
Information and Software Technology 56 (2014) 545–567
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Knowledge-based approaches in software documentation: A systematic
literature review
http://dx.doi.org/10.1016/j.infsof.2014.01.008
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: State Key Lab of Software Engineering, School of Computer, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27 68776027
E-mail address: liangp@whu.edu.cn (P. Liang).
Wei Ding a,d, Peng Liang a,c,⇑, Antony Tang b, Hans van Vliet c

a State Key Lab of Software Engineering, School of Computer, Wuhan University, China
b Faculty of Information and Communication Technologies, Swinburne University of Technology, Australia
c Department of Computer Science, VU University Amsterdam, Netherlands
d Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 August 2013
Received in revised form 9 January 2014
Accepted 18 January 2014
Available online 25 January 2014

Keywords:
Knowledge-based approach
Software documentation
Systematic literature review
Knowledge activity
Software architecture design
Context: Software documents are core artifacts produced and consumed in documentation activity in the
software lifecycle. Meanwhile, knowledge-based approaches have been extensively used in software
development for decades, however, the software engineering community lacks a comprehensive under-
standing on how knowledge-based approaches are used in software documentation, especially documen-
tation of software architecture design.
Objective: The objective of this work is to explore how knowledge-based approaches are employed in
software documentation, their influences to the quality of software documentation, and the costs and
benefits of using these approaches.
Method: We use a systematic literature review method to identify the primary studies on knowledge-
based approaches in software documentation, following a pre-defined review protocol.
Results: Sixty studies are finally selected, in which twelve quality attributes of software documents, four
cost categories, and nine benefit categories of using knowledge-based approaches in software documen-
tation are identified. Architecture understanding is the top benefit of using knowledge-based approaches
in software documentation. The cost of retrieving information from documents is the major concern
when using knowledge-based approaches in software documentation.
Conclusions: The findings of this review suggest several future research directions that are critical and
promising but underexplored in current research and practice: (1) there is a need to use knowledge-
based approaches to improve the quality attributes of software documents that receive less attention,
especially credibility, conciseness, and unambiguity; (2) using knowledge-based approaches with the
knowledge content in software documents which gets less attention in current applications of knowl-
edge-based approaches in software documentation, to further improve the practice of software docu-
mentation activity; (3) putting more focus on the application of software documents using the
knowledge-based approaches (knowledge reuse, retrieval, reasoning, and sharing) in order to make the
most use of software documents; and (4) evaluating the costs and benefits of using knowledge-based
approaches in software documentation qualitatively and quantitatively.

� 2014 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 546
2. Research method . 547
2.1. Context and research questions . 547

2.1.1. Knowledge-based approach . 547
2.1.2. Software documentation . 548
2.1.3. Research questions . 549
2.2. Inclusion and exclusion criteria . 549
.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.01.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.01.008
mailto:liangp@whu.edu.cn
http://dx.doi.org/10.1016/j.infsof.2014.01.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1 SDt
abbrevi
docume
both th

2 For
Append

3 SD
also ap
archite

546 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
2.3. Search process . 549

2.3.1. Search scope . 551
2.3.1.1. Time period . 551
2.3.1.2. Electronic databases . 551
2.3.1.3. Journals, conferences, and workshops . 551
2.3.2. Search terms . 551
2.3.3. Search strategy . 552
2.4. Data extraction and synthesis . 552

3. Results. 553
3.1. Overview of results . 553
3.2. RQ1: Quality attributes of software documents and knowledge-based approaches . 554
3.2.1. Quality attributes of software documents. 554
3.2.2. How knowledge-based approaches improve quality attributes of software documents . 555
3.2.3. Quality attributes of software documents and their concerned elements in software documents . 555
3.3. RQ2: Knowledge-based approaches in software documentation . 556

3.3.1. Distribution of knowledge-based approaches in software documentation . 556
3.3.2. General and specific knowledge-based approaches . 557
3.3.3. Knowledge-based approaches and documented content . 558
3.4. RQ3: Costs and benefits of using knowledge-based approaches . 558

3.4.1. Costs of using knowledge-based approaches . 558
3.4.2. Benefits of using knowledge-based approaches . 559
3.5. Evidential support . 560

4. Discussion. 561
4.1. Scope of the systematic review . 561
4.2. Study quality assessment . 561
4.3. Validity threats . 561
4.4. Further research . 562
5. Conclusions. 563
Acknowledgements . 564

Appendix A. Primary studies in the review . 564
Appendix B. Abbreviations used in the review. 566

References . 566
1. Introduction

Software is defined as the ‘‘intellectual creation comprising the
programs, procedures, rules, and any associated documentation per-
taining to the operation of a data processing system’’ [6]. Software
documentation (SDt1)2 is a formal writing in both print or electronic
form that supports the efficient and effective use of software in its
intended environment [12]. SDt is regarded as an integral part of
the software development process [54] and has a number of uses
in software lifecycle (e.g., as a communication medium for stake-
holders, information repository for maintainer, and guide for soft-
ware users) [62]. The essence of software development process is
the coordination and communication of ‘‘individuals’’ towards
achieving common and explicitly recognized goals in order to pro-
duce working software [38]. Software documents (SD3) provide an
asynchronous way for the communication among stakeholders,
which overcomes the time and geographical restrictions during soft-
ware development process. Improving the quality of SDt will im-
prove the quality of software accordingly [55].

Software development is a knowledge-intensive activity
[60,72]. In knowledge management (KM) theory, knowledge can
be classified as ‘‘tacit knowledge’’ or ‘‘explicit knowledge’’ [53]. Ex-
plicit knowledge is the knowledge codified in certain form (e.g., a
(software documentation) and SD (software document), these two terms and
ations are both used in this paper with different meanings. SD denotes the
nt artifact produced by software documentation activity, and SDt represents
e document artifact and documentation activity.
readability and clarity, we list all the abbreviations used in this paper in

ix B for reference.
is singular as well as plural based on the context in which it is used. This rule is
plied to abbreviations SRD (software requirements documents), SAD (software
cture documents), and QA (quality attributes).
document or a model). Tacit knowledge resides in people’s head
and is not easily visible and expressible. Explicit knowledge is easy
to use and reuse, while tacit knowledge tends to vaporize over
time, especially when the people who possess the knowledge
leave. From a KM perspective, SDt provides a way to transform ta-
cit knowledge into explicit knowledge, and exchanges the knowl-
edge among individuals and organizations [60].

There are many types of SDt, such as requirements documenta-
tion, design documentation and test documentation which are used
extensively across the lifecycle of software development. To achieve
a better focus and meaningful results in this review, we stress the SD
for architecture design, covering requirements and architecture
documents. The software requirements document (SRD) describes
externally-observable behaviors and characteristics expected of a
software system [22]. The software architecture document (SAD) re-
cords architecture design and related architecture information in
e.g., architecture views [20]. SRD and SAD are the software artifacts
produced in the requirements engineering and architecting phase
respectively, two closely-related phases in the software lifecycle.
These two types of documents are typically written in natural lan-
guage with supporting diagrams (e.g., UML use case diagrams and
component diagrams) for the communication between various
stakeholders of the project, such as customers, managers, require-
ments engineers, architects, and developers. Various formats of
SDt are used in practice, most of them are in files (e.g., MS Word doc-
ument), as well as in emails, text massages, blogs, and wikis [71]. All
these formats of SDt that contain requirements or architectural
information are regarded as SRD or SAD. The quality of SRD contrib-
utes to the successful and cost-effective creation of software [22],
and improving the quality of SAD can facilitate various architecting
activities, such as architecture review [36]. To this end, the quality
aspect of SDt is a research focus in this review.

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 547
A knowledge-based approach in this context is one that explic-
itly facilitates the development, evolution, and use of knowledge
that is critical to successful software development and evolution
[34]. Knowledge-based approaches can facilitate the understand-
ing and management of documentation [26,39,46]. A rigorous
assessment and review on knowledge-based approaches in SDt is
meaningful and necessary to increase their acceptance and guide
their application in SDt practices.

We decided to use systematic literature review (SLR) method in
this study since we aimed at identifying, evaluating, interpreting,
and synthesizing all available studies to answer particular research
questions, and establishing the state of evidence, with in-depth
analysis [37,57]. The objective of this SLR is to understand what
knowledge-based approaches can be employed to improve the
quality of SDt. We also investigate what quality attributes matter
to SDt, and the costs and benefits of using knowledge-based ap-
proaches in SDt. This work has a special focus on software require-
ments and architecture documentation [56].

To the best of our knowledge, there is currently no survey or
systematic literature review specifically conducted on knowl-
edge-based approaches to SDt. However, there are a number of
surveys and secondary studies (e.g., systematic mapping studies)
on the sub-areas of SDt using specific knowledge (e.g., rationale
knowledge in architecture description) and different aspects of
KM for software development. The studies on using knowledge
or KM in software engineering, information systems, and manage-
ment disciplines are too broad, and are out of the scope of the re-
lated work.

