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Context: Model-driven Engineering (MDE) promotes the utilization of models as primary artifacts in all
software engineering activities. Therefore, mechanisms to ensure model correctness become crucial,
specially when applying MDE to the development of software, where software is the result of a chain
of (semi)automatic model transformations that refine initial abstract models to lower level ones from
which the final code is eventually generated. Clearly, in this context, an error in the model/s is propagated
to the code endangering the soundness of the resulting software. Formal verification of software models
is a promising approach that advocates the employment of formal methods to achieve model correctness,
and it has received a considerable amount of attention in the last few years.
Objective: The objective of this paper is to analyze the state of the art in the field of formal verification of
models, restricting the analysis to those approaches applied over static software models complemented
or not with constraints expressed in textual languages, typically the Object Constraint Language (OCL).
Method: We have conducted a Systematic Literature Review (SLR) of the published works in this field,
describing their main characteristics.
Results: The study is based on a set of 48 resources that have been grouped in 18 different approaches
according to their affinity. For each of them we have analyzed, among other issues, the formalism used,
the support given to OCL, the correctness properties addressed or the feedback yielded by the verification
process.
Conclusions: One of the most important conclusions obtained is that current model verification
approaches are strongly influenced by the support given to OCL. Another important finding is that in
general, current verification tools present important flaws like the lack of integration into the model
designer tool chain or the lack of efficiency when verifying large, real-life models.
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1. Introduction

Model-driven Engineering (MDE) is an approach that promotes
the utilization of models as primary artifacts in all software engi-
neering activities. In a MDE-based software development process,
the software is not coded by hand, but by designing and creating
a number of models to be successively and (semi)automatically
transformed into more refined models, and eventually into code
comprising the new software system. When MDE approaches are
used to develop complex systems, the complexity of models
involved increases, thus turning creating and editing them into
error-prone tasks. This complexity endangers the MDE develop-
ment process and the soundness of the resulting software.

Ensuring software correctness is not a new challenge, though.
On the contrary, it is an old challenge that software engineers
continue to struggle with [1]. Thanks to the efforts made by the
research community, different trends have appeared to try to
address the problem. One of them is software verification, which
comprises those approaches based on the utilization of formal
methods and formal analysis techniques to prove software correct-
ness. The word ‘‘formal’’ states that these methods are based on
mathematical theories. One of the major advantages of using for-
mal methods to verify software is to avoid the introduction of
imprecision or ambiguity in the process. In these approaches, it
is typical to proceed by going through two different stages. In
the first one, the formalization stage, the problem to be solved is
represented using one of these mathematical theories or formal-
isms. In the second one, the reasoning stage, the resolution of the
formalized problem is addressed by utilizing tools specialized in
reasoning over the chosen formalism.

Considering the problems that model complexity has brought
into MDE-based software development processes and the advanta-
ges of the utilization of formal methods when verifying software, it
comes as no surprise that a lot of effort has been made in studying
how to apply formal methods and formal analysis techniques to
ensure model correctness. This has obviously led to a significant
amount of research results.

While working on [2], we had the opportunity of making a first
analysis of some of this research. It was hard for us to grasp a clear
view, each work using their own terminology to describe the prob-
lem, in some cases, borrowed from what we considered were dif-
ferent fields, like consistency checking or software validation.
Because of this, we considered that, in order to check whether this
initial impression of ours was right, a deeper analysis was needed.
In this regard, although some systematic literature reviews had
been conducted to analyze notions like model quality [3] or the
consistency between models [4], we did not know of the existence
of studies devoted to the analysis of the utilization of formal
methods and formal analysis techniques to ensure model
correctness.

It is also true, though, that addressing this type of exhaustive
analysis in its full generality, and without considering factors like
model diversity, is probably inadequate, leading for example to
the comparison of approaches that use models of very different
nature, and impractical, since it would probably produce cumber-
some results. Because of these factors, the systematic literature re-
view presented in this paper focuses on providing an exhaustive
analysis and comparison of the research initiatives done in the field
of formal verification of static models, only. The reason for this is
that static models are arguably the models more commonly
adopted at the time of describing the specification of a software
system.

Static models, also commonly referred to as structural models,
are those models used to represent, totally or partially, the struc-
ture of a system design, that is, those models that show a time
independent view of the system. Regarding this, the most popular
static model is the UML1 (Unified Modeling Language) class dia-
gram, although in this study, other models that fall outside of the
UML umbrella, like for example entity-relationship models or mod-
els developed by using Domain Specific Modeling Languages
(DSMLs), were also covered. Also related to the type of models cov-
ered in this study, it is important to notice that since UML class dia-
grams exhibit certain limitations to represent precisely detailed
aspects of a system, they are often used in combination with OCL2

(Object Constraint Language). OCL provides additional capabilities
to enrich models, like for example, a mechanism for the definition
of integrity constraints that the instances of a model must hold.
The analysis of how OCL is supported by the existing model verifica-
tion approaches was also covered as part of this study. It is also
worth remarking that model correctness refers to the ability of the
model under analysis to satisfy one or more correctness properties
(like for example satisfiability). Obviously, another important part
of this study is to analyze what correctness properties are supported
by every verification approach.

More specifically, this study addressed the following research
questions:

� RQ1: What are the typical phases in model verification
approaches?

http://www.omg.org/spec/UML/
http://www.omg.org/spec/OCL/


Table 1
Repositories used for the analysis.

Repository (URL) Acronym

DBLP (http://www.dblp.org/search/index.php) DBLP
Faceted DBLP (http://dblp.l3s.de) FDBLP
Web of Knowledge (http://www.webofknowledge.com) WOK
Science Direct (http://www.sciencedirect.com) SD
SpringerLink (http://www.springerlink.com) SPL
IEEE Xplore (http://ieeexplore.ieee.org) IEEE
CiteSeerX (http://citeseerx.ist.psu.edu/index) CITE
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� RQ2: What are the formal methods and techniques employed in
the verification approaches?
� RQ3: What are the types of static models that can be verified in

each case?
� RQ4: Up to what extent is the Object Constraint Language (OCL)

supported?
� RQ5: Which correctness properties are verified in each case?
� RQ6: Are the existing approaches automatic (in the sense that

user intervention is not required to steer the verification pro-
cess) and complete?
� RQ7: Are the existing approaches supported by a verification

tool?
� RQ8: What type of feedback is obtained from the verification

process in each case?

To answer them, we designed a systematic procedure to re-
trieve all the works related to formal verification of static models
published since 2002. The retrieval process led to the discovery
of 48 works which were analyzed individually and then grouped
into 18 different studies. These groups arose naturally, since the
majority of works were part of coarse grained studies made up
by more than one work, and was done attending to factors like
the works goals, their authors and the relationship of the work
with other related works. Once these 18 studies were compiled,
their contents were carefully analyzed looking for the information
relevant for the study’s goals.

This paper is organized as follows: Section 2 describes how the
systematic review has been conducted, including the data sources
consulted, the inclusion/exclusion criteria, quality assessment and
data extraction criteria. Section 3 shows the results obtained. In
Section 4 we talk about those aspects that could be considered as
limitations or threats for the study’s validity. Section 5 is devoted
to discuss the findings of the study. Finally, we draw some conclu-
sions in Section 6.
2. Exploration method

As stated in [5,6], a systematic review, also known as systematic
literature review, is a means of identifying, evaluating and inter-
preting all available research relevant to a particular research
question, topic area, or phenomenon of interest. A systematic
review is driven by a review protocol, which specifies, among other
things, the research questions to be addressed, the mechanisms to
search and identify the relevant research works and how the data
collected are synthesized to carry out the review’s goals.

In the rest of this section we describe the different steps we
took to carry out our review.
3 The reference manager we used in this study was EndNote X5. For further
information on this, the reader can visit http://www.endnote.com.
2.1. Inclusion and exclusion criteria

Ensuring that the research works collected were aligned with
the objectives of the systematic review required the definition of
some criteria to determine both, which works were considered rel-
evant, and which ones fell outside of the scope of this review.

Regarding the criteria to determine relevant works, i.e. the
inclusion criteria, the main one was that only works addressing
the formal verification of static properties over static models,
enriched or not with OCL constraints, could be considered. With
this in mind, works must either (i) discuss/present verification
tools, or (ii) address formal verification from a theoretical point
of view, in order to be part of the study.

On the other hand, we also defined some exclusion criteria to
identify irrelevant works. In particular, papers that (i) addressed
verification issues by means of techniques like model checking
[7], typical of scenarios involving dynamic or behavioral models,
(ii) involved the verification of dynamic or behavioral properties
over static models, (iii) were devoted to consistency checking or
validation issues, or (iv) focused on business models, fell outside
the scope of this study and therefore had to be rejected. Moreover,
another limitation applied was that only works written in English
and published since 2002 were taken into account.

2.2. Data sources

To begin with the process of collecting the research works rele-
vant to this study, it was necessary to determine what digital
libraries, and electronic databases to use as sources. It is typical
that the selection of digital libraries or electronic databases is dri-
ven by factors such as their popularity, frequency of actualization,
facilities to run complex queries or the number of works indexed.
In the case of this systematic review, although these factors were
indeed considered, there was an additional one that had to be
taken into account, which was the fact that the repository had to
be equipped with mechanisms to facilitate the batch retrieval of
bibliographical references. The reason for this was simple. As it will
be detailed in the following subsections, the process of determin-
ing the set of relevant works was composed by a number of prun-
ing stages, each one consisting in discarding a certain amount of
irrelevant works until, finally, obtaining the relevant ones out of
the last pruning stage. In order to conduct the pruning as easiest
as possible, we intended to load the works from the digital libraries
into a reference manager3 and proceed with it from there, so we
needed digital libraries that either allowed downloading hundreds
of citations quickly and easily, or permitted the utilization of bots,
spiders or, at least, download managers to automate the retrieval
of citations as much as possible.

Having identified what we needed from the digital libraries, we
analyzed a fairly comprehensive list of them, finally choosing the
ones listed in Table 1. Although it did not fulfill the requisite of
facilitating citations retrieval mentioned earlier, SpringerLink digi-
tal library was necessary to get access to the citations of certain is-
sues of Springer journals, that were not present in the rest of digital
libraries considered. The repositories discarded can be seen in
Table 2, along with the reasons (Table 3) why they were dismissed.

2.3. Search strategy: initial set of works

Once the digital libraries to be used were determined, we could
start the process leading to the obtainment of the set of relevant
works. The first stage of this process was to obtain what we called
the initial set of works, that is, the works to be loaded into the ref-
erence manager and over which the pruning stages were going to
be conducted.

