE- MENTS(1) [15], STABILITY(1) [43], STRUC- TURAL(4) [10], [15], [84], [188], THROUGHPUT(2) [174], [213], TIMING(8) [12], [14], [80], [114], [123], [141], [123], [141], [133]
Cost(74)	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	AREA(2) [218], [220], AVAILABIL- ITY(20) [12], [14], [15], [39], [40], [42], [44], [74], [77], [81], [82], [100), [124], [130], [151], [157], [217], [226], [236], [241], ENERGY(6), [67], [68], [22], [84], [188], [237], GEN- ERAL(1) [145], PERFORMANCE(38) [12]-[15], [32], [38]-[40], [42]-[44], [67], [68], [12]-[15], [32], [38]-[40], [42]-[44], [67], [68], [124], [71], [152], [140], [124], [130], [143]- [145], [151], [152], [160], [161], [168], [177], [188], [200], [218], [220], [226], [231], [236], [237], [241], RELIABILITY(24) [18], [39], [40], [67], [102], [118], [123], [124], [128], [130], [137], [147]-[149], [151], [160], [161], REPUTATION(4) [15], [82], [124], [241], SAFETY(2) [178], [180], WEIGHT(5) [137], [147], [215]-[217]	$ \begin{array}{l} \textbf{GENERAL(2)} & [32], [49], \\ \textbf{MOO(31)} & [18], [67], [72], \\ [84], [100], [102], [118], [123], \\ [128], [137], [143], [145], \\ [147]-[149], [152], [157], \\ [160], [161], [177], [188], \\ [190], [220], [228], [229], [237], \\ \textbf{MTS(26)} & [12]-[15], \\ [38], [124], [144], [74], [177], [81], \\ [221], [1228], [228], [237], \\ \textbf{MTS(26)} & [12]-[15], \\ [38], [124], [130], [151], [168], \\ [178], [180], [207], [226], \\ [227], [231], [236], [241], \\ \textbf{SOO(16)} & [9], [41], [47], \\ [58], [62]-[64], [68], \\ [108], \\ [127], [142], [144], [148], \\ [181], [209], [221] \end{array} $	AREA(1) [218], AVAILABILITY(2) [181], [221], COST(7) [41], [72], [123], [144], [148], [168], [218], DE- LIVERY TIME(3) [63], [64], [190], DESIGN(1) [180], FUNCTIONAL CORRECTNESS(1) [43], GEN- [43], GEN- FRAL(8) [18], [32], [39], [40], [81], [145], [149], [147], [149], [147], [149], [149], [149], [149], [149], [149], [149], [149], [149], [149], [149], [149], [149], [152], [157], [160], [161], [178], [200, [215]- [128], [123], [152], [157], [160], [161], [178], [200, [215]- [217], [221], [241], PATH LOSS(1) [237], PERFOR- MANCE(10) [47], [49], [67], [68], [127], [142], [144], [168], [127], [142], [144], [168], [127], [142], [144], [169], [123], [151], [226], REDUNDANCE [14], [42]-[44], [74], [130], [151], [226], REDUNDANCE [14], [42]-[44], [74], [130], [151], [226], REDUNDANCE [14], [42]-[44], [74], [130], [151], [26], REDUNDANCE [154], [26], [27], [27]- [227]-[229], STABILITY(1) [43], STRUCTURAL(3), [164], [190], [20], [141], RELIABILITY(6) [9], [58], [63], [64], [190], [20], [141], RELIABILITY(6) [12], [141], [123], VOL- UME(2) [118], [147], WEIGHT(5) [102], [118], [147], [148], [200] [12], [141], [12], [147], [148], [200]
Reliability(71)	ES(40) [18], [51]- [57], [59]-[61], [67], [83], [93], [102], [118], [121]-[123], [128], [136], [137], [155], [144], [165], [155], [155], [146], [165], [174], [178], [186], [199], [204], [214]-[216], [234], [244], [26] [77], [30], [31], [73], [75], [76], [88], [96], [97], [147], [149], [182], [133], [133], [134], [192], [232], [233], [133], [133], [131], [133], [151], [160],	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AVAILABILITY(9) [39], [40], [61], [124], [130], [151], [226], [236], [241], COST(24) [18], [39], [40], [67], [102], [118], [123], [124], [18], [39], [40], [67], [102], [118], [123], [124], [128], [130], [137], [147]-[149], [151], [160], [161], [177], [178], [215], [216], [226], [236], [162], CENERAL(1) [153], [160], [121]-[124], [130], [133], [151], [153], [160], [161], [175]-[177], [226, [236], [241], EPETATION(2) [241], REPUTATION(2) [241], REGUTAHON(2) [147], [215], [216]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Availability(25)	ES(5) (61), [100], [157], [173], [217], GENERAL(3) [151, [29], [81], IS(17) [12], [14], [39], [40], [42] [44], [74], [77], [82], [106], [124], [130], [151], [170], [226], [236], [241]	DT(5) [81], [100], [157], [173], [217], RT(20) [12], [14], [15], [29], [39], [40], [42], [44], [61], [74], [77], [82], [106], [124], [130], [151], [170], [226], [236], [241]	COST(20) [12], [14], [15], [39], [40], [42], [44], [74], [77], [81], [82], [100], [124], [130], [151], [157], [217], [226, [236], [241], PER- FORMANCE(18) [12], [14], [15], [29], [39], [40], [42], [44], [77], [82], [124], [130], [151], [170], [226], [236], [241], RELIABIL- ITY(9) [39], [40], [61], [124], [130], [151], [226], [236], [241], REPUTATION(4) [15], [82], [124], [241], SECURITY(1) [170], WEIGHT(1) [217]	MOO(3) [100], [157], [217], MTS(20) [12], [14], [15], [29], [39], [40], [42], [44], [61], [74], [77], [81], [82], [124], [130], [151], [170], [226], [236], [241], SOO(2) [106], [173]	COST(1) [106], GENERAL(3) [39], [40], [81], MAP- PING(1) [173], MEMORY(2) [173], [226], NOT PRE- SENTED(9) [29], [77], [82], [100], [174], [177], [170], [217], [241], PROCESSING POWER(1) [226], QOS VAL- UES(8) [12], [14], [42], [44], [74], [130], [151], [236], RE- DUNDANCY LEVEL(1) [130], RELIABILITY(1) [61], REQUIREMENTS(1) [15], STRUCTURAL(1) [15], TIMING(2) [12], [14]
General(22)	ES(12) [5], [33], [36], [79], [86], [91], [95], [138], [139], [150], [153], [224], GENERAL(4) [21], [145], [162], [205], IS(6) [71], [113], [202], [219], [242], [243]	DT(10) [5], [33], [79], [95], [138], [139], [145], [150], [205], [224], RT(13) [21], [36], [71], [86], [91], [95], [113], [153], [162], [202], [219], [242], [243]	COST(1) [145], ENERGY(1) [153], PERFORMANCE(2) [145], [153], RELI- ABILITY(1) [153]	GENERAL(5) [21], [36], [91], [162], [224], MOO(7) [5], [33], [95], [138], [145], [150], MTS(10) [71], [79], [86], [113], [153], [202], [205], [219], [242], [243]	COST(1) [33], GENERAL(10) [71], [79], [86], [113], [138], [139], [145], [205], [224], [243], MAPPING(3) [5], [95], [153], MCMORY(2) [5], [153], NCI PRE-SENTED(7) [21], [36], [91], [162], [202], [219], [242], PER-FORMANCE(1) [33], STRUCTURAL(1) [150]
Energy(18)	ES(17) [17], [28], [67], [68], [72], [84], [116], [153], [155], [165], [188], [193], [194], [211], [212], [237], [240], GENERAL(1) [206]	DT(9) [67], [68], [72], [84], [116], [155], [165], [188], [240], GENERAL(1) [206], RT(8) [17], [28], [153], [193], [194], [211], [212], [237]	COST(6) [67], [68], [72], [84], [188], [237], CENERAL(1) [153], PERFOR- MANCE(6) [67], [68], [84], [153], [188], [237], RELIABILITY(4) [67], [153], [155], [165]	MOO(7) [67], [72], [84], [165], [188], [206], [237], MTS(2) [153], [155], SOO(9) [17], [28], [68], [116], [193], [194], [211], [212], [240]	COST(1) [72], GENERAL(1) [194], MAPPING(1) [153], MEMORY(1) [153], NOT PRESENTED(1) [206], PATH LOSS(1) [277], PERFORMANCE(8) [17], [28], [67], [68], [116], [193], [211], [212], PHYSICAL(3) [155], [237], [240], REDUNDANCY LEVEL(1) [165], STRUCTURAL(2) [84], [188], TIMING(1) [240] [240]
Weight (5)	ES(4) [137], [215]–[217], GENERAL(1) [147]	DT(5) [137], [147], [215]- [217]	AVAILABILITY(1) [217], COST(5) [137], [147], [215]-[217], RELIABILITY(4) [137], [147], [215]-[217],	MOO(5) [137], [147], [215]- [217]	NOT PRESENTED(3) [215]–[217], REDUNDANCY LEVEL(1) [147], VOLUME(1) [147], WEIGHT(1) [147]
Safety (4)	ES(4) [178], [180], [184], [223]	DT(4) [178], [180], [184], [223]	COST(2) [178], [180], RELIABILITY(1) [178]	MOO(2) [184], [223], MTS(2) [178], [180]	DESIGN(1) [180], NOT PRESENTED(3) [178], [184], [223]

the considered quality attributes can be found and extracted from the column "other quality attributes" in Table 2. Among the quality attributes studied together, the combinations reliability-performance, reliability-cost, availability-cost, and cost-energy-consumption have received the greatest attention. **Domain, dimensionality, and phase.** It can be observed from Table 1 that the majority of architecture level optimization approaches have been applied in the Embedded Systems domain, comprising 53 percent of the overall set of papers collected for this literature review, while a comparatively low number of approaches

Degrees of Freedom			Architecture Representation			
Allocation	59	31%	Architecture model	43	23%	
Hardware replication	40	21%	- UML	5	3%	
Hardware selection	38	20%	- ADL	7	4%	
Software replication	35	18%	- Custom arch. model	9	5%	
Scheduling	33	17%	- Workflow language	17	9%	
Component selection	30	16%	- General	5	3%	
Service selection	28	15%	Quality eval. model	65	34%	
Software selection	24	13%	Optimization model	68	36%	
Other problem specific	18	9%				
Service composition	12	6%				
Software parameters	10	5%				
Clustering	5	3%	Optimization Strategy			
General	5	3%	Approximative	149	78%	
Hardware parameters	4	2%	Exact	38	20%	
Architectural pattern	3	2%	Not presented	9	5%	
Not presented	3	2%	General	4	2%	
Partitioning	2	1%				
Maintenance schedules	2	1%				
Quality Evaluat	ion		Constraint Han	dling		
SAF	80	42%	Prohibit	84	44%	
MB	60	32%	Not presented	61	32%	
NMF	40	21%	Penalty	36	19%	
Not presented	6	3%	Repair 9 5%			
General	6	3%	General	1	< 1%	

TABLE 3	
Solution Category—Quantitative Summary of the Res	ults

(22 percent) have been applied to enterprise Information Systems. The remaining approaches (26 percent) are either generic (i.e., have not clearly specified an application domain) or, from the evidence provided in the papers, apply to systems from both domains.

Concerning the dimensionality of the optimization problem, the approaches are almost evenly distributed between single-objective (SOO 39 percent) and multi-objective optimization problems (MTS 27 percent and MOO 31 percent).

Concerning the phase, the number of research contributions for design-time architecture optimization (67 percent) is significantly larger than that of runtime contributions (32 percent). With respect to quality attributes, reliability and safety are widely addressed at design time.

Constraints. One major influence on the architecture of software systems used in the industry are constraints that need to be satisfied in order for the system to be accepted. However, a high number of papers (26 percent of overall collected papers) solve the architecture optimization problem without considering any constraints. It is important to note that constraint satisfaction is a crucial aspect of optimization, especially in the design of embedded system. However, constraints add more complexity to the problem. If constraints are not considered, designers might have to rework the architecture in order to satisfy the constraints after the optimization process, which affects the quality of the system.

In the papers that consider constraints, the main focus was on cost, comprising 17 percent of the papers. This is not a surprising result since cost is often an important concern of the system architect. Other popular constraints are performance (14 percent), weight (11 percent), and physical constraints (7 percent). Little importance is given to some critical constraints such as memory (5 percent) and reliability (only 4 percent of the papers).

4.2 Solution

A summary of the solution-specific aspects that are extracted from the set of papers included in the literature review is given in Table 3. In the following, we summarize the main results for each solution subcategory, observable in Tables 4 and 5.

Architecture representation. We observe that most approaches directly use either a quality evaluation model (34 percent) or a optimization model (39 percent) as an input. Only 23 percent of the approaches take an architecture model as an input. Among them, most models are workflow languages for service-based systems (9 percent). UML, ADLs, and custom architecture models are used similarly often with 3, 4, and 5 percent, respectively. Some of the architecture model-based optimization approaches are general (3 percent), i.e., designed to be extendable to other than the mentioned modeling language.

Quality evaluation. Quality evaluation is an important part of the architecture optimization process since it provides a quantitative metric for the quality of the system based on the architecture specification, which in turn is used as an indicator of the fitness of the solutions produced by the optimization algorithm. The majority of the studies use a Simple Aggregation Function (42 percent), a Model-Based technique (32 percent), or a Nonlinear Mathematical Function (21 percent). In comparison, SAF and NMF are easier to model and to integrate into the optimization problem. However, they often are not as accurate and as realistic as Model-Based techniques since they omit details and dependencies.

For the model-based approaches, different quality evaluation techniques have been used, implied by the models used for specific quality attributes. As an example, reliability block diagrams [57], [58], [63], [121], [136], [137], [149], [208], [217], discrete-time Markov chains [61], [96], [97], [165], [232], and fault trees [67], [184], [199] are used for reliability; queuing networks [35], [80], [143], [144], [168], [169], [171], [245], execution graphs [85], [107], [115], and discrete-time Markov chains [210] are used to evaluate performance; fault trees [8], [180], [184], [185], [201], [223] and binary decision diagrams [8], [185] are used for safety evaluation; continuous-time Markov chains [193], Markov decision processes [212], Petri-nets [194], and Markov reward models [165] are used for evaluation of a system's energy consumption. Quantitative metrics of the quality attributes are obtained by either mathematically analyzing or simulating the models. For an overview of the different evaluation models and techniques, several surveys can be recommended, e.g., for reliability [99], performance [22], [134], energy consumption [27], and safety [104].