(1) Knowledge in architecture design: Nakagawa et al. used a sys-
tematic mapping to explore, understand, organize, and sum-
marize the research and practices of software architectural
knowledge [51]. Their study focuses on the architectural
knowledge for constructing reference architectures, while
our review pays attention to using knowledge for architec-
ture documentation. Tang et al. employed a survey research
method to get an understanding of architects’ perceptions
on the documentation and use of architectural design ratio-
nale [66], which is an important part of architectural knowl-
edge. In another work, Tang et al. surveyed five architectural
KM tools and made a comparison on their support for archi-
tectural knowledge management and their satisfaction of
the criteria from the architecture description standard [65].
Their work used a comparison method to analyze how and
to what extent an architectural KM tool can support archi-
tecture descriptions. Shahin et al. analyzed existing architec-
tural design decision models to identify their consensus and
differences at the model level [61]. Their work focuses on
architectural design decisions themselves and relevant sup-
porting tools without considering the impact to the archi-
tecting process.

(2) Knowledge in requirements specification: Barmi et al. con-
ducted a systematic mapping study on the alignment of
requirements specification and testing [13]. Nicolás and
Toval systematically reviewed the literature related to the
use of software engineering (SE) models to generate require-
ments specification [52]. These two secondary studies focus
on specific knowledge (e.g., models and alignment knowl-
edge) in requirements specification, but have little discus-
sion about the relationship between general knowledge
and their application in requirements specification.

(3) Knowledge engineering and management techniques for SE:
Briand surveyed the knowledge engineering techniques that
SE problems can benefit from [16]. His study has little dis-
cussion of SD and, as a position paper, it only introduced
the candidate knowledge engineering techniques without
further investigation. Dingsøyr and Conradi conducted a sur-
vey on the literature that reports case studies of using KM
approaches in SE whose results have a high level of evidence
[27]. The definition of KM approaches in their survey is sim-
ilar to the knowledge-based approaches used in this review,
but the scope of their survey is much broader than the scope
of SDt and has a special focus on case studies research.

(4) Software documentation: Biehl made a survey on how
researchers and practitioners document the ‘‘why’’ in archi-
tecture descriptions in the form of design rationale, design
decisions, and architectural knowledge [14]. His survey
stresses software architecture descriptions, but our review
focuses on both software requirements and architecture
documents. Forward and Lethbridge presented a practical
survey that evaluated tools and technologies for SDt [31].
Their survey did not cover the relevance of knowledge to
SDt, and related tools and technologies.

This paper presents the results of a SLR on knowledge-based ap-
proaches in SDt published from January 2001 to September 2011.
The main objectives of this review are the following: (1) systemat-
ically select and review literature, and present a holistic overview
of existing studies on knowledge-based approaches in SDt, with a
special focus on documentation for architecture design (i.e.,
requirements and architecture documents); (2) comprehensively
understand how knowledge-based approaches are employed in
SDt, their influences, and the costs and benefits of using knowl-
edge-based approaches in SDt; (3) identify research challenges
and gaps that require further exploration and investigation in this
area, and provide evidence-based recommendation to the future
research directions on this topic.

The remainder of this paper is organized as follows. In Section 2,
we describe the SLR research method and the review process. The
results of this SLR are presented in Section 3. Section 4 discusses
the scope of this review, the quality assessment of selected studies,
and the threats to the validity of the review results. The conclu-
sions and future directions are outlined in Section 5.
2. Research method

2.1. Context and research questions

2.1.1. Knowledge-based approach
Knowledge is information possessed in the mind of individuals,

and it is personalized information related to facts, procedures, con-
cepts, interpretations, ideas, observations, and judgments [8]. In
KM theory, KM is largely regarded as a process involving various
knowledge activities, including creating, storing/retrieving, trans-
ferring, and applying knowledge [8]. In this review, we define a
knowledge-based approach as any approach which can be applied
in KM and facilitates the knowledge activities in KM. The classifica-
tion of knowledge-based approaches employed in this SLR can be
readily mapped to these basic knowledge activities discussed
below.

According to the definition and analysis of knowledge-based
approaches, we propose a knowledge management process in
SDt, which is shown in Fig. 1. The general KM process proposed
in [8] is shown at the top of Fig. 1. The arrows in this general KM
process denote the sequence of knowledge activities that consti-
tutes a KM process. The KM process in SDt shown in the lower part
of Fig. 1 can be regarded as a specific KM process, one in which
knowledge-based approaches of producing and consuming soft-
ware document knowledge are mapped to knowledge activities
in the general KM process.

Knowledge-
based Approach

Fig. 1. Using knowledge management process in software documentation.

548 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
The mappings with dashed arrows from knowledge-based ap-
proaches to general knowledge activities are shown in Fig. 1 from
the perspective of the use (production and consumption) of knowl-
edge in SD: (1) Knowledge can be captured from SD. Meanwhile,
captured knowledge can be represented in a certain form (e.g., nat-
ural language or formal models). These activities belong to knowl-
edge capture and knowledge representation (KCR) which can be
mapped to the knowledge storing activity. (2) The activity of
retrieving knowledge from SD belongs to knowledge retrieval
(KRt) (e.g., captured knowledge can be returned in a structured
form), which can be directly mapped to the knowledge retrieval
activity. (3) Knowledge in SD can be shared with other individuals
and organizations. The approach is called knowledge sharing (KS),
and it can be mapped to the knowledge transfer activity. (4)
Knowledge in a SD can be (re)used in another SD, e.g., software
requirements reuse in a product family or architecture patterns
to address similar design issues, which are classified as knowledge
reuse (KR), and it can be mapped to the knowledge application
activity. (5) Implicit knowledge in SD, such as implicit dependen-
cies between parts of a document, can be recovered to become ex-
plicit knowledge, which belongs to knowledge recovery (KRv).
Since this approach creates new (explicit) knowledge, it can be
mapped to the knowledge creation activity. (6) New knowledge
can also be created from existing knowledge in SD through knowl-
edge reasoning (KRs), and this approach can be mapped to the
knowledge creation activity. For example, reasoning on architec-
ture design (i.e., existing architectural knowledge) can be used to
detect design conflicts in architecture (i.e., new knowledge) [69].

Based on Alavi and Leidner’s review on KM and KM systems [8],
the classification of knowledge-based approaches in [42], and the
mapping from the KM process in SDt to general knowledge activi-
ties discussed above, the knowledge-based approaches to SDt can
be classified into knowledge capture and representation, retrieval,
reuse, sharing, recovery, and reasoning, which are further elabo-
rated below:

� Knowledge capture and representation (KCR) aims to extract
knowledge from different types of SD, and represents knowl-
edge in certain forms so that the captured knowledge can be
used by other knowledge-based approaches. The reason we
combine these two approaches (i.e., knowledge capture and
knowledge representation) as an integrated approach is two-
fold. Firstly, knowledge capture is the prerequisite of knowledge
representation. i.e., only captured knowledge from SD is repre-
sented. Secondly, knowledge representation is integrated with
knowledge capture, in the form of natural language or formal
models to represent (describe/specify) explicit knowledge.
KCR is widely used to improve SD quality (e.g., KCR is used to
exploit and integrate existing information and collect new
knowledge to support architectural assessments [49]).
� Knowledge retrieval (KRt) seeks to return knowledge in a struc-

tured form, such that the knowledge can be used in a meaning-
ful way to support software development [68]. For example, a
SAD can be annotated and stored to a knowledge base, so that
concerned stakeholders can retrieve architectural knowledge
more efficiently for various purposes [25].
� Knowledge reuse (KR) reuses captured document knowledge in

software processes (e.g., security requirements knowledge in
requirements specifications can be reused in large projects
[45]).
� Knowledge sharing (KS) exchanges knowledge (e.g., require-

ments, frameworks, or design decisions) in SD among stake-
holders of software projects.
� Knowledge recovery (KRv) recovers knowledge that is not expli-

cit in existing SD (e.g., architectural knowledge acquired from
an existing SAD is used to understand a new SAD).
� Knowledge reasoning (KRs) draws conclusions and gets new

knowledge from existing knowledge in SD (e.g., knowledge of
design decision in a SAD is visualized to reason about new
knowledge [40]).

2.1.2. Software documentation
Poor software documentation is the cause of many errors and

reduces efficiency in software development and use. How to pro-
duce and use SDt has been a critical issue in software development
[55]. As mentioned earlier, the scope of this SLR is SDt for architec-
ture design, concerning SRD and SAD. The QA of SD define the eval-
uation of the quality of SDt [22]. In order to find which QA of SD are
affected by using knowledge-based approaches, we survey and
collect the QA of SD from existing literature and standards on
SRD and SAD [1,2,22,36], and derive an initial set of QA used in
this review, including completeness, understandability, traceability,

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 549
clarity, consistency, evolvability, conciseness, and reusability. This ini-
tial set of QA of SD is refined continuously when new QA are iden-
tified and added to the set during the process of this SLR, which is
detailed in the answer to RQ2 in Section 3.2.
2.1.3. Research questions
We conduct this SLR by following the guidelines for performing

SLR in SE proposed by Kitchenham and Charters [37]. To under-
stand existing research and practices on knowledge-based ap-
proaches in SDt, the following research questions (RQs) are
formulated with their rationale, following the recommendations
in [37] about defining RQs of a SLR:

RQ1: What software document (SD) quality attributes (QA) are
influenced by knowledge-based approaches?