To compile the initial set of works, we designed a strategy con-
sisting in primary running ten searches in the scope of a selected
list of journals, international conferences and international

http://www.dblp.org/search/index.php
http://dblp.l3s.de
http://www.webofknowledge.com
http://www.sciencedirect.com
http://www.springerlink.com
http://ieeexplore.ieee.org
http://citeseerx.ist.psu.edu/index
http://www.endnote.com


Table 2
Repositories discarded for the analysis and the reasons.

Repository (URL) Reason

Google Scholar (http://scholar.google.com/) 1, 2
Scopus (http://www.scopus.com) 4
ACM Digital Library (http://dl.acm.org/) 1
Microsoft Academic Search (http://

academic.research.microsoft.com/)
1, 2

Cornell University Library (http://arxiv.org/) 3

Table 3
Reasons to discard a repository.

Number Reason

1 Absence of facilities to batch download references in a suitable
format

2 Limitations to build structured searches
3 Limited contents compared to other repositories
4 Not having access
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workshops, and then, in order to complement the results obtained
with other relevant works that might have been published out of
the journals, conferences and workshops in that list, running the
same ten searches over the full contents of one of the digital
libraries considered. The reasons why we designed ten searches
(Table 10) were twofold. On the one hand, we were able to gather
within ten searches the search terms we considered most relevant
for the study. On the other hand, it was necessary to establish a
limit on, first, the time spent conducting these searches and, sec-
ond, on the number of records retrieved in order to make the forth-
coming stages more manageable. Once we designed the searches, it
was the moment to determine what journals (Table 4), conferences
(Table 5) and workshops (Table 6) were relevant to our purposes.
We did this relying on our own expertise and knowledge of the
domain.

When we put this strategy in motion, we noticed that not all the
digital libraries considered facilitated building complex searches
limited to the scope of a given conference or workshop. When try-
ing to build these types of queries in certain digital libraries (Sprin-
gerLink, IEEE Xplore or Science Direct), it was necessary to know
the name of the publication series where the proceedings of the
conference/workshop had been published, thus complicating look-
ing for works just by using the conference/workshop name. In
other cases, even though the digital libraries (DBLP, Faceted DBLP)
Table 4
Journals considered in the study.

Conference Acrony

Transactions on Software Engineering and Methodology TOSEM
Software And System Modeling SoSyM
Acta Informatica Acta
Constraints Constr
Science of Computer Programming SCP
Computer Compu
Electronic Notes in Theoretical Computer Science ENTCS
Information and Software Technology IST
International Journal of Software Engineering and Knowledge Engineering IJSEKE
Transactions on Software Engineering TSE
Software Softwa
IBM Systems Journal System
IBM Journal of Research and Development IBM R
Data And Knowledge Engineering DKE
Journal of Object Technology JOT
Journal of Systems and Software JSS
Formal Aspects of Computing FOC
allowed us discriminating works by conference/workshop in an
easy way, the search language was not expressive enough to build
the queries we needed to conduct our searches. Among the digital
libraries considered, only ‘‘Web Of Knowledge’’ (WOK) allowed us
to conduct complex searches limited to the scope of a given confer-
ence/workshop in an easy way. However, WOK did not index all
the conferences and workshops in Tables 5 and 6, so at this point
we realized that due to the differences in the querying systems
of the digital libraries, we simply could not run our searches homo-
geneously and load the results into the reference manager. Hence,
in order to proceed keeping the searches over the journals, confer-
ences and workshops as homogeneous as possible, we decided to
retrieve all the bibliographical references (not only those ones clo-
sely related to the study’s goals) published since 2002 in the con-
ferences, workshops and journals selected, load them into the
reference manager grouped by their origin (journal, conference
or workshop) and then conduct the ten searches from there, using
the reference manager search facilities.

Tables 7–9 display the number of works retrieved and loaded
into the reference manager for each of the journals, conferences
and workshops considered. They also show the digital libraries
and search strings employed in every case. Due to not all the
sources considered have been around since 2002, the information
in the tables is complemented with the time interval enclosing
the works retrieved. In those cases where the search strings do
not include any clause restricting the search by date, this restric-
tion was applied by further refining the search results, using facil-
ities present in the GUI of the digital library used. By doing this, we
loaded 31,853 bibliographical references into our reference man-
ager, 20,214 coming from the list of journals, 11,060 corresponding
to works published in the list of selected conferences, and 579 ob-
tained from the list of workshops. This 31,853 bibliographical ref-
erences constituted the search space where we conducted the ten
searches that yielded the first subset of the initial set of works.

With the reference manager loaded, we used its search facilities
to conduct the searches shown in Table 10 over each of the three
groups of citations. The results obtained, as we mentioned at the
beginning of the section, were complemented by running the same
ten searches over one of the selected digital libraries (we chose the
IEEE Xplore digital library for this due to its flexible querying sys-
tem), thus forming the initial set of records of the study. Table 11
shows the results obtained. The initial set of works was composed
by 8079 citations. It is important to mention that the use of a ref-
erence manager greatly facilitated the discovery of overlaps in the
searches conducted over the journals, conferences and workshops.
There was no easy way, though, to do the same with the results
m Publisher Time span (Volume, Issue)

ACM January’02(V11, I1)–July’12(V21, I3)
Springer September’02(V1, I1)–October’12(V11, I4)
Springer January’02(V38, I4)–November’12(V49, I8)

aints Springer January’02(V7, I1)–October’12(V17, I4)
Elsevier January’02(V42, I1)–February’13(V78, I2)

ter IEEE January’02(V35, I1)–November’12(V45, I11)
Elsevier January’02(V61)–December’12(V290)
Elsevier January’02(V44, I1)–February’13(V55, I2)
World Scientific February’02(V12, I1)–September’12(V22, I6)
IEEE January’02(V28, I1)–December’12(V38, I6)

re IEEE January’02(V19, I1)–December’12(V29, I6)
s IBM January’02(V41, I1)–October’08(V47, I4)

D IBM January’02(V46, I1)–December’12(V56, I6)
Elsevier January’02(V40, I1)–December’12 (V82)
– May’02(V1, I1)–August’12(V11, I2)
Elsevier January’02(V60, I1)–January’13(V86, I1)
Springer May’02(V13, I2)–July’12(V24, I6)

http://scholar.google.com/
http://www.scopus.com
http://dl.acm.org/
http://academic.research.microsoft.com/
http://academic.research.microsoft.com/
http://arxiv.org/


Table 5
International conferences considered in the study.

Conference Acronym Time span (editions)

International Conference on Model Driven Engineering Languages and Systems MODELS 2005(8th)–2012(15th)
International Conference on Automated Software Engineering ASE 2002(17th)–2012(27th)
The Unified Modeling Language, International Conference UML 2002(5th)–2004(7th)
Symposium On Applied Computing SAC 2002(17th)–2012(27th)
European Conference on Modeling Foundations and Applications – European Conference on Model Driven

Architecture – Foundations and Applications
ECMFA
ECMDA-FA

2005(1st)–2012(8th)

International Conference on Conceptual Modeling ER 2002(21st)–2012(31st)
Tools TOOLS 2008(46th)–2012(50th)
International Conference on Quality Software QSIC 2003(3rd)–2012(12th)
International Conference on Software Engineering ICSE 2002(24th)–2012(34th)
European Software Engineering Conference/Symposium on the Foundations of Software Engineering ESEC/FSE 2002(FSE 10th)–2011(ESEC

2011/FSE 19th)
International Conference on Software Testing, Verification and Validation ICST 2008(1st)–2012(5th)
International Conference on Integrated Formal Methods iFM 2002(3rd)–2012(9th)
International Conference on Advanced Information Systems Engineering CAiSE 2002(12th)–2012(24th)
International Symposium on Software Reliability Engineering ISSRE 2002(13th)–2011(22nd)
International Symposium on Formal Methods FM 2002(11th)–2012(18th)
International Conference on Fundamental Approaches to Software Engineering FASE 2002(5th)–2012(15th)
International Conference on Model Transformation ICMT 2008(1st)–2012(5th)

Table 6
International workshops considered in the study.

Workshop Acronym Time span (editions)

International Workshop on Description Logics DL 2002(15th)–2012(25th)
OCL Workshop OCL 2003(3rd)–2011(11th)a

a 2004 and 2005 Editions have been disregarded because their proceedings are not available in the digital libraries considered.

Table 7
Journals retrieval. Repositories searched.

Journal Digital
library

Records
found

Interval Search query

TOSEM WOK 161 January’02–July’12 SO = (ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY)
SoSyM WOK 189 March’07–October’12 SO = (SOFTWARE AND SYSTEMS MODELING)

SPL 123 September’02–
December’06

Manually

Acta WOK 270 January’02–November’12 SO = (ACTA INFORMATICA)
Const WOK 190 January’03–October’12 SO = (CONSTRAINTS)

SPL 19 January’02–July’02 Manually
SCP SD 940 January’02–February’13 pub-date > 2001 and src (SCIENCE OF COMPUTER PROGRAMMING)
Comp IEEE 3928 January’02–November’12 (‘‘Publication Title’’:‘‘computer’’)
ENTCS SD 4421 January’02–December’12 pub-date > 2001 and src (Electronic Notes in Theoretical Computer Science)
IST SD 1237 January’02–February’13 pub-date > 2001 and src (Information and Software Technology)
IJSEKE WOK 514 February’02–

September’12
SO = (INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE
ENGINEERING)

TSE IEEE 1234 January’02–December’12 (‘‘Publication Title’’:‘‘Software Engineering, IEEE Transactions on’’)
Software IEEE 1756 January’02–December’12 (‘‘Publication Title’’:‘‘software, ieee’’)
Systems IEEE 402 January’02–October’08 (‘‘Publication Title’’:‘‘ibm systems’’)
IBM RD IEEE 739 January’02–October’12 (‘‘Publication Title’’:‘‘IBM Journal of Research and Development ’’)
DKE SD 994 January’02–December’12 pub-date > 2001 and src (Data & Knowledge Engineering)
JOT FDBLP 766 May’02–August’12 Journal of Object Technology (Venues only)
JSS SD 1987 January’02–January’13 pub-date > 2001 and src (Journal of Systems and Software)
FOC WOK 277 2004–2012 SO = (FORMAL ASPECTS OF COMPUTING)

SPL 67 May’02–December’03 Manually
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obtained out of the searches conducted over the IEEE Xplore digital
library.
2.4. Paper selection

After we obtained the initial set of 8079 citations and had them
loaded into the reference manager, we could start with the pruning
stages, that is ruling out those works not related with the study’s
goals. The pruning tasks we applied to the initial set of citations
can be seen in the following list:
� Duplicates deletion.
� Delete references with no author.
� Keyword pruning.
� Title pruning.
� Abstract pruning.