Degrees of freedom. Allocation, hardware replication, and hardware selection are the most intensively studied

TABLE 4 Solution Category—Architecture Representation, Quality-Evaluation, and Degree-of-Freedom Specific Categorization of the Reviewed Approaches

QA	Architecture Representation	Quality Evaluation	Degrees of Freedom
Performance(84)	ADL(4) [145], [160], [161], [170], ANY(2) [133], [153], CUSTOMAM(5) [90], [152], [196]-[198], OPTIMPL(3) [35], [109], [169], OPTSTRUC(11) [3], [45], [46], [87], [141], [143], [177], [189], [222], [226], [237], QUALMM(42) [11, [2], [10], [23], [32], [39], [43], [66]-[68], [73], [77], [80], [83], [84], [88], [93], [112], [114], [117], [121]-[124], [144], [151], [168], [174]-[176], [179], [188], [210], [218], [220], [231], [233], [235], [236], [239], [245], QUALSTD(3) [26], [69], [213], UML(1) [241], WFL(13) [12]- [15], [29], [38], [40], [42], [44], [74], [82], [130], [200]	GENERAL(1) [3], MB(27) [10], [23], [26], [35], [45], [66]-[69], [80], [90], [117], [121], [123], [133], [143], [145], [152], [160], [161], [168], [169], [176], [177], [210], [245], NMF(11) [46], [73], [83], [87], [88], [93], [122], [175], [189], [220], [239], NOT PRE- SENTED(1) [141], SAF(44) [1], [2], [12]-[15], [29], [32], [38]-[40], [42]-[44], [74], [77], [82], [84], [109], [112], [114], [124], [126], [130], [151], [153], [170], [174], [179], [188], [196], [198], [200], [213], [218], [222], [226], [231], [233], [235]-[237], [241]	ALLOCATION(37) [2], [10], [23], [32], [45], [46], [80], [83], [84], [88], [112], [114], [117], [121]- [123], [126], [133], [144], [145], [152], [153], [160], [161], [175]-[177], [179], [188], [189], [210], [213], [220], [222], [233], [239], [245], ARCHITECTURAL PATTERN(3) [196]-[198], CLUSTERING(4) (67]-(69], [122], COMPONENT SELECTION(6) [45], [90], [109], [160], [161], [177], HARD- WARE PARAMETERS(3) [143], [160], [161], HARDWARE REPLICATION(3) [66], [144], [177], HARDWARE SELECTION(6) [66], [133], [145], [160], [161], [177], [177], [220], OTHER PROBLEM SPECIFIC(12) [15], [29], [38], [39], [42], [44], [74], [130], [151], [170], [235], [237], PARTITIONING(2) [35], [218], SCHEDULING(25) [1], [2], [26], [32], [45], [46], [67]-[69], [73], [33], [87], [93], [114], [117], [123], [141], [174], [179], [189], [213], [220], [221], [23], [245], SERVICE COMPOSITION(8) [40], [77], [82], [124], [226], [231], [236], [241], SERVICE SELECTION(20) [12]-[15], [38], [39], [42]-[441, [74], [77], [82], [124], [130], [151], [168]-[170], [200], [241], SOFTWARE PARAMETERS(2) [26], [143], SOFTWARE REPLICATION(3) [3], [93], [177], SOFTWARE SELECTION(1) [133]
Cost(74)	ADL(3) [145], [160], [161], CUSTOMAM(3) [49], [102], [152], OPTIMPL(2) [178], [180], OPTSTRUC(28) [9], [18], [58], [62], [64], [81], [180], [191], [143], [147], [144], [177], [177], [190], [207], [209], [215], [217], [221], [226], [227], [209], [215], [217], [221], [226], [227], [209], [215], [217], [221], [226], [227], [207], [207], [207], [231], [236], [237], [24], [143], [144], [147], [144], [144], [147], [144], [147], [147], [147], [144], [147], [144], [147], [144], [147], [142], [144], [147], [142], [144], [141], [143], [147], [142], [144], [141], [143], [142], <	GENERAL(1) [147], MB(19) [47], [67], [68], [72], [100], [102], [123], [127], [143]-[145], [149], [152], [157], [160], [161], [168], [177], [180], NMF(10) [9], [18], [58], [81], [118], [128], [137], [148], [217], [220], NOT PRESENTED(1) [178], SAF(44) [12]-[15], [32], [38]-[44], [49], [62]- [64], [74], [77], [82], [84], [108], [124], [130], [142], [147], [151], [181], [188], [190], [200], [207], [209], [215], [216], [218], [221], [226]-[229], [231], [236], [237], [241]	ALOCATION(17) [32], [47], [72], [84], [108], [123], [127], [142], [144], [145], [152], [160], [161], [177], [178], [188], [220], CLUSTERING(2) [67], [68], COMPONENT SELECTION(19) [9], [18], [62]-[64], [142], [147], [149], [157], [160], [161], [177], [178], [190], [207], [299], [227]-[229], HARD- WARE PARAMETERS(3) [143], [160], [161], HARDWARE REPLICATION(18) [58], [81], [100], [102], [118], [137], [144], [147]-[149], [157], [177], [181], [209], [215]-[217], [221], HARDWARE SELECTION(18) [58], [21], [81], [100], [118], [137], [145], [148], [160], [161], [1777], [178], [181], [215]- [217], [220], [221], MAINTENANCE SCHEDULES(2) [100], [180], NOT PRESENTED(1) [128], OTHER PROBLEM SPECIFIC(11) [151, [38], [39], [42], [44], [49], [64], [74], [130], [151], [237], PARTITIONING(1) [218], SCHEDULING(9) [32], [47], [66], [72], [123], [127], [142], [220], SERVICE COMPOSITION(8) [40], [77], [82], [124], [226], [231], [236], [241], SERVICE SELECTION(19) [12]-[15], [38], [39], [41]-[44], [77], [82], [124], [130], [151], [168], [200], [241], SOFTWARE PARAMETERS(2) [143], [180], SOFTWARE REPLICATION(12) [58], [81], [102], [118], [137], [148], [177], [209], [215]-[217], [221], SOFTWARE SELECTION(10) [58], [81], [118], [137], [148], [137], [124], [215]-[217], [221], SOFTWARE SELECTION(10) [58], [81],
Reliability(71)	ADL(4) [61], [160], [161], [165], ANY(2) [133], [153], CUSTOMAM(2) [102], [164], OPTIMPL(1) [178], OPTSTRUC(36) [3], [7], [18], [30], [31], [51]–[57], [59], [60], [75], [76], [96], [97], [118], [128], [136], [137], [146]–[148], [177], [182], [138], [187], [204], [213], [214], [2138], [214], QUALMM(21) [39], [66], [67], [73], [83], [88], [93], [121]–[124], [131], [149], [151], [155], [175], [176], [186], [192], [214], [236], QUAL-STD(2) [199], [232], UML(1) [241], WFL(2) [40], [130]	GENERAL(4) [3], [53], [147], [182], MB(23) [7], [61], [66], [67], [96], [97], [102], [121], [123], [133], [149], [160], [161], [164], [165], [176], [177], [187], [199], [214], [232], [238], [244], NMF(27) [18], [31], [51], [244], NMF(27) [18], [31], [51], [52], [54]-[57], [59], [60], [73], [75], [76], [83], [88], [93], [118], [122], [128], [136], [137], [146], [148], [175], [186], [204], [234], NOT PRE- SENTED(1) [178], SAF(17) [30], [39], [40], [124], [130], [131], [147], [151], [153], [155], [183], [192], [215], [216], [226], [236], [241]	ALLOCATION(20) [61], [83], [88], [121]–[123], [133], [153], [155], [160], [161], [164], [175]–[178], [186], [187], [192], [214], CLUSTERING(3) [67], [122], [214], COMPONENT SELECTION(12) [7], [18], [96], [97], [147], [149], [160], [161], [177], [178], [182], [232], HARDWARE PARAMETERS(2) [160], [161], HARDWARE REPLICATION(29) [31], [51]–[57], [59], [60], [66], [75], [76], [102], [118], [136], [137], [146]–[149], [165], [177], [199], [204], [215], [216], [234], [234], HARDWARE SELECTION(26) [51]–[55], [57], [59], [60], [66], [118], [133], [136], [137], [146], [148], [160], [161], [176]–[178], [188], [199], [204], [215], [216], [234], [234], HARDWARE SELECTION(26) [51]–[55], [57], [59], [60], [66], [118], [133], [136], [137], [146], [148], [160], [161], [176]–[178], [188], [199], [204], [215], [216], [234], [236], [231], [236], [231
Availability(25)	ADL(2) [61], [170], OPTSTRUC(4) [81], [157], [217], [226], QUALMM(6) [39], [77], [124], [151], [173], [236], QUALSTD(1) [100], UML(1) [241], WFL(11) [12], [14], [15], [29], [40], [42], [44], [74], [82], [106], [130]	MB(4) [61], [100], [157], [173], NMF(2) [81], [217], SAF(19) [12], [14], [15], [29], [39], [40], [42], [44], [74], [77], [82], [106], [124], [130], [151], [170], [226], [236], [241]	ALLOCATION(2) [61], [173], COMPONENT SELECTION(1) [157], HARDWARE REPLICATION(4) [81], [100], [157], [217], HARDWARE SELECTION(3) [81], [100], [217], MAINTENANCE SCHEDULES(1) [100], OTHER PROBLEM SPECIFIC(9) [15], [29], [39], [42], [44], [74], [130], [151], [170], SERVICE COMPOSITION(8) [40], [77], [82], [124], [226], [236], [241], SERVICE SELECTION(14) [12], [14], [15], [39], [42], [44], [74], [77], [82], [106], [124], [236], [241], SERVICE SELECTION(14) [12], [14], [15], [39], [42], [44], [74], [77], [82], [124], [30], [14], [74], [77], [82], [124], [130], [151], [170], [241], SOFTWARE SOFTWARE SE
General(22)	ADL(2) [5], [145], ANY(4) [79], [153], [205], [224], OPTSTRUC(6) [86], [113], [138], [139], [219], [242], QUALMM(5) [21], [33], [95], [150], [202], UML(3) [36], [91], [162], WFL(3) [71], [162], [243]	GENERAL(2) [138], [139], MB(5) [5], [33], [95], [145], [224], NMF(1) [79], NOT PRESENTED(4) [36], [91], [242], [243], SAF(10) [21], [71], [86], [113], [150], [153], [162], [202], [205], [219] [36] [36], [153], [162], [202], [205],	ALLOCATION(7) [5], [21], [33], [95], [145], [150], [153], COMPONENT SELECTION(1) [36], GENERAL(5) [79], [138], [139], [205], [224], HARDWARE REPLICATION(1) [95], HARD- WARE SELECTION(3) [33], [145], [150], NOT PRESENTED(1) [91], OTHER PROBLEM SPECIFIC(2) [71], [113], SCHEDULING(1) [33], SERVICE COMPOSITION(2) [202], [219], SERVICE SELECTION(6) [113], [162], [202], [219], [242], [243], SOFTWARE PARAM- ETERS(1) [86]
Energy(18)	ADL(1) [165], ANY(1) [153], OPT- STRUC(2) [237], [240], QUALMM(11) [17], [28], [67], [68], [72], [84], [116], [155], [188], [206], [211], QUALSTD(3) [193], [194], [212]	MB(9) [28], [67], [68], [72], [165], [193], [194], [206], [212], NMF(3) [17], [116], [240], SAF(6) [84], [153], [155], [188], [211], [237]	ALLOCATION(7) [72], [84], [153], [155], [188], [206], [240], CLUSTERING(2) [67], [68], COMPONENT SELECTION(1) [206], HARDWARE PARAMETERS(1) [116], HARD- WARE REPLICATION(1) [165], HARDWARE SELECTION(2) [72], [116], OTHER PROBLEM SPECIFIC(1) [237], SCHEDULING(5) [67], [68], [72], [206], [211], SOFTWARE PARAMETERS(6) [17], [28], [194], [211], [212], SOFTWARE REPLICATION(1) [165]
Weight (5)	OPTSTRUC(5) [137], [147], [215]–[217]	GENERAL(1) [147], NMF(2) [137], [217], SAF(3) [147], [215], [216]	COMPONENT SELECTION(1) [147], HARDWARE REPLICATION(5) [137], [147], [215]- [217], HARDWARE SELECTION(4) [137], [215]-[217], SOFTWARE REPLICATION(4) [137], [215]-[217], SOFTWARE SELECTION(4) [137], [215]-[217]
Safety (4)	CUSTOMAM(1) [184], OPTIMPL(2) [178], [180], OPTSTRUC(1) [223]	MB(3) [180], [184], [223], NOT PRESENTED(1) [178], SAF(1) [223]	ALLOCATION(1) [178], COMPONENT SELECTION(2) [178], [184], HARDWARE REPLICATION(1) [223], HARDWARE SELECTION(1) [178], MAINTENANCE SCHEDULES(1) [180], OTHER PROBLEM SPECIFIC(1) [184], SOFTWARE PARAM- ETERS(1) [180], SOFTWARE REPLICATION(1) [223]

degrees of freedom with 31, 21, and 20 percent of the overall papers, respectively. Other popular degrees of freedom are software replication (18 percent), scheduling (17 percent), component selection (16 percent), and service selection (15 percent). A small number of papers (9 percent) present a problem-specific degree of freedom, such as changing the transmission power in communicating Embedded Systems or decisions on whether to implement a certain functionality in software or hardware. **Optimization strategy.** When the search time and resources used to perform the optimization process are limited and near-optimal solutions are good enough for the given problem, then approximate algorithms are the right optimization tool. However, if the goal is to find the optimal solutions and if the resources and time are unlimited, then one should choose exact optimization algorithms. This is an important tradeoff that should be made when choosing an optimization algorithm. Assuming problems of nontrivial

TABLE 5 Solution Category—Optimization Specific Categorization of the Reviewed Approaches

QA	Optimization Strategy Type	Constraint Handling
Performance(84)	EXACT PROBLEM-SPECIFIC(3) [1], [112], [126], EXACT STANDARD(14) [12]-[15], [42]-[44], [69], [117], [169], [174], [218], [236], [241], GENERAL(1) [153], METAHEURIS-TIC(45) [2], [3], [23], [29], [32], [35], [38]-[40], [45], [46], [66], [73], [77], [83], [84], [88], [114], [122]-[124], [130], [133], [141], [143], [143], [146], [161], [170], [175]-[177], [188], [189], [196]-[198], [200], [220], [222], [226], [231], [233], [235], [237], NOT PRESENTED(3) [74], [90], [152], PROBLEM-SPECIFIC HEURISTIC(23) [1], [10], [26], [29], [67], [68], [80], [82], [87], [93], [109], [112], [121], [144], [151], [168], [179], [210], [213], [236], [239], [241], [245], WITH GUARANTEE(2) [112], [218] [218] [218], [218] [218], [218]	GENERAL(1) [175], NOT PRESENTED(30) [13], [29], [38], [46], [66], [74], [77], [82], [87], [88], [90], [109], [112], [124], [126], [133], [143], [151], [152], [160], [161], [170], [196]–[198], [200], [210], [231], [241], [245], PENALTY(11) [32], [35], [39], [40], [80], [83], [189], [222], [226], [235], [237], PROHIBIT(36) [1]–[3], [10], [12], [14], [15], [23], [42]–[45], [69], [73], [93], [114], [117], [122], [123], [141], [144], [145], [153], [168], [169], [174], [176], [177], [179], [213], [218], [220], [233], [235], [236], [239], REPAIR(8) [26], [32], [67], [68], [84], [121], [130], [188]
Cost(74)	EXACT PROBLEM-SPECIFIC(2) [9], [229], EXACT STANDARD(13) [12]-[15], [42]-[44], [62]-[64], [218], [236], [241], GENERAL(1) [180], METAHEURISTIC(45) [18], [32], [38]-[41], [58], [72], [77], [81], [84], [100], [102], [108], [118], [123], [124], [128], [130], [137], [143], [145], [147]-[149], [157], [160], [161], [177], [178], [181], [188], [200], [209], [215]-[217], [220], [221], [226]-[229], [231], [237], NOT PRESENTED(3) [74], [152], [190], PROBLEM-SPECIFIC HEURISTIC(13) [47], [49], [67], [66], [82], [127], [142], [144], [151], [168], [207], [236], [241], WITH GUARANTEE(1) [218]	NOT PRESENTED(25) [9], [13], [38], [41], [74], [77], [82], [100], [124], [128], [137], [143], [151], [152], [157], [160], [161], [178], [200], [207], [215]–[217], [231], [241], PENALTY(12) [32], [39], [40], [72], [81], [108], [118], [148], [181], [209], [226], [237], PROHIBIT(30) [12], [14], [15], [18], [42]–[44], [47], [49], [58], [62]– [64], [102], [123], [127], [144], [145], [147], [149], [168], [177], [180], [190], [218], [220], [221], [227], [229], [236], REPAIR(7) [32], [67], [68], [84], [130], [142], [148]
Reliability(71)	EXACT PROBLEM-SPECIFIC(2) [155], [186], EXACT STANDARD(7) [7], [51], [52], [54], [56], [236], [241], GENERAL(2) [53], [153], METAHEURISTIC(49) [3], [18], [30], [39], [40], [57], [59], [60], [66], [73], [75], [76], [83], [88], [96], [97], [102], [118], [122]–[124], [128], [130], [133], [136], [137], [146]–[149], [160], [161], [164], [165], [175]–[178], [182], [183], [199], [204], [130], [133], [136], [137], [146]–[149], [160], [161], [164], [165], [175]–[178], [182], [183], [199], [204], [215], [216], [226], [232], [234], [238], [244], NOT PRESENTED(2) [61], [131], PROBLEM- SPECIFIC HEURISTIC(11) [67], [93], [121], [151], [155], [187], [192], [214], [236], [241], WITH GUARANTEE(1) [31]	GENERAL(1) [175], NOT PRESENTED(18) [53], [61], [66], [88], [124], [128], [131], [133], [137], [151], [160], [161], [178], [186], [187], [215], [216], [241], PENALTY(19) [30], [39], [40], [56], [60], [75], [76], [83], [96], [97], [118], [136], [146], [148], [199], [204], [226], [232], [234], PROHIBIT(30) [3], [7], [18], [31], [51], [52], [54], [55], [57], [59], [73], [93], [102], [122], [123], [147], [149], [153], [155], [164], [165], [176], [177], [182], [183], [192], [214], [236], [238], [244], REPAIR(3) [67], [121], [130] [30] [30] [30] [30]
Availabi lity(25)	EXACT STANDARD(7) [12], [14], [15], [42], [44], [236], [241], METAHEURISTIC(12) [29], [39], [40], [77], [81], [100], [124], [130], [157], [170], [217], [226], NOT PRESENTED(2) [61], [74], PROBLEM-SPECIFIC HEURISTIC(7) [29], [82], [106], [151], [173], [236], [241]	NOT PRESENTED(12) [29], [61], [74], [77], [82], [100], [124], [151], [157], [170], [217], [241], PENALTY(4) [39], [40], [81], [226], PROHIBIT(8) [12], [14], [15], [42], [44], [106], [173], [236], REPAIR(1) [130]
General (22)	EXACT PROBLEM-SPECIFIC(2) [79], [150], EXACT STANDARD(1) [162], GEN- ERAL(3) [153], [205], [224], METAHEURISTIC(10) [5], [33], [71], [95], [138], [139], [145], [202], [219], [242], NOT PRESENTED(3) [21], [36], [91], PROBLEM-SPECIFIC HEURISTIC(4) [86], [113], [150], [243], WITH GUARANTEE(1) [79]	NOT PRESENTED(10) [21], [36], [91], [150], [162], [202], [219], [224], [242], [243], PENALTY(5) [33], [71], [113], [138], [139], PROHIBIT(7) [5], [79], [86], [95], [145], [153], [205]
Energy (18)	EXACT PROBLEM-SPECIFIC(2) [17], [155], EXACT STANDARD(4) [193], [194], [211], [212], GENERAL(1) [153], METAHEURISTIC(6) [72], [84], [165], [188], [237], [240], NOT PRESENTED(1) [206], PROBLEM-SPECIFIC HEURISTIC(7) [17], [28], [67], [68], [116], [155], [193] [103] [104],	NOT PRESENTED(1) [206], PENALTY(2) [72], [237], PROHIBIT(11) [17], [28], [116], [153], [155], [165], [193], [194], [211], [212], [240], REPAIR(4) [67], [68], [84], [188]
Weig -ht(5)	METAHEURISTIC(5) [137], [147], [215]–[217]	NOT PRESENTED(4) [137], [215]-[217], PROHIBIT(1) [147]
Safe -ty(2)	GENERAL(1) [180], METAHEURISTIC(3) [178], [184], [223]	NOT PRESENTED(3) [178], [184], [223], PROHIBIT(1) [180]

size, the complexity of the problem is the most important factor that needs to be taken into account.

