
 Procedia Computer Science   16  ( 2013 )  796 – 805 

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology
doi: 10.1016/j.procs.2013.01.083 

Conference on Systems Engineering Research (CSER’13) 
Eds.: C.J.J. Paredis, C. Bishop, D. Bodner, Georgia Institute of Technology, Atlanta, GA, March 19-22, 2013.  

A Literature Survey on International Standards for Systems 
Requirements Engineering 

Florian Schneidera*, Brian Berenbachb 
aChair for Applied Software Engineering, Technische Universität München, Boltzmannstr. 3, Garching, 85748, Germany 

Siemens Corporation, Corporate Technology, 755 College Road East, Princeton 08540, USA 

 

Abstract 

Since 2005, the international organization for standardization (ISO) has published a wealth of standards and reports that deal with 
requirements engineering for systems. ISO/IEC/IEEE 24765 defines a standard vocabulary for systems and software engineering. 
ISO/IEC 24766 defines requirements for requirements engineering tools. ISO/IEC/IEEE 29148 describes processes for 
requirements engineering. The ISO 25000 series targets product quality metrics. This review paper shall provide a high-level 
description of each of these standards and highlights their interconnection. It thus provides to the systems engineer some 
guidance as to the relevance of those standards to his or her work. 
© 2013 The Authors. Published by Elsevier B.V. 
Selection and/or peer-review under responsibility of Georgia Institute of Technology. 

Keywords: systems engineering; requirements engineering; international standards 

1. Introduction 

There are a plethora of standards available for systems engineering, published by the International Organization 
for Standardization (ISO), the International Electrotechnical Commission (IEC), and the Institute of Electrical and 
Electronics Engineers (IEEE), Many of the standards cross-reference each other, and some are specific to a domain, 
e.g. software vs. systems. Furthermore, as technology changes, some of the standards become obsolete or outdated. 
For example, ISO/IEC Technical Report 24766 is a nice guideline for evaluating requirements engineering tools, yet 
it does not consider support for product lines (e.g. capture of variation points). This paper provides an overview of 
some of the most common standards that systems engineers have to work with today, including areas where the 
authors identified potential weaknesses. 
The standards described here often contain project execution requirements (i.e. requirements governing how a 
product is built) in projects with legal authorities, showing up in public requests for proposals. These often end up in 
contracts, and the systems engineer then must be able to show that the development process and the specifications 

 

* Corresponding author. Tel.: +49 89 289 18233; fax: +49 89 289 18207. 
E-mail address: florian.schneider@in.tum.de 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology



797 Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

produced are compliant with the requested standards. So a certain familiarity with these standards is of benefit to the 
engineer, and more so if the engineer has plans to become a certified requirements engineer (e.g. through the 
International Council on Systems Engineering (INCOSE) or the International Requirements Engineering Board 
(IREB)). With ISO, IEC, and IEEE harmonizing their standards and due to the complexity of the domain, it is hard 
not to get confused, with the various relationships between standards. 
We chose standards that define the most important terms of requirements engineering, impose requirements on the 
engineering process, the tools used therein and the artifacts created with the tools in the process. As they are 
relatively new and thus might not be known by many, we also added two standards regarding quality requirements. 
The relationships between the chosen standards are shown in Figure 1.  

 

ISO/IEC/IEEE 15288:2002
Systems and software engineering 
— System life cycle processes

ISO/IEC/IEEE 29148:2011
Systems and software engineering 
— Life cycle processes — 
Requirements engineering

ISO/IEC/IEEE 12207:2008
Systems and software engineering 
— Software life cycle processes

ISO/IEC/IEEE 24765:2010
Systems and software engineering 
— Vocabulary

IEEE 1220 (ISO /IEC 26702)
Systems engineering — Application 
and management of the systems 
engineering process

ISO/IEC TR 24766:2010
Information technology — 
Systems and software 
engineering — Guide for 
requirements engineering tool 
capabilities

ISO/IEC 25010:2011
Systems and software engineering 
— Systems and software Quality 
Requirements and Evaluation
(SQuaRE) — System and 
software quality models

ISO/IEC 25030:2007
Software engineering — 
Software product Quality 
Requirements and 
Evaluation (SQuaRE) — 
Quality requirements

uses terms of

aligned with

aligned with

contributes to 

contributes to 

contributes to 

uses 
terms of

uses 
terms 
of

aligned with

aligned with

can be used 
in conjunction 
with

can be used in 
conjunction with

uses categories of

 

Figure 1: Relationships of the standards described in this paper 

Section 2 provides a description of each of the standards we chose and a critical discussion. Section 3 provides some 
general remarks regarding the relationships between standards. A critique that is applicable to the selected standards 
is given in section 4. 