Rationale: The quality of SDt has indirect impact on the quality
of software [55]. Improvements on the quality of SDt can be re-
flected and evaluated through the improvements of specific QA
of SD. We first classify QA of SD collected during the search process
(see Section 2.3), and further identify the QA that are affected by
using knowledge-based approaches, and how these approaches
improve the QA of SD. Answering this RQ can help identify various
aspects of improving the overall quality of SDt with different
knowledge-based approaches.

RQ2: What knowledge-based approaches are employed in soft-
ware documentation (SDt)?

Rationale: Answers to this RQ tell us what the current knowl-
edge-based approaches are. We analyze these knowledge-based
approaches to identify the gaps for further investigation, for exam-
ple the knowledge-based approaches in SDt that received less
attention in selected studies.

RQ3: What are the costs and benefits of using knowledge-based
approaches in software documentation (SDt)?

Rationale: Applying knowledge-based approaches in SDt has
certain benefits but not without costs. Answering this RQ can help
to understand their trade-off.

The answers to these three RQs can be directly linked to the
objective of this SLR: an understanding of how knowledge-based
approaches are employed in SDt (RQ2), their influences (RQ1),
and their costs and benefits (RQ3).
2.2. Inclusion and exclusion criteria

We defined the following inclusion and exclusion criteria to se-
lect studies from the search results based on the SLR guidelines
[37]:

Inclusion criteria:

I1: The theme of the study is documentation for software archi-
tecture design, including requirements and architecture
documents.
I2: The study presents one or more knowledge-based
approaches to address problems in SDt or use SDt to support
other software development activities.

Exclusion criteria:

E1: If two papers publish the same study, the less mature one is
excluded.
E2: Any paper whose full text is not accessible is excluded.
E3: If a paper introduces an approach to address problems in
SDt activity or use SD to support other software development
activities, but this approach is not knowledge-based as classi-
fied in Section 2.1.1, the paper is excluded.
E4: A paper without evidential support (i.e., ‘‘no evidence’’ as
classified in [10]) is excluded.
E5: A paper, that introduces a method for specifying and verify-
ing requirements or architecture using formal representations,
is excluded. We introduce this exclusion criterion because this
SLR focuses on how human-understandable knowledge can be
used in SDt. Techniques for specifying and verifying require-
ments or architecture using formal representation focus on
machine-processible knowledge (including formal require-
ments specification and architecture description languages),
which is intentionally left out of the scope of this SLR to achieve
meaningful and focused review results.

2.3. Search process

We design a SLR protocol to guide the search process based on
the SLR guidelines [37]. Relevant papers are retrieved automati-
cally from the databases (i.e., through a database search), as well
as manually from target journals, conferences, and workshops as
a supplementary source to the database search. The study selection
process in both databases and target venues consist of the follow-
ing three phases:

Phase 1: The first author applies the search strategy, which is
elaborated in Section 2.3.3, to identify potential primary stud-
ies. Two of the authors check the titles of all potential primary
studies against inclusion and exclusion criteria. If it is difficult
to decide whether one paper should be included or not by title,
this paper will be included for the next phase of paper selection.
Phase 2: Two of the authors check the abstracts of the selected
papers of Phase 1 against inclusion and exclusion criteria. Dis-
agreements about paper selection results are discussed and
resolved by all the participants of this review. If a disagreement
about a study cannot be resolved (e.g., we cannot decide
whether an approach proposed in the study is knowledge-based
or not), the study will be included for the next phase of
selection.
Phase 3: Two of the authors read the full text of the papers
selected after Phase 2 and use the inclusion and exclusion crite-
ria to decide whether the papers will be finally included or not.
Reference search is performed in this phase to check whether
the references of selected papers in Phase 3 should be included
or not. Reference search is a supplementary search in addition
to database search and manual search. The additional studies
obtained from the references search in Phase 3 will undergo
the selection process in Phases 2 and 3.

The finally-selected studies are a combination of the selected
studies from database, manual, and reference searches.

Fig. 2 illustrates the search process and the number of papers
included at each stage. Duplicate papers are removed in Phase 1
of the database search when results are retrieved from different
databases and in Phase 3 when the search results of database
search and manual search are merged. In Phase 1, the search re-
trieved a total of 31,840 papers in databases and 12,725 papers
in target journals, conferences, and workshops. They are captured
in the reference management tool EndNote. This tool is also used
in the subsequent steps for storing and sorting retrieved papers.
After reading and checking the titles of these papers, 410 papers
are included for further selection in Phase 2. As we can see in
Fig. 2, a huge number of papers are excluded in Phase 1, and the
number of included papers is decreased from 44,565 to 410. We

Exclude studies
based on title

Exclude studies
based on abstracts

Exclude studies
based on full-text

Final selection

Exclude studies
based on title

Exclude studies
based on abstracts

Exclude studies
based on full-text

242

112

49

168

43

11

Studies from
references

60

Ph
as

e
1

Ph
as

e
2

Search in
databases using

search terms

Manual
search

31840 12725

Ph
as

e
3

Electronic database Target journals, references,
and workshops

Fig. 2. Study search and selection results in three phases of paper selection.

Table 1
Electronic databases included in this SLR.

Electronic databases

DB1 IEEE Xplore
DB2 ACM Digital library
DB3 ScienceDirect
DB4 EI Compendex
DB5 ISI Web of Science
DB6 SpringerLink
DB7 Wiley InterScience
DB8 EBSCO
DB9 Google Scholar

Table 2
Journals, conferences, and workshops included in this SLR.

Journal

J1 IEEE Transactions on Softw
J2 Empirical Software Engine
J3 IEEE Software (IEEE SW)
J4 International Journal of So
J5 Journal of Systems and So
J6 Information and Software
J7 Software Process Improvem
J8 Software and System Mod
J9 Software Quality Journal (
J10 Automated Software Engin
J11 Software: Practice and Exp

Conference

C1 International Conference o
C2 International Conference o
C3 Working IEEE/IFIP Confere
C4 European Conference on S
C5 International Conference o
C6 IEEE/ACM International Co
C7 International Requirement
C8 International Working Con
C9 ACM Symposium on Docu

Workshop

W1 Workshop on SHAring and
W2 International Workshop on
W3 International Workshop on

550 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
found that most of the excluded studies in Phase 1 are due to the
interference of general search terms, such as description, decision,
and reusable. In Phase 2, we include and exclude studies by reading
further their abstracts, and 155 studies are retained for full text
screening in Phase 3 to ensure that their major contribution is in-
deed related to the topic of this SLR. To make the search process
more comprehensive, we also iteratively scan (i.e., snowball) the
references of selected studies got in Phase 3. The SLR guidelines
proposed by Kitchenham and Charters suggest that the creditabil-
ity of a study is based on the type of experiment [37]. In order to
make this SLR credible, the studies without any validation were
intentionally excluded (i.e., exclusion criteria E4) according to the
are Engineering (TSE)
ering (ESE)

ftware Engineering and Knowledge Engineering (IJSEKE)
ftware (JSS)
Technology (IST)

ent and Practice (SPIT)
eling (SoSyM)
SQJ)
eering (ASE)
erience (SPE)

n Software Engineering and Knowledge Engineering (SEKE)
n Software Engineering (ICSE)
nce on Software Architecture (WICSA)
oftware Architecture (ECSA)
n the Quality of Software Architectures (QoSA)
nference on Automated Software Engineering (ASE)
s Engineering Conference (RE)
ference on Requirements Engineering: Foundation for Software Quality (REFSQ)

ment Engineering (DocEng)

Reusing architectural Knowledge (SHARK)
Managing Requirements Knowledge (MaRK)
Empirical Requirements Engineering (EmpiRE)

Studies not retrieved
from the databases

1 Studies published in
2011

5

 Studies by manual
search

Studies by manual
browsing

Studies from
references 10 1

11

Source

Reason Overlooked studies in
database searches5

Fig. 3. Sources and reasons of the selected studies retrieved by manual search.

4 More precisely, improved QA of SD mean the improved ‘‘value’’ of QA of SD. For
conciseness, we use the phrase ‘‘improved QA of SD’’ in the rest of the paper.

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 551
evidence levels described in Section 2.4. In the end, 60 papers are
finally selected to be further analyzed in this SLR.

Note that, of the 11 papers finally obtained through manual
search, 10 are retrieved by manually browsing the target journals,
conferences, and workshops listed in Table 2, and the remaining
paper is retrieved by manually browsing the references of the se-
lected papers.

One of the papers obtained through manual search [S34] cannot
be retrieved from the databases (see Table 1). Five of the papers
[S30, S40, S44, S50, S59] are published in 2011, which may have
not been indexed in the databases when we started this SLR. The
remaining five papers [S5, S8, S25, S32, S42] of the manual search
results can be retrieved by database search, but were overlooked in
the selection process. We suppose that this is partly because these
5 papers can only be retrieved in IEEE or ACM databases, which re-
turned a large number of search results in Phase 1, and conse-
quently negatively affected participants’ focus and judgement in
paper selection. The sources and reasons of the selected studies
got by manual search are illustrated in Fig. 3.

2.3.1. Search scope
2.3.1.1. Time period. We specify the time period of published stud-
ies for this SLR from January 2001 to September 2011, when we
started this SLR. As mentioned in the Introduction section, there
is currently no survey or SLR on knowledge-based approaches in
SDt. Forward and Lethbridge made a general survey on SDt, and re-
lated tools and techniques, covering the studies published before
2001 [31]. In order to reduce repetitive effort and make use of
existing work, we set the starting time of the published studies in-
cluded in this SLR to January 2001.