The first stage was deleting duplicated citations. Taking into
account the way we proceeded to obtain the initial set of works,
duplicated citations could come from two different sources: the
overlaps in the results coming from the ten searches conducted
over the IEEE Xplore digital library, and the overlaps between these



Table 8
Conferences retrieval. Repositories searched.

Conference Digital library Records found Search query Results refinement

MODELS FDBLP 455 MoDELS (Venues Only) 2005–2012
ASE FDBLP 876 ASE (Venues Only) 2002–2012
UML FDBLP 104 UML (Venues Only) 2002–2004
SAC FDBLP 3792 SAC (Venues Only) 2002–2012
ECMDA-FA FDBLP 128 ECMDA_FA (Venues Only) 2005–2009
ECMFA FDBLP 95 ECMFA (Venues Only Exact Match) 2010–2012
ER FDBLP 522 ER (Venues Only) 2002–2012
TOOLS FDBLP 109 TOOLS (Venues Only Exact Match) 2002–2012
QSIC FDBLP 541 QSIC (Venues Only) 2003–2012
ICSE FDBLP 1669 ICSE (Venues Only Exact Match) 2002–2012
ESEC/FSE FDBLP 583 sigsoft fse (Venues Only) 2002–2012
ICST FDBLP 352 ICST (Venues Only Exact Match) 2008–2012
iFM FDBLP 182 iFM (Venues Only) 2002–2012
ISSRE FDBLP 381 ISSRE (Venues Only) 2002–2011
CAiSE FDBLP 511 CAISE (Venues Only Exact Match) 2002–2012
FM FDBLP 246 FM (Venues Only) 2005–2012
FME FDBLP 85 FME (Venues Only) 2002–2003
FASE FDBLP 336 FASE (Venues Only) 2002–2012
ICMT FDBLP 93 ICMT (Venues Only) 2008–2012

Table 9
Workshops retrieval. Repositories searched.

Workshop Digital library Records found Interval Search query

DL DBLP 507 2002–2012 Description Logics (Venues Only Exact Match)

OCL DBLP 11 2003 Venue: Electr. Notes Theor. Comput. Sci. (ENTCS) author: Peter H. Schmitt year: 2004
DBLP 11 2006 Venue: eceasst author: Dan Chiorean year: 2006
DBLP 11 2007 Venue: eceasst author: Steffen Zschaler year: 2008 preface
DBLP 10 2008 Venue: eceasst author: Jordi Cabot year: 2008
DBLP 8 2009 Venue: eceasst author: Tony Clark year: 2009
DBLP 10 2010 Venue: eceasst author: Mira Balaban year: 2010
DBLP 11 2011 Venue: eceasst author: Robert Clarisó year: 2011

Table 10
Search strings.

Search string stem

(‘‘VERIFYING’’ OR ‘‘VERIFICATION’’ OR ‘‘CHECKING’’ OR ‘‘CORRECTNESS’’ OR
‘‘CONSISTENCY’’ OR ‘‘REASONING’’ OR ‘‘SATISFIABILITY’’) AND . . .

N. Search string suffixes

S01 UML
S02 MODEL AND (‘‘DOMAIN’’ OR ‘‘CONCEPTUAL’’ OR ‘‘STATIC’’ OR ‘‘EMF’’)
S03 DIAGRAM
S04 ENTITY-RELATIONSHIP
S05 ENTITY RELATIONSHIP
S06 DSL
S07 LANGUAGE AND (‘‘DOMAIN’’ OR ‘‘SPECIFIC’’)
S08 ‘‘ER’’
S09 OCL
S10 SCHEMA

Table 11
Initial set of records for the systematic review.

Search Journals Conferences Workshops IEEE Xplore

S01 148 46 4 873
S02 315 8 2 4126
S03 134 15 2 1851
S04 3 0 0 66
S05 0 0 1 154
S06 8 0 0 106
S07 417 0 0 1733
S08 4 2 0 127
S09 37 10 3 90
S10 51 3 1 433
Overlap 293 22 3 0

Total 824 62 10 7183
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results and those coming from the ten searches conducted over the
selected journals, conferences and workshops. EndNote X5, the ref-
erence manager we used, has a powerful mechanism for the auto-
matic detection of duplicates in which it is even possible to instruct
the tool to determine when a given citation must be considered a
duplicate of one another. In this case, we set up the tool to consider
duplicates those citations in which the fields, ‘‘title’’, ‘‘author’’ and
‘‘publication year’’ were identical. Once the tool was configured,
we simply ran the duplicates search process obtaining 1579 dupli-
cate records that were eliminated.

With the initial set of works reduced to 6500 records the next
step was deleting those references with no author. At this point
of the process, there was a little group of citations that actually
did not refer to any concrete work but to journal front covers, ta-
bles of contents, conference proceedings and so forth. A common-
ality among these citations was the absence of author, so in order
to get rid of them, we simply searched citations with no author and
ruled out the results yielded, thus reducing the set of records in an-
other 51 records. At this point of the process the set of records un-
der analysis was composed by 6449 citations.

The next stage was possibly the most sensitive one. Since we
were looking for papers devoted to a very specific type of model
verification (formal verification of static software models), instead
of choosing a set of keywords related to the study’s goals and col-
lect those citations in which any of these keywords were present,
we proceeded the other way around. We identified a set of
keywords that, in our opinion, should not be representative of
any work devoted to the formal verification of static models, then
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looked for the works where these keywords were present, and ru-
led out the records obtained. In order to choose the right set of key-
words, we initially compiled a set of approximately 100 keywords
and conducted searches to see the amount of papers in which each
of them were present. Then, based on the results obtained, we re-
duced the set of keywords to 50 by excluding both, those ones too
generic that appeared in thousands of works, and those ones too
specific that appeared in just a handful of them. Table 12 shows
the 50 keywords, along with the number of works in which each
of these keywords were present and how many of them were ruled
out. The difference between the records yielded by each search and
the records that were ruled out obeys to the overlap in the
searches, that is, the fact that there were many records in which
at least two of the keywords of the list were present at the same
time. After conducting the 50 searches corresponding to the se-
lected keywords, we finally ruled out 5386 records, thus reducing
the set of works to 1063 works.

After performing the keyword pruning stage it was the time for
the title pruning stage. Before describing this, it is important to
state that, from this point forward, the forthcoming pruning stages
were conducted manually. In the particular case of the title prun-
ing stage, although it might have been possible to conduct it in
an automated manner, by searching the titles for certain words
or fixed-expressions, we feared that this strategy, in case of a high
variability on these titles, might have ruled out some relevant
works. Besides, the previous pruning stages had reduced the num-
ber of relevant works to a number slightly over 1000 (1063 to be
exact), and we considered that reviewing the titles of, roughly
speaking, 1000 papers was affordable and worth the effort.

Regarding the process itself, it was conducted as follows: the
first author read the titles and elaborated two lists: one with the
papers that should be discarded and one with the ones to be kept.
The second author read then these two lists and expressed his
opinion. In those cases where authors disagreed on what the right
list was for a given title, that work was automatically placed on the
list of works to be kept. We acted in a conservative manner here
because more information apart from the title would be available
on the next pruning stage, thus allowing us to make a more
Table 12
Records pruned by keyword.

Keyword Records Keyword Records

Found Pruned Found Pruned

DATA 1220 1220 FREQUENCY 235 25
ENGINE 898 722 BUSINESS 222 9
TIME 870 638 LEARNING 215 22
CONTROL 728 388 CHIP 213 15
NETWORK 617 280 METRIC 207 28
PROCESSING 616 190 IMAGE 190 32
SIMULATION 584 215 AGENT 185 25
INFORMATION 558 139 PROTOCOL 183 20
CIRCUIT 558 194 SAFETY 178 29
KNOWLEDGE 539 160 ELECTRIC 177 16
WEB 522 131 MOBILE 176 12
ARCHITECTURE 498 120 WAVE 174 11
DYNAMIC 482 95 MATH 172 18
TESTING 443 127 SEARCH 170 15
SERVICE 424 22 COMPILER 144 29
REQUIREMENT 377 79 AUTOMATA 134 11
POWER 316 41 GUI 132 7
PATTERN 304 45 OPTIMIZATION 127 12
SECURITY 293 23 METHODOLOGY 117 9
SIGNAL 289 33 VIRTUAL 114 12
FLOW 286 21 MEDICAL 112 6
COMMUNICATION 269 20 CONFIGURATION 111 7
TEMPORAL 269 44 DIAGNOSIS 111 9
GRAPHIC 238 26 PARALLEL 104 6
ELECTRONIC 237 20 EQUATION 98 8
informed decision. Finally, we ruled out 737 records, therefore
keeping a set of 326 works to be analyzed in the last step.

To finish with the pruning stages, we read the abstracts of the
works resulting from the title pruning stage. In the end, we dis-
carded 304 papers. The reason why we ruled out so many works
in this stage is that we were too conservative in the title reviewing
stage, so we ended up with many papers that after a quick glance
to their abstracts resulted not to be related to formal verification of
static models at all. In addition to this, an important set of papers
devoted to model checking or consistency checking were also dis-
carded. In the first case, the papers about model checking were re-
lated to the verification of model dynamic aspects. In the second,
the papers were about checking consistency between different
models, usually involving models dealing with dynamic aspects,
like state machines or state charts.

Finally, after all these pruning stages, we got the set of 22 rele-
vant works that can be seen in Table 13. This set of papers was
complemented with those obtained out of the actions described
in the next subsection, thus giving way to the final set of relevant
papers considered for analysis in this systematic review.
2.5. Quality assessment

The last step we carried out to complete the list of relevant
works was the quality assessment stage. The quality assessment
consisted in first, carefully reading the 22 papers obtained up to
this point and, second, performing a process of snowballing, paying
attention to the ‘‘Related Work’’ section and bibliographical refer-
ences of the collected works. With this we wanted to ensure that
the works collected fulfilled the inclusion criteria described in Sec-
tion 2.1, and also to complement the list of collected works, looking
for those ones that although relevant for the objectives of the re-
view, had not been discovered yet.

It is important to mention that one of the risks when snowball-
ing is the exponential growth in the number of papers to be read,
since the process must be recursively repeated with any new paper
added to the list. We took two measures to control this. The first
Table 13
First group of relevant works obtained.