798   Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

2. Description of Standards 

For each standard we provide a short summary of its content, where possible mirroring the introductory sections of 
the standard itself. Subjective commentary suggests other points that should be of interest to the systems 
requirements engineering community. A short section that outlines related standards follows the summary. A critical 
discussion of the standard from the author’s point of view is then given, sometimes as a discussion between the two 
authors. 

2.1. ISO/IEC/IEEE 24765:2010 [1] 

This standard provides a standard vocabulary for systems and software engineering. Included are definitions of a 
number of terms that are important to requirements engineering. A restatement and discussion of all such terms 
would go beyond the scope of the paper1. The authors would like however to share their own interpretation of the 
requirements-related parts. We extracted all the terms with the suffix “requirement” and mapped them to classes or 
properties of classes. A Unified Modeling Language (UML) class diagram notation was chosen to visualize this. As 
the standard does not make any taxonomical statements, the figure is merely our interpretation of the standard. The 
standard does only state which terms are related to each other (e.g. “customer requirement is in the cf. section of 
“contractual requirement”), but not exactly how. According to Figure 2, requirements are either product 
requirements or non-technical requirements. Product requirements either are physical, functional, or non-functional. 
Other requirements terms were mapped to Boolean attributes, where a Boolean attribute can have only a true or false 
value. For example, the attribute “user” will be either true or false and can be used to search the requirements in a 
database to find any requirements that were expressed by presumable users of the system. With these attributes, any 
requirement could be marked whether it was allocated, stated by a customer, stated by a user, part of a contract, or 
optional. Product requirements can be marked whether they are related to design or implementation, or affect the 
interface of the system. One term (“derived requirement”) was mapped to a relationship: Any requirement can be 
derived from another. 

allocated: Boolean
contractual: Boolean
customer: Boolean
user: Boolean
optional: Boolean

Requirement

design: Boolean
implementation: Boolean
interface: Boolean

Product
Requirement

Functional
Requirement

Nonfunctional
Requirement

Nontechnical
Requirement

Physical
Requirement

derivationSource

derivationTarget

 

Figure 2: Requirements taxonomy that we derived from ISO/IEC 24765:2010 

 

1 The vocabulary itself is maintained in a database accessible through www.computer.org/sevocab 



799 Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

2.1.1. Relationships to other standards 
ISO/IEC/IEEE 24765:2010 obsoletes IEEE’s 630.12 of 1990, the IEEE Standard Glossary of Software 

Engineering Terminology. Apart from that standard, several other ISO and IEEE standards contribute to the 
vocabulary, among them the standards 12207, 15288, and 26702. With the existence of the new vocabulary 
standard, other standards as the Guide to the Systems Engineering Body of Knowledge (SEBoK) [2] can refer to it. 

2.1.2. Critical discussion 
A point of dispute among the authors was whether a physical requirement should be interpreted as its own class 

of requirements, or whether it should rather be mapped to a Boolean attribute of ProductRequirement. The way it is 
presented in Figure 2, it only makes sense if physical requirements describe, for example, desired material or size of 
a product or product part. This way, physical requirements would be clearly separated from functional requirements 
(that describe desired functions) and non-functional requirements (that describe desired quality of the functions). 

2.2. ISO/IEC TR 24766:2009 [3] 

ISO/IEC TR 24766 is a technical report that provides a guide for the evaluation of requirements engineering 
tools. It has a short definition of terms, a brief mention of the processes needed to perform requirements 
engineering, and a reasonably comprehensive discussion of needed tool capabilities for each process. The report 
does a nice job of describing the capabilities that the tool must have in order to effectively support each process (e.g. 
risk analysis, elicitation, verifying contract compliance, etc.) without falling into the trap of describing 
implementation. Finally, there is a nice summary of requirements quality characteristics in annex A. 