2.3.1.2. Electronic databases. According to the suggestion in [18],
the following databases are selected as the primary study sources
(Table 1). INSPEC database has been merged into EI Compendex
database, consequently INSPEC is excluded in the search process.

2.3.1.3. Journals, conferences, and workshops. We apply two criteria
for selecting journals, conferences, and workshops (Table 2) as the
target venues for manual search: (1) they should be highly relevant
to cover research areas of SDt or both SDt and KM; (2) they are the
leading journals, conferences, and workshops in the review areas,
including SE, intersection of SE and KM, requirements engineering,
and software architecture. Note that, the selection of journals, con-
ferences, and workshops for the manual search may not be com-
prehensive since we regarded the manual search as a
supplementary, but not exhaustive, source to the database (auto-
matic) search. Considering the two criteria, C3, C4, C5, and W1
are top conferences or workshops on software architecture, which
are relevant to SAD. C7, C8, W2, and W3 are included because they
are conferences and workshops on requirements engineering and
requirements knowledge, which have a close relationship to SRD.
Furthermore, publications on SE venues or both SE and KM venues
are potentially relevant to SDt. These venues include journals J1, J2,
J3, J4, J5, J6, J7, J8, J10, J11, and conferences C1 and C2. J9 is in-
cluded because the publications in this journal focus on software
quality, which may contain the studies on improving the quality
of SDt.
2.3.2. Search terms
We use population, intervention, comparison, and outcome

(PICO) criteria to define the search terms for database search in this
SLR based on the SLR guidelines [37].

Population: The population in this SLR is ‘‘SDt’’. We use the
words that are relevant to SDt as the population (e.g., documen-
tation, specification, and description). In order to cover as many
studies as possible, the word ‘‘software’’ is not included in the
population.
Intervention: The intervention is ‘‘knowledge-based
approaches’’. We use the word ‘‘knowledge’’ and its synonyms
for the intervention (e.g., knowledge, semantic, rationale, and
decision).
Comparison: Since there is no compared approach for this
review according to the SLR guidelines [37], the part of compar-
ison specified in PICO is not considered in the construction of
search terms.
Outcome: The outcome we focus on in this SLR by applying
knowledge-based approaches is the ‘‘QA of SD’’.4 As discussed
in Section 2.1.2, we survey and collect the QA of SD from existing
literature and standards on SRD and SAD [1,2,22,36], and derive
the initial set of the outcomes, which is composed of the follow-
ing QA: completeness, understandability, traceability, clarity, consis-
tency, evolvability, conciseness, and reusability, Newly identified
QA of SD and their synonyms are added to the outcome during
the search process (e.g., comprehensibility, unambiguity, retriev-
ability, modifiability, correctness, credibility, and maturity). We
decide that a study addresses a certain QA of SD if the QA term
is explicitly mentioned in the paper and the term is related to
SD. Meanwhile, some synonyms of QA are excluded in the search
process because these terms cause a high number of search
results (e.g., consist, correct, and clear). Note that, the QA maturity
can be divided into three sub-QA: completeness, correctness, and
consistency as suggested in [36]. With this consideration, maturity
is also included as a search term in the outcome in order to
retrieve relevant papers more comprehensively.

Table 3
List of search terms in population, intervention, and outcome.

Search terms

Population (P) Documentation, document, documenting, specification, specify, specifying, description
Intervention (I) Knowledge, semantic, rationale, decision
Outcome (O) Completeness, understandability, understandable, comprehensibility, comprehensible, traceability, traceable, clarity, consistency, modifiability,

evolvability, evolutionary, conciseness, concise, reusability, unambiguity, retrievability, correctness, credibility, maturity, communicability

552 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
The final list of the search terms in population (P), intervention
(I), and outcome (O) are presented in Table 3.

2.3.3. Search strategy
The search strategy, describing how to combine the search

terms, is used in this SLR to obtain a fair and comprehensive liter-
ature review. The search strategy that supports the search process
in three phases is described below:

(1) An initial set of search terms is proposed according to the
description of search term identification in PICO specified
in Section 2.3.2.

(2) Various combinations of search terms are used in trial
searches. The search terms are revised according to the
results of the trial searches. Boolean operators ‘‘OR’’ and
‘‘AND’’ are used to join search terms. The search terms
within the population, intervention, and outcome are joined
with ‘‘OR’’ (e.g., for intervention, joined search term is
‘‘knowledge OR semantic OR rationale OR decision’’). We fol-
lowed the guidelines in [37] to reach the search string by
formulating a combination of population, intervention, and
outcome, which is ‘‘P AND I AND O’’. Google Scholar restricts
the length of search strings, due to which the search string
‘‘P AND I AND O’’ is broken into three sub search strings:
‘‘P AND I’’, ‘‘P AND O’’, and ‘‘O AND I’’. Meanwhile, this data-
base only supports paper searches by either full-text or title
of a paper, and the former case leads to too many search
results (e.g., using ‘‘P AND I’’ to search in Google Scholar by
full-text returned 1,890,000 papers), consequently we
decided to use three sub search strings to search in Google
Scholar by title. Although the Google Scholar database con-
tains many duplicated search results from other databases
(i.e., DB1 to DB8), it still contributes several selected studies
which are not indexed by any other database (e.g., [S16] is
not indexed in DB1 to DB8).

(3) Formal searches are performed in two sub-steps sequen-
tially, the automatic search in databases and manual search
in target venues:
Table 4
Data ite

#

D1

D2

D3
D4

D5

D6
D7
D8
(a) We search potentially relevant primary studies in dat-
abases. We limit the search on papers in computer sci-
ence (we can set up the domains in the search of
ms extracted from each study.

Item name Description

Publication year In which year was the study published?

Venue What is the name of the journal, conference, or worksh

Quality attribute(s) Which QA of SD does the proposed approach in the stu
Knowledge-based
approach(es)

Which knowledge-based approach(es) is employed in t

What problem(s) addressed What specific problem(s) concerning the QA of SD does
approach(es)?

Benefit(s) What are the benefit(s) of the knowledge-based approa
Cost(s) What are the cost(s) in relation to the knowledge-base
Evidence level What is the evidence level of the evaluation of the prop
databases, including ScienceDirect, EI Compendex, ISI
Web of Science, and SpringerLink) and on papers written
in English (we can constrain the languages of published
papers in the search of databases, including EI Compen-
dex, ISI Web of Science, SpringerLink, and Google Scho-
lar). Papers that are not in the domain of computer
science or written in English, are manually excluded in
the search results of the databases which cannot con-
strain subject domains and publication languages.

(b) We perform manual browsing to identify the potentially
relevant primary studies in target journals, conferences,
and workshops.
The detailed search process using the search strategy and
search terms has been elaborated in the beginning of Section 2.3.

Selected studies from both database and manual search were
recorded in an Office Excel spreadsheet for duplication check and
further analysis. Each entry of a selected study records the follow-
ing information: authors’ name, year of publication, title of publi-
cation, source (journal, conference, or workshop name), and
publication type (journal paper, conference paper, workshop pa-
per, book, book chapter, technical report, or others).

2.4. Data extraction and synthesis

To answer the RQs defined in Section 2.1.3, we extract specific
data from the selected studies. Table 4 describes the data items
(D1 to D8) extracted for the analysis in this review. D1 and D2 pro-
vide clues for the distribution of knowledge-based approaches over
years and venues of publication. D3 (i.e., improved QA of SD) di-
rectly contributes to the answers of RQ1. D4 (i.e., knowledge-based
approaches) can be used to answer RQ2. D5, D6, and D7 contribute
to the answer of RQ3 and further discussion of knowledge-based
approaches in SDt in Sections 3 and 4. To ensure that the data
extraction results are unbiased, two authors performed the data
extraction independently, and then one checked the data extrac-
tion results of the other, and finally they discussed and reached a
consensus on the data extraction results. Since the evidence level
of the selected studies is critical information for understanding
the existing practice in the review topic, we employed a six-level
classification for evidence evaluation proposed by Alves et al.
Relevant RQ

Study
overview

op that the paper was published? Study
overview

dy try to improve? RQ1
he study to address the problem(s) in SDt? RQ2

the study try to address by knowledge-based RQ3

ch(es) in SDt? RQ3
d approach(es) in SDt? RQ3

osed approach? Study quality

Quality
Attributes

Year Knowledge-based approaches
2010200920082007200620052004200320022001

KCR = Knowledge Capture & Representation
KRv = Knowledge Recovery
KRs = Knowledge Reasoning

KCR KRv KRs

Consistency

Traceability

Clarity

General KM
activity

Completeness

2011

Conciseness

Reusability

Credibility

Correctness

Modifiability

Retrievability

Unambiguity

7

19

23

3

2 3

3 2 8

2 4 3 6 4

2 23

4

3

6

8

9

3

3 2 3 6

6

Understandability

2 2

2

3

2

16

2

5

4

5

3

3

6

2

3

8

2

9

5

2

1

1 1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1 11

1 1

1

1

1 1 1

1

1

1

Fig. 4. Applications of knowledge-based approaches for software documentation (due to the space limitation of the bubbles, the study IDs in each bubble of this systematic
map can be found in http://www.cs.vu.nl/~liangp/project/KbSDt/systematicmap.htm).