Ref. Title

[8] Checking Full Satisfiability of Conceptual Models
[9] Full Satisfiability of UML Class Diagrams
[10] Complexity of Reasoning in Entity Relationship Models
[11] Reasoning Over Extended ER Models
[12] A UML-Based Method for Deciding Finite Satisfiability in Description

Logics
[13] Reasoning on UML Class Diagrams is EXPTIME-hard
[14] UMLtoCSP: a Tool for the Formal Verification of UML/OCL Models Using

Constraint Programming
[15] Verification of UML/OCL Class Diagrams using Constraint Programming
[16] Lightweight String Reasoning for OCL
[17] Finite Satisfiability of UML Class Diagrams by Constraint Programming
[18] Checking Unsatisfiability for OCL Constraints
[19] USE: A UML-Based Specification Environment For Validating UML and

OCL
[2] EMFtoCSP: A tool for the lightweight verification of EMF models
[20] Efficient Reasoning About Finite Satisfiability of UML Class Diagrams

with Constrained Generalization Sets
[21] OCL-Lite: Finite reasoning on UML/OCL conceptual schemas
[22] AuRUS: Automated Reasoning on UML/OCL Schemas
[23] Reasoning on UML Class Diagrams with OCL Constraints
[24] Decidable Reasoning in UML Schemas with Constraints
[25] Verification and Validation of UML Conceptual Schemas with OCL

Constraints
[26] Mapping from OCL/UML metamodel to PVS metamodel
[27] Verification-driven slicing of UML/OCL models
[28] Formal Semantics and Reasoning about UML Class Diagram
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one was to respect the exclusion criteria described in Section 2.1.
That is, we did not include in the process the references to those
papers that had been published before 2002. The second one was
to rule out those references that, although relevant for the paper
under evaluation, clearly fell outside of the scope of our analysis.
This way, relying on our own experience, we ruled out an impor-
tant number of references corresponding to tools or aimed at
describing auxiliary techniques.

After reading the papers, we confirmed that all of them indeed
satisfied the inclusion criteria and, additionally, the process of
snowballing yielded the list of 26 works in Table 14 that, after
being carefully read for confirmation, were also included in the
set of relevant works (in Section 5 we discuss possible reasons
why more works were collected out of the snowballing process
than out of the structured searches).

Finally, after the pruning and quality assessment stages we
ended up with a list of 48 relevant works that constituted the ob-
ject of analysis of this study. Fig. 1 summarizes the evolution of the
resulting set of works obtained, as we went through the stages
leading to its obtainment.

With the quality assessment stage finishes the part of the study
corresponding to determining the list of relevant works, but before
continuing, and for the sake of the interested reader, we would like
to say a word about the time employed on the stages described
thus far. Determining and retrieving the works that constituted
the search space for this study took approximately three months.
This included the analysis of repositories, selecting the confer-
ences, journals and workshops of interest, analyzing several refer-
ence managers, and, most importantly, testing and trying different
strategies to automate the retrieval process as much as possible.
Table 14
Additional relevant works obtained from the process of snowballing.

Ref. Title

[29] An Accessible Formal Specification of the UML and OCL Meta-Model in
Isabelle/HOL

[30] On Challenges of Model Transformation From UML to Alloy
[31] UML2Alloy: A Challenging Model Transformation
[32] Translating the Object Constraint Language into First-order Predicate

Logic
[33] Using DLs to Reason on UML Class Diagrams
[34] Reasoning on UML Class Diagrams
[35] An MDA Framework Supporting OCL
[36] The HOL-OCL Book
[37] HOL-OCL: A Formal Proof Environment for UML/OCL
[38] Towards Implementing Finite Model Reasoning in Description Logics
[39] Finite Model Reasoning on UML Class Diagrams via Constraint

Programming
[40] A Formal Framework for Reasoning on UML Class Diagrams
[41] Satisfiability of Object-Oriented Database Constraints With Set and Bag

Attributes
[42] Finite Satisfiability of Integrity Constraints in Object-Oriented

Database Schemas
[43] Validating UML and OCL models in USE by Automatic Snapshot

Generation
[44] Proving and Visualizing OCL Invariant Independence by Automatically

Generated Test Cases
[45] Consistency, Independence and Consequences in UML and OCL Models
[46] Using B Formal Specifications for Analysis and Verification of UML/OCL

Models
[47] From UML and OCL to Relational Logic and Back
[48] Strengthening SAT-Based Validation of UML/OCL Models by

Representing Collections as Relations
[49] Extensive Validation of OCL Models by Integrating SAT Solving into USE
[50] OCL-Lite: A Decidable (Yet Expressive) Fragment of OCL
[51] Mapping UML Models Incorporating OCL Constraints into Object-Z
[52] Providing Explanations for Database Schema Validation
[53] Verifying UML/OCL Models Using Boolean Satisfiability
[54] Encoding OCL Data Types for SAT-Based Verification of UML/OCL

Models
Choosing the initial set of works took approximately three weeks.
The majority of this time was spent designing and testing multiple
search queries. With the search queries already in place, obtaining
the initial set of works took us approximately one day. Deleting
duplicates and references without author took no time. That was
immediate thanks to the reference manager facilities. The keyword
pruning stage took approximately one week. Almost all of this time
was spent looking for the most suitable catalog of keywords. After
having obtained that catalog, the pruning took a couple of hours.
The title pruning stage took approximately two days, and the ab-
stract pruning stage some more time, about one week. Finally,
the snowballing process took approximately one month.

2.6. Data extraction

After having identified the list of relevant works, the next step
consisted in designing a strategy to extract from them the informa-
tion needed to answer the research questions defined in Section 1.
To accomplish this, we elaborated, through a series of consensus
meetings, an Excel spreadsheet where we gathered together all
the necessary information. In particular, we structured the infor-
mation in the following way: we saved one row in the spreadsheet
for every relevant work, and then we added as many columns as
the number of different pieces of information gathered. In particu-
lar, we collected two different groups of data items, the first group
corresponding to those data items needed to identify a given work,
including the creation of a unique identifier (Table 15), and then a
second group corresponding to the data items needed to answer
the research questions (Table 16).

It is important to remark that not all the papers considered pro-
vided enough information to fill each of the columns in the spread-
sheet. This is because some of the papers are devoted to specific
aspects of the verification process, such as model formalization
or tool presentation. Overall, all the information needed could be
figured out when those works were identified as to be part of
broader studies described throughout several papers.

3. Results

After describing the process followed to collect the works con-
sidered relevant for this study, it is the time of briefly describing
them and presenting the results of the analysis conducted to an-
swer the research questions listed in Section 1.

3.1. Presentation of the selected papers

As it was mentioned in the introduction, we grouped the 48 rel-
evant works (Tables 13 and 14) in 18 different studies taking into
account factors like the existence of clear relationships between
some papers or their authors. In this subsection, we present these



Table 15
Data items extracted for identification
purposes.

Data item Description

ID Unique identifier
Title Title of the paper
Author(s) Author(s) of the paper
Year Year of publication

Table 16
Data items extracted to answer the research questions.

Data item Description

Goal Brief description of the paper goal
Model Type of model supported
OCL Degree of support of OCL constraints in the verification

process
Formalization Formalism employed (if any) for the verification process
Properties

verified
Properties verified

Termination Whether the verification process ensures termination or
not

Completeness Completeness of the verification process
Automation Was the verification process automatic or interactive?
Tool Name of the verification tool implementing the approach

(if any)
Solver Name of the underlying solver employed (if any)
Feedback Results yielded by the verification process

Table 17
Studies identified and the corresponding citations.

Study Representative name Refs.

S1 UMLtoCSP [14,15,27]
S2 EMFtoCSP [2,16]
S3 FiniteSat [20,12]
S4 AuRUS [22–25,52]
S5 DL [39,17,38,8,9,11,10,13,34,33,40]
S6 OCL-Lite [50,21]
S7 OODB [42,41]
S8 HOL-OCL [37,35,36]
S9 UML2Alloy [31,30]
S10 USE [43,19,45,44,49,48,47]
S11 BV-BSAT [53,54]
S12 PVS [26]
S13 KeY [32]
S14 Object-Z [51]
S15 UML-B [46]
S16 CDOCL-HOL [29]
S17 MathForm [28]
S18 OCL2FOL [18]

4 http://eclipseclp.org.
5 http://www.eclipse.org/.
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18 studies, that for the sake of clarity have been summarized in
Table 17.

It is important to remark that in some cases, the relevant works
conforming the 18 studies presented here are based on previous
works that either were published before 2002 or fell outside the
scope of this study for some other reason. In those occasions in
which we considered it necessary for facilitating the contextualiza-
tion of a certain study, we included citations to those works in its
corresponding description.

The first study (S1) comprises the works directly related to
UMLtoCSP [14]. UMLtoCSP, developed by Cabot et al. [14,15], is a
Java tool for the formal verification of UML/OCL models based on
constraint programming. The tool works by translating a class dia-
gram along with its OCL constraints and the desired verification
properties into a Constraint Satisfaction Problem (CSP). In particu-
lar, the tool builds a Constraint Logic Program (CLP) which is then
fed into a solver called ECLiPSe Constraint Programming System4

for its resolution. Although UMLtoCSP was designed with the intent
of supporting OCL constraints in its full generality, as of this study,
not all the OCL constructs were supported. Even though, the tool fea-
tures some notable characteristics: user intervention during the rea-
soning process is not required (i.e. it is automatic) and termination is
ensured. This is possible because the tool follows a bounded verifica-
tion approach (the user must define the size of the search scope
beforehand). The drawback of bounded verification approaches,
though, is that results are only conclusive if a solution to the CSP
is found (i.e. it is not complete). Regarding correctness properties,
UMLtoCSP supports the verification of strong satisfiability, weak sat-
isfiability, liveliness of a class, lack of constraints subsumption and
lack of constraint redundancies.

The tool was later on complemented with the work of Shaikh
et al. [27] consisting in the development of a slicing technique
for UML/OCL class diagrams. The presence of this technique turned
UMLtoCSP into a more efficient tool when verifying weak satisfi-
ability or strong satisfiability.

The second study (S2) gathers the works around EMFtoCSP [2],
which is an Eclipse5 integrated tool for the verification of EMF models
annotated with OCL constraints. EMFtoCSP represents an evolution of
the UMLtoCSP tool described in [S1], and can be used to verify a larger
variety of models, noticeably, EMFtoCSP is well-suited for the verifica-
tion of Domain Specific Languages (DSL). Compared to UMLtoCSP,
EMFtoCSP includes, among other improvements, a revisited version
of the CSP generation mechanism. In particular, and thanks to the
work of Büttner et al. [16], EMFtoCSP supports the analysis of OCL
expressions including operation on Strings in general terms.