2.2.1. Relationships to other standards 
As requirements engineering crosscuts so many areas, there is a bibliography listing related ISO/IEC standards, 

with an emphasis on SquaRE (Software product Quality Requirements and Evaluation). 

2.2.2. Critical discussion 
The technical report is well written and clear. However, there are two omissions, which may or may not impact 

an organization using the report as a checklist for tool selection. First, there is no discussion of extensibility. Most 
complex engineering tools today do not provide all needed functionality “out of the box” and require custom 
scripting to meet project needs. Moreover, for tool chain integration, it is usually necessary to “plug” a requirements 
tool into a tool chain using software code or scripts as the glue between tools to automate the transfer of 
information, e.g. tracing from requirements tool to design tool to testing tool. Most of the commercial RE tools on 
the market do provide custom programming or scripting facilities, however some checklist for what might be needed 
would be helpful. The second omission is that of product line support. For those potential users of an RE tool who 
do not have product lines, this may not be an issue. Many systems engineers, however, need to document variation 
points in their products in order to support the testing of different configurations that may be deployed in a single 
product or as part of a product line. For example, a model of a car may be ordered with a manual or automatic 
transmission. Depending on which transmission a customer orders, certain other components need to be specified. 
To ensure the proper documentation of variations for manufacturing and testing, a requirements database may need 
to support product lines or at the least product variations. Unfortunately, 24766 makes no mention of such 
capabilities. 

2.3. ISO/IEC 25010:2011 [4] 

ISO 25010 establishes a quality model for software products and software-intensive systems that guides the 
formulation of quality requirements and metrics to measure their satisfaction[4]. This standard is a revision of 
ISO/IEC 9126-1:2001[5]. The standard defines two quality models, which describe desired quality characteristics of 
a system. The two models described in this standard are the “quality in use” model and the “product quality” model. 
The quality in use model consists of five characteristics (effectiveness, efficiency, satisfaction, freedom from risk, 
and context coverage). It relates to the aspects of the usage of a system by a user, in a particular context. The 
product quality model consists of eight characteristics (functional suitability, performance efficiency, compatibility, 



800   Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

usability, reliability, security, maintainability and portability). It relates to static properties of the software product 
and dynamic properties of the computer system. The quality characteristics may be seen as categories that can be 
used to characterize quality requirements. Quality requirements describe the desired quality of a system. The 
effective quality of a system can be measured as follows. First, for every quality characteristic (for which a quality 
requirement was formulated) a set of properties of the system, that together cover the characteristic in question, has 
to be identified. For each of the properties a measure has to be computed and a derived quality measure for the 
combination of these values. 

2.3.1. Relationships to other standards 
The characteristics defined by this standard form the basis for the formulation of quality requirements (see ISO 

25030 ) and the measurement of these requirements (see ISO 25040 ). 

2.3.2. Critical discussion 
As the software product quality might also be affected by the way the project creating the product is organized, 

one might argue that the standard does not take non-technical requirements as formulated by ISO 24765 into 
account. 

2.4. ISO/IEC 25030:2007 [6] 

This standard in effect states requirements for quality requirements models or specifications. It does so by 
formulating requirements for the expression of requirements, requirements regarding the contents of a requirements 
document, and requirements regarding activities to be performed when creating such a document. The intention as 
mentioned in the introduction is to “to improve the quality of software quality requirements”. While officially 
targeting only quality requirements, the standard requires a quality requirement specification to include other parts 
as well: a list of stakeholders, the system boundaries, and the software boundaries. It so adapts the general model of 
the other ISO 250xx standards: Stakeholders may be interested in complex systems, which may not consist of 
software alone. So it is important to decide when analysing stakeholder needs and mapping them to quality 
requirements which requirements affect which part of the system. Implicit to this model is the process of mapping 
the stakeholder needs to quality requirements. Therefore the standard requires quality requirement specifications to 
describe all stakeholders of a product with the roles they can play and with the needs they have. Furthermore, the 
boundaries of the system and the boundaries of the software being part of a system shall be documented. The 
relationship of stakeholder needs to quality requirements needs to unambiguous, so that it is clear which requirement 
was derived from which need. It should also be clear which function is constrained by the quality requirement, so 
there needs to be an unambiguous relationship between a functional requirement and its corresponding quality 
requirements. As stakeholders often can’t tell the requirements engineer about all the needs they have, the standard 
makes clear that quality requirements may exist that were found without a preceding formulation of a stakeholder 
need – but should nevertheless be documented. Stakeholders shall approve the quality requirements then, and 
approval shall be documented. Very important is the definition of the term quality requirement: A requirement either 
is typed a “quality in use requirement” or a “software product quality requirement”. Then it becomes a specification 
of a quality measure (measuring quality of one of the characteristics of the given category) together with the 
specification of a target value. It is very important that software quality requirements shall be identifiable (important 
for traceability) and measurable (important for verification). 