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 553
[10]. The evidence levels (from weakest to strongest) are defined as
follows:

Level 0: No evidence (0.0).
Level 1: Evidence obtained from demonstration or toy examples
(0.2).
Level 2: Evidence obtained from expert opinions or observations
(0.4).
Level 3: Evidence obtained from academic studies, e.g., con-
trolled lab experiments (0.6).
Level 4: Evidence obtained from industrial studies, e.g., causal
case studies (0.8).
Level 5: Evidence obtained from industrial practice (1.0).

In order to identify the evidence level in a quantitative way, we
assign 0.2 point to represent an increase of evidence level. The evi-
dence levels from weakest (Level 0) to strongest (Level 5) are
accordingly 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, as shown in parentheses
of relevant evidence level listed above.
3. Results

3.1. Overview of results

After three phases of paper selection as shown in Fig. 2 and 60
studies (listed in Appendix A) are finally included in the review re-
sults. In this section, we answer the research questions from Sec-
tion 2.1.3 by analyzing and synthesizing the extracted data from
the selected studies.
Fig. 4 presents a systematic map of the applications of knowl-
edge-based approaches for SDt, distributed over three dimensions:
year of publication, knowledge-based approaches employed, and
improved QA of the SD. The left part in Fig. 4 denotes the relation-
ship between studies and year of publication. The number in a
bubble represents the number of studies on a specific QA improved
by knowledge-based approaches published in a certain year. The
right part of Fig. 4 shows the relationship between studies and
knowledge-based approaches. Similarly, the number in a bubble
represents the number of studies applying a certain knowledge-
based approach to improve a specific QA of the SD. In this system-
atic map, only three knowledge-based approaches are included:
KCR, KRv, and KRs, because only the approaches that produce
knowledge (as shown in Fig. 1) can enrich the content of SD and
further improve the QA of SD. The remaining knowledge-based ap-
proaches: KRt, KS, and KR are approaches that only consume
knowledge from the SD without making any change or improve-
ments to the SD, are not included in this figure, and these knowl-
edge-based approaches use SD to support other software
development activities except for documentation. Note that, the
sum of the numbers of studies on the column labeled KCR (103) ex-
ceeds the total number of selected studies (60), because one study
may improve several QA. This situation is further elaborated in the
third paragraph of Section 3.2. The analysis of this systematic map
(Fig. 4) is also presented in Section 3.2.

Table 5 presents the distribution of selected studies over publi-
cation sources, including the publication name, type, count (i.e.,
the number of selected studies from each source), and the percent-
age of selected studies. The 60 selected studies are distributed over
36 publication sources, suggesting knowledge-based approaches

http://www.cs.vu.nl/~liangp/project/KbSDt/systematicmap.htm

Table 5
Distribution of selected studies over publication sources.

Publication source Type Count %

Journal of System and Software (JSS) Journal 8 13.3
The Working IEEE/IFIP Conference on Software Architecture (WICSA) Conference 7 11.7
International Requirements Engineering Conference (RE) Conference 5 8.3
European Conference on Software Architecture (ECSA) Conference 3 5.0
SHAring and Reusing Architectural Knowledge (SHARK) Workshop 3 5.0
International Journal of Software Engineering and Knowledge Engineering (IJSEKE) Journal 2 3.3
Asia–Pacific Software Engineering Conference (APSEC) Conference 2 3.3
International Conference on Software Engineering (ICSE) Conference 2 3.3
Managing Requirements Knowledge (MaRK) Workshop 2 3.3
Relating Software Requirements and Architectures Book 1 1.7
Decision Support Systems (DSS) Journal 1 1.7
IEEE Software (IEEE SW) Journal 1 1.7
IET Software Journal 1 1.7
Information and Software Technology (IST) Journal 1 1.7
International Journal of Cooperative Information Systems (IJCIS) Journal 1 1.7
Journal of Software Maintenance and Evolution: Research and Practice (JSME) Journal 1 1.7
Requirements Engineering (RE) Journal 1 1.7
Software Process: Improvement and Practice (SPIP) Journal 1 1.7
European Conference on Software Maintenance and Reengineering (CSMR) Conference 1 1.7
International Conference of the Web Services (ICWS) Conference 1 1.7
International Conference on Advances in Semantic Processing (SEMAPRO) Conference 1 1.7
International Conference on Applied Computer Science (ACS) Conference 1 1.7
International Conference on Design of Communication (SIGDOC) Conference 1 1.7
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) Conference 1 1.7
International Conference on Program Comprehension (ICPC) Conference 1 1.7
International Conference on the Quality of Software Architectures (QoSA) Conference 1 1.7
International Conference on Software Engineering Research and Practice (SERP) Conference 1 1.7
International Multi-Conference Software Engineering (SE) Conference 1 1.7
International Symposium on Empirical Software Engineering (ISESE) Conference 1 1.7
Proceedings of Innovation for Enterprise Software (PRIMIUM) Conference 1 1.7
Software Engineering and Knowledge Engineering (SEKE) Conference 1 1.7
Cooperative and Human Aspects on Software Engineering (CHASE) Workshop 1 1.7
Engineering of Computer Based Systems (ECBS) Workshop 1 1.7
Recommendation Systems for Software Engineering (RSSE) Workshop 1 1.7
Software Engineering for Secure Systems (SESS) Workshop 1 1.7

Total 60 100

Fig. 5. Distribution of selected studies over time period.

Fig. 6. Number of QA of SD improved by knowledge-based approaches over time
period.

554 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
for SDt have been a widespread concern in the research commu-
nity. As shown in Table 5, the leading venues in this study topic
are JSS, WICSA, RE, and SHARK. WICSA is a leading conference in
the software architecture community. RE is the flagship conference
in the requirements engineering community, and JSS is a major
journal on software systems. This result is to be expected since
the topic of this SLR focuses on requirements and architecture doc-
umentation of software systems.

Fig. 5 shows the distribution of selected studies over year of
publication from 2001 to 2011. The number of studies applying
knowledge-based approaches in SDt has been increasing in the last
decade (only 2 studies relevant to using knowledge-based ap-
proaches in SDt published in 2004, and this number grows to 17
in 2011. The number of studies increases since 2006 with a small
variation in 2009). As shown in Fig. 6, more QA of SD are improved
through knowledge-based approaches from 2001 to 2011 (the
number of QA improved by knowledge-based approaches is 2 in
2002, and this number increases to 31 in 2011).

3.2. RQ1: Quality attributes of software documents and knowledge-
based approaches

3.2.1. Quality attributes of software documents
In this RQ, we focus on the influence of using knowledge-

based approaches to the quality of SDt. The three approaches

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 555
(KCR, KRv, and KRs) included in Fig. 4 are the approaches that
may have an impact on the quality of SDt (i.e., the intervention
of the SLR topic), and the QA of SD are the result of the interven-
tion (i.e., the outcome). We collected the QA of SD from the lit-
erature and standards [1,2,22,36] as an initial set of QA. This list
of QA is refined iteratively during the search process. For exam-
ple, the QA maturity is further decomposed into the QA correct-
ness, consistency, and completeness in [36]. According to the
systematic map shown in Fig. 4, the following QA of SD are af-
fected and improved by using knowledge-based approaches:
understandability [22,36], unambiguity [1,22,36], clarity [2], con-
ciseness [1], retrievability [36], traceability [22,36], modifiability
[1], correctness [22,36], consistency [22,36], completeness [1], reus-
ability [22], and credibility [36]. The meaning of these QA in the
context of SD, and more specifically in SRD and SAD is elabo-
rated below:

� Understandability: When stakeholders have different back-
grounds, the language and concepts used to describe the
requirements and architecture might not be understandable
to everyone. It requires that the stakeholders can comprehend
the meaning of the requirements with a minimum of expla-
nation in SRD [22]. It is also a QA of the SAD. It means that
an SAD conveys the intentions of the author when others
read it [36].
� Clarity: It refers to the property that the document structure is

simple and clear, which is a QA of SRD [2], but it can also be
applied to the SAD and general SD.
� Unambiguity: denotes that each requirement stated has only

one possible interpretation [1]. The difference between unambi-
guity and clarity is that clarity focuses on the structure of docu-
ments and unambiguity stresses the meaning of its contents.
� Conciseness: means that there is no redundancy and anomaly in

the documentation [7]. It is a QA of general SD.
� Retrievability: How easy requirements or architecture informa-

tion relevant to an information need can be obtained from the
SRD or SAD. For example, annotated architectural knowledge
provides an easy way to retrieve information from architecture
documents [36].
� Traceability: represents the ability to describe and follow the

life of a requirement in both a forward and backward direc-
tion in the SRD [19]. It is also a QA of the SAD, denoting
the relationship of one architecture entity to other entities
[3]. The traceability of documents can improve the retrievabil-
ity and modifiability in SD.
� Modifiability means that any necessary changes in document

structure and content can be made easily, completely, and con-
sistently [1].
� Consistency means no subset of individual statements is in con-

flict [1]. It is a QA of SD, SRD, and SAD. The QA correctness and
completeness are relative attributes to consistency in assessing
the maturity of SD.
� Correctness may have specific meanings in different contexts.