The third study (S3) collects the works of Azzam Maraee and
Mira Balaban, who developed a linear programming based method
for reasoning about finite satisfiability of UML class diagrams with
constrained generalization sets [20]. In the authors’ words, finite
satisfiability is the problem of deciding whether a given class has
a finite, non-empty extension in some model. Their method builds
on top of the work of Lenzerini and Nobili [55], which is based on
the transformation of the cardinality constraints into a set of linear
inequalities whose size is polynomial in the size of the diagram.
This way, the finite satisfiability problem is reduced to the problem
of finding a solution to a system of linear inequalities. The algorithm
proposed, called ‘‘FiniteSat’’, was later on improved [12] to handle
all the types of constraints included in an enhanced version of the
Description Logics to class diagrams translation presented in [34].

The fourth study (S4) congregates the verification works based
on the CQC Method [56], a mechanism to perform query contain-
ment tests on deductive database schemas, that has also been used
to determine properties like satisfiability or predicate liveliness
over this type of schema. In this regard, Queralt et al. presented
AuRUS [22], a tool for assessing the semantic quality of a concep-
tual schema consisting in a UML class diagram complemented with
OCL arbitrary constraints, which extends SVTe [57], a relational
database schema validation tool. Apart from the satisfiability of
the conceptual schema, AuRUS can verify liveliness of classes or
associations and redundancy of constraints, without requiring user
intervention during the reasoning process. The tool works [23] by
first translating both, the class diagram and the OCL constraints
into a set of first-order formulas that represent the structural sche-
ma, and then verifying, by using the CQC Method, whether the sup-
ported properties hold. In the case that the properties do not hold,
the tool is able to give the user a hint about the changes of the
schema that are needed to fix the problem identified [52]. AuRUS
does not guarantee termination when dealing with general OCL

http://eclipseclp.org
http://www.eclipse.org/
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expressions, but it does so [24] when dealing with a specific subset
of constraints.

Finally, in [25] the authors presented several improvements,
like an enhanced version of the conceptual schema to logic trans-
lation, or refinements on the mechanism presented in [24] which
is used by AuRUS to determine whether the reasoning process will
terminate or not.

The fifth study (S5) compiles the work developed by Calvanese
et al. on reasoning over entity-relationship models and UML class
diagrams since the year 2002. Related to this, Cadoli et al.
[39,17,38] developed an approach to encode the problem of finite
model reasoning (i.e. checking whether a class is forced to have
either zero or infinitely many objects) in UML class diagrams as a
CSP that is solved by relying on the use of off-the-shelf tools for
constraint modeling and programming. These works exploit the
encoding of class diagrams in terms of Description Logics proposed
by Berardi et al. [13,34,33] and Cali et al. [40], to take advantage of
the finite model reasoning techniques developed for Description
Logics in [58], based on reducing the problem of reasoning on a
Description Logics knowledge base to the problem of finding a
solution for a set of linear inequalities.

Moreover, the work of Berardi et al. [13,34] has also served as a
basis for the complexity analyses conducted by Artale et al.
[8,9,11,10] which have established important results about the
problem of verifying full satisfiability over different variants of
UML class diagrams or entity-relationship models.

The sixth study (S6) contains the work related to OCL-Lite
[50,21], a fragment of OCL that ensures termination and complete-
ness when reasoning on UML conceptual schemas enriched with
arbitrary constraints within the bounds of this fragment. Apart
from the identification of such a fragment, the authors propose
an encoding of UML class diagrams enriched with constraints with-
in its bounds in Description Logics. In this regard, they take advan-
tage of the works developed by Calvanese et al. that have been
described in [S5]. Finally, they show how it is possible to use exist-
ing reasoners to provide reasoning support to check properties like
schema satisfiability or constraint redundancy over these models.

The seventh study (S7) refers to the work of Anna Formica on
checking finite satisfiability of database constraints. In particular,
a decidable graph-theoretic approach to finite satisfiability check-
ing is proposed in [42]. This approach, which is limited to integrity
constraints involving comparison operators, was later on expanded
in [41] to cover cardinality constraints among others. In both cases,
the database schemas are described using fragments of TQL++ [59],
an object-oriented data definition language aimed at modeling the
structural aspects and integrity constraints of object-oriented
database models [60].

The eighth study (S8) is about the formal proof environment
HOL-OCL [37], developed by Brucker and Wolff. HOL-OCL is inte-
grated into a framework supporting a formal model-driven engi-
neering process, which is described in [35], and works by
automatically encoding the class diagram along with the OCL con-
straints in Higher-Order Logics (HOL). This encoding, which is de-
scribed in detail in [36], can then be used to reason over the model
by means of the interactive theorem prover Isabelle [61]. A draw-
back of this approach, though, is that it generally requires user-
interaction to steer the reasoning process.

The ninth study (S9) makes reference to the works about UM-
L2Alloy [31,30], which is the name of a tool developed by Anastak-
asis et al., that can be used to check the satisfiability of a UML class
diagram enriched or not with OCL constraints. UML2Alloy, as it can
be inferred from its name, works by transforming the model to be
verified into the relational logic of Alloy6 [62], which is then fed into
6 http://alloy.mit.edu/alloy/.
the SAT solvers embedded within the Alloy Analyzer. Regarding the
verification process in itself, UML2Alloy, as it is the case of UMLtoCSP
and EMFtoCSP, follows a bounded verification approach, that is, the
user must establish the boundaries of the search space where look-
ing for a solution (i.e. the approach is not complete).

The tenth study (S10) relates to the work of Gogolla et al.
around the USE tool [43,19]. USE was originally conceived as a val-
idation tool, but it has evolved significantly throughout the years
and now it supports model verification as well. In one of its initial
versions [43], the tool worked by generating instances, or frag-
ments of instances of a given input model (these instances or frag-
ments are called snapshots in the USE terminology), to be checked,
one by one, against a series of OCL invariants. This version of the
tool was able to support model verification to a certain extent, like
for example, to check constraint independence as shown in [45,44].
However, since the original approach presented the problem of the
enumerative nature of the snapshot generator, it was later on im-
proved by Kuhlmann et al. [49,48,47] with the development of a
mechanism to translate UML and OCL concepts into relational lo-
gic, which uses the SAT-based constraint solver KodKod [63] for
the reasoning stage. This way, the original snapshot generator
was replaced by a more efficient SAT-based bounded search and
generation of snapshots fulfilling the user-specified constraints,
thus expanding the capabilities of the tool to perform model veri-
fication tasks.

The eleventh study (S11) compiles the work of Soeken et al.
[53,54] on the verification of UML/OCL models. In their proposed
approach a verification problem is encoded into a bit-vector for-
mulation and fed into a SMT/SAT solver for its verification. A
verification problem is made up by three different elements:
the system state, a series of OCL constraints, and the verification
task. The system state is an encoding of the attribute assign-
ments in every object as well as of the links between these ob-
jects, and the verification task is nothing but the encoding of the
property to be verified. Since general OCL constraints are sup-
ported, the method follows a bounded verification approach to
ensure termination, that is, limits in the number of objects and
associations as well as in the domains of the attributes are
enforced.

The twelfth study (S12) is limited to the approach proposed by
Lukman Ab. Rahim [26] to transform UML class diagrams and OCL
constraints into the specification language of the PVS7 (Prototype
Verification System) theorem prover [64]. PVS is based on HOL and
comes with a specification language that allows writing theorems
to prove a given specification. The approach focuses on describing
how a set of rules written using the Epsilon Transformation Lan-
guage8 [65] maps UML class diagrams and OCL elements into a pro-
posed PVS metamodel. The idea is to serialize the model into a PVS
specification to be fed into the PVS theorem prover for its analysis. It
is important to remark that although the mapping proposed does not
exclude in advance any type of OCL expression, certain operations in
the OCL standard library cannot be mapped due to PVS limitations.

The thirteenth study (S13) refers to the work of Beckert et al.
[32] on the formalization of UML class diagrams with OCL con-
straints into dynamic logic, which is a multi-modal extension of
first-order logic (FOL). The approach, that has been implemented
in Java and focuses only on the formalization stage, is part of the
KeY system [66], a software development tool9 that seeks the inte-
gration of design, implementation, formal specification and formal
verification of object-oriented software.

The fourteenth study (S14) relates to the work of Roe et al. [51]
on the mapping of UML class diagrams and OCL constraints into a
7 http://pvs.csl.sri.com/.
8 http://www.eclipse.org/epsilon/.
9 http://www.key-project.org/.
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Table 18
Formalization techniques used in each study.

Study Formalization technique

S1 (UMLtoCSP) CSP
S2 (EMFtoCSP) CSP
S3 (FiniteSat) System of Linear Inequalities
S4 (AuRUS) FOL
S5 (DL) Description Logics, CSP
S6 (OCL-Lite) Description Logics
S7 (OODB) TQL++

S8 (HOL-OCL) HOL
S9 (UML2Alloy) Relational Logic
S10 (USE) Relational Logic
S11 (BV-BSAT) Bit-vector Logic
S12 (PVS) HOL
S13 (KeY) Dynamic Logic
S14 (Object-Z) Object-Z
S15 (UML-B) B
S16 (CDOCL-HOL) HOL
S17 (MathForm) Mathematical Notation
S18 (OCL2FOL) FOL
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formal specification described with Object-Z [67,68]. Object-Z is an
extension of the Z specification language [69] to facilitate the con-
struction of specifications in an object-oriented style. The mapping,
which is described informally, is based on the work of Kim et al.
[70], where a formal semantic mapping between the two lan-
guages is provided.

The fifteenth study (S15) is about the work of Marcano and Levy
[46] describing a systematic translation of UML class diagrams and
OCL constraints into a B formal specification. The B specification
language [71] provides a means for developing mathematically
proven software and systems, through the use of rigorous mathe-
matical reasoning. The approach works by first deducing a B ab-
stract specification from the UML class diagrams, which is then
complemented with the addition of a number of B formal expres-
sions generated out of the OCL constraints. The approach is sup-
ported by the implementation of a prototype tool where the
analysis of the generated B specification relies on the utilization
of the Atelier-B10 tool. Although this approach is primarily intended
for consistency checking purposes, it can also be used to check ver-
ification properties like the presence of contradictions in constraints
(incoherent constraints).

The sixteenth study (S16) covers the work of Ali et al. [29] on
the formalization of UML class diagrams and OCL constraints into
HOL. The work shares some similarities with that of Brucker and
Wolff described in [S8], as the intent of reasoning over the result-
ing encoding using the theorem prover Isabelle [61]. The main dif-
ference, though, is the utilization of simpler techniques to build the
formalization, so that it can be more accessible to practitioners of
the software industry.