The majority of the approaches use approximate methods (mostly metaheuristics) as an optimization technique, comprising 78 percent of the overall approaches. The main reason for using approximate methods is the difficulty of the search-space, in which often an exhaustive search is not feasible in polynomial time. Moreover, the objective functions are usually computationally expensive and nonlinear. Listing all possible solutions in order to find the best candidates is a nondeterministic polynomial-time hard (NPhard) problem. Evolutionary Algorithms [18], [33], [37], [38], [41], [57], [58], [59], [60], [71], [73], [76], [88], [92], [102], [108], [118], [128], [148], [149], [157], [158], [159], [161], [175], [196], [216], [221], [223], [227], [228], [229], [231], [237] are some of the most commonly used approximate methods in architecture optimization. EAs are seen as robust algorithms that exhibit approximately similar performance over a wide range of problems [98]; hence their popularity in the software engineering domain.

A considerable number of papers (20 percent of overall papers) use exact methods, most of which are standard optimization techniques such as Linear Programming [174], [193], [208], [211], [212], while some propose problem-specific exact methods based on knowledge or assumptions on the problem [8], [29], [55], [116], [171], [245]. Due to the ever-increasing complexity of software systems and the growing number of design options, exact approaches

usually are not suitable as optimization techniques; hence the lower number of papers employ these techniques.

Finally, general methods do not prescribe the optimization strategy but let the user select among several options. Percentages of each main optimization class are shown in Table 3, while Table 7 also shows the percentages for subcategories in relation to quality attributes.

Constraint handling. Constraint handling techniques generally are problem specific and need a separate effort for their design. This may be one of the reasons why a large percentage of papers (32 percent) do not introduce a constraint handling method. In fact, many papers that mentioned constraints do not describe the constraint handling technique used.

Among the used constraint handling approaches, constraint prohibition is the most studied one (44 percent in total). Penalty function is another widely used method, with 19 percent of the papers, whereas repair mechanisms are less preferred, used by only 5 percent of the papers.

4.3 Validation

A summary of the validation-specific aspects that are extracted from the set of papers included in the literature review is given in Table 6. In the following, we summarize the main results for each validation subcategory.

An analysis of the survey results for the validation category presented in Table 6 reveals that most of the papers contain at least one form of validation for the overall approach. Only 10 percent provide no indication about the

		TABLE 6			
Validation	Category-Q	uantitative	Summary	of the	Results

Validation of the overall approach	Number of Papers	Percentages of occurrences
Experiments	57	30%
Simple example	51	27%
Academic case study	31	16%
Industrial case study	30	16%
Not presented	19	10%
Benchmark problems	8	4%
Literature comparison	2	1%
Mathematical proof	1	<1%
Validation of the optimization strategy	Number of Papers	Percentages of occurrences
Not presented	127	68%
Comparison with baseline heuristic algorithm	35	19%
Internal comparisson	17	9%
Comparison with exact algorithm	7	4%
Comparison with random search	2	1%
Mathematical proof	1	<1%
Comparison with baseline algorithm	1	<1%

quality of the produced architecture specifications. However, a significant number of approaches use a simple form of validation such as simple examples (27 percent) or academic case studies (16 percent). Only a few approaches are compared with known results from benchmark problems (4 percent) or use industrial case studies (16 percent). However, none of the investigated approaches that use industrial case studies provide detailed evidence that the quality of the implemented systems has been improved by optimizing the architecture specification.

Analyzing the results regarding the validation of the optimization strategy reveals that only a minority of the approaches (32 percent) provide detailed results on the appropriateness of the optimization algorithm. A closer look into the optimization validation reveals that especially approaches that employ or present an enhanced heuristic optimization algorithm use at least one base line heuristic algorithm (e.g., an evolutionary algorithm) for comparison.

4.4 Cross Analysis

In this section, we are extending the analysis of the survey data across the different taxonomy categories. Based on the observations from the reviewing process and the taxonomy construction, the following cross-analysis questions (CAQs) are worth a deeper analysis:

- **CAQ1.** What optimization strategies have been used with different quality attributes?
- **CAQ2.** Is there a relationship between the quality attributes and the quality evaluation method?
- CAQ3. How do quality attributes relate to degrees of freedom?
- **CAQ4.** What is the relationship between the quality attributes and the domain?
- CAQ5. Is there a preference of specific degrees of freedom in the different domains?

- **CAQ6.** Are different validation approaches used in the different domains?
- **CAQ7.** Is there a relationship between the domain and the optimization phase?
- **CAQ8.** Is there a relationship between the dimensionality and the optimization phase?
- **CAQ9.** Are different quality evaluation methods used in runtime and design-time approaches?
- CAQ10. Is there a relationship between the constraints used in the problem formulation and the constraint handling strategies used in the optimization procedure?
- **CAQ11.** What is the relationship between the optimization strategy used and the optimization validation?
- **CAQ12.** What is the relationship between the degrees of freedom and the optimization strategy?
- **CAQ13.** What types of validation are conducted for the different types of quality evaluation methods?

CAQ1 Optimization strategy and quality attribute. Due to the high complexity of optimization problems that arise in software engineering, metaheuristics are the most common optimization strategies used by the state-of-theart approaches (Table 7). Most of the papers that use metaheuristics optimize reliability (49 papers, 69 percent of papers that address reliability), cost (45 papers, 61 percent), availability (12 papers, 55 percent), and performance (45 papers, 54 percent). Problem-specific heuristics are also very common when optimizing quality attributes such as performance (23 papers, 27 percent), cost (13 papers, 18 percent), and reliability (11 papers, 15 percent).

Exact algorithms, which are divided into problemspecific exact algorithms and standard exact algorithms, have also been tackled by the current research. Standard exact algorithms are in general more frequently used than problem-specific exact algorithms. Some of the quality attributes, such as safety, maintainability, and security, have not been optimized with exact algorithms.

CAQ2 Quality attribute and quality evaluation method. The quality attributes also exhibit a relation with the evaluation strategies (cf., Table 7). For instance, modelbased evaluations are widely used for quality attributes such as safety (75 percent of papers that address safety) and energy consumption (50 percent). However, model-based techniques have a lower proportion of the papers that address reliability (32 percent), performance (32 percent), and cost (26 percent). Reliability is usually evaluated with nonlinear mathematical functions (38 percent), whereas performance and cost are mostly evaluated with simple aggregation functions (52 percent and 59 percent, respectively).

CAQ3 Quality attribute and degree of freedom. Table 7 depicts certain patterns with respect to the architecture degrees of freedom that are used in the optimization approaches versus the quality attributes. For instance, the reliability optimization approaches are mostly focused on hardware replication (41 percent), software replication (41 percent), hardware selection (37 percent), allocation (28 percent), and software selection (27 percent). On the other hand, the most common degrees of freedom for

		Optimization Strategy							Quality Evaluation				
Quality Attribute	Total	Exact		А	pproximativ	ve							
		Standard	Problem specific	Meta- heuristic	Problem specific heuristic	with guaran- tee	General	Not pre- sented	Simple aggr- egation func- tions	Model based	Non- linear mathe- matical func- tions	General	Not pre- sented
Performance	84	14 (17%)	3 (4%)	45 (54%)	23 (27%)	2 (2%)	1 (1%)	3 (4%)	44 (52%)	27 (32%)	11 (13%)	1 (1%)	1 (1%)
Cost	74	13 (18%)	2 (3%)	45 (61%)	13 (18%)	1 (1%)	1 (1%)	3 (4%)	44 (59%)	19 (26%)	10 (14%)	1 (1%)	1 (1%)
Reliability	71	7 (10%)	2 (3%)	49 (69%)	11 (15%)	1 (1%)	2 (3%)	2 (3%)	17 (24%)	23 (32%)	27 (38%)	4 (6%)	1 (1%)
General	25	1 (4%)	2 (8%)	10 (40%)	4 (16%)	1 (4%)	3 (12%)	3 (12%)	10 (40%)	5 (20%)	1 (4%)	2 (8%)	4 (16%)
Availability	22	7 (32%)	-	12 (55%)	7 (32%)	-	-	2 (9%)	19 (86%)	4 (18%)	2 (9%)	-	-
Energy	18	4 (22%)	2 (11%)	6 (33%)	7 (39%)	-	1 (6%)	1 (6%)	6 (33%)	9 (50%)	3 (17%)	-	-
Weight	5	-	-	5 (100%)	-	-	-	-	3 (60%)	-	2 (40%)	1 (20%)	-
Safety	4	-	-	3 (75%)	-	-	1 (25%)	-	1 (25%)	3 (75%)	-	-	1 (25%)
Reputation	4	2 (50%)	-	1 (25%)	2 (50%)	-	-	-	4 (100%)	-	-	-	-
Modifiability	3	-	-	3 (100%)	-	-	-	-	3 (100%)	-	-	-	-
Area	3	1 (33%)	-	2 (67%)	-	1 (33%)	-	-	1 (33%)	1 (33%)	1 (33%)	-	-
Security	1	-	-	1 (100%)	-	-	-	-	1 (100%)	-	-	-	-
Our liter Attailants	Tatal]	Fransformati	on Operator	ſS				
Quanty Attribute	Iotai	Allocation	Hardware replica- tion	Hardware selec- tion	Software replica- tion	Schedu- ling	Compo- nent selec- tion	Service selec- tion	Software selec- tion	Other problem specific	Software parame- ters	Service compo- sition	Mainten- ance sched- ules
Performance	84	37 (44%)	3 (4%)	8 (10%)	3 (4%)	25 (30%)	6 (7%)	20 (24%)	1 (1%)	12 (14%)	2 (2%)	8 (10%)	-
Cost	74	17 (23%)	18 (24%)	18 (24%)	12 (16%)	9 (12%)	19 (26%)	19 (26%)	10 (14%)	11 (15%)	2 (3%)	8 (11%)	2 (3%)
Reliability	71	20 (28%)	29 (41%)	26 (37%)	29 (41%)	6 (8%)	12 (17%)	5 (7%)	19 (27%)	3 (4%)	-	6 (8%)	-
General	25	7 (28%)	1 (4%)	3 (12%)	-	1 (4%)	1 (4%)	6 (24%)	-	2 (8%)	1 (4%)	2 (8%)	-
Availability	22	2 (9%)	4 (18%)	3 (14%)	2 (9%)	-	1 (5%)	14 (64%)	2 (9%)	9 (41%)	-	8 (36%)	1 (5%)
Energy	18	7 (39%)	1 (6%)	2 (11%)	1 (6%)	5 (28%)	1 (6%)	-	-	1 (6%)	6 (33%)	-	-
Weight	5	-	5 (100%)	4 (80%)	4 (80%)	-	1 (20%)	-	4 (80%)	-	-	-	-
Safety	4	1 (25%)	1 (25%)	1 (25%)	1 (25%)	-	2 (50%)	-	-	1 (25%)	1 (25%)	-	1 (25%)
Reputation	4	-	-	-	-	-	-	4 (100%)	-	1 (25%)	-	3 (75%)	-
Modifiability	3	-	-	-	-	-	-	-	-	-	-	-	-
Area	3	2 (67%)	-	1 (33%)	-	2 (67%)	1 (33%)	-	-	-	-	-	-
Security	1	-	-	-	-	-	-	1 (100%)	-	1 (100%)	-	-	-

TABLE 7 Quality Attributes versus Other Aspects

performance, which is the most frequent quality attribute, are allocation (44 percent), scheduling (30 percent), and service selection (24 percent).

As can be observed from the gaps in Table 7, some degrees of freedom are not considered to optimize certain quality attributes. For instance, there are no papers optimizing availability, safety, or security by varying the scheduling. Furthermore, software selection is only used to optimize performance, cost, reliability, availability, and weight.

CAQ4 Quality attribute and domain. Results depicted in Table 8 indicate that there is a relationship between certain quality attributes and the domain. For instance, quality attributes such as energy, weight safety, and area are optimized only in the context of Embedded Systems, whereas security is considered only with Information Systems. Modifiability is only presented in a general setting, without specifying the domain. These observations confirm that certain quality attributes are important or can be measured only in a specific domain. For example, safety is an important quality attribute in Embedded Systems, especially in life-critical Embedded Systems, whereas Information Systems typically do not involve life- and safety-critical functionalities. Still, the most common quality attributes performance, costs, and reliability, are used in both domains.

CAQ5 Degree of freedom and domain. The cross analysis between the degrees of freedom and the domain is presented in Table 8. Some degrees of freedom are often considered in Embedded Systems, e.g., allocation (68 percent), hardware replication (80 percent), hardware selection (82 percent), and scheduling (61 percent). Some degrees of freedom can only be found in Embedded Systems, e.g., software replication, clustering, and maintenance schedules. On the other hand, service selection and service composition are only present in Information Systems.

CAQ6 Validation approach and domain. Table 8 presents the results of the cross analysis between the domain and the validation approach. The validation approaches taken in Embedded Systems vary more than in Information Systems, with examples, benchmark problems, literature comparison, and mathematical proof being

Quality Attribute	Total	Domain				
Quality Attribute	10141	ES	IS	GENERAL		
Performance	84	32 (38%)	31 (37%)	21 (25%)		
Cost	74	35 (47%)	26 (35%)	13 (18%)		
Reliability	71	40 (56%)	13 (18%)	18 (25%)		
Availability	25	5 (20%)	17 (68%)	3 (12%)		
General	22	12 (55%)	6 (27%)	4 (18%)		
Energy	18	17 (94%)	-	1 (6%)		
Weight	5	4 (80%)	-	1 (20%)		
Safety	4	4 (100%)	-	-		
Reputation	4	-	3 (75%)	1 (25%)		
Modifiability	3	-	-	3 (100%)		
Area	3	3 (100%)	-	-		
Security	1	-	1 (100%)	-		
Degrees of Freedom	Total	ES	IS	GENERAL		
Allocation	59	40 (68%)	5 (8%)	14 (24%)		
Hardware replication	40	32 (80%)	2 (5%)	6 (15%)		
Hardware selection	38	31 (82%)	4 (11%)	3 (8%)		
Software replication	35	28 (80%)	-	7 (20%)		
Scheduling	33	20 (61%)	1 (3%)	12 (36%)		
Component selection	30	12 (40%)	2 (7%)	16 (53%)		
Service selection	28	-	26 (93%)	2 (7%)		
Software selection	24	21 (88%)	1 (4%)	2 (8%)		
Other problem specific	18	5 (28%)	10 (56%)	3 (17%)		
Service composition	12	-	12 (100%)	-		
Software parameters	10	8 (80%)	1 (10%)	1 (10%)		
Clustering	5	5 (100%)	-	-		
General	5	4 (80%)	-	1 (20%)		
Hardware parameters	4	1 (25%)	3 (75%)	-		
Architectural pattern	3	-	-	3 (100%)		
Not presented	3	2 (67%)	-	1 (33%)		
Partitioning	2	1 (50%)	1 (50%)	-		
Maintenance schedules	2	2 (100%)	-	-		
Approach Validation	Total	ES	IS	GENERAL		
Experiments	57	23 (40%)	23 (40%)	11 (19%)		
Simple example	51	38 (75%)	-	13 (25%)		
Industrial case study	31	21 (68%)	1 (3%)	8 (26%)		
Academic case study	30	11 (37%)	14 (47%)	6 (20%)		
Not presented	19	5 (26%)	3 (16%)	11 (58%)		
Benchmark problems	8	6 (75%)	-	2 (25%)		
Literature comparison	2	2 (100%)	-	-		
Mathematical proof	1	1 (100%)	-	-		

TABLE 8 Domain versus Other Aspects

used only in ES. In addition, it can be observed that the proportion of papers that use experiments and academic case studies as validation techniques is higher in Information Systems compared to Embedded Systems. In essence, "examples" was the most commonly used validation technique in Embedded Systems, with 38 papers (75 percent), whereas "experiments" were usually preferred in Information Systems.