For example, every requirement represents something required
of system to be built in a SRD [23]; an architectural decision in a
SAD actually leads to a solution that meets the requirement
[70]. It is a QA of SRD, SAD, and also a QA of general SD.
� Completeness means what the software is supposed to do and all

the elements for understanding the requirements are included
in the SRD [23]. For SAD, it means that all elements for under-
standing an architecture design are provided [1,4].
� Reusability means that elements, sentences, paragraphs, and

sections can be easily adopted and adapted for use in a subse-
quent SD (e.g., requirements in requirements specifications
[22] and viewpoints in architecture descriptions [4]). It is a
QA of SAD, SRD, and SD.
� Credibility means that high accuracy is required for the content
in SD [41]. It is a general QA of SD, including SAD and SRD. For
instance, how reliable is the knowledge in a SAD when it
evolves with changes in the implementation and requirements
[36]. Credibility can improve the reusability of SD.

3.2.2. How knowledge-based approaches improve quality attributes of
software documents

In the right-hand side of Fig. 4, we present the distribution of
selected studies from the perspective of the QA of SD that are im-
proved by various knowledge-based approaches. As shown in this
figure, consistency, traceability, and understandability are the major
QA of SD that are affected by using knowledge-based approaches,
and the number of studies using various knowledge-based ap-
proaches differs dramatically. Detailed analysis of the QA of SD im-
proved by different knowledge-based approaches is presented
below.

KCR is widely employed for improving all QA of SD, but a signif-
icant difference exists in the numbers of studies using KCR for
improving specific QA. KCR is mostly used to improve consistency,
traceability, understandability, and reusability. This is because cap-
tured knowledge in SD, e.g., using models, can improve the consis-
tency and traceability of SD, and knowledge representation
improves the understandability and reusability of SD. KCR is less of-
ten used to address unambiguity, conciseness, and credibility. This is
because conciseness and credibility are seldom considered as critical
QA in SDt practice [41], and there is no consensus on whether
accepting unambiguity as an indispensable QA of SD. For example,
requirements specifications in a certain context deliberately intro-
duce ambiguity in order to provide room for better stakeholder dis-
cussion and communication [47]. On the other hand, unambiguity
of SAD is an important QA to improve the understandability of
the architecture design [36].

KRv is mostly used to improve the following QA: understand-
ability, traceability, and retrievability. As described in Section 2.1.1,
KRv focuses on recovering knowledge which is not explicit. The
understandability of SD can be improved when the knowledge in
SD is made explicit. Recovered knowledge in SD can help trace
back to the source where the recovered knowledge originally
comes from (e.g., from recovered design decision to design arti-
fact), therefore KRv can improve traceability and retrievability in
SDt.

KRs is mainly used to improve the following QA: understandabil-
ity, retrievability, traceability, completeness, and consistency. As de-
scribed in Section 2.1.1, KRs stresses drawing a conclusion (i.e.,
new knowledge) from existing knowledge through inference. The
traceability relationships between existing knowledge and new
knowledge in SD can be recorded during the knowledge reasoning
process, consequently KRs can improve the traceability and retriev-
ability of SD. Meanwhile, identification of the knowledge reasoning
process in SD can improve the understandability of SD, e.g., the rea-
soning process from a design decision to a design solution can im-
prove the understanding of the solution [67]. When knowledge
reasoning is performed on architecture documentation, a concep-
tual model can be used to check whether a specific architectural
knowledge element is missing, while the completeness of architec-
ture documents can be assessed and improved [36]. KRs can also
improve the consistency of SD since reasoning can be used to check
consistency in SD [36].

3.2.3. Quality attributes of software documents and their concerned
elements in software documents

The QA of SD improved by knowledge-based approaches are
concerned with various content elements of SD, i.e., the building
blocks in a SD, for example, requirements in SRD and architecture
design in SAD. We present the relationship between the QA of SD

Table 6
Relationship between QA of SD and their concerned documented elements.

QA of SD Concerned documented elements

Most studied Second most studied Third most studied

Consistency Between requirements S2, S7, S22, S26, S37, S44,
S50, S55 [8 studies]

Between architectural design decisions
S11, S21, S27, S57 [4 studies]

Between requirements and architectural design
decision S6, S14, S25 [3 studies]

Traceability From requirements to architecture design S4, S20,
S24, S29, S34, S38, S48, S53, S54, S58 [10 studies]

Between requirements S30, S32, S36,
S39, S44 [5 studies]

From architectural design decision to
architecture design S4, S38, S39, S54, S58 [5
studies]

Understandability Architecture design S1, S9, S10, S11, S19, S20, S45,
S46, S47, S48, S52, S54 [12 studies]

Architectural design decision S9, S11,
S19, S20, S46, S52, S54, S57 [8 studies]

Requirements S10, S15, S45, S46, S48, S50 [6
studies]

Reusability Architecture design S5, S18, S21, S43, S51, S57 [6
studies]

Functional requirements S30, S33, S43,
S44 [4 studies]

Architectural design decision S5, S18, S21, S57
[4 studies]

Completeness Requirements S15, S23, S28, S40 [4 studies] Architecture design S16, S19, S40 [3
studies]

Non-functional requirements S22, S49, S56 [3
studies]

Retrievability Architecture design S5, S19, S27, S31, S34 [5 studies] Architectural design decision S5, S19,
S27, S31 [4 studies]

Architectural design rationale S5, S27, S31 [3
studies]

Fig. 7. Distribution of selected studies over knowledge-based approaches used in
SDt.

556 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
and the elements in SD in order to understand which QA of SD is
mostly concerned with which SD elements. We select the six dom-
inant QA of SD, consistency, traceability, understandability, reusabil-
ity, completeness, and retrievability, and present the major content
elements in SD concerning these QA in a descending order of the
number of studies in each category shown in Table 6. The example
studies listed in the table are elaborated below.

Consistency: Some knowledge-based approaches are used to
improve the consistency between requirements, between archi-
tectural design decisions, and between requirements and archi-
tectural design decisions. For example, [S7] proposes a model-
based object-oriented approach for requirements engineering
(MORE) to improve the maintenance and consistency of
requirements documents. Requirements documents in natural
language are converted into objects and classes using ROMs
(Requirement Object Models), which provide precise specifica-
tion of the requirements semantics to prevent inconsistency
of requirements.
Traceability: Some knowledge-based approaches are used to
improve the traceability from requirements to architecture
design, between requirements, and from architectural design
decisions to architecture design. For instance, [S4] developed
an architecture design decision support system (ADDSS) to codify
design decisions that link requirements to architecture design.
Understandability: Knowledge-based approaches are frequently
used in understanding architecture design, architectural design
decisions, and requirements. For example, the domain architec-
tural knowledge model constructed in [S19] is used to annotate
architecture documentation, which improves the understand-
ability of architecture design with design decisions.
Reusability: Knowledge-based approaches are used to improve
the reusability of architecture design, functional requirements,
and architectural design decisions. For instance, [S57] proposes
a documentation framework consisting of four viewpoints to
document architectural design decisions, which can facilitate
the reuse of architecture design and design decisions (i.e., archi-
tectural solutions) in similar projects.
Completeness: Knowledge-based approaches are used to
improve the completeness of requirements, architecture design,
and non-functional requirements. For example, [S28] intro-
duces the concept of ‘‘domain knowledge seed’’ in requirements
evolution of agile development, which provides the core fea-
tures in a given domain. The completeness of requirements
specifications can be improved during system evolution when
the seed (i.e., the domain knowledge) is evolved.
Retrievability: Knowledge-based approaches are used to
improve the retrievability of architecture design, architectural
design decision, and design rationale. For instance, [S19]
employs a domain architectural knowledge model to annotate
text-based architecture documents into semantically-enriched
knowledge instances and store them in a knowledge repository,
which can facilitate the retrieval of architectural knowledge,
including architecture design and design decisions.

3.3. RQ2: Knowledge-based approaches in software documentation

3.3.1. Distribution of knowledge-based approaches in software
documentation

The knowledge-based approaches classified in Section 2.1.1 are
all used in SDt, either producing knowledge to SDt or consuming
knowledge from SDt, including KCR, KRt, KR, KS, KRv, and KRs.
We get the distribution of selected studies over knowledge-based
approaches used in SDt as shown in Fig. 7.

KCR is the most frequently used approach in SDt. The reason of
this result is that the output of KCR provides input to other knowl-
edge-based approaches. For example, only when specific knowl-
edge in SD is captured and represented, the knowledge can be
readily shared, retrieved, and reused. The KCR approach is used
in 54 studies, which means 90% of the total studies employ this
knowledge-based approach in SDt, either improving various QA
of SD or using SDt to support other development activities. For
example, [S56] uses KCR to represent requirements knowledge
and improve the correctness, completeness, and consistency of
requirements specifications through KRs. [S41] uses different do-
main knowledge representations to support comprehensive
description and domain knowledge reuse in requirements elicita-
tion. Besides KCR, the most popular knowledge-based approach
in SDt, all other approaches are evenly employed in SDt. There
are 20 studies (33.3%) that employ KRs in SDt. For instance, [S25]
uses formal reasoning with a knowledge base to check consistency

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 557
between design and functional requirements specifications. KS and
KR are both employed in 18 studies (30%). For example, [S16]
developed Ontobrowser, a tool based on ontologies and semantic
wikis, to share knowledge about software architecture and pro-
vides a collaborative way for architecture documentation. [S5] pre-
sents a model to represent and record rationale in architecture
design, which can be reused and facilitates architecture under-
standing in new projects. KRt is used in 14 studies (23.3%). For
example, [S54] developed a lightweight ontology and uses seman-
tic annotation and query to improve the indexing and retrieval of
software architectural knowledge. KRv is used in 14 studies
(23.3%). For example, latent semantic indexing technique is used
in [S34] to recover implicit semantic relationships between SDt
and source code.