The seventeenth study (S17) comprises the work of Marcin
Szlenk [28] on the formalization of UML class diagrams into a
mathematical notation based mainly on the utilization of sets
and partial functions. The formalization is used to outline the sub-
ject of reasoning about a class diagram, introducing the formal def-
inition of consistency of a classifier, which is similar in concept to
the verification property ‘‘liveliness of a class’’ mentioned in [S1].

The eighteenth study (S18) is about the work of Clavel et al. [18]
on formalizing and reasoning over OCL constraints. In this work, a
mapping from a subset of OCL into FOL is proposed with the intent
of supporting verification using automated reasoning tools like
Prover9,11 an automated theorem solver, and Yices,12 a SMT solver.
In particular, the authors propose reasoning on their own notion of
(unbounded) unsatisfiability of OCL constraints over a class diagram.

3.2. Result analysis

After presenting the 18 studies grouping the relevant works
gathered, we now move to answer the research questions posed
in Section 1. Regarding this, the answers provided here are comple-
mented by Tables 18–20, in which a summary of the most relevant
characteristics of the 18 studies can be found.

3.2.1. RQ1: What are the typical phases in model verification
approaches?

Throughout the analysis of the 18 studies we have clearly iden-
tified two different stages that can occur during model verification.
The first stage is that of formalization. It is typical for the model to
be verified, along with its OCL constraints (if supported) and the
correctness properties, to be represented in some kind of formal-
ism which is then exploited during the reasoning process to deter-
mine whether the model holds those correctness properties. This
reasoning process is the second stage and it is usually conducted
10 http://www.atelierb.eu/en/.
11 http://www.cs.unm.edu/mccune/mace4/.
12 http://yices.csl.sri.com/.
with the help of solvers or tools specialized in reasoning over the
chosen formalism. In general, all the studies describe some sort
of formalization [S5, S16, S17] being examples of this, but addition-
ally, some of them also cover the reasoning stage either in an ap-
plied way, by means of presenting a verification tool [S1, S2, S4,
S9, S11], or in a more theoretical way [S5, S7].

3.2.2. RQ2: What are the formal methods and techniques employed in
the verification approaches?

As it was mentioned earlier, in all the studies analyzed, some
sort of formalization stage takes place. In this regard, the most typ-
ical way of formalizing is by means of some kind of logical repre-
sentation like FOL, DL, or HOL, among others. Some examples of
studies following this formalization approach are [S6, S8, S9, S18,
S11, S13]. Specification languages like B or Object-Z have also been
used, as it is the case in [S14, S15]. Finally, it is also popular to en-
code the problem of model verification as a CSP [S1, S2, S5] or by
means of other mathematical notations [S3, S17].

3.2.3. RQ3: What are the types of static models that can be verified in
each case?

All the studies presented here address the verification of UML
class diagrams, that arguably, are the diagrams most typically used
when representing the structure of a software system. [S2] also
supports Eclipse EMF models, thus supporting the verification of
models developed by using Domain Specific Modeling Languages
(DSMLs). Database schemas in the form of entity-relationship dia-
grams [S5] or object-oriented database schemas [S7] have also
been object of analysis.

3.2.4. RQ4: Up to what extent is the Object Constraint Language (OCL)
supported?

When it comes to support OCL, there are three types of ap-
proaches, namely: those ones that try to support OCL in its full gen-
erality, as it is the case in [S1, S2, S4, S10, S13, S14] among others,
those ones that support a certain subset of OCL [S6, S12, S18], or
those ones that do not support OCL at all [S3, S5, S7, S17]. Typically,
the level of support is strongly correlated to factors like automa-
tion or the completeness of the approach, as it is shown in the
answer to RQ6 later on.

3.2.5. RQ5: Which correctness properties are verified in each case?
All the correctness properties addressed in the different studies

fall into two big groups: properties about the instantiability of the
model and properties about the relationship among constraints.

http://www.atelierb.eu/en/
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Table 19
Types of model and properties covered in each study.

Study Model type OCL
constraints

Property

S1 (UMLtoCSP) Class Diagrams Yes, General Strong Satisfiability, Weak Satisfiability, Liveness of a Class, Constraint Redundancy, Constraint
Subsumption

S2 (EMFtoCSP) Class Diagrams, EMF
Models

Yes, General Strong Satisfiability, Weak Satisfiability, Liveliness of a Class, Constraint Redundancy, Constraint
Subsumption

S3 (FiniteSat) Class Diagrams No Finite Satisfiability
S4 (AuRUS) Class Diagrams Yes, General Satisfiability of the Conceptual Schema, Liveliness of Classes or Associations, Redundancy of

Constraints
S5 (DL) Class Diagrams No Finite Satisfiability
S6 (OCL-Lite) Class Diagrams Yes, Subset Schema Satisfiability, Class Satisfiability, Constraint Redundancy
S7 (OODB) Object-Oriented DB

Schemas
No Database Constraints Satisfiability

S8 (HOL-OCL) Class Diagrams Yes, General Satisfiability
S9 (UML2Alloy) Class Diagrams Yes, General Weak Satisfiability, Strong Satisfiability, Liveliness of a Class
S10 (USE) Class Diagrams Yes, General Satisfiability, Constraint Independence
S11 (BV-BSAT) Class Diagrams Yes, General Satisfiability, Constraint Independence
S12 (PVS) Class Diagrams Yes, Subset N/A
S13 (KeY) Class Diagrams Yes, General N/A
S14 (Object-Z) Class Diagrams Yes, General N/A
S15 (UML-B) Class Diagrams Yes, General Incoherent Constraints
S16 (CDOCl-

HOL)
Class Diagrams Yes, General N/A

S17
(MathForm)

Class Diagrams No Consistency of a Classifier

S18 (OCL2FOL) Class Diagrams Yes, Subset Unsatisfiability of OCL Constraints

Table 20
Tools, execution mode and feedback provided in each study.

Study Tool’s name Feedback Automation Completeness Termination ensured

S1 (UMLtoCSP) UMLtoCSP Yes/No + Sample model when ‘‘Yes’’ Automatic No Yes
S2 (EMFtoCSP) EMFtoCSP Yes/No + Sample model when ‘‘Yes’’ Automatic No Yes
S3 (FiniteSat) N/A N/A N/A N/A N/A
S4 (AuRUS) AuRUS Yes/No + Sample model when ‘‘Yes’’ + Hint when ‘‘No’’ Automatic Decidability analysis dependent Only for specific OCL constraints
S5 (DL) N/A N/A N/A N/A N/A
S6 (OCL-Lite) N/A N/A N/A Yes Yes
S7 (OODB) N/A N/A N/A Yes Yes
S8 (HOL-OCL) HOL-OCL Yes/No Interactive Yes No
S9 (UML2Alloy) UML2Alloy Yes/No + Sample model when ‘‘Yes’’ Automatic No Yes
S10 (USE) USE Yes/No + Sample model when ‘‘Yes’’ Automatic No Yes
S11 (BV-BSAT) Prototype Yes/No + Sample model when ‘‘Yes’’ Automatic No Yes
S12 (PVS) N/A N/A N/A N/A N/A
S13 (KeY) N/A N/A N/A N/A N/A
S14 (Object-Z) N/A N/A N/A N/A N/A
S15 (UML-B) Prototype Yes/No Interactive Yes No
S16 (CDOCL-HOL) N/A N/A N/A N/A N/A
S17 (MathForm) N/A N/A N/A N/A N/A
S18 (OCL2FOL) Prototype Yes/No Yes Solver dependent Solver dependent

832 C.A. González, J. Cabot / Information and Software Technology 56 (2014) 821–838
Regarding the properties of the first group, the most important one
is satisfiability, that is to check whether it is possible to create legal
instances of the model. Satisfiability comes in different variants:
strong satisfiability means that the legal model instance must in-
clude instances of all the classes and associations in the model,
weak satisfiability, on the other hand is less strict, and it does
not enforce the instantiation of all classes and associations. The
verification of this property in its different variants is addressed
in [S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11]. Other property that
falls into this category is ‘‘liveliness of a class’’, that is to check
whether it is possible to create legal instances of the model includ-
ing at least one instance of a certain class. This verification prop-
erty, which can be seen as a particular case of satisfiability, is
addressed in [S1, S2, S4, S9]. When it comes to the second group
of properties, it is typical to check the presence of redundant con-
straints [S1, S2, S4, S6], although there are other properties like
‘‘constraint subsumption’’ [S1, S2] or ‘‘constraint independence’’
[S10, S11], among others, that are also commonly checked.
3.2.6. RQ6: Are the existing approaches automatic (in the sense that
user intervention is not required to steer the verification process) and
complete?

Automation is closely related to the completeness of the resolu-
tion method used to address the reasoning stage, which at the
same time is influenced by the degree of support given to OCL. Sup-
porting OCL in its full generality leads to undecidability issues, as
stated in the work of Berardi et al. [34], part of [S5]. In this scenario,
approaches that are complete are also user-interactive (i.e. not
automatic) [S8, S15]. However, the majority of approaches that
try to support OCL in its full generality are automatic and ensure
termination. This is achieved at the expense of completeness by
following bounded verification approaches [S1, S2, S9, S10, S11],
in which users typically have to configure beforehand certain
parameters to drive the reasoning process, but once it is launched,
user intervention is not required. In these cases, results are only
conclusive if a solution to the verification problem is found within
the boundaries set to the search space. Finally, when only a specific
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set of OCL constraints are supported, verification approaches are
complete and ensure termination [S4, S6].

3.2.7. RQ7: Are the existing approaches supported by a verification
tool?

Those studies not focusing only on the formalization stage, but
also on the reasoning stage, are usually complemented by the pres-
ence of a verification tool. At the time of this study, the prototypes
of [S11, S15, S18] were not available for download, and the same
went for AuRUS [S4], although in this last case, a lot of details
about the tool are available in [22]. Regarding the rest of tools, in
what follows, we briefly comment our experience with them.

UMLtoCSP13 [S1] is a Java standalone application capable of ver-
ifying class diagrams in XMI format created with ArgoUML.14 The
tool supports OCL but constraints must be provided in a separated
text file. The GUI looks outdated. It allows loading the model and
its constraints, setting the search space boundaries, selecting the
correctness properties to be verified and run the verification process.
If the verification process succeeds, the tool presents an image of a
valid model instance as a proof. The tool requires the ECLiPSe Con-
straint Programming System15 and the graph visualization package
Graphviz16 to work. The last version available (June 2009) presents
several bugs and 64-bit platforms or modern operating systems like
Windows 7 or Windows 8 are not supported. Besides, it is not unli-
kely for the verification process to take quite some time in many
occasions. The source code is not available on the website.