CAQ7 Domain and optimization phase. The cross analysis of the domain and optimization phase is depicted

TABLE 9 Phase versus Other Aspects

Domain	Total	Phase				
Domani	10(a)	DT	RT	GENERAL		
ES	100	85 (85%)	15 (15%)	1 (1%)		
IS	41	5 (12%)	35 (85%)	1 (2%)		
General	49	38 (78%)	10 (20%)	1 (2%)		
Dimensionality	Total	DT	RT	GENERAL		
SOO	75	57 (76%)	17 (23%)	1 (1%)		
моо	58	54 (93%)	3 (5%)	2 (3%)		
MTS	51	15 (29%)	36 (71%)	-		
General	7	3 (43%)	4 (57%)	-		
Quality Evaluation	Total	DT	RT	GENERAL		
SAF	80	40 (50%)	40 (50%)	-		
MB	60	46 (77%)	12 (20%)	3 (5%)		
NMF	40	36 (90%)	4 (10%)	-		
Not presented	6	2 (33%)	4 (67%)	-		
General	6	6 (100%)	-	-		

in Table 9. It can be observed that the optimization techniques designed for Embedded Systems are usually performed at design time (DT) (85 percent of the papers are at design time), whereas in Information Systems, the optimization is mostly done at runtime (RT), with 85 percent of papers in Information Systems performing optimization at runtime. In the other direction, an analogous relation from phase to domain can also be observed. While the popularity of design-time optimization for Embedded Systems is understandable due to the difficulty of runtime adaptation of Embedded Systems, the low number of design-time approaches for Information Systems may be surprising.

CAQ8 Dimensionality and optimization phase. In a multi-objective optimization problem, the output of the optimization process in a set of (near) Pareto-optimal solutions. As a result, a subsequent selection process is needed to choose among the near optimal architectures, which is usually not practical at runtime of a software system. This explains the low percentage of approaches that use multi-objective optimization (MOO) at runtime (RT) (only 5 percent), depicted in Table 9, and the high percentage of the approaches at runtime that convert a multi-objective problem into a single-objective problem (MTS, 71 percent).

CAQ9 Quality evaluation and optimization phase. The analysis of the quality evaluation methods used at design and runtime is presented in Table 9. Interestingly, there are a high number of papers at runtime that use simple additive functions. Model-based approaches, on the other hand, are not used as often at runtime (only 20 percent) when compared to design time. As model-based quality evaluation models are computationally more expensive than simple additive functions, their applicability may be limited at runtime. Similarly, there is a higher percentage of papers that employ nonlinear mathematical function at design time (90 percent).

Construint	Tatal	Constraint Handling								
Constraint	Iotai	Prohibit	Penalty	Repair	General	Not presented				
Cost	32	17 (53%)	13 (41%)	-	-	2 (6%)				
Performance	26	19 (73%)	3 (12%)	4 (15%)	-	-				
General	25	11 (44%)	10 (40%)	2 (8%)	-	3 (12%)				
Weight	20	11 (55%)	9 (45%)	-	-	-				
Physical	13	8 (62%)	5 (38%)	-	-	-				
Timing	10	7 (70%)	3 (30%)	-	-	-				
QoS values	10	7 (70%)	-	1 (10%)	-	2 (20%)				
Precedence	9	7 (78%)	1 (11%)	1 (11%)	-	-				
Memory	9	7 (78%)	1 (11%)	-	1 (11%)	-				
Mapping	8	7 (88%)	-	-	1 (13%)	-				
Reliability	7	4 (57%)	1 (14%)	-	-	2 (29%)				
Requirements	6	4 (67%)	-	-	-	1 (17%)				
Volume	6	3 (50%)	3 (50%)	-	-	-				
Structural	5	2 (40%)	-	2 (40%)	-	1 (20%)				
Area	3	3 (100%)	1 (33%)	-	-	-				
Redundancy level	3	2 (67%)	-	1 (33%)	-	-				
Delivery time	3	3 (100%)	-	-	-	-				
Availability	2	1 (50%)	1 (50%)	-	-	-				
Throughput	2	2 (100%)	-	-	-	-				
Processing power	1	-	1 (100%)	-	-	-				
Stability	1	1 (100%)	-	-	-	-				
Path loss	1	-	1 (100%)	-	-	-				
Functional correctness	1	1 (100%)	-	-	-	-				
Design	1	1 (100%)	-	-	-	-				
Dependability	1	1 (100%)	-	-	-	-				

TABLE 10 Constraints versus Constraint Handling Techniques

CAQ10 Constraint and constraint handling technique. Table 10 shows a cross analysis of the different constraints and the constraint handling techniques used during the optimization. The majority of the papers handle constraints with prohibition techniques, such as 73 percent of papers with performance constraints, 53 percent of papers with cost constraints, and 62 percent of papers with physical constraints. Penalty functions are the second most commonly used constraint handling technique. A considerable number of papers used penalty techniques with cost constraint (41 percent), weight (45 percent), physical (38 percent), and timing (30 percent). Nevertheless, the proportion of papers that use penalty function as a constraint handling technique is lower than prohibition techniques for all constraints.

From the constraint handling perspective, prohibition techniques are commonly used with almost all constraints. On the other hand, constraint handling techniques defined in general are not very frequent. Repair techniques are very rarely addressed. One reason for this could be that they increase the complexity of the optimization process since they require extra knowledge about the problem to construct feasible results.

CAQ11 Optimization strategy and validation. Table 11 shows a cross analysis of the optimization strategy and the optimization validation. Note that not all optimization validation types are applicable to or meaningful for all

optimization strategies. Not applicable or not meaningful combinations are marked N/A in the table. For example, there is no need to validate exact standard algorithms as their ability to find optimal solutions is already well studied in optimization literature.

For exact problem-specific approaches, only half of the papers present some form of validation, mostly a comparison with a baseline heuristic algorithm that is commonly used for the addressed optimization problem.

Looking at approximate techniques, we observe two main favorite optimization strategies: Evolutionary Algorithms as the most commonly used metaheuristic and constructive heuristics as the most common problemspecific heuristic. Interestingly, Evolutionary Algorithms are less frequently validated than many other metaheuristics, although it is known that an evolutionary algorithm's performance and quality of results can significantly vary for different optimization parameters and problem formulations [19], [20], [225].

CAQ12 Degree of freedom and optimization strategy. In optimization, the time and computational complexities are the aspects that are of interest. If a problem is solvable in polynomial time, i.e., it is not an NP-optimization problem as defined by Crescenzi et al. [65], then an exact algorithm might be the best solution. However, the majority of the problems in architecture optimization cannot be solved in polynomial time. The degree of freedom used with a specific problem is one of the components that defines the computational complexity of an optimization problem, among others such as the complexity of the quality evaluation function/procedure. As can be observed from the results in Table 12, the majority of the degrees of freedom in architecture optimization, especially degrees of freedom that involve hardware, such as hardware replication (80 percent), hardware selection (82 percent), and hardware parameters (75 percent), are used in conjunction with approximate optimization algorithms. Similarly, many degrees of freedom that involve a change in the software part of the system are also used with metaheuristics, e.g., software replication (74 percent) and software selection (79 percent). On the other hand, clustering is used mostly with problem-specific heuristics (60 percent). Standard exact algorithms are not used very frequently in conjunction with most degrees of freedom, apart from service selection (36 percent of the papers).

CAQ13 Quality evaluation method and approach validation. Depending on the quality evaluation method that the reviewed approaches use, certain approach validations have been selected as shown in Table 13. For instance, when using a simple aggregation function, experiments are the most frequent validation technique, comprising 40 percent of the overall papers that use this kind of quality evaluation method. Model-based approaches instead have been most frequently validated with industrial case studies (32 percent). It can also be observed that these approaches have the highest proportion of papers that use industrial case studies as an approach validation technique among all other quality evaluation methods, which may indicate a possible relation among these two entities.

Another interesting result relates to the validation technique used for nonlinear mathematical functions. The

TABLE 11 Optimization Strategy versus Optimization Validation

Optimization Approach			Total	Comparison with baseline heuristic algorithm	Internal comparison	Comparison with exact algorithm	Comparison with random search	Mathematical proof	Not presented
		Linear Programming	9 (4%)	-	-	-	N/A	N/A	9 (100%)
act		Mixed-Integer Linear Programming (Milp)	5 (2%)	-	-	-	N/A	N/A	5 (100%)
	ard	Integer Programming Algorithm	7 (3%)	-	-	-	N/A	N/A	7 (100%)
	and	Integer Linear Programming	4 (2%)	-	-	-	N/A	N/A	4 (100%)
	S.	Exhaustive Search	1 (0%)	-	-	-	N/A	N/A	1 (100%)
		Sequential Quadratic Programming	2 (1%)	1 (50%)	-	-	N/A	N/A	1 (50%)
Ê		Total Exact Standard	27 (13%)	1 (4%)	-	-	N/A	N/A	26 (96%)
	_	Graph Partitioning	1 (0%)	1 (100%)	-	-	N/A	-	-
	blen	Branch And Bound	3 (1%)	1 (33%)	2 (67%)	-	N/A	-	-
	Pro	Other Exact Problem Specific	6 (3%)	2 (33%)	1 (17%)	1 (17%)	N/A	-	2 (33%)
		Total Exact Problem Specific		4 (40%)	3 (30%)	1 (10%)	N/A	-	2 (20%)
	Total Exact		38 (18%)	5 (13%)	3 (8%)	1 (3%)	N/A	-	29 (76%)
	Metaheuristic	Evolutionary Algorithm	71 (34%)	10 (14%)	6 (8%)	3 (4%)	1 (1%)	N/A	51 (72%)
		Greedy	4 (2%)	1 (25%)	2 (50%)	-	-	N/A	1 (25%)
		Simulated Annealing	13 (6%)	5 (38%)	3 (23%)	1 (8%)	-	N/A	4 (31%)
		Variable Neighbourhood Search	5 (2%)	2 (40%)	-	-	-	N/A	3 (60%)
		Ant Colony Optimization	4 (2%)	2 (50%)	-	-	1 (25%)	N/A	1 (25%)
		Hill Climbing	4 (2%)	2 (50%)	-	1 (25%)	-	N/A	1 (25%)
		Tabu Search	9 (4%)	6 (67%)	1 (11%)	-	-	N/A	2 (22%)
		Particle Swarm	1 (0%)	1 (100%)	-	-	-	N/A	-
tive		Other Metaheuristic	5 (2%)	2 (40%)	-	-	-	N/A	3 (60%)
xima		Total Metaheuristic	103 (49%)	23 (22%)	10 (10%)	5 (5%)	2 (2%)	N/A	63 (61%)
bro		Constructive Heuristics	13 (6%)	3 (23%)	2 (15%)	1 (8%)	-	-	7 (54%)
AF.	5	Other Problem Specific	15 (7%)	2 (13%)	1 (7%)	-	-	-	12 (80%)
	ecifi	Greedy	7 (3%)	4 (57%)	1 (14%)	-	-	-	2 (29%)
	ı Sp	Branch And Bound Based	1 (0%)	-	-	-	-	1 (100%)	-
	blen	Graph Partitioning	2 (1%)	1 (50%)	-	-	-	1 (50%)	-
	Pro	Dynamic Programming	2 (1%)	1 (50%)	1 (50%)	-	-	-	-
		Restricted Enumeration Of All Possible So- lutions	2 (1%)	-	-	-	-	-	2 (100%)
		Total Approximative Problem Specific	42 (20%)	10 (24%)	6 (14%)	1 (2%)	-	1 (2%)	24 (57%)
With Guarantee			4 (2%)	1 (25%)	1 (25%)	-	-	-	2 (50%)
Total Approximative			0 (0%)	-	-	-	-	-	-

majority of the approaches that use nonlinear mathematical functions use validation by examples (53 percent). A considerable fraction of papers in this category use experiments (20 percent), and only a few papers use industrial case studies (8 percent).

In general, very few papers use benchmarks problems; more specifically, only 4 percent of the papers that use Simple Aggregation Functions, 3 percent of all model-based approaches and 8 percent of papers that consider nonlinear mathematical functions. This can be due to a lack of benchmark problems in the software engineering domain, which may be a research area that requires more attention. Mathematical proofs and literature comparison are even less frequently used as validation approaches. The only papers we found with mathematical proof as a validation technique use either Simple Aggregation Functions or nonlinear mathematical functions as quality evaluation methods.

5 RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the results of the literature review presented in the previous section, it is evident that the research area of architecture optimization has received a lot of attention over the last decades and significant progress has been made. However, the results also reveal a number of observations that can help to direct future research efforts in the community. In the following, to address the third research question (**RQ3**), we list important goals that should be achieved by the community in order to advance the research area.

Evidence on the quality of the resulting architectures and economic benefit. To further increase the penetration of architecture optimization approaches in industrial practice, it would be required to provide detailed success stories that indicate an economical benefit of applying the specific architecture optimization approaches. In line with the idea of evidence-based software engineering [78], this

	Total	Optimization Strategy								
Degrees of Freedom			Approximative		Exact	Conoral	Not presented			
		Metaheuristic	Problem-specific heuristic	With guarantee	Exact standard	Exact problem-specific	General	Not presented		
Allocation	59	32 (54%)	19 (32%)	1 (2%)	1 (2%)	5 (8%)	1 (2%)	4 (7%)		
Hardware replication	40	32 (80%)	2 (5%)	1 (3%)	4 (10%)	-	1 (3%)	-		
Hardware selection	38	31 (82%)	3 (8%)	-	3 (8%)	1 (3%)	1 (3%)	-		
Software replication	35	26 (74%)	2 (6%)	1 (3%)	5 (14%)	-	1 (3%)	-		
Scheduling	33	14 (42%)	14 (42%)	-	4 (12%)	1 (3%)	-	1 (3%)		
Component selection	30	18 (60%)	3 (10%)	-	4 (13%)	2 (7%)	-	4 (13%)		
Service selection	28	11 (39%)	7 (25%)	-	10 (36%)	-	-	1 (4%)		
Software selection	24	19 (79%)	1 (4%)	-	3 (13%)	-	1 (4%)	-		
Other problem specific	18	10 (56%)	4 (22%)	-	4 (22%)	-	-	1 (6%)		
Service composition	12	7 (58%)	4 (33%)	-	2 (17%)	-	-	1 (8%)		
Software parameters	10	1 (10%)	5 (50%)	-	4 (40%)	1 (10%)	1 (10%)	-		
Clustering	5	1 (20%)	3 (60%)	-	1 (20%)	-	-	-		
General	5	2 (40%)	-	1 (20%)	-	1 (20%)	2 (40%)	-		
Hardware parameters	4	3 (75%)	1 (25%)	-	-	-	-	-		
Architectural pattern	3	3 (100%)	-	-	-	-	-	-		
Not presented	3	2 (67%)	-	-	-	-	-	1 (33%)		
Partitioning	2	1 (50%)	-	1 (50%)	1 (50%)	-	-	-		
Maintenance schedules	2	1 (50%)	-	-	-	-	1 (50%)	-		

TABLE 12 Degree of Freedom versus Optimization Strategy

requires a systematic analysis of systems that have been developed with and without the use of architecture optimization approaches with respect to the achieved system quality and the spent effort.

Systematic exploration of effective degrees of freedom for different quality attributes. The more recent approaches reviewed in this paper focus on exploiting specific architecture degrees of freedom to achieve a certain quality goal. Further research effort is required for analyzing the individual approaches in order to understand the relationship between the degrees of freedom and quality attributes. These studies should identify the effect of each degree of freedom on different quality attributes. Furthermore, an investigation of a joint consideration of different degrees of freedom is an interesting starting point for future studies. Note that joint consideration of any set of degrees of freedom and any quality attributes requires the use of an architecture model as an input (cf., taxonomy category "architecture representation" in Section 3.2) because quality evaluation models are restricted to certain quality attributes.