Note that the number of studies using certain knowledge-based
approach in Fig. 7 is not equal to the sum of the numbers of the
same knowledge-based approach in Fig. 4 (e.g., the number of
studies using KCR is 54 in Fig. 7 and 103 in Fig. 4). The reason is
that one knowledge-based approach (e.g., KCR, KRv, and KRs) can
possibly impact several QA of SD. Meanwhile, the total number
of studies (138) using various knowledge-based approaches in
Fig. 7 is larger than the number of selected studies (60). This is
due to the fact that one study may apply several knowledge-based
approaches in SDt.

3.3.2. General and specific knowledge-based approaches
Specific knowledge-based approaches can be refined and classi-

fied by analyzing the six general knowledge-based approaches used
in selected studies (i.e., KCR, KRs, KRv, KR, KS, and KRt). A specific
knowledge-based approach employs a knowledge technique to sup-
port general knowledge-based approaches. Classification of the spe-
cific knowledge-based approaches is helpful in understanding the
underlying characteristics and realization mechanism of the general
knowledge-based approaches used in SDt. For example, conceptual
modeling can be used to support all general knowledge-based ap-
proaches. Table 7 presents the studies classified in two dimensions:
employed specific knowledge-based approach and general knowl-
edge-based approach. For example, [S38] uses conceptual modeling,
tactic traceability information models (TTIMs), to capture and repre-
sent the traceability links from architecture design to architectural
design decisions in architecture documents. As shown in the second
column of Table 7, conceptual modeling and natural language pro-
cessing are two mostly used specific knowledge-based approaches
for capturing and representing knowledge in SDt. The example stud-
ies of using specific knowledge-based approaches to realize general
knowledge-based approach are elaborated below.

Conceptual modeling is the activity of formally describing some
aspects of the physical and social world around us for the purpose
of understanding and communication [50].

� KCR: [S39] develops a traceability model to capture and repre-
sent knowledge elements that are essential to comprehensively
manage changes in software development and documentation,
e.g., product, rationale, and version.
� KRv: [S17] constructs an argumentation model based on IBIS

(issue-based information system) notations, including concepts
Issue, Position, Argument, and Decision, to express tacit knowl-
edge in argumentation of requirements engineers, which can
help stakeholders to better understand the evolution of
requirements.
� KRs: [S53] develops a conceptual model with reasoning rules

and concept relationships implemented in an ontology to sup-
port reasoning from requirements to architecture design.
� KRt: [S4] employs specific attribute templates developed in
architecture design decision support system (ADDSS) to character-
ize and store architectural knowledge, e.g., architecture styles,
which can be further retrieved as design solutions to satisfy var-
ious user needs.
� KR: [S33] uses an activity-based quality model (ABQM) to get

normalized requirements for reusing in requirements
documents.
� KS: [S16] employs a service-oriented architecture (SOA) ontology

to share SOA knowledge to domain experts and technique
people.

Natural language processing aims to convert human language
into a formal representation that is easy for computers to manipu-
late [21].

� KCR: [S34] employs Latent Semantic Indexing, a specific natural
language processing technique, to capture and mathematically
represent information from requirements or architecture doc-
umentation, which can be used to identify traceability links
between documentation and code.
� KRv: [S36] uses Latent Semantic Indexing to recover implicit

traceability links between requirements in requirements docu-
mentation by combining textual and structural information.
� KRs: [S25] proposes an approach to translate functional require-

ments specifications expressed in natural language into UML
models with supporting axioms, which can facilitate consis-
tency checking between requirements and design specifications
through reasoning.

Annotation in documentation is an activity to tag the content in
documents with various tags, for example in a folksonomy multi-
ple users tag particular content with a variety of terms. Semantic
annotation using ontology is that experts tag instance data (e.g.,
text in documents) with ontology classes [58].

� KCR: [S19] uses concepts (e.g., Requirement, Design Decision) in a
domain architectural knowledge model to annotate architec-
ture documents explicitly into architectural knowledge
instances in order to improve understandability of architecture
documents.
� KRv: [S54] develops a lightweight ontology to semantically

annotate architecture documents, such as requirements, archi-
tecture design, and design decisions, which leads to improved
retrievability and traceability of knowledge in architecture
documentation.
� KRs: [S53] develops and uses an ontology to semantically anno-

tate the traceability links between architecture requirements
and design with reasoning rules in order to support the co-evo-
lution between architectural requirements and design.
� KRt: [S37] develops the 4everedit tool to support structured

text-based documentation, e.g., architecture and requirements
documents, by annotation with extended XML. The knowledge
annotated from documents can then be retrieved by stakehold-
ers for various purposes, e.g., checking structural and internal
consistency of documents.
� KR: Architecture properties are used in [S43] to annotate archi-

tecture documents, and annotated architecture design in archi-
tecture documents can be reused by searching these properties.
� KS: [S31] uses an advanced mapping quality prediction model

(AMQPM) to predict the sharing quality of architectural knowl-
edge that is annotated from architecture documents by domain
experts.

Ta
bl

e
7

Cl
as

si
fi

ca
ti

on
of

st
ud

ie
s

by
sp

ec
ifi

c
kn

ow
le

dg
e-

ba
se

d
ap

pr
oa

ch
an

d
ge

ne
ra

l
kn

ow
le

dg
e-

ba
se

d
ap

pr
oa

ch
.

Sp
ec

ifi
c

kn
ow

le
dg

e-
ba

se
d

ap
pr

oa
ch

G
en

er
al

kn
ow

le
dg

e-
ba

se
d

ap
pr

oa
ch

K
C

R
K

R
v

K
R

s
K

R
t

K
R

K
S

C
on

ce
pt

u
al

m
od

el
in

g
S1

,S
2,

S3
,S

4,
S5

,S
6,

S7
,S

10
,

S1
1,

S1
2,

S1
6,

S1
7,

S1
9,

S2
0,

S2
1,

S2
2,

S2
3,

S2
4,

S2
6,

S2
7,

S2
9,

S3
0,

S3
2,

S3
5,

S3
8,

S3
9,

S4
0,

S4
1,

S4
2,

S4
4,

S4
5,

S4
6,

S4
7,

S4
8,

S4
9,

S5
1,

S5
2,

S5
3,

S5
4,

S5
5,

S5
7,

S5
8,

S5
9,

S6
0

[4
4

st
u

d
ie

s]

S4
,S

6,
S1

5,
S1

7,
S1

9,
S2

0,
S2

1,
S2

7,
S3

3,
S3

6,
S5

4,
S6

0
[1

2
st

u
d

ie
s]

S4
,S

5,
S1

6,
S1

9,
S2

6,
S2

7,
S3

2,
S3

5,
S4

0,
S4

8,
S4

9,
S5

2,
S5

3,
S5

4,
S5

7,
S5

8,
S6

0
[1

7
st

u
d

ie
s]

S2
,S

4,
S1

7,
S2

8,
S3

3,
S4

4,
S5

1,
S5

3,
S5

4,
S5

7
[1

0
st

u
d

ie
s]

S4
,S

5,
S7

,S
12

,S
17

,S
18

,
S1

9,
S2

1,
S2

9,
S3

2,
S3

3,
S3

8,
S4

1,
S5

7,
S5

8
[1

5
st

u
d

ie
s]

S4
,S

5,
S1

0,
S1

6,
S1

8,
S2

0,
S2

1,
S2

7,
S3

0,
S3

2,
S4

5,
S5

1,
S5

4,
S5

8,
S6

0
[1

5
st

u
d

ie
s]

N
at

u
ra

l
la

n
gu

ag
e

pr
oc

es
si

n
g

S8
,S

9,
S1

5,
S2

3,
S2

5,
S3

4,
S3

6,
S5

0,
S5

6
[9

st
u

d
ie

s]
S9

,S
15

,S
34

,S
36

[4
st

u
d

ie
s]

S2
5,

S5
0,

S5
6

[3
st

u
d

ie
s]

A
n

n
ot

at
io

n
S1

4,
S1

9,
S3

7,
S4

3,
S5

3,
S5

4
[6

st
u

d
ie

s]
S1

9,
S5

4
[2

st
u

d
ie

s]
S1

9,
S5

3,
S5

4
[3

st
u

d
ie

s]
S1

4,
S3

7,
S5

3,
S5

4
[4

st
u

d
ie

s]
S1

8,
S4

3
[2

st
u

d
ie

s]
S1

8,
S3

1,
S5

4
[3

st
u

d
ie

s]

558 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
3.3.3. Knowledge-based approaches and documented content
Knowledge-based approaches to SDt are used with various

requirements and architectural knowledge content in SD. To fur-
ther understand the relationship between knowledge-based ap-
proaches and SD knowledge content, the selected studies are
classified in two dimensions: knowledge-based approach and SD
knowledge content, as presented in Table 8. The number of studies
for each category is shown in each cell of Table 8, for example, KCR
is mostly used to capture and represent architecture design in SD,
which includes 28 studies. Besides documenting the basic knowl-
edge desired in a typical SRD and SAD, i.e., requirements and archi-
tecture design respectively, knowledge-based approaches have also
been used to capture architectural design decisions and architectural
design rationale, i.e., the core of architectural knowledge [24]. The
use of knowledge-based approaches in SDt can be extended to
the content of requirements knowledge [43], especially require-
ments decisions and requirements rationale [44].