EMFtoCSP17 [S2] is an evolution of UMLtoCSP, presented in the
form of a set of Eclipse18 plug-ins. It can be launched through the
contextual menu when right-clicking on a model on the ‘‘Package
Explorer’’ view. The tool supports EMF models and class diagrams
enriched or not with OCL constraints, that can be provided in a sep-
arate text file or directly embedded in the model. It offers a wizard-
like GUI where users can read OCL constraints from a separate text
file, set the boundaries of the search space, select the correctness
properties to be verified, and determine the place where to store
the results. If the verification process succeeds, the tool is capable
of providing a real valid model instance as a proof, and not only
and image as its predecessor. As UMLtoCSP, EMFtoCSP requires
ECLiPSe and Graphviz to run. In general, EMFtoCSP corrects many
of the limitations and shortcomings of UMLtoCSP, although it also
lacks integration with model editing tools. Besides, the wizard-like
interface can be an inconvenient when having to verify models mul-
tiple times. The last version is from September 2013 and the source
code is available for download on the website.

HOL-OCL19 [S8] is an interactive proof environment that can be
used to analyze UML/OCL models. It works on top of the generic
proof assistant Isabelle.20 Unlike the rest of tools analyzed, installing
HOL-OCL is not trivial, the tool presenting an important number of
prerequisites. HOL-OCL can be used to analyzed models created with
ArgoUML although the process is, in general, interactive, and re-
quires building Isabelle theories for that. All in all, HOL-OCL is a tool
extremely hard to use for the user not familiarized with formal
methods and Isabelle. Last version is 0.9.0 (the year is not indicated)
and the downloadable package includes the source code.

Uml2Alloy21 [S9] is a Java standalone application that can be used
to analyze class diagrams enriched with OCL constraints, with the help
13 http://gres.uoc.edu/UMLtoCSP/.
14 http://argouml.tigris.org/.
15 http://www.eclipseclp.org/.
16 http://www.graphviz.org/.
17 http://code.google.com/a/eclipselabs.org/p/emftocsp/.
18 http://www.eclipse.org/.
19 http://www.brucker.ch/projects/hol-ocl/.
20 http://isabelle.in.tum.de/index.html.
21 http://www.cs.bham.ac.uk/bxb/UML2Alloy/.
of Alloy22 (included with the tool). As UMLtoCSP, the GUI looks out-
dated. The different steps are distributed in tabs. Once the model is
loaded, it is necessary to set the boundaries of the search space and
determine how OCL statements will be transformed into Alloy. Finally
and after invokingthe transformationprocess explicitly, the analysis of
the model can be conducted. If it succeeds, the tool presents a valid
model instance as a proof. This instance can then be exported as a
PNG image or a PDF document. Overall, we found the tool a bit unintu-
itive, forcing users to run actions like parsing XMI files or transform the
input data to Alloy, explicitly. Last version is 0.52 Beta, built on May
2009. The source code was not available on the website.

USE23 [S10] is also a Java standalone tool that since version 3.0.5
can be used to verify class diagrams enriched or not with OCL con-
straints. The tool has a long history behind, since version 0.1 was cre-
ated in 1999 and, compare to the rest of tools analyzed, it is probably
the most polished one. Verification capabilities are provided in the
form of a plug-in called ‘‘Model Validator’’24 that, once downloaded
and uncompressed, must be copied into the ‘‘lib/plugins’’ directory of
the tool. USE reads ‘‘USE specification files’’, that is, text files with
‘‘.use’’ extension where the model along with the OCL constraints
are described using a particular syntax. USE only verifies satisfiabil-
ity. Launching the verification process from the GUI requires a text
file with information about the boundaries of the different elements
in the specification, as well as which OCL constraints must be taken
into account during the process. This file is not required, though, if
the process is launched from the USE command-line interface, in this
case, the tool will generate one with default values. One of the USE
nicest features is that the ‘‘Model Validator’’ plug-in supports a cat-
alog of SAT solvers, not only one. If the verification process succeeds,
the user must open an ‘‘Object diagram’’ window using the GUI, to
see the valid model instance provided as a proof. As typical of these
tools, USE does not integrate with modeling editing tools. Last ver-
sion available is 3.0.6 and the downloadable package includes the
source code. The source code for the ‘‘Model Validator’’ plug-in is
available in the website.

In general, none of the tools covered here seem to have a strong
user base. We delve into what might be some of the reasons for
this in Section 5.
3.2.8. RQ8: What type of feedback is obtained from the verification
process in each case?

In the majority of cases the feedback provided to inform about
the result of the verification process is of the ‘‘Yes/No’’ type, com-
plemented with a sample model in those occasions when the ver-
ification process ends successfully. This sample model acts as the
proof of the verification results and can be provided in many differ-
ent formats: as an image (UMLtoCSP [S1]), in XMI format (EMF-
toCSP [S2]), as an image or as a PDF file (UML2Alloy [S9]), or as
an object diagram (USE [S10]). In addition to this, AuRUS [S4] is
capable of yielding some hints in textual form on a pop-up window
when the verification process does not succeed (like for example,
the list of OCL constraints that cannot be satisfied). This can help
model designers to identify the reasons and adjust the model
accordingly.
4. Study limitations

After having answered the research questions addressed in this
study, now in this section we talk about the limitations of the
study, and about those aspects we considered as threats to its
validity.
22 http://alloy.mit.edu/alloy/.
23 http://sourceforge.net/projects/useocl/.
24 http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/.
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4.1. Study limitations

Admittedly, this study presents certain limitations, that may
have affected the retrieval of relevant works. In this regard, we
cannot deny the possibility of having missed some relevant papers.

Although nowadays many works are written in English, some-
thing that is especially true for those ones aimed at international
conferences or journals, it cannot be avoided that limiting the pa-
pers considered to those ones written in this language closes the
door to the relevant works written in other languages that may ex-
ist. Moreover, since in this study we only considered international
conferences, workshops and journals, it is also possible that we
missed those relevant papers written in English but aimed at na-
tional journals and conferences, that may exist.

Another limitation has to do with the repositories discarded.
Among these, there are repositories like Google Scholar, Scopus
or the ACM Digital Library, which are among the most popular
ones, so again, it cannot be denied that their discard may have re-
sulted in missing relevant papers not present in the other reposito-
ries we did consider.

However, and in spite of the limitations exposed here, we are
confident that we did not miss a large number of relevant works.
If any, the amount of works covered in this study makes us think
that the conclusions exposed here may be extrapolated to them.
4.2. Threats to validity

As it was the case with the limitations, there are also some
threats to the validity of this systematic review. In particular,
and according to the way relevant works were retrieved, it might
be argued that the combination of structured searches and pruning
stages is clearly improvable. Although there are certain issues, as
we comment in the next section, that can justify the results, it is
also true that when looking back, we identify the following threats.

In the first place, the scope of the conferences, workshops and
journals considered does not cover, in general, fields like databases
or artificial intelligence (apart from the description logics work-
shop or the international conference on conceptual modeling), dis-
ciplines with a clear relationship with the object of the study.
Although we knew in advance about the broad utilization of for-
malisms based on some type of logic, and the fact that certain stud-
ies were clearly rooted in the analysis of entity relationship models
or database schemas, we might have failed when deciding not to
include more conferences or journals specifically devoted to these
fields.

Another issue was the utilization of DBLP as a source for the re-
trieval of bibliographical references. Although DBLP is a popular re-
source among computer scientists, the information provided by
the bibliographical references gathered from there is limited, and
could affect the results obtained in the papers selection stage. In
particular, it is typical for the references collected from DBLP to
not include keywords. Obviously, this is a limiting feature that
might have affected the effectiveness of the keyword pruning
stage.

Also related to keywords, it is a fact that their selection is a sen-
sitive issue. Although we conducted the keywords selection pro-
cess trying to avoid words that are typically used in the field
object of this study, it is also true that in those papers using unu-
sual terminology these selection may have been futile. Another
strange factor is the evolution of keywords throughout time. We
discovered, as we were running our searches over the IEEE Xplore
repository, that the keywords assigned to certain entries had been
modified. This means that it cannot be discarded the fact that the
searches conducted in this review could yield different results in
the future affected not only by the appearance of new works, but
also because of these changes in the keywords assigned to the en-
tries stored.

The last issue we identified in relation to the validity of our
search strategy is the selection of the time span. Although MDE
is a relatively young discipline, it is also true that, as mentioned
earlier, some of the studies presented here have their roots in fields
like databases or artificial intelligence that have been around for
much more time than the one covered in this study.
5. Discussion

The main goal of the study presented here was to identify the
research work recently done in the field of static model verifica-
tion, and classify it according to a number of research questions
posed in Section 1. In addition to this, in this section we discuss
a number of findings we discovered while doing this study that,
in our opinion, are worth noting.

5.1. Terminology

The first issue we discovered was the absence of a precise and
rigorous terminology, shared among all the verification approaches
analyzed. One implication of this is the difficulty for contextual-
izing the works in this field, especially when compared with works
from other fields. In this regard, the main challenge we had was
regarding the works defining themselves as works addressing
‘‘model consistency checking’’. In fact, this study has reinforced
our initial impression of the existence of a gray zone when trying
to determine what the exact boundaries are between model verifi-
cation and model consistency checking (hence, the inclusion of
search terms like ‘‘consistency’’ or ‘‘checking’’ in the search strings
shown in Table 10). Some works use the term consistency checking
to refer to inter-model relationships that must hold (e.g. a call to a
method of a class in a UML sequence diagram should require that
the same class in the UML class diagram includes the correspond-
ing method defined). These works clearly fall outside of the scope
of works analyzed there. Nevertheless, other works use the term
consistency checking in a broader sense overlapping with what
we defined here as satisfiability, see for instance the different no-
tions of consistency introduced by Wahler et al. [72]. From that
point of view, all the works covered here could also be regarded
as consistency checking approaches.

Clearly, an unambiguous definition of all the words around the
concept of model verification (including verification itself, valida-
tion, consistency, well-formedness and so forth) is needed.