Systematic validation of the optimization strategy. Based on the results presented in Table 6, it is evident that a majority of approaches do not validate the optimization strategy. A common theme is that a certain optimization algorithm is picked and applied without comparing it to the portfolio of existing optimization approaches. This is valid for some papers that aim to introduce a new quality evaluation model; however, to further advance our knowledge on the performance and effectiveness of the optimization algorithms, we recommend comparing the optimization algorithms with the current state-of-the-art approaches. This will allow for better algorithm selection in the future. For the comparison, the community should identify a set of benchmark architecture optimization problems, similar to the ones already established in the field of reliability optimization for redundancy allocation [140]. For metaheuristics, a comparison with random search and well-established metaheuristics is recommended. Since most algorithms are probabilistic, experiments with a sufficient number of runs should be used and analyzed with statistical tests. For setting up the experiments and

TABLE 13 Quality Evaluation versus Approach Validation

Quality Evaluation	Total	Approach Validation							
Quanty Evaluation		Experiments	Example	Industrial case study	Academic case study	Benchmark problems	Mathematical proof	Literature comparison	Not presented
Simple aggregation functions	80	32 (40%)	14 (18%)	8 (10%)	17 (21%)	3 (4%)	1 (1%)	-	10 (13%)
Model Based	60	15 (25%)	10 (17%)	19 (32%)	12 (20%)	2 (3%)	-	2 (3%)	4 (7%)
Non-linear mathematical functions	40	8 (20%)	21 (53%)	3 (8%)	2 (5%)	3 (8%)	-	-	3 (8%)
General	6	-	5 (83%)	-	1 (17%)	1 (17%)	-	-	-
Not presented	6	2 (33%)	2 (33%)	-	-	-	-	-	2 (33%)

analyzing them, the recently published guidelines by Arcuri and Briand [11] can be recommended.

Unified tool support. Tools that can be used to model software architecture optimization problems and that offer different optimization strategies could greatly support the above-mentioned research directions. A general optimization framework for software architectures could be devised, which could make use of 1) plug-ins that interpret different architecture models (from architecture description languages to component models) and provide degree of freedom definitions, and 2) plug-ins to evaluate quality attributes for a given architecture model. Such frameworks have already been started with the Archeopteryx [5], PerOpteryx [133], [161], and AQOSA [145] approaches for metaheuristic optimization and a fixed software architecture model. Future research could extend them to be more generically applicable, and thus foster better collaboration among researchers, e.g., by the definition of benchmark problems.

Systematic guidelines for selecting the optimization approach based on the given problem. In the area of software architecture optimization, systematic guidelines for optimization-approach selection are currently lacking. There is a wide range of optimization algorithms available, which can be grouped into two main classes: exact and approximate algorithms. Depending on the available resources and time, on whether the goal is to find the optimal or near-optimal solutions, and on the size and complexity of the problem, the appropriate algorithm needs to be selected for the given problem.

Assuming problems of nontrivial size, the complexity of the problem is the most important factor that needs to be taken into account. For optimization, the time and computational complexities are the aspects that one is interested in. If a problem is solvable in polynomial time, i.e., it is not an *NP-optimization problem* as defined by Crescenzi et al. [65], then an exact algorithm might be the best solutions. However, the majority of the problems in architecture optimization cannot be solved in polynomial time. The degrees of freedom considered with a specific problem is one of the components that defines the computational complexity of an optimization problem. As can be observed from the results in Table 12, the majority of the degrees of freedom in architecture optimization are used in conjunction with approximate optimization algorithms.

All these aspects need more investigation. The taxonomy proposed in this paper is an initial step in this direction since it provides a categorization of software architecture optimization problems. The investigation of the above aspects can lead to systematic guidelines for selecting the optimization approach based on the given problem.

Support for practitioners. To apply a software architecture optimization approach to a given system architecture, practitioners need to 1) model the software architecture in the formalism used by the approach and 2) identify the applicable degrees of freedom. Here, modeling the existing architecture is often the most difficult step as it includes collecting information about the quality properties of the architecture. For example, the resource demands and other performance properties need to be determined for performance, e.g., by measurements [167]. For reliability, the values usually are estimated or based on historical data [48], [89]. Creating an accurate

model requires a considerable effort and seems to hinder the acceptance of architecture modeling in practice. Thus, future research should provide support for practitioners and partial automation to create such models.

Furthermore, most reviewed approaches use a specific formalism to describe the software architecture (cf., "architecture representation" category in Sections 3.2 and 4.2). Thus, even if a practitioner has a formalized model for a software architecture available, the optimization approaches are not readily applicable. Here, software architecture optimization researchers should relate their required input models of the software architecture to UML or other widespread modeling languages, e.g., by providing tools that transform an UML model to the required formalism.

Reporting guidelines for software architecture optimization. The description of the solved optimization problem and the used optimization approach varies greatly among different papers in the surveyed domain. Not all values of our taxonomy were explicitly presented and could be quickly identified. Some values were only implicitly indicated, making it hard to extract them from the description of the work. Thus, comparing and relating different works is difficult.

Our taxonomy can serve as a reporting guideline for future work to improve the reporting standards in the area of software architecture optimization. Optimization papers should state explicitly how they relate to the taxonomy by prominently providing information for all taxonomy categories. Ideally, the same terms for the values of the taxonomy (e.g., different degrees of freedom) could be used, although we have to weigh common software architecture optimization terms (e.g., "allocation") against common terms in different subcommunities (e.g., "binding" in chip design for Embedded Systems).

6 CONCLUSIONS

In this paper, we have presented the results of a systematic literature review on architecture optimization which included 188 different approaches. Based on this review, we derived a taxonomy that aims to help researchers to classify existing and future approaches in this research area. Using this taxonomy, we have analyzed the current approaches and presented the results in a way that helps researchers to relate their work to the existing body of knowledge and identify future research directions.

During the review process, we acquired knowledge of different research subareas, and presented the implications of their cross analysis via recommendations for future research. We structured the results to a number of tables, which are aimed to facilitate knowledge transfer among various research communities working in the architectureoptimization research area. We learned that although there are some communities that are already well connected (through cross citation of their works), e.g., the community of reliability and performance architecture optimization (due to the similarities in their models), there still remain a number of communities that are isolated from others, e.g., the scheduling community or the community focusing primarily on the optimization strategies (irrespective of the optimized qualities). The information presented in this survey aims to bridge the gap among the communities and allow for easier knowledge transfer.

In summary, we believe that the results of our systematic review will help to advance the architecture-optimization research area and, since we expect this research area to grow in the future, we hope that the taxonomy itself will also become useful in developing and judging new approaches.

ACKNOWLEDGMENTS

The authors are grateful to Kai Breiner, Franz Brosch, Heiko Koziolek, and Adrien Mouaffo for their valuable feedback on this survey.

REFERENCES

- T.F. Abdelzaher and K.G. Shin, "Optimal Combined Task and Message Scheduling in Distributed Real-Time Systems," Proc. IEEE Real-Time Systems Symp., pp. 162-171, 1995.
- A. Abraham, H. Liu, and M. Zhao, "Particle Swarm Scheduling for Work-Flow Applications in Distributed Computing Environments," *Metaheuristics for Scheduling in Industrial and Manufacturing Applications*, vol. 128, pp. 327-342, Springer, 2008.
 M. Agarwal, S. Aggarwal, and V.K. Sharma, "Optimal Redun-
- [3] M. Agarwal, S. Aggarwal, and V.K. Sharma, "Optimal Redundancy Allocation in Complex Systems," J. Quality in Maintenance Eng., vol. 16, pp. 413-424, 2010.
- *Eng.*, vol. 16, pp. 413-424, 2010.
 [4] J.T. Alander, "An Indexed Bibliography of Genetic Algorithms in Testing," Technical Report 94-1-TEST, Univ. of Vaasa, Finland, 2008.
- [5] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya, "Archeopterix: An Extendable Tool for Architecture Optimization of AADL Models," Proc. ICSE 2009 Workshop Model-Based Methodologies for Pervasive and Embedded Softwar, pp. 61-71, 2009.
- [6] A. Aleti, B. Bühnová, L. Grunske, A. Koziolek, and I. Meedeniya, "Optimization Survey," https://sdqweb.ipd.kit.edu/wiki/ OptimizationSurvey, 2012.
- [7] S. Amari and G. Dill, "Redundancy Optimization Problem with Warm-Standby Redundancy," Proc. Reliability and Maintainability Symp., pp. 1-6, 2010.
- [8] J.D. Andrews and L.M. Bartlett, "A Branching Search Approach to Safety System Design Optimisation," *Reliability Eng. and System* Safety, vol. 87, no. 1, pp. 23-30, 2005.
- [9] Y.P. Aneja, R. Chandrasekaran, and K.P.K. Nair, "Minimal-Cost System Reliability with Discrete-Choice Sets for Components," *IEEE Trans. Reliability*, vol. 53, no. 1, pp. 71-76, Mar. 2004.
- [10] B.R. Arafeh, K. Day, and A. Touzene, "A Multilevel Partitioning Approach for Efficient Tasks Allocation in Heterogeneous Distributed Systems," J. Systems Architecture—Embedded Systems Design, vol. 54, no. 5, pp. 530-548, 2008.
- [11] A. Arcuri and L.C. Briand, "A Practical Guide for Using Statistical Tests to Assess Randomized Algorithms in Software Engineering," *Proc. 33rd Int'l Conf. Software Eng.*, R.N. Taylor, H. Gall, and N. Medvidovic, eds., pp. 1-10, 2011.
- [12] D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola, and B. Pernici, "QoS-Driven Web Services Selection in Autonomic Grid Environments," *Proc. Confederated Int'l Conf. Move to Meaningful Internet Systems*, R. Meersman and Z. Tari, eds., pp. 1273-1289, 2006.
- [13] D. Ardagna and R. Mirandola, "Per-Flow Optimal Service Selection for Web Services Based Processes," J. Systems and Software, vol. 83, no. 8, pp. 1512-1523, Aug. 2010.
- [14] D. Ardagna and B. Pernici, "Global and Local QoS Constraints Guarantee in Web Service Selection," Proc. IEEE Int'l Conf. Web Services, pp. 805-806, 2005.
- [15] D. Ardagna and B. Pernici, "Adaptive Service Composition in Flexible Processes," *IEEE Trans. Software Eng.*, vol. 33, no. 6, pp. 369-384, June 2007.
- [16] A. Avizienis, J.-C. Laprie, B. Randell, and C.E. Landwehr, "Basic Concepts and Taxonomy of Dependable and Secure Computing," *IEEE Trans. Dependable and Secure Computing*, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004.
- [17] H. Aydin, P. Mejía-Alvarez, D. Mossé, and R.G. Melhem, "Dynamic and Aggressive Scheduling Techniques for Power-Aware Real-Time Systems," *Proc. IEEE Real-Time Systems Symp.*, pp. 95-105, 2001.

- [18] A. Azaron, C. Perkgoz, H. Katagiri, K. Kato, and M. Sakawa, "Multi-Objective Reliability Optimization for Dissimilar-Unit Cold-Standby Systems Using a Genetic Algorithm," *Computers &* OR, vol. 36, no. 5, pp. 1562-1571, 2009.
- [19] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Univ. Press, 1996.
- [20] T. Bäck, A.E. Eiben, and N.A.L. van der Vaart, "An Empirical Study on Gas without Parameters," *Proc. Sixth Int'l Conf. Parallel Problem Solving from Nature*, pp. 315-324, 2000.
- [21] J. Balasubramanian, A.S. Gokhale, A. Dubey, F. Wolf, C. Lu, C.D. Gill, and D.C. Schmidt, "Middleware for Resource-Aware Deployment and Configuration of Fault-Tolerant Real-Time Systems," Proc. IEEE Real-Time & Embedded Technology and Applications Symp., pp. 69-78, 2010.
- [22] S. Balsamo, A.D. Marco, P. Inverardi, and M. Simeoni, "Model-Based Performance Prediction in Software Development: A Survey," *IEEE Trans. Software Eng.*, vol. 30, no. 5, pp. 295-310, May 2004.
- [23] S. Banerjee and N. Dutt, "Efficient Search Space Exploration for HW-SW Partitioning," Proc. Second IEEE/ACM/IFIP Int'l Conf. Hardware/Software Codesign and System Synthesis, pp. 122-127, 2004.
- [24] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, second ed. AddisonWesley, 2003.
- [25] S. Becker, H. Koziolek, and R. Reussner, "The Palladio Component Model for Model-Driven Performance Prediction," J. Systems and Software, vol. 82, no. 1, pp. 3-22, 2009.
- [26] M. Benazouz, O. Marchetti, A. Munier-Kordon, and P. Urard, "A New Method for Minimizing Buffer Sizes for Cyclo-Static Dataflow Graphs," Proc. Eighth IEEE Workshop Embedded Systems for Real-Time Multimedia, pp. 11-20, 2010.
- [27] L. Benini, A. Bogliolo, and G.D. Micheli, "A Survey of Design Techniques for System-Level Dynamic Power Management," *IEEE Trans. VLSI Systems*, vol. 8, no. 3, pp. 299-316, June 2000.
- [28] L. Benini, R. Hodgson, and P. Siegel, "System-Level Power Estimation and Optimization," Proc. Int'l Symp. Low Power Electronics and Design, A. Chandrakasan and S. Kiaei, eds., pp. 173-178, 1998.
- [29] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz, "Heuristics for Qos-Aware Web Service Composition," Proc. IEEE Int'l Conf. Web Services, pp. 72-82, 2006.
- [30] A.K. Bhunia, L. Sahoo, and D. Roy, "Reliability Stochastic Optimization for a Series System with Interval Component Reliability via Genetic Algorithm," *Applied Math. and Computation*, vol. 216, no. 3, pp. 929-939, 2010.
- [31] A. Billionnet, "Redundancy Allocation for Series-Parallel Systems Using Integer Linear Programming," *IEEE Trans. Reliability*, vol. 57, no. 3, pp. 507-516, Sept. 2008.
- [32] T. Blickle, "Theory of Evolutionary Algorithms and Application to System Synthesis," PhD dissertation, Swiss Federal Inst. of Technology, Zurich, 1996.
- [33] T. Blickle, J. Teich, and L. Thiele, "System-Level Synthesis Using Evolutionary Algorithms," Technical Report TIK Report-No. 16, Computer Eng. and Comm. Networks Lab (TIK), Swiss Federal Inst. of Technology (ETH), 1996.
- [34] C. Blum and A. Roli, "Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison," ACM Computing Surveys, vol. 35, no. 3, pp. 268-308, 2003.
- [35] B. Boonea, S. Van Hoeckea, G. Van Seghbroecka, N. Jonckheereb, V. Jonckersb, F.D. Turcka, C. Develdera, and B. Dhoedta, "SALSA: QoS-Aware Load Balancing for Autonomous Service Brokering," J. Systems and Software, vol. 83, no. 3, pp. 446-456, Mar. 2010.
- [36] S. Burmester, H. Giese, E. Münch, O. Oberschelp, F. Klein, and P. Scheideler, "Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Systems," *Int'l J. Software Tools for Technology Transfer*, vol. 10, no. 3, pp. 207-222, June 2008.
- [37] P.G. Busacca, M. Marseguerra, and E. Zio, "Multiobjective Optimization by Genetic Algorithms: Application to Safety Systems," *Reliability Eng. & System Safety*, vol. 72, no. 1, pp. 59-74, Apr. 2001.
- [38] G. Canfora, M. Di Penta, R. Esposito, F. Perfetto, and M.L. Villani, "Service Composition (Re)Binding Driven by Application-Specific QoS," Proc. Fourth Int'l Conf. Service-Oriented Computing, pp. 141-152, 2006.