2.4.1. Relationships to other standards 
The ISO 25030 was among the first of the ISO-9126 follow-ups to be published. Because it was finished earlier 

than the ISO 25010, it has relics referring to the ISO 9126-1 quality model. It seems like the ISO itself is 
considering redrawing or revising that standard1. So the next version of the ISO 25030 will be more aligned with 

 

1 See http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35755 (Last access: October 1st, 2012). The state of the 
standard upon last access of the webpage was 90.60, which means that the ISO has currently had a vote to decide whether the standard needs 
revision. 



801 Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

ISO 25010. As an important part of a quality requirement is the quality measure, the standard is tightly coupled to 
the ISO 2502x standards that give guidance on how to construct and document quality measures. 

2.4.2. Critical discussion 
The requirements regarding the formulation of quality requirements aren’t always specific to quality requirements. 
Those that are not specific could as well be part of ISO 29148, which also imposes requirements for “good 
requirements specifications”. Second, the standard is very much focused on software product requirements. Though 
it has a model of systems and software, it does not say anything specific about system requirements, which may 
cause problems when using it as the basis of a requirements process for system construction. 

ISO/IEC/IEEE 15288 [8] (and IEEE 1220 (ISO/IEC 26702) [9]) 

15288 is a foundation standard that focuses on system life cycle processes, as opposed to its sister standard 12207 
which focuses on software standards. Both take the approach of defining process requirements, e.g. “The process 
shall…” It takes a high level view of processes, providing, for the most part, a comprehensive yet terse description 
of the processes involved in systems engineering. Note that the systems engineering body of knowledge (SEBOK) 
[2] and the INCOSE Systems Engineering Handbook [10] are closely aligned with 15288. Systems engineers 
studying for INCOSE certification are encouraged to become familiar with 15288. 15288 describes the system 
lifecycle in detail, with each necessary or optional step of a process listed, describing what needs to be done but not 
how it is to be done. While the system breakdown process is iterative, the only types of elements are “system” and 
“system element”, combined recursively. The lack of further decomposition may be somewhat frustrating to an 
organization looking for more layers of definition. 

 

2.5.1. Relationships to other standards 

Figure 3: Comparison of 15288 and 26702 Process View 



802   Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

15288 is closely related to IEEE 1220 (ISO/IEC 26702) as they both cover elements of the same material with a 
different focus. Annex F lists the relationship of 15288 to other standards in some detail, including IEEE standards 
1220, 1228, 1233, 1362 and 1471, and ISO/IEC/IEEE 12207. 

2.5.2. Critical discussion 
While 15288 holistically covers the entire lifecycle (including acquisition), for those engineers building a product 

IEEE 1220 may be more informative. 15288, as mentioned above, only has “system” and “system element”, 
hierarchically decomposed with the part under a “system element” being another system. IEEE 1220 provides a 
finer grain of decomposition, defining System->Product->Subsystems->Assemblies->Components. From that point, 
there are two alternate decomposition strategies, Components->Subcomponents->Parts, or alternatively, 
Subassemblies->Subcomponents->Parts. At this point recursive decomposition is possible. Interestingly, while 1220 
defers to other standards for information about requirements processes, 15288 devotes several pages to defining 
requirements processes. So 15288 and 1220 complement each other. The company defining an organizational 
systems engineering process will need to be clear about which standards the approach (or a hybrid) was derived 
from. However, as mentioned elsewhere, standards do not provide the “how to”, but merely a checklist for those 
engineers wanting to ensure a comprehensive set of processes. 