5.2. Correctness properties

The lack of a precise and rigorous terminology affects also the
way correctness properties are named and defined. One example
of this is the correctness property commonly referred to as ‘‘satis-
fiability’’, the most popular one among the verification approaches
object of this study (hence, the inclusion of the term ‘‘satisfiability’’
in the search strings shown in Table 10). After having read the pa-
pers collected for the study, we realized that there were at least 6
different ways of referencing satisfiability. In some cases, this lack
of homogeneity might be understandable. After all, ‘‘satisfiability’’
is a term widely used so it should be normal that different papers
used different notions of the word (e.g. in some satisfiability may
be what others call strong satisfiability while others may use the
notion of weak satisfiability; with both concepts in its turn lacking
also a precise and unambiguous definition). Unfortunately, the dif-
ferences in meaning were not always so slightly different and
sometimes different flavors of satisfiability coexisted even in the
same approach. All these situations are problematic since when
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the reader has a preconceived definition for the property in mind,
and this is not the same as the one used in the paper, this will likely
induce to errors in the interpretation of the text. Furthermore, and
to make matters worse, certain correctness properties could be ex-
pressed in terms of others more ‘‘core’’ ones (e.g. constraint redun-
dancy can be expressed in terms of constraint subsumption which
in turn can be expressed in terms of a satisfiability relationship).

In our opinion, this lack of homogeneity when precisely naming
and defining correctness properties could be clearly improved with
the creation of a catalog of correctness properties, where to find
the list of correctness properties that can be checked when
addressing formal verification of static models. In this catalog, pre-
cise and unambiguous names and meanings should be given to the
different correctness properties, as well as a clear description of
how they are related to each other. As far as we know, no efforts
have been made so far in this direction.
25 http://www.tpc.org/.
5.3. Lack of adequate verification tools

Another important finding is related to the adequacy of existing
verification tools. Although at first sight, by looking at Table 20 the
situation may not look so bad, the reality is that the number of ver-
ification tools available is certainly limited. Among the tools listed
in Table 20, the tool EMFtoCSP [S2] is an evolution of a previous
one called UMLtoCSP [S1] and others were created with the intent
of addressing validation issues, like USE [S10] or UML2Alloy [S9]. If
we add to this that tools like HOL-OCL [S8] require from the user a
non-negligible expertise on formal aspects, we may conclude that
the existing offer of verification tools, apart from being certainly
limited in size, is in some cases targeted at a very limited audience.

In our opinion, a verification tool, in order to be effective and
widely adopted, has to present, at least, four important character-
istics: first, it should hide all the complexities derived from the uti-
lization of formal methods, up to the point of making their
presence transparent to the end user. Second, it should integrate
seamlessly into the model designer tool chain. Third, it should pro-
vide a meaningful feedback. And four, it should be reasonably
efficient, not making users to wait for ages when verifying large,
real-world models. We believe these aspects are, from an end-user
point of view, more important than other more formal aspects, like
the completeness of the results.

Unfortunately, none of the verification tools analyzed in this
study does a good job at fulfilling all these requirements. In gen-
eral, these tools do not integrate well, and have been designed to
conduct the verification separately from the rest of tasks that char-
acterize the work of a model designer. When it comes to hiding the
underlying formal methods employed, the situation is better, espe-
cially in the case of bounded verification approaches, although
having to manually set the boundaries of the search space (as it
is the case, for example, in [S1], [S2] and [S9]) can be an issue when
verifying large models. The feedback can be considered acceptable
when the model under analysis is found to be correct, but is clearly
insufficient in the other case, with the majority of tools yielding no
feedback on where to apply fixes if the model is found to be not va-
lid (to the best of our knowledge, only [S4] provides some hints to
help users on this). Finally, efficiency is a major issue. In general
these tools behave well when dealing with toy examples or models
of reduced size, but the performance drops dramatically when they
are used to verify large models or real-world examples.

All in all, it comes as no surprise that none of these tools seem
to have a strong user base. At this moment, model verification can
be regarded as an unpleasant experience, that forces users to
switch back and forth between model editors and verification tools
to check for errors every time models are refined, usually with lit-
tle or no clue on where to apply fixes if the verification fails.
We would not like to finish this section, though, without con-
tributing some ideas on how these deficiencies could be addressed.
Regarding integration with other tools and hiding complexity, a
major effort on development tasks is clearly needed. Improving
efficiency and feedback is clearly related to the underlying solvers
employed during the verification process. These tools have experi-
enced a dramatic improvement in the last few years, but still, even
more improvements are needed. Meanwhile, doing research on
techniques to cleverly define the search space boundaries of
bounded verification approaches, and on incremental verification
techniques, could alleviate this.
5.4. Difficulties to compare verification tools

Another finding, also related to verification tools, is the diffi-
culty to evaluate and compare the coverage and performance of
the tools.

The majority of tools analyzed tend to be accompanied by a set
of samples (a small number of input models where to check the
correctness properties covered by the tool), that are usually sim-
plistic and not representative of real scenarios. Although the exis-
tence of sample input models is always welcome, and their
simplicity can be linked to the space limitations in research papers,
this limits the performance analysis of the tools. And since the
samples obviously vary from one tool to another, running compar-
isons between different verification tools is considerably more
complex. Interoperability problems between modeling tools and
differences on the modeling constructs each tool supports (and
the terminology they use as discussed before) complicate even
more the situation.

We think a possible way to improve the current situation would
be the creation of a standard set of benchmarks as typically done in
other communities (e.g. see the TPC transaction processing data-
base benchmarks25). These benchmarks, which must be based on
the catalog of correctness properties proposed before, should be
composed of multiple sets of models of varying sizes and complexity,
accompanied by the list of correctness properties that could be
checked on them, as well as the expected results. The existence of
these benchmarks could not only facilitate running performance
analysis among different verification tools, but also enhance their
development, since they could also be used to test the tools. As of
now, we are not aware of the existence of initiatives regarding the
creation of benchmarks for model verification tools.
5.5. The importance of the snowballing process

The last finding we would like to comment is not related with
the objective of this study, but with the systematic procedure we
followed to retrieve the set of related works. Admittedly speaking,
when we saw that the number of papers collected out of the com-
bination of structured searches and pruning stages was only 22,
our first feeling was of slight disappointment. This disappointment
was originally caused by the fact that, by the time when we were
considering the possibility of running this study, we had thought
that the number of existing works devoted to verification of static
models was actually bigger than the number of results retrieved.
However, this initial impression was quickly replaced by a combi-
nation of mixed feelings when, throughout the process of snow-
balling, we gather 26 additional works. On the one hand, it was
satisfactory to see that our original assumption on the number of
existing works was not completely wrong, but on the other hand,
we started to think that something had gone wrong with the
structural searches we had run. Before conducting our study, we

http://www.tpc.org/
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had reviewed many systematic literature reviews in which the
majority of relevant works, if not all of them, were gathered by
means of structural searches, causing snowballing processes to
yield little or no results at all. Obviously, since in our case the
process of snowballing had played a very important role during
the retrieval of relevant works, we started to wonder what could
have gone wrong with our structured searches. Although, as we
mentioned in Section 4, it cannot be discarded that by including
additional sources or using a different set of search strings, the
number of results gathered out of structured searches and pruning
stages would have been higher, we discovered two fundamental
aspects that made us think that trying to collect the majority of rel-
evant papers just by running structured searches would have
turned the process into an unmanageable one. The first aspect
was that when looking at where the relevant papers came from,
there was a considerable diversity in the sources, and the second,
which has been already addressed in the first two findings com-
mented here, was the lack of a precise naming convention, not only
with respect to the terms most commonly used in model verifica-
tion, but also in relation to what the boundaries of model verifica-
tion are, especially when compared to model consistency checking.

Our impression is that in certain situations, in which factors like
the ones commented here arise, the utilization of other techniques
like snowballing processes, rather to solely or primarily focus on
structured searches, is key, since it makes possible the retrieval
of works without spending a lot of time in designing too many
structured searches that cannot guarantee the coverage of a sub-
stantial part of the whole set of relevant works. Moreover, in the
particular case of this study, although the structured searches did
not cover the whole set of works, they were clearly useful since
they allowed us to identify an important set of core papers, from
which running the process of snowballing. Therefore, the struc-
tured searches were important not only to retrieve an important
number of works, but also to facilitate the execution of the
snowballing process. This has made us think that an adequate
combination of structured searches and snowballing can
sometimes produce the best results.
6. Conclusions and outlook

In this paper we have presented a systematic literature review
on the formal verification of static software models. Throughout
a combination of systematic searches, systematic pruning of non-
relevant papers and a comprehensive snowballing process, we
identified 48 relevant works that were grouped into 18 different
studies for their analysis.

We analyzed these 18 studies to answer the following research
questions: (RQ1) What are the typical phases in model verification
approaches? (RQ2) What are the formal methods and techniques
employed in the verification approaches? (RQ3) What are the types
of static models that can be verified in each case? (RQ4) Up to what
extent is the Object Constraint Language (OCL) supported? (RQ5)
Which correctness properties are verified in each case? (RQ6) Are
the existing approaches automatic (in the sense that user interven-
tion is not required to steer the verification process) and complete?
(RQ7) Are the existing approaches supported by a verification tool?
and (RQ8) What type of feedback is obtained from the verification
process in each case?

The analysis conducted indicates that the existing verification
approaches are based on an initial stage of formalization which
then gives way to a reasoning phase in which verification is con-
ducted using the mechanisms available in the target formalism,
although not all the studies cover this second stage. The formaliza-
tion is based on the utilization of some sort of logical or mathemat-
ical representation of the models, usually expressed in the form of
UML class diagrams or similar, complemented with OCL con-
straints (not always covered in its full generality by the studies
we analyzed). Regarding the reasoning stage, the most typically
verified property is that of satisfiability with some approaches
aimed at checking the relationship between constraints (like ‘‘con-
straint redundancy’’) as well. Some studies also provide a verifica-
tion tool implementing the techniques described in the study. The
completeness of such tools is strongly influenced by the degree of
support given to OCL. In this regard, the majority of tools aiming at
giving full OCL support follow a bounded verification approach, in
order to keep the verification process automatic and ensure its ter-
mination, although at the expense of its completeness. Feedback is
mostly limited to a ‘‘Yes/No’’ result complemented with a sample
model in those cases where the verification process succeeds.

We hope this systematic review helps the community to better
understand the current situation regarding the formal verification
of static software models and what is needed to move forward. In
our opinion, the first challenges that should be addressed are the
catalog of verification properties, the agreement on a shared and
precise terminology and the definition of benchmarks to be able
to evaluate and compare the approaches and tools available.
Regarding this last aspect, we would like to emphasize that two
key aspects to improve the adoption of verification tools by end-
users are first, making them more efficient, and second, improving
their usability, especially when it comes to their seamless integra-
tion in the model designer tool chain, and the feedback provided
when the verification fails. We believe these improvements would
clearly enhance the landscape in the field of formal verification of
static models, and would facilitate the appearance of a new gener-
ation of better verification tools ready for mainstream adoption.
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