- [39] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani, "An Approach for "QoS"-Aware Service Composition Based on Genetic Algorithms," *Proc. Conf. Genetic and Evolutionary Computation*, pp. 1069-1075, 2005.
- [40] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani, "A Framework for QoS-Aware Binding and Re-Binding of Composite Web Services," J. Systems and Software, vol. 81, no. 10, pp. 1754-1769, 2008.
- [41] L. Cao, J. Cao, and M. Li, "Genetic Algorithm Utilized in Cost-Reduction Driven Web Service Selection," *Proc. Int'l Conf. Computational Intelligence and Security*, Y. Hao, J. Liu, Y. Wang, Y. Ming Cheung, H. Yin, L. Jiao, J. Ma, and Y.-C. Jiao, eds., pp. 679-686, 2005.
- [42] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola, "QoS-Driven Runtime Adaptation of Service Oriented Architectures," Proc. Seventh Joint Meeting European Software Eng. Conf. and the ACM SIGSOFT Symp. Foundations of Software Eng., pp. 131-140, 2009.
- [43] V. Cardellini, E. Casalicchio, V. Grassi, and R. Mirandola, "A Framework for Optimal Service Selection in Broker-Based Architectures with Multiple QoS Classes," *Proc. Services Computing Workshops*, pp. 105-112, 2006.
- [44] V. Cardellini, E. Casalicchio, V. Grassi, and F.L. Presti, "Flow-Based Service Selection for Web Service Composition Supporting Multiple Qos Classes," *Proc. IEEE Int'l Conf. Web Services*, pp. 743-750, 2007.
- [45] M. Ceriani, F. Ferrandi, P.L. Lanzi, D. Sciuto, and A. Tumeo, "Multiprocessor Systems-on-Chip Synthesis Using Multi-Objective Evolutionary Computation," *Proc. Genetic and Evolutionary Computation Conf.*, M. Pelikan and J. Branke, eds., pp. 1267-1274, 2010.
- [46] R.-S. Chang, J.-S. Chang, and P.-S. Lin, "An Ant Algorithm for Balanced Job Scheduling in Grids," *Future Generation Computer Systems*, vol. 25, no. 1, pp. 20-27, Jan. 2009.
- [47] Y.-S. Chen, C.-S. Shih, and T.-W. Kuo, "Processing Element Allocation and Dynamic Scheduling Codesign for Multi-Function Socs," *Real-Time Systems*, vol. 44, nos. 1-3, pp. 72-104, 2010.
- [48] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, "Early Prediction of Software Component Reliability," Proc. 30th Int'l Conf. Software Eng., pp. 111-120, 2008.
- [49] P.H. Chou, R.B. Ortega, and G. Borriello, "Interface Co-Synthesis Techniques for Embedded Systems," Proc. IEEE/ACM Int'l Conf. Computer-Aided Design, pp. 280-287, 1995.
- [50] C.A.C. Coello, "A Survey of Constraint Handling Techniques Used with Evolutionary Algorithms," *Computer Methods in Applied Mechanics and Eng.*, vol. 20, no. 191, pp. 1245-1287, 2002.
- [51] D.W. Coit, "Cold-Standby Redundancy Optimization for Nonrepairable Systems," *IIE Trans.*, vol. 33, pp. 471-478, 2001.
- [52] D.W. Coit, "Maximization of System Reliability with a Choice of Redundancy Strategies," *IIE Trans.*, vol. 35, no. 6, pp. 535-543, 2003.
- [53] D.W. Coit and T. Jin, "Multi-Criteria Optimization: Maximization of a System Reliability Estimate & Minimization of the Estimate Variance," Proc. Int'l Conf. European Safety & Reliability, pp. 1-8, 2001.
- [54] D.W. Coit, T. Jin, and N. Wattanapongsakorn, "System Optimization with Component Reliability Estimation Uncertainty: A Multi-Criteria Approach," *IEEE Trans. Reliability*, vol. 53, no. 3, pp. 369-380, Sept. 2004.
- [55] D.W. Coit and A. Konak, "Multiple Weighted Objectives Heuristic for the Redundancy Allocation Problem," *IEEE Trans. Reliability*, vol. 55, no. 3, pp. 551-558, Sept. 2006.
- [56] D.W. Coit and J. Liu, "System Reliability Optimization with K-outof-N Subsystems," *Int'l J. Reliability Quality and Safety Eng.*, vol. 7, no. 2, pp. 129-142, 2000.
- [57] D.W. Coit and A.E. Smith, "Reliability Optimization of Series-Parallel Systems Using a Genetic Algorithm," *IEEE Trans. Reliability*, vol. 45, no. 2, pp. 254-260, June 1996.
- [58] D.W. Coit and A.E. Smith, "Solving the Redundancy Allocation Problem Using a Combined Neural Network/Genetic Algorithm Approach," *Computers & OR*, vol. 23, no. 6, pp. 515-526, 1996.
- [59] D.W. Coit and A.E. Smith, "Redundancy Allocation to Maximize a Lower Percentile of the System Time-to-Failure Distribution," *IEEE Trans. Reliability*, vol. 47, no. 1, pp. 79-87, Mar. 1998.

- [60] D.W. Coit and A.E. Smith, "Genetic Algorithm to Maximize a Lower-Bound for System Time-to-Failure with Uncertain Component Weibull Parameters," *Computers & Industrial Eng.*, vol. 41, no. 4, pp. 423-440, 2002.
- [61] D. Cooray, S. Malek, R. Roshandel, and D. Kilgore, "RESISTing Reliability Degradation through Proactive Reconfiguration," Proc. 25th IEEE/ACM Int'l Conf. Automated Software Eng., pp. 83-92, 2010.
- [62] V. Cortellessa, I. Crnkovic, F. Marinelli, and P. Potena, "Experimenting the Automated Selection of COTS Components Based on Cost and System Requirements," *J. Universal Computer Science*, vol. 14, no. 8, pp. 1228-1255, 2008.
- [63] V. Cortellessa, F. Marinelli, and P. Potena, "Automated Selection of Software Components Based on Cost/Reliability Tradeoff," *Proc. Third European Workshop Software Architecture*, V. Gruhn and F. Oquendo, eds., pp. 66-81, 2006.
- [64] V. Cortellessa and P. Potena, "How Can Optimization Models Support the Maintenance of Component-Based Software?" Proc. First Int'l Symp. Search Based Software Eng., pp. 97-100, 2009.
- [65] P. Crescenzi, V. Kann, M. Halldórsson, M. Karpinski, and G. Woeginger, "A Compendium of NP Optimization Problems," Technical Report SI/RR-95/02, 2000.
- [66] Y.-S. Dai and G. Levitin, "Optimal Resource Allocation for Maximizing Performance and Reliability in Tree-Structured Grid Services," *IEEE Trans. Reliability*, vol. 56, no. 3, pp. 444-453, Sept. 2007.
- [67] B.P. Dave and N.K. Jha, "COHRA: Hardware-Software Co-Synthesis of Hierarchical Distributed Embedded System Architectures," Proc. Int'l Conf. VLSI Design, pp. 347-354, 1998.
- [68] B.P. Dave, G. Lakshminarayana, and N.K. Jha, "COSYN: Hardware-Software Co-Synthesis of Heterogeneous Distributed Embedded Systems," *IEEE Trans. VLSI Systems*, vol. 7, no. 1, pp. 92-104, Mar. 1999.
- [69] P. de Oliveira Castro, S. Louise, and D. Barthou, "Reducing Memory Requirements of Stream Programs by Graph Transformations," Proc. Int'l Conf. High Performance Computing & Simulation, W.W. Smari and J.P. McIntire, eds., pp. 171-180, 2010.
- [70] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, 2001.
- [71] M. Di Penta, R. Esposito, M.L. Villani, R. Codato, M. Colombo, and E. Di Nitto, "WS Binder: A Framework to Enable Dynamic Binding of Composite Web Services," *Proc. Int'l Workshop Service-Oriented Software Eng.*, pp. 74-80, 2006.
- Oriented Software Eng., pp. 74-80, 2006.
 [72] R.P. Dick and N.K. Jha, "MOGAC: A Multiobjective Genetic Algorithm for Hardware-Software Co-Synthesis of Hierarchical Heterogeneous Distributed Embedded Systems," *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, vol. 17, no. 10, pp. 920-935, Oct. 1998.
- [73] A. Dogan and F. Özgüner, "Biobjective Scheduling Algorithms for Execution Time-Reliability Trade-Off in Heterogeneous Computing Systems," *Computer J.* vol. 48, no. 3, pp. 300-314, 2005.
- [74] W.-L. Dong and H. Yu, "Optimizing Web Service Composition Based on QoS Negotiation," Proc. 10th IEEE Int'l Enterprise Distributed Object Computing Conf., p. 46, 2006.
- [75] L. dos Santos Coelho, "An Efficient Particle Swarm Approach for Mixed-Integer Programming in Reliability-Redundancy Optimization Applications," *Reliability Eng. & System Safety*, vol. 94, no. 4, pp. 830-837, 2009.
- [76] L. dos Santos Coelho, "Reliability-Redundancy Optimization by Means of a Chaotic Differential Evolution Approach," *Chaos, Solitons & Fractals*, vol. 41, no. 2, pp. 594-602, 2009.
- [77] V.K. Dubey and D.A. Menascé, "Utility-Based Optimal Service Selection for Business Processes in Service Oriented Architectures," Proc. IEEE Int'l Conf. Web Services, pp. 542-550, 2010.
- [78] T. Dybå, B.A. Kitchenham, and M. Jørgensen, "Evidence-Based Software Engineering for Practitioners," *IEEE Software*, vol. 22, no. 1, pp. 58-65, Jan./Feb. 2005.
- [79] B. Eames, S. Neema, and R. Saraswat, "Desertfd: A Finite-Domain Constraint Based Tool for Design Space Exploration," *Design Automation for Embedded Systems*, vol. 14, pp. 43-74, 2010.
- [80] H. El-Sayed, D. Cameron, and C.M. Woodside, "Automation Support for Software Performance Engineering," SIGMETRICS/ Performance Evaluation Rev., vol. 29, pp. 301-311, 2001.
- [81] C. Elegbede and K. Adjallah, "Availability Allocation to Repairable Systems with Genetic Algorithms: A Multi-Objective Formulation," *Reliability Eng. & System Safety*, vol. 82, no. 3, pp. 319-330, 2003.

- [82] J. ElHaddad, M. Manouvrier, and M. Rukoz, "TQoS: Transactional and QoS-Aware Selection Algorithm for Automatic Web Service Composition," *IEEE Trans. Services Computing*, vol. 3, no. 1, pp. 73-85, Jan.-Mar. 2010.
- [83] P. Emberson, "Searching for Flexible Solutions to Task Allocation Problems," PhD dissertation, Univ. of York, United Kingdom, 2009.
- [84] C. Erbas, S. Cerac-Erbas, and A.D. Pimentel, "Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design," *IEEE Trans. Evolutionary Computation*, vol. 10, no. 3, pp. 358-374, June 2006.
- [85] R. Ernst, J. Henkel, and T. Benner, "Hardware-Software Cosynthesis for Microcontrollers," *IEEE Design and Test*, vol. 10, no. 4, pp. 64-75, Oct. 1993.
- [86] N. Esfahani, E. Kouroshfar, and S. Malek, "Taming Uncertainty in Self-Adaptive Software," Proc. 19th ACM SIGSOFT Symp. Foundations of Software Eng. and 13rd European Software Eng. Conf., 2011.
- [87] K. Etminani and M. Naghibzadeh, "A Min-Min Max-Min Selective Algorithm for Grid Task Scheduling," Proc. Third IEEE/IFIP Int'l Conf. Central Asia Internet, pp. 1-7, 2007.
- [88] I.D. Falco, A.D. Cioppa, U. Scafuri, and E. Tarantino, "Multiobjective Differential Evolution for Mapping in a Grid Environment," *Proc. Third Int'l Conf. High Performance Computing and Comm.*, pp. 322-333, Sept. 2007.
- [89] L. Fiondella and S.S. Gokhale, "Software Reliability with Architectural Uncertainties," Proc. IEEE Int'l Symp. Parallel and Distributed Processing, pp. 1-5, 2008.
- [90] N. FitzRoy-Dale and I. Kuz, "Towards Automatic Performance Optimisation of Componentised Systems," Proc. Second Workshop Isolation and Integration in Embedded Systems, pp. 31-36, 2009.
- [91] H. Giese, S. Burmester, F. Klein, D. Schilling, and M. Tichy, "Multi-Agent System Design for Safety-Critical Self-Optimizing Mechatronic Systems with UML," Proc. Second Workshop Agent-Oriented Methodologies, 2003.
- [92] L.D. Giovanni and F. Pezzella, "An Improved Genetic Algorithm for the Distributed and Flexible Job-Shop Scheduling Problem," *European J. Operational Research*, vol. 200, no. 2, pp. 395-408, 2010.
- [93] A. Girault, E. Saule, and D. Trystram, "Reliability versus Performance for Critical Applications," J. Parallel and Distributed Computing, vol. 69, no. 3, pp. 326-336, 2009.
- [94] B. Glaser and A. Strauss, Grounded Theory: The Discovery of Grounded Theory. de Gruyter, 1967.
- [95] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich, "Lifetime Reliability Optimization for Embedded Systems: A System-Level Approach," Proc. Int'l Workshop Reliability Aware System Design and Test, pp. 17-22, 2010.
- [96] S.S. Gokhale, "Cost Constrained Reliability Maximization of Software Systems," *Proc. Ann. Symp. Reliability and Maintainability*, pp. 195-200, 2004.
- [97] S.S. Gokhale, "Software Application Design Based on Architecture, Reliability and Cost," Proc. Int'l Symp. Computers and Comm., pp. 1098-1103, 2004.
- [98] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
- [99] K. Goševa-Popstojanova and K.S. Trivedi, "Architecture-Based Approach to Reliability Assessment of Software Systems," *Performance Evaluation*, vol. 45, nos. 2/3, pp. 179-204, 2001.
- [100] D. Greiner, B. Galván, and G. Winter, "Safety Systems Optimum Design by Multicriteria Evolutionary Algorithms," Proc. Second Int'l Conf. Evolutionary Multi-Criterion Optimization, pp. 722-736, Apr. 2003.
- [101] L. Grunske, "Formalizing Architectural Refactorings as Graph Transformation Systems," Proc. Sixth Int'l Conf. Software Eng., Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 324-329, 2005.
- [102] L. Grunske, "Identifying 'Good' Architectural Design Alternatives with Multi-Objective Optimization Strategies," Proc. 28th Int'l Conf. Software Eng., pp. 849-852, 2006.
- [103] L. Grunske, "Early Quality Prediction of Component-Based Systems—A Generic Framework," J. Systems and Software, vol. 80, no. 5, pp. 678-686, 2007.
- [104] L. Grunske and J. Han, "A Comparative Study into Architecture-Based Safety Evaluation Methodologies Using AADL's Error Annex and Failure Propagation Models," *Proc. IEEE High Assurance Systems Eng. Symp.*, pp. 283-292, 2008.

- [105] L. Grunske, P.A. Lindsay, E. Bondarev, Y. Papadopoulos, and D. Parker, "An Outline of an Architecture-Based Method for Optimizing Dependability Attributes of Software-Intensive Systems," Architecting Dependable Systems IV, R. de Lemos, C. Gacek, and A.B. Romanovsky, eds., pp. 188-209, Springer, 2006.
 [106] H. Guo, J. Huai, H. Li, T. Deng, Y. Li, and Z. Du, "ANGEL:
- [106] H. Guo, J. Huai, H. Li, T. Deng, Y. Li, and Z. Du, "ANGEL: Optimal Configuration for High Available Service Composition," *Proc. IEEE Int'l Conf. Web Services*, pp. 280-287, 2007.
- [107] R.K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems. Kluwer Academic Publishers, 1995.
- [108] A.B. Hadj-Alouane, J.C. Bean, and K.G. Murty, "A Hybrid Genetic/Optimization Algorithm for a Task Allocation Problem," J. Scheduling, vol. 2, no. 4, pp. 189-201, 1999.
- [109] G. Hamza-Lup, A. Agarwal, R. Shankar, and C. Iskander, "Component Selection Strategies Based on System Requirements' Dependencies on Component Attributes," *Proc. IEEE Second Ann. Systems Conf.*, pp. 1-5, 2008.
 [110] M. Harman, "The Current State and Future of Search Based
- [110] M. Harman, "The Current State and Future of Search Based Software Engineering," *Proc. Int'l Conf. Software Eng.*, L.C. Briand and A.L. Wolf, eds., pp. 342-357, 2007.
- [111] M. Harman, S.A. Mansouri, and Y. Zhang, "Search Based Software Engineering: A Comprehensive Analysis and Review of Trends Techniques and Applications," Technical Report TR-09-03, Dept. of Computer Science, King's College London, Apr. 2009.
- [112] M. Hashemi and S. Ghiasi, "Throughput-Driven Synthesis of Embedded Software for Pipelined Execution on Multicore Architectures," ACM Trans. Embedded Computing Systems, vol. 8, no. 2, article 11, 2009.
- [113] A.B. Hassine, S. Matsubara, and T. Ishida, "A Constraint-Based Approach to Horizontal Web Service Composition," Proc. Fifth Int'l Semantic Web Conf., pp. 130-143, 2006.
- [114] X. He, Z. Gu, and Y. Zhu, "Task Allocation and Optimization of Distributed Embedded Systems with Simulated Annealing and Geometric Programming," *Computer J*, vol. 53, no. 7, pp. 1071-1091, 2010.
- [115] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, "Adaptation of Partitioning and High-Level Synthesis in Hardware/Software Co-Synthesis," Proc. IEEE/ACM Int'l Conf. Computer-Aided Design, pp. 96-100, 1994.
- [116] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava, "Power Optimization of Variable-Voltage Core-Based Systems," *IEEE Trans. Computer Aided Design of Integrated Circuits and Systems*, vol. 18, no. 12, pp. 1702-1714, Nov. 1999.
- [117] C.-J. Hou and K.G. Shin, "Allocation of Periodic Task Modules with Precedence and Deadline Constraints in Distributed Real-Time Systems," *Proc. Real-Time Systems Symp.*, pp. 146-156, 1992.
 [118] H.-Z. Huang, J. Qu, and M.J. Zou, "Genetic-Algorithm-Based
- [118] H.-Z. Huang, J. Qu, and M.J. Zou, "Genetic-Algorithm-Based Optimal Apportionment of Reliability and Redundancy under Multiple Objectives," *IIE Trans.*, vol. 41, no. 4, pp. 287-298, Apr. 2009.
- [119] ISO/IEC Standard for Software Engineering Product Quality, Int'l Standards Organization, ISO/IEC 9126-1, first ed., 2001.
- [120] ISO/IEC Standard for Systems and Software Engineering—Recommended Practice for Architectural Description of Software-Intensive Systems, Int'l Standards Organization, ISO/IEC 42010 IEEE Std 1471-2000, first ed. 2007-07-15, p. c1-24, 2007.
- [121]S. Islam, R. Lindstrom, and N. Suri, "Dependability Driven Integration of Mixed Criticality SW Components," Proc. Ninth IEEE Int'l Symp. Object and Component-Oriented Real-Time Distributed Computing, pp. 485-495, 2006.
- [122] S. Islam and N. Suri, "A Multi Variable Optimization Approach for the Design of Integrated Dependable Real-Time Embedded Systems," Proc. Int'l Conf. Embedded and Ubiquitous Computing, pp. 517-530, 2007.
- [123] V. Izosimov, P. Pop, P. Eles, and Z. Peng, "Design Optimization of Time-and Cost-Constrained Fault-Tolerant Distributed Embedded Systems," Proc. Conf. Design, Automation and Test in Europe, pp. 864-869, 2005.
- [124] N. Jafarpour and M.R. Khayyambashi, "QoS-Aware Selection of Web Service Composition Based on Harmony Search Algorithm," Proc. 12th Int'l Conf. Advanced Comm. Technology, pp. 1345-1350, 2010.
- [125] H. Jiang, C. Chang, D. Zhu, and S. Cheng, "A Foundational Study on the Applicability of Genetic Algorithm to Software Engineering Problems," *Proc. IEEE Congress Evolutionary Computation*, pp. 2210-2219, 2007.