2.6. ISO/IEC 12207 [11] 

 12207 is a foundation standard that focuses on software life cycle processes, as opposed to its sister standard 
15288 which focuses on system standards. As with 15288, processes are defined that are applicable to the entire 
project/product (e.g. project metrics, requirements, etc.) and software specific processes (e.g. software requirements 
analysis). The process sets are defined as tailorable models, with Annex A providing tailoring guidelines. Annex B 
contains a reference model that can be used to perform process assessments of project or organization software 
processes.  

2.6.1. Relationships to other standards 
Since a software product or component may be part of a larger system, Annex D provides some guidance for 

process alignment, i.e. the alignment of the overall systems processes with the subset used for software 
development. Annex G provides a comprehensive description of the relationship of 12207 to other related IEEE 
processes, e.g. 1362 (describes concept of operations).  

2.6.2. Critical discussion 
12207 is quite comprehensive, and, unlike some earlier standards, provides guidance for the acquisition of 

software as well as the construction process. Processes are defined using sets of one-line statements for each of the 
atomic processes. So while the engineer will see a line item “Risk management policies describing the guidelines 
under which risk management is to be performed shall be defined”, there will be no clue how to create the 
definitions. Furthermore, there are no inline references or footnotes to other documents, standards or procedures that 
might help in understanding how to define the risk management policies. So 12207 makes for a nice checklist to 
ensure that required processes are in place, but provides little or no guidance as to “how to” create and execute 
processes. 12207 is for use by experienced staff setting up or assessing process, but typically would not be 
recommended as a starting point for the novice. 

2.7. ISO/IEC/IEEE 29148:2011 [12] 

In short, the standard does not only define the processes of the requirements engineering activity, it also 
formulates requirements for requirements documentation. For the purpose of this paper, it is especially worth noting 
that the standard provides guidelines for applying the requirements-related processes of the 12207 and 15288 
standards. This standard might be considered to be the mother of all “requirements standards” as it gives a rather 
extensive description of the domain of requirements engineering. All the other standards can be used in conjunction 
with this one. The standard starts with defining the important concepts of requirements engineering. If first defines 
the term requirements engineering itself. Then it talks about stakeholders and that the stakeholders’ needs should be 



803 Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

transformed into requirements. It tells us what a “well-formed requirement” is, proposes three templates that can be 
used to formulate textual requirements, and provides characteristics of “good requirements” and “good requirements 
specifications”. Apart from the “dos”, it also provides some “don’ts” regarding requirements language (e.g. avoid 
subjective language). Subsequently, requirements types (including the quality requirement type of the ISO 250xx 
standards) are proposed. To conclude the concept sections, the relationship between requirements processes and the 
resulting “requirements information items”, especially their scope, is highlighted. The standard then points our 
attention to the processes of requirements engineering. Here we can see that the two referred to standards 15288 and 
12207 are not obsoleted and reformulated, but annotated and detailed. So the 29148 can be seen as an elaboration of 
the two standards. 

2.7.1. Relationships to other standards 
The 29148 standard is a “harmonization standard” that results from the harmonization of standards 

ISO/IEC/IEEE 12207:2008, ISO/IEC/IEEE 15288:2008, ISO/IEC/IEEE 15289:2011, ISO/IEC TR 19759, IEEE Std 
830, IEEE Std 1233, IEEE Std 1362, ISO/IEC TR 24748-1, and ISO/IEC/IEEE 24765. 

2.7.2. Critical discussion 
It seems that the ISO/IEC/IEEE 29148:2011 is actually the standard that every requirements engineer should be 

familiar with. It is not only a collection of the most basic principles of requirements engineering, it also hints at how 
high-quality requirements can be achieved. So it is a good starting point for knowledge acquisition as it relates to 
other standards that detail certain aspects of requirements engineering (e.g. it points to the 250xx series for quality 
requirements). Finally, requirements engineers do not need to read the standards 15288 and 12207, as all the tasks 
relevant to requirements engineering are cited in original form and then elaborated. The standard however is a little 
bit short with the reader regarding categories of requirements. As this still seems to be a point of discussion in the 
research community, the standard would have benefited by providing stronger statements regarding a basic useful 
set of requirements categories (e.g. would three categories, namely functional, non-functional, and other, suffice?). 
The standard weakens this part by only saying what examples of requirements types are (“important examples” 
nonetheless, but it would be a stronger statement to say “these are the types of requirements that are useful). Last, 
we are a bit sceptical whether every comment on the requirements of 15288 and 12207 actually helps in addressing 
these requirements. This might be something only experience can show. E.g. the verification of requirements can be 
accomplished by traceability, but research shows that traceability still is a tedious thing to achieve. So the 29148 
does not fully address the criticism we discussed regarding the 15288 and 12207 standards. 