3.4. RQ3: Costs and benefits of using knowledge-based approaches

Using a bottom-up approach by analyzing the data items D5,
D6, and D7 in Table 4, we identify the following categories of costs
and benefits of using knowledge-based approaches in SDt, which
are elaborated in this section.

3.4.1. Costs of using knowledge-based approaches
The cost of knowledge-based approaches in SDt refers to the

expenditure of employing knowledge-based approaches in SDt,
e.g., time, money, and labor. We identify four cost categories from
SDt literature [15,17,41]: the cost of document creation [41], doc-
ument maintenance and evolution [17], information retrieval from
documents [15], and document distribution [17]. Since few studies
evaluate the cost of using knowledge-based approaches in SDt
quantitatively, we categorize the cost of SDt qualitatively in this
SLR, i.e., identifying the types of cost relevant to using knowl-
edge-based approaches in SDt. Note that, four studies did not
explicitly discuss the cost of knowledge-based approaches in SDt
[S8, S10, S47, S49].

Document creation: Studies in this category focus on the cost of
development of documents using various documentation
approaches according to the needs of document users. For
instance, recording only domain-specific architectural knowl-
edge in architecture documents using the model-driven develop-
ment approach reduces the cost of document creation [S18].
Savolainen and Mannisto present an approach of considering
stakeholder conflicts in architecture documentation [S46]. They
develop a conflict-centric architectural view to document archi-
tecture trade-offs in quality requirements that are traditionally
scattered among multiple architectural views. When the most
important conflicts have been described, the documentation
process will stop, which will consequently reduce document
creation cost.
Document maintenance and evolution: Document content is
prone to change quickly and needs to be updated and synchro-
nized with other changed software artifacts. Meanwhile, SD
should be organized to make them more accessible. Studies in
this category focus on the cost caused by the abovementioned
activities. For instance, knowledge assisted agile requirements
evolution (K-gileRE) presents a ‘‘domain knowledge seed’’ for
given domain and associated knowledge elements [S28]. The
correctness, consistency, and completeness of requirements
specifications are improved when analysts modify the seed
according to the online recommendation, which can reduce
the document maintenance cost. Scenario-based documenta-
tion and evaluation method (SceMethod) can indicate

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 559
‘‘what’’-‘‘how’’-‘‘why’’ features for architectural design deci-
sions [S6]. It keeps the architectural knowledge complete and
consistent during architectural evolution, which can reduce
document maintenance and evolution cost.
Information retrieval from documents: Studies in this category
focus on the cost of retrieving useful information from SD. For
instance, capturing architecturally significant traceability links
through annotating and extracting information from existing
architecture documents can reduce the time of information
retrieval from documents [S38]. Using the latent semantic
indexing technique requires less preprocessing and manipula-
tion effort to support information retrieval from source code
and associated documentation [S34]. The architecture proper-
ties are represented as an XML file which provides an easy
way to search in the documents [S43].
Document distribution: Studies in this category focus on the cost
of dissemination and sharing of the documents to various users
who need the documents. For instance, by enhancing the tradi-
tional object-oriented programming paradigm, the approach
proposed in [S45] enables adaptable SD as part of the source
code. SD and code can be disseminated simultaneously which
consequently reduces the cost of document distribution. The
4everedit tool uses a pre-defined document structure to repre-
sent document knowledge, which can be used to maintain
structural and internal consistency of SD in a team-based docu-
mentation environment [S37]. In such an environment, this tool
can further reduce document distribution and sharing cost
among documentation users.

Table 9 presents the summary of selected studies over cost cat-
egories, including the selected studies and percentage of selected
studies in each category. As shown in Table 9, the cost of retrieving
information from documents is the major concern of using knowl-
edge-based approaches in SDt. The costs of creating, maintaining,
and evolving documents are also important factors when applying
knowledge-based approaches in SDt. Note that, one study (e.g.,
[S54]) may cover several cost categories of using knowledge-based
approaches in SDt, and consequently the sum of the percentages of
studies from each category exceeds 100% in Table 9.

3.4.2. Benefits of using knowledge-based approaches
The benefits discussed in this section indicate that some activ-

ities in software development are supported by using knowledge-
based approaches in SDt, with a focus on requirements engineering
or architecting activities. Nine benefit categories are identified
from selected studies.

Requirements elicitation: Studies in this category focus on
improving the efficiency of requirements elicitation. For
instance, Li et al. propose a model-based approach, which pro-
vides a high level of requirements abstraction in a domain spe-
cific model to elicit requirements in scientific computing. This
approach makes the elicited requirements easier to understand
and reduces the learning effort for domain scientists [S30].
Requirements analysis: Studies in this category focus on detect-
ing and resolving conflicts between requirements, discovering
boundary of a software system and interaction with its environ-
ment [5]. For instance, the model-based object-oriented approach
(MORE) proposed in [S7] can capture and model domain knowl-
edge, which is used to evaluate the consistency, completeness,
traceability, and reusability in requirements analysis. TExtual
aSSIstent (TESSI) is a requirements specification and analysis
tool, which is used to transform requirements specification
and its constraints into a problem ontology, and further checks
inconsistency in requirements specification through ontology
reasoning [S26].
Requirements comprehension: Studies in this categories focus on
facilitating understanding of requirements. For instance, [S2]
proposes a way of structuring and representing the require-
ments specifications to improve requirements comprehension.
In this approach, the requirements specifications consist of rig-
orous description of different views, e.g., use case view, context
view with underlying domain model, which is helpful for
understanding requirements.
Requirements evolution: Studies in this category focus on
changes in requirements after initial requirements have been
elicited. Changes in requirements can be adding to, removing,
or modifying existing requirements [63]. For example, [S39]
integrates software configuration management with a trace-
ability model, which can represent knowledge elements that
are essential to comprehensively manage changes, to support
change management during the evolution of requirements
artifacts.
Requirement traceability: Studies in this category focus on the
ability to describe and follow the life of a requirement, in both
a forward and backward direction [33]. For instance, [S36]
develops a method to recover traceability links in requirements
documentation using a combination of textual and structural
information.
Co-evolution of requirements and architecture: Studies in this cat-
egory focus on bridging the gap between requirements and
architecture. For instance, the Language for Integrated Software
Architecture (LISA) model links requirements decisions to archi-
tectural elements, which maintains consistency between
requirements and architecture views [S58]. Tang et al. intro-
duce a generic ontology model with a semantic wiki to support
the co-evolution between architecture requirements and design
[S53]. The semantic wiki developed in this work supports the
traceability ontology model and semantic annotation, which
help users to retrieve co-evolved requirements and architecture
designs.
Architecture understanding: Studies in this category focus on
better understanding of architecture design through architec-
tural knowledge. For instance, de Boer and van Vliet employ
latent semantic analysis technique to discover the semantic
structure in a set of architecture documents, which provides a
reading guide for architecture documents and further improves
architecture understanding [S9].
Architecture evolution: Studies in this category focus on adapting
an existing architecture to cope with the evolution require-
ments [11]. For instance, [S59] proposes an approach to support
architecture evolution (generation of a list of tasks maintainers
can perform to evolve the system) of software product lines
using required architectural knowledge, which is codified in a
meta-model.
Architecture recovery: Studies in this category focus on recover-
ing architecture design and related architectural knowledge
that is not explicit in existing architecture documents. For
instance, Feilkas et al. proposed to recover and refine implicit
architectural knowledge (e.g., violations between current archi-
tecture and the intended architecture) through nonconfor-
mance checking and discussion between the two architectures
represented in XML [S14]. Architectural design decision recovery
approach (ADDRA) uses a template based on a conceptual model
to recover and document architectural design decisions after
the fact [S20].

Table 10 presents the summary of selected studies over benefit
categories, including the selected studies and percentage of se-
lected studies in each category. As shown in this table, using
knowledge-based approaches in SDt mainly supports the follow-
ing activities: architecture understanding (41.7%, 25 studies),

Table 8
Classification of studies by knowledge-based approach and SD knowledge content.

Knowledge content in SD Knowledge-based approach

KCR KRv KRs KRt KR KS

Architecture design S1, S3, S4, S5, S6, S9, S14, S16, S19,
S20, S21, S27, S29, S34, S38, S40, S42,
S43, S45, S46, S47, S48, S51, S52, S53,
S54, S58, S59 [28 studies]

S4, S6, S9,
S19, S20, S21,
S27, S34, S54
[9 studies]

S4, S5, S16, S19,
S27, S40, S48