- [126] K. Kaya and B. Uçar, "Exact Algorithms for a Task Assignment Problem," *Parallel Processing Letters*, vol. 19, no. 3, pp. 451-465, 2009.
- [127] Y.-J. Kim and T. Kim, "A HW/SW Partitioner for Multi-Mode Multi-Task Embedded Applications," VLSI Signal Processing, vol. 44, no. 3, pp. 269-283, 2006.
- [128] A. Kishor, S.P. Yadav, and S. Kumar, "Application of a Multi-Objective Genetic Algorithm to Solve Reliability Optimization Problem," Proc. Int'l Conf. Computational Intelligence and Multimedia Applications, pp. 458-462, 2007.
- [129] B. Kitchenham, "Procedures for Performing Systematic Reviews," Technical Report TR/SE-0401, Dept. of Computer Science, Keele Univ., United Kingdom, 2004.
- [130] J.M. Ko, C.O. Kim, and I.-H. Kwon, "Quality-of-Service Oriented Web Service Composition Algorithm and Planning Architecture," J. Systems & Software, vol. 81, no. 11, pp. 2079-2090, 2008.
- [131] N. Kokash and V. D'Andrea, "Evaluating Quality of Web Services: A Risk-Driven Approach," Proc. 10th Int'l Conf. Business Information Systems, pp. 180-194, 2007.
- [132] A. Koziolek, "Automated Improvement of Software Architecture Models for Performance and Other Quality Attributes," PhD dissertation, Inst. für Programmstrukturen und Datenorganisation (IPD), Karlsruher Inst. für Technologie, Karlsruhe, Germany, July 2011.
- [133] A. Koziolek and R. Reussner, "Towards a Generic Quality Optimisation Framework for Component-Based System Models," *Proc. 14th Int'l ACM Sigsoft Symp. Component Based Software Eng.*, pp. 103-108, June 2011.
- [134] H. Koziolek, "Performance Evaluation of Component-Based Software Systems: A Survey," *Performance Evaluation*, vol. 67, no. 8, pp. 634-658, Aug. 2010.
- [135] K. Krippendorff, Content Analysis: An Introduction to Its Methodology. Sage Publications, Inc., 2004.
- [136] S. Kulturel-Konak, A.E. Smith, and D.W. Coit, "Efficiently Solving the Redundancy Allocation Problem Using Tabu Search," *IIE Trans.*, vol. 35, no. 6, pp. 515-526, 2003.
- [137] S. Kulturel-Konak, D.W. Coit, and F. Baheranwala, "Pruned Pareto-Optimal Sets for the System Redundancy Allocation Problem Based on Multiple Prioritized Objectives," J. Heuristics, vol. 14, no. 4, pp. 335-357, Aug. 2008.
- [138] S. Künzli, "Efficient Design Space Exploration for Embedded Systems," PhD dissertation, Swiss Federal Inst. of Technology, Zürich, Apr. 2006.
- [139] S. Künzli, L. Thiele, and E. Zitzler, "Modular Design Space Exploration Framework for Embedded Systems," *IEE Proc. Computers and Digital Techniques*, vol. 152, no. 2, pp. 183-192, 2005.
- [140] W. Kuo and R. Wan, "Recent Advances in Optimal Reliability Allocation," Computational Intelligence in Reliability Eng.g, Evolutionary Techniques in Reliability Analysis and Optimization, G. Levitin, ed., pp. 1-36, Springer, 2007.
- [141] Y. Laalaoui, H. Drias, A. Bouridah, and R. Ahmed, "Ant Colony System with Stagnation Avoidance for the Scheduling of Real-Time Tasks," Proc. IEEE Symp. Computational Intelligence in Scheduling, pp. 1-6, 2009.
- [142] C. Lee, S. Kim, and S. Ha, "A Systematic Design Space Exploration of MPSoC Based on Synchronous Data Flow Specification," *Signal Processing Systems*, vol. 58, no. 2, pp. 193-213, 2010.
- [143] H. Li, G. Casale, and T.N. Ellahi, "SLA-Driven Planning and Optimization of Enterprise Applications," *Proc. First Joint WOSP/ SIPEW Int'l Conf. Performance Eng.*, pp. 117-128, 2010.
- [144] J.Z. Li, J.W. Chinneck, C.M. Woodside, and M. Litoiu, "Fast Scalable Optimization to Configure Service Systems Having Cost and Quality of Service Constraints," *Proc. Sixth Int'l Conf. Autonomic Computing*, S.A. Dobson, J. Strassner, M. Parashar, and O. Shehory, eds., pp. 159-168, 2009.
- [145] R. Li, R. Etemaadi, M.T.M. Emmerich, and M.R.V. Chaudron, "An Evolutionary Multiobjective Optimization Approach to Component-Based Software Architecture Design," *Proc. IEEE Congress Evolutionary Computation*, pp. 432-439, 2011.
- [146] Y.-C. Liang and Y.-C. Chen, "Redundancy Allocation of Series-Parallel Systems Using a Variable Neighborhood Search Algorithm," *Reliability Eng. & System Safety*, vol. 92, no. 3, pp. 323-331, 2007.

- [147] Y.-C. Liang and M.-H. Lo, "Multi-Objective Redundancy Allocation Optimization Using a Variable Neighborhood Search Algorithm," J. Heuristics, vol. 16, no. 3, pp. 511-535, 2010.
- [148] Y.-C. Liang, M.-H. Lo, and Y.-C. Chen, "Variable Neighbourhood Search for Redundancy Allocation Problems," *IMA J. Management Math.*, vol. 18, no. 2, pp. 135-155, Apr. 2007.
- Math., vol. 18, no. 2, pp. 135-155, Apr. 2007.
 [149] P. Limbourg and H.-D. Kochs, "Multi-Objective Optimization of Generalized Reliability Design Problems Using Feature Models— A Concept for Early Design Stages," *Reliability Eng. & System Safety*, vol. 93, no. 6, pp. 815-828, June 2008.
- [150] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, "Efficient Symbolic Multi-Objective Design Space Exploration," Proc. Asia and South Pacific Design Automation Conf., pp. 691-696, 2008.
- [151] N.B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny, "QoS-Aware Service Composition in Dynamic Service Oriented Environments," *Proc. 10th ACM/IFIP/USENIX Int'l Conf. Middleware*, pp. 123-142, 2009.
- [152] S. Malek, "A User-Centric Approach for Improving a Distributed Software System's Deployment Architecture," PhD dissertation, Graduate School, Univ. of Southern California, 2007.
- [153] S. Malek, N. Medvidovic, and M. Mikic-Rakic, "An Extensible Framework for Improving a Distributed Software System's Deployment Architecture," *IEEE Trans. Software Eng*, vol. 38, no. 1, pp. 73-100, Jan./Feb. 2012.
- [154] S. Malek, M. Mikic-Rakic, and N. Medvidovic, "A Style-Aware Architectural Middleware for Resource-Constrained, Distributed Systems," *IEEE Trans. Software Eng*, vol. 31, no. 3, pp. 256-272, Mar. 2005.
- [155] B.S. Manoj, A. Sekhar, and C.S.R. Murthy, "A State-Space Search Approach for Optimizing Reliability and Cost of Execution in Distributed Sensor Networks," J. Parallel and Distributed Computing, vol. 69, no. 1, pp. 12-19, Jan. 2009.
- [156] T. Mantere and J.T. Alander, "Evolutionary Software Engineering, a Review," Applied Soft Computing, vol. 5, no. 3, pp. 315-331, 2005.
- [157] M. Marseguerra, E. Zato, and L. Podofillini, "Genetic Algorithms and Monte Carlo Simulation for the Optimization of System Design and Operation," *Computational Intelligence in Reliability Eng., Evolutionary Techniques in Reliability Analysis and Optimization*, G. Levitin, ed., pp. 101-150, Springer, 2007.
- [158] M. Marseguerra, E. Zio, and S. Martorell, "Basics of Genetic Algorithms Optimization for RAMs Applications," *Reliability Eng.* & System Safety, vol. 91, no. 9, pp. 977-991, 2006.
- [159] M. Marseguerra, E. Zio, and L. Podofillini, "A Multiobjective Genetic Algorithm Approach to the Optimization of the Technical Specifications of a Nuclear Safety System," *Reliability Eng. & System Safety*, vol. 84, no. 1, pp. 87-99, 2004.
- [160] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. Reussner, "A Hybrid Approach for Multi-Attribute QoS Optimisation in Component Based Software Systems," *Proc. Sixth Int'l Conf. Quality of Software Architectures*, pp. 84-101, 2010.
- [161] A. Martens, H. Koziolek, S. Becker, and R. Reussner, "Automatically Improve Software Architecture Models for Performance, Reliability, and Cost Using Evolutionary Algorithms," *Proc. First Joint WOSP/SIPEW Int'l Conf. Performance Eng.*, pp. 105-116, 2010.
- [162] A. Marzia, A.F. Francesca, A.D. Ardagna, B. Luciano, B. Carlo, C. Cinzia, C. Marco, C. Marco, D.P.F. Maria, F. Chiara, G. Simone, L. P, M. Andrea, M. Stefano, P. Barbara, R. Claudia, and T. Francesco, "The Mais Approach to Web Service Design," Proc. 10th Int'l Workshop Exploring Modelling Methods in Systems Analysis and Design, pp. 387-398, 2005.
- [163] P. McMinn, "Search-Based Software Test Data Generation: A Survey," Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105-156, 2004.
- [164] I. Meedeniya, A. Aleti, and L. Grunske, "Architecture-Driven Reliability Optimization with Uncertain Model Parameters," *J. Systems and Software*, vol. 85, no. 10, pp. 2340-2355, 2012.
- [165] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske, "Architecture-Driven Reliability and Energy Optimization for Complex Embedded Systems," Proc. Sixth Int'l Conf. Quality of Software Architectures, pp. 52-67, 2010.
- [166] N.R. Mehta, N. Medvidovic, and S. Phadke, "Towards a Taxonomy of Software Connectors," Proc. 22nd Int'l Conf. Software Eng., pp. 178-187, 2000.
- [167] D.A. Menasce, V.A.F. Almeida, and L.W. Dowdy, *Performance by Design*. Prentice-Hall, 2004.

- [168] D.A. Menascé, E. Casalicchio, and V. Dubey, "A Heuristic Approach to Optimal Service Selection in Service Oriented Architectures," *Proc. Seventh Workshop Software and Performance*, A. Avritzer, E. J. Weyuker, and C.M. Woodside, eds., pp. 13-24, 2008.
- [169] D.A. Menascé and V. Dubey, "Utility-Based QoS Brokering in Service Oriented Architectures," Proc. Int'l Conf. Web Services, pp. 422-430, 2007.
- [170] D.A. Menascé, J.M. Ewing, H. Gomaa, S. Malek, and J.P. Sousa, "A Framework for Utility-Based Service Oriented Design in SASSY," *Proc. First Joint WOSP/SIPEW Int'l Conf. Performance Eng.*, pp. 27-36, 2010.
- [171] D.A. Menascé, H. Ruan, and H. Gomaa, "QoS Management in Service-Oriented Architectures," *Performance Evaluation*, vol. 64, nos. 7/8, pp. 646-663, 2007.
- [172] Z. Michalewicz, "A Survey of Constraint Handling Techniques in Evolutionary Computation Methods," Proc. Conf. Evolutionary Programming, pp. 135-155, 1995.
- [173] M. Mikic-Rakic, S. Malek, and N. Medvidovic, "Improving Availability in Large, Distributed Component-Based Systems via Redeployment," Proc. Third Int'l Working Conf. Component Deployment, pp. 83-98, 2005.
- ment, pp. 83-98, 2005.
 [174] O. Moreira, F. Valente, and M. Bekooij, "Scheduling Multiple Independent Hard-Real-Time Jobs on a Heterogeneous Multiprocessor," Proc. Seventh ACM & IEEE Int'l Conf. Embedded Software, pp. 57-66, 2007.
- [175] I. Moser and S. Mostaghim, "The Automotive Deployment Problem: A Practical Application for Constrained Multiobjective Evolutionary Optimisation," *Proc. IEEE Congress Evolutionary Computation*, pp. 1-8, 2010.
 [176] M. Nicholson, "Selecting a Topology for Safety-Critical Real-Time
- [176] M. Nicholson, "Selecting a Topology for Safety-Critical Real-Time Control Systems," PhD dissertation, Dept. of Computer Science, Univ. of York, 1998.
- [177] M. Nicholson, A. Burns, and Y. Dd, "Emergence of an Architectural Topology for Safety-Critical Real-Time Systems," technical report, Dept. of Computer Science, Univ. of York, 1997.
- [178] M. Nicholson and D. Prasad, "Design Synthesis Using Adaptive Search Techniques and Multi-Criteria Decision Analysis," Proc. IEEE Int'l Conf. Eng. Complex Computer Systems, pp. 522-529, 1996.
- [179] H. Oh and S. Ha, "A Hardware-Software Cosynthesis Technique Based on Heterogeneous Multiprocessor Scheduling," Proc. Seventh Int'l Workshop Hardware/Software Codesign, pp. 183-187, 1999.
- [180] F. Ortmeier and W. Reif, "Safety Optimization: A Combination of Fault Tree Analysis and Optimization Techniques," Proc. Int'l Conf. Dependable Systems and Networks, pp. 651-658, 2004.
- [181] M. Ouzineb, M. Nourelfath, and M. Gendreau, "Tabu Search for the Redundancy Allocation Problem of Homogenous Series-Parallel Multi-State Systems," *Reliability Eng. & System Safety*, vol. 93, no. 8, pp. 1257-1272, 2008.
- [182] M. Ouzineb, M. Nourelfath, and M. Gendreau, "An Efficient Heuristic for Reliability Design Optimization Problems," *Computers & OR*, vol. 37, no. 2, pp. 223-235, 2010.
 [183] L. Painton and J. Campbell, "Genetic Algorithms in Optimization
- [183] L. Painton and J. Campbell, "Genetic Algorithms in Optimization of System Reliability," *IEEE Trans. Reliability*, vol. 44, no. 2, pp. 172-178, 1995.
- [184] Y. Papadopoulos and C. Grante, "Evolving Car Designs Using Model-Based Automated Safety Analysis and Optimisation Techniques," J. Systems and Software, vol. 76, no. 1, pp. 77-89, Apr. 2005.
- [185] R.L. Pattison and J. Andrews, "Genetic Algorithms in Optimal Safety Design," J. Process Mechanical Eng., vol. 213, no. 3, pp. 187-197, 1999.
 [186] J.E. Pezoa, S. Dhakal, and M.M. Hayat, "Maximizing Service
- [186] J.E. Pezoa, S. Dhakal, and M.M. Hayat, "Maximizing Service Reliability in Distributed Computing Systems with Random Node Failures: Theory and Implementation," *IEEE Trans. Parallel and Distributed Systems*, vol. 21, no. 10, pp. 1531-1544, Oct. 2010.
 [187] J.E. Pezoa and M.M. Hayat, "Task Reallocation for Maximal
- [187] J.E. Pezoa and M.M. Hayat, "Task Reallocation for Maximal Reliability in Distributed Computing Systems with Uncertain Topologies and Non-Markovian Delays," white paper, 2009.
 [188] A.D. Pimentel, C. Erbas, and S. Polstra, "A Systematic Approach
- [188] A.D. Pimentel, C. Erbas, and S. Polstra, "A Systematic Approach to Exploring Embedded System Architectures at Multiple Abstraction Levels," *IEEE Trans. Computers*, vol. 55, no. 2, pp. 99-112, Feb. 2006.
- [189] F. Pop, C. Dobre, and V. Cristea, "Genetic Algorithm for DAG Scheduling in Grid Environments," Proc. Conf. Intelligent Computer Comm. and Processing, pp. 299-305, 2009.