3. Relationships between standards 

Some relationships are historical, stating which standard was revised by which standard. Other relationships 
express a shared vocabulary. Then adherence to one standard can be required in a process described by another. As 
all standards we found heavily rely on text, we would like to encourage the use of graphics more heavily in 
standards. Especially the visualization of the shared vocabulary (e.g. as in Figure 4) or historical aspects (e.g. as in 
Figure 5) could be helpful. Figure 4 shows, for the 29148 standard, which other standards contribute terms (solid 
line arrow) and from which standards terms were adapted (dotted line arrow). A book icon [13] was used to clarify 

15288:2002

29148:2011

12207:2008
15289:2006

INCOSE SEHbk 3.2:2010

IEEE Std 1362-1998

ANSI/AIAA G-043-1992
24765:2010

EIA 632:1999

IEEE Std 1012:200426702

IEEE Std 1233:19989000:2005

Figure 4: How other standards contribute to the vocabulary of the 29148 standard 



804   Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

the meaning of the arrows. Figure 5 visualizes the history of the ISO quality requirements standards. Here, a clock 
icon [14] was used to clarify the meaning of the arrows. With both icons, combined diagrams showing history and 
contribution would be possible.  

250xx: SQuaRE Series of Standards (2005 - …)

9126 (2001-2004)

9126 (1991)

14598

 

Figure 5: Historical evolution of ISO's quality requirements statement 

4. Challenges 

Some standards have a long history and have been revised under the same standard number. Confusion might 
arise when speaking about ISO 9126 one time and ISO 9126:2001 or ISO 9126:1991 the other time. Are they both 
ISO 9126? It is always safer referring to a standard by including the date of its publication. The second thing we 
observed is that it is hard to talk about multipart standards. ISO 9126 per se does not exist in reality. It is rather 
shorthand for referring to four documents (ISO 9126-1:2001, ISO TR 9126-2:2003, ISO TR 9126-3:2003, and ISO 
TR 9126-4:2004). Not all parts of a standards family are actually standards. Some of them are technical reports. We 
do not know whether all of them have a “TR” in their name. Many standards are joint standards. So for a correct 
name, all standard bodies should be acknowledged when talking about a standard. It is difficult to speak about 
ISO/IEC/IEEE 24765 instead of ISO 24765. 

5. General Discussion 

While we discussed each of the standards standalone, we want to make some general remarks that cover multiple 
standards. The ISO 25000 series of standards in general can easily be criticized for not fully addressing the systems 
engineering domain. We would suggest in any event that any taxonomy of quality requirements for systems 
engineering should take the categories of ISO 25010 into account. Furthermore, many of these standards should be 
easily transferable to the systems engineering domain. It would be interesting to investigate whether the ISO is 
actually taking steps toward such an effort. A general critique of most of the standards presented here involves the 
proper use of citations. While some standards do a good job at least regarding referring to related standards, some 
others don’t. What all have in common that rarely works external to the “standards domain” are cited. No journal or 
conference paper would get by with this. For standards, it seems to be acceptable. It is not always clear whether a 
standard supersedes another. While the standards organizations certainly have a well-defined process and 
vocabulary, the formulations in the introductory standards paragraphs are sometimes quite irritating to the novice 
reader. When standard A revises standard B, is B then obsolete? When standard A is a result of harmonization of 
standards B and C, are B and C then obsolete? 

6. Using the standards 

The standards have been used at Siemens as guides on internal product development projects, and, in some cases, 
as regulatory requirements on contract-based projects. It was found that in every case where they were used, 
application of the standards had to be done carefully. For example, IEC 26702 was used on rail and medical 
projects. The work product decomposition, e.g. system->product->subsystem needed to be tailored (e.g. eliminate 



805 Florian Schneider and Brian Berenbach  /  Procedia Computer Science   16  ( 2013 )  796 – 805 

assembly) and the defined processes were not an exact fit. Moreover, on contract based work, the processes needed 
were markedly different than those in the standard, as the standards had not taken client-supplier interactions into 
consideration. We recommend that where possible, the standards be used as starting points, and tailored based on 
need and project type and size. 