- [190] P. Potena, "Composition and Tradeoff of Non-Functional Attributes in Software Systems: Research Directions," Proc. Sixth Joint Meeting European Software Eng. Conf. and ACM SIGSOFT Symp. Foundations of Software Eng., pp. 583-586, 2007.
- [191] A. Pretschner, M. Broy, I.H. Krüger, and T. Stauner, "Software Engineering for Automotive Systems: A Roadmap," Proc. Conf. Future of Software Eng., pp. 55-71, 2007.
- [192] X. Qin and H. Jiang, "A Dynamic and Reliability-Driven Scheduling Algorithm for Parallel Real-Time Jobs Executing on Heterogeneous Clusters," J. Parallel and Distributed Computing, vol. 65, no. 8, pp. 885-900, 2005.
- [193] Q. Qiu and M. Pedram, "Dynamic Power Management Based on Continuous-Time Markov Decision Processes," Proc. Ann. ACM/IEEE Design Automation Conf., pp. 555-561, 1999.
- ACM/IEEE Design Automation Conf., pp. 555-561, 1999.
 [194] Q. Qiu, Q. Wu, and M. Pedram, "Dynamic Power Management of Complex Systems Using Generalized Stochastic Petri Nets," Proc. Ann. ACM/IEEE Design Automation Conf., pp. 352-356, 2000.
- [195] O. Räihä, "A Survey on Search-Based Software Design," Computer Science Rev., vol. 4, no. 4, pp. 203-249, 2010.
- [196] O. Räihä, K. Koskimies, and E. Mäkinen, "Genetic Synthesis of Software Architecture," Technical Report D-2008-4, Dept. of Computer Science, Univ. of Tampere, 2008.
- [197] O. Räihä, K. Koskimies, and E. Mäkinen, "Scenario-Based Genetic Synthesis of Software Architecture," Proc. Fourth Int'l Conf. Software Eng. Advances, pp. 437-445, 2009.
- [198] O. Räihä, E. Mäkinen, and T. Poranen, "Using Simulated Annealing for Producing Software Architectures," Proc. 11th Ann. Conf. Companion on Genetic and Evolutionary Computation Conf., pp. 2131-2136, July 2009.
- [199] Y. Ren and J. Bechta Dugan, "Design of Reliable Systems Using Static and Dynamic Fault Trees," *IEEE Trans. Reliability*, vol. 47, no. 3, pp. 234-244, Sept. 1998.
- [200] H. Rezaie, N. Nematbakhsh, and F. Mardukhi, "A Multi-Objective Particle Swarm Optimization for Web Service Composition," Proc. Second Int'l Conf. Networked Digital Technologies, pp. 112-122, 2010.
- [201] J. Riauke and L.M. Bartlett, "An Offshore Safety System Optimization Using an Spea2-Based Approach," J. Risk and Reliability, vol. 222, no. 3, pp. 271-282, 2008.
- [202] F. Rosenberg, M.B. Müller, P. Leitner, A. Michlmayr, A. Bouguettaya, and S. Dustdar, "Metaheuristic Optimization of Large-Scale QoS-Aware Service Compositions," *Proc. IEEE Int'l Conf. Services Computing*, pp. 97-104, 2010.
- [203] Architecture Analysis and Design Language (AADL), SAE Standards, vol. AS5506, no. 1, 2004.
- [204] D. Salazar, C.M. Rocco, and B.J. Galvan, "Optimization of Constrained Multiple-Objective Reliability Problems Using Evolutionary Algorithms," *Reliability Eng. & System Safety*, vol. 91, no. 9, pp. 1057-1070, 2006.
- [205] T. Saxena and G. Karsai, "MDE-Based Approach for Generalizing Design Space Exploration," Proc. 13th Int'l Conf. Model Driven Eng. Languages and Systems, pp. 46-60, 2010.
- [206] C. Seo, S. Malek, and N. Medvidovic, "An Energy Consumption Framework for Distributed Java-Based Systems," Proc. 22nd IEEE/ACM Int'l Conf. Automated Software Eng., pp. 421-424, 2007.
- [207] C. Serban, A. Vescan, and H.F. Pop, "A New Component Selection Algorithm Based on Metrics and Fuzzy Clustering Analysis," *Proc. Fourth Int'l Conf. Hybrid Artificial Intelligence Systems*, pp. 621-628, 2009.
- [208] S. Shan and G.G. Wang, "Reliable Design Space and Complete Single-Loop Reliability-Based Design Optimization," *Reliability Eng. & System Safety*, vol. 93, no. 8, pp. 1218-1230, 2008.
- [209] V.S. Sharma and M. Agarwal, "Ant Colony Optimization Approach to Heterogeneous Redundancy in Multi-State Systems with Multi-State Components," *Proc. Int'l Conf. Reliability, Maintainability and Safety*, pp. 116-121, 2009.
- [210] V.S. Sharma and P. Jalote, "Deploying Software Components for Performance," Proc. 11th Int'l Symp. Component-Based Software Eng., pp. 32-47, 2008.
- [211] Y. Shin, K. Choi, and T. Sakurai, "Power Optimization of Real-Time Embedded Systems on Variable Speed Processors," Proc. IEEE/ACM Int'l Conf. Computer-Aided Design, pp. 365-368, 2000.
- [212] T. Simunic, L. Benini, P. Glynn, and G.D. Micheli, "Dynamic Power Management for Portable Systems," *Proc. ACM MobiCom* '00, pp. 11-19, 2000.

- [213] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, "Multiprocessor Resource Allocation for Throughput-Constrained Synchronous Dataflow Graphs," *Proc. IEEE Design Automation Conf.*, pp. 777-782, 2007.
- [214] N. Suri, A. Jhumka, M. Hiller, A. Pataricza, S. Islam, and C. Sârbu, "A Software Integration Approach for Designing and Assessing Dependable Embedded Systems," *J. Systems and Software*, vol. 83, no. 10, pp. 1780-1800, 2010.
- [215] H.A. Taboada, F. Baheranwala, D.W. Coit, and N. Wattanapongsakorn, "Practical Solutions for Multi-Objective Optimization: An Application to System Reliability Design Problems," *Reliability Eng. & System Safety*, vol. 92, no. 3, pp. 314-322, 2007.
- [216] H.A. Taboada and D.W. Coit, "Data Clustering of Solutions for Multiple Objective System Reliability Optimization Problems," *Quality Technology & Quantitative Management*, vol. 4, pp. 35-54, 2007.
- [217] H.A. Taboada, J.F. Espiritu, and D.W. Coit, "MOMS-GA: A Multi-Objective Multi-State Genetic Algorithm for System Reliability Optimization Design Problems," *IEEE Trans. Reliability*, vol. 57, no. 1, pp. 182-191, Mar. 2008.
- [218] S.-A. Tahaee and A.H. Jahangir, "A Polynomial Algorithm for Partitioning Problems," ACM Trans. Embedded Computing Systems, vol. 9, no. 4, pp. 34-44, Mar. 2010.
- [219] M. Tang and L. Ai, "A Hybrid Genetic Algorithm for the Optimal Constrained Web Service Selection Problem in Web Service Composition," Proc. IEEE Congress Evolutionary Computation, pp. 1-8, 2010.
- [220] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, "Design Space Exploration of Network Processor Architectures," Proc. First Workshop Network Processors Eighth Int'l Symp. High-Performance Computer Architecture, Feb. 2002.
- [221] Z. Tian, G. Levitin, and M.J. Zuo, "A Joint Reliability-Redundancy Optimization Approach for Multi-State Series-Parallel Systems," *Reliability Eng. & System Safety*, vol. 94, no. 10, pp. 1568-1576, 2009.
- [222] K. Tindell, A. Burns, and A.J. Wellings, "Allocating Hard Real-Time Tasks: An NP-hard Problem Made Easy," *Real-Time Systems*, vol. 4, no. 2, pp. 145-165, 1992.
- [223] A.C. Torres-Echeverria, S. Martorell, and H.A. Thompson, "Design Optimization of a Safety-Instrumented System Based on RAMS Plus C Addressing IEC 61508 Requiriments and Diverse Redundancy," *Reliability Eng. & System Safety*, vol. 94, no. 2, pp. 162-179, Feb. 2009.
- [224] N. Trcka, M. Hendriks, T. Basten, M. Geilen, and L.J. Somers, "Integrated Model-Driven Design-Space Exploration for Embedded Systems," Proc. Int'l Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation, pp. 339-346, 2011.
- [225] J.I. van Hemert and T. Bäck, "Robust Parameter Settings for Variation Operators by Measuring the Resampling Ratio: A Study on Binary Constraint Satisfaction Problems." J. Heuristics, vol. 10, no. 6, pp. 629-640, 2004.
- [226] Y. Vanrompay, P. Rigole, and Y. Berbers, "Genetic Algorithm-Based Optimization of Service Composition and Deployment," *Proc. Third Int'l Workshop Services Integration in Pervasive Environments*, pp. 13-18, 2008.
- [227] A. Vescan, "A Metrics-Based Evolutionary Approach for the Component Selection Problem," Proc. 11th Int'l Conf. Computer Modelling and Simulation, pp. 83-88, 2009.
- [228] A. Vescan and C. Grosan, "A Hybrid Evolutionary Multiobjective Approach for the Component Selection Problem," Proc. Third Int'l Workshop Hybrid Artificial Intelligence Systems, pp. 164-171, 2008.
- [229] A.F. Vescan, "Construction Approaches for Component-Based Systems," PhD thesis, Babesi Bolyai Univ., 2008.
- [230] N.M. Villegas, H.A. Müller, G. Tamura, L. Duchien, and R. Casallas, "A Framework for Evaluating Quality-Driven Self-Adaptive Software Systems," Proc. Int'l Symp. Software Eng. Adaptive and Self-Managing Systems, pp. 80-89, 2011.
- [231] H. Wada, P. Champrasert, J. Suzuki, and K. Oba, "Multiobjective Optimization of SLA-Aware Service Composition," Proc. IEEE Congress Services, pp. 368-375, 2008.
- [232] S.A. Wadekar and S.S. Gokhale, "Exploring Cost and Reliability Tradeoffs in Architectural Alternatives Using a Genetic Algorithm," Proc. 10th Int'l Symp. Software Reliability Eng., pp. 104-114, 1999.
- [233] G. Wang, W. Gong, and R. Kastner, "A New Approach for Task Level Computational Resource Bi-Partitioning," Proc. 15th Int'l Conf. Parallel and Distributed Computing and Systems, 2003.

- [234] N. Wattanapongskorn and D.W. Coit, "Fault-Tolerant Embedded System Design and Optimization Considering Reliability Estimation Uncertainty," *Reliability Eng. & System Safety*, vol. 92, no. 4, pp. 395-407, 2007.
- [235] T. Wiangtong, P.Y.K. Cheung, and W. Luk, "Tabu Search with Intensification Strategy for Functional Partitioning in Hardware-Software Codesign," Proc. 10th Ann. IEEE Symp. Field-Programmable Custom Computing Machines, pp. 297-298, 2002.
- [236] W. Wiesemann, R. Hochreiter, and D. Kuhn, "A Stochastic Programming Approach for QoS-Aware Service Composition," *Proc. Eighth IEEE Int'l Symp. Cluster Computing and the Grid*, pp. 226-233, 2008.
- [237] E. Yang, A.T. Erdogan, T. Arslan, and N. Barton, "Multi-Objective Evolutionary Optimizations of a Space-Based Reconfigurable Sensor Network Under Hard Constraints," Proc. ECSIS Symp. Bio-Inspired, Learning, and Intelligent Systems for Security, pp. 72-75, 2007.
- [238] W.-C. Yeh and T.-J. Hsieh, "Solving Reliability Redundancy Allocation Problems Using an Artificial Bee Colony Algorithm," *Comp- & Operations Research*, vol. 38, no. 11, pp. 1465-1473, 2010.
- [239] H. Youness, M. Hassan, K. Sakanushi, Y. Takeuchi, M. Imai, A. Salem, A.-M. Wahdan, and M. Moness, "Optimization Method for Scheduling Length and the Number of Processors on Multi-processor Systems," *Proc. Int'l Conf. Computer Eng. Systems*, pp. 231-236, 2009.
- [240] M.F. Younis, K. Akkaya, and A. Kunjithapatham, "Optimization of Task Allocation in a Cluster-Based Sensor Network," *Proc. IEEE Int'l Symp. Computers and Comm.*, pp. 329-334, 2003.
- [241] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, "QoS-Aware Middleware for Web Services Composition," *IEEE Trans. Software Eng.*, vol. 30, no. 5, pp. 311-327, May 2004.
- [242] C. Zhang, S. Su, and J. Chen, "DiGA: Population Diversity Handling Genetic Algorithm for QoS-Aware Web Services Selection," *Computer Comm.*, vol. 30, no. 5, pp. 1082-1090, 2007.
- [243] W. Zhang, Y. Yang, S. Tang, and L. Fang, "QoS-Driven Service Selection Optimization Model and Algorithms for Composite Web Services," *Proc. Ann. Int'l Computer Software and Applications Conf.*, pp. 425-431, 2007.
- [244] R. Zhao and B. Liu, "Redundancy Optimization Problems with Uncertainty of Combining Randomness and Fuzziness," *European* J. Operational Research, vol. 157, no. 3, pp. 716-735, 2004.
 [245] T. Zheng and C.M. Woodside, "Heuristic Optimization of
- [245] T. Zheng and C.M. Woodside, "Heuristic Optimization of Scheduling and Allocation for Distributed Systems with Soft Deadlines," Proc. 13th Int'l Conf. Computer Performance Evaluations, Modelling Techniques and Tools, pp. 169-181, 2003.

Aldeida Aleti received the PhD degree in artificial intelligence and software engineering from the Swinburne University of Technology, Melbourne, in 2012. She is a lecturer at Monash University in Melbourne, Australia. She is currently a member of the Centre for Research in Intelligent Systems and the Optimization Lab at Monash University. Her research interests include modeling and optimization of combinatorial systems.

Barbora Buhnova received the master's degree in economics from Mendel University, Czech Republic, and the PhD degree in computer science from Masaryk University, Czech Republic, for application of formal methods in component-based software engineering. She continued with related topics as a postdoctoral researcher at the University of Karlsruhe, Germany, and the Swinburne University of Technology, Australia. She is an assistant professor at

the Masaryk University, Czech Republic. Besides construction of formal models of software systems and their quantitative analysis, she is attracted to modeling of socio-economic systems.

Lars Grunske received the PhD degree in computer science from the Hasso-Plattner-Institute for Software Systems Engineering, University of Potsdam, Germany, in 2004. He is a junior professor at the University of Kaiserslautern, Germany. He was a Boeing postdoctoral research fellow at the University of Queensland, Australia, and a lecturer at the Swinburne University of Technology, Australia. He has active research interests in the areas of model-

ing and verification of systems and software. His main focus is on architecture optimization and model-based dependability evaluation of complex software intensive systems.

Anne Koziolek studied computer science at the University of Oldenburg, Germany, and the University of West Georgia, and graduated with a diploma degree in 2007. She received the PhD degree from the Karlsruhe Institute of Technology (KIT), Germany, in 2011. She is a postdoctoral researcher at the University of Zurich, Switzerland. Her research interests include the iterative handling of software architecture and quality requirements, quality requirements prior-

itization, software quality prediction, model-based automated improvement of software quality, and empirical studies on all kinds of software architecture and requirements engineering topics. She is a member of the IEEE and the IEEE Computer Society.

Indika Meedeniya received the BSc degree in electronic and telecommunication engineering from the University of Moratuwa, Sri Lanka, in 2005 and the PhD degree from the Swinburne University of Technology, Melbourne, Australia, in 2012. He is a research fellow at the Swinburne University of Technology, Melbourne, Australia. He was a tech-lead in developing performanceand reliability-critical software at Millennium IT until 2008. His research interests include model-

ing and architecture-based evaluation of probabilistic quality attributes, software architecture optimization, and methods to deal with uncertainty in design-time estimates.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.