7. Conclusion 

In this review paper, we have described seven international standards and one tech report (sometimes jointly) 
published by ISO, IEC, and IEEE. Apart from the summary, we shared our personal views regarding these 
standards. Our goal is to initiate a discussion of the standards with the systems engineering community, with the 
objective of seeing them improved. Our review of the standards discussed in this paper is by no means complete, 
and might be outdated soon after publication. Perhaps in the future a follow on to this paper will include all the parts 
of the ISO 25000 (“SQuaRE”) Series. Last but not least, we have shown diagrams that would enhance readability of 
the standards. A relationship of one standard to the other could easily be found in a diagram. Scanning the whole 
vocabulary chapter takes much more time. We also hope to get feedback from the standards community. Finally, we 
apologize in advance to the authors of standards who work very hard to create them for any misperceptions or 
misrepresentations. Our objective is to initiate a dialog that might eventually lead to a coherent, more easily 
comprehended set of interlocking standards. 

References 

[1] International Organization for Standardization, “ISO/IEC/IEEE 24765:2010 - Systems and software engineering -- Vocabulary,” 
ISO/IEC/IEEE, 24765, Dec. 2010. 

[2] A. Pyster, D. H. Olwell, N. Hutchison, S. Enck, J. F. Anthony Jr, D. Henry, and A. Squires, Eds., Guide to the Systems Engineering Body of 
Knowledge (SEBoK). [Online]. Available: http://www.sebokwiki.org/1.0/index.php/Main_Page. [Accessed: Oct.-2012]. 

[3] International Organization for Standardization, “ISO/IEC TR 24766 - Information technology — Systems and software engineering — 
Guide for requirements engineering tool capabilities,” ISO/IEC, Dec. 2009. 

[4] International Organization for Standardization, “ISO/IEC 25010 - Systems and software engineering — Systems and software Quality 
Requirements and Evaluation (SQuaRE) — System and software quality models,” ISO/IEC, Mar. 2011. 

[5] International Organization for Standardization, “ISO/IEC 9126-1 - Software engineering -- Product quality -- Part 1: Quality model,” 
International Organization for Standardization, 9126, 2001. 

[6] International Organization for Standardization, “ISO/IEC 25030 - Software engineering — Software product Quality Requirements and 
Evaluation (SQuaRE) — Quality requirements,” ISO/IEC, Jun. 2007. 

[7] International Organization for Standardization, “ISO/IEC 25040 - Systems and software engineering — Systems and software Quality 
Requirements and Evaluation (SQuaRE) — Evaluation process,” ISO/IEC, Feb. 2011. 

[8] International Organization for Standardization, “ISO/IEC 15288:2008 - Systems and software engineering -- System life cycle processes,” 
ISO/IEC, Mar. 2008. 

[9] International Organization for Standardization, “ISO/IEC 26702 IEEE Std 1220-2005 - Systems engineering — Application and 
management of the systems engineering process,” ISO/IEC/IEEE, Jul. 2007. 

[10] SE Handbook Working Group, Systems Engineering Handbook. International Council on Systems Engineering (INCOSE), 2011, pp. 1–384. 
[11] International Organization for Standardization, “ISO/IEC/IEEE 12207:2008 - Systems and software engineering -- Software life cycle 

processes,” ISO/IEC, Mar. 2008. 
[12] International Organization for Standardization, “ISO/IEC/IEEE 29148:2011 - Systems and software engineering — Life cycle processes — 

Requirements engineering,” ISO/IEC/IEEE, Nov. 2011. 
[13] “GNOME Dictionary Icon.” [Online]. Available: http://commons.wikimedia.org/wiki/File:Gnome-dictionary.svg. [Accessed: 04-Oct.-2012]. 
[14] “Simple Clock Icon.” [Online]. Available: http://commons.wikimedia.org/wiki/File:Clock_simple.svg. [Accessed: 04-Oct.-2012]. 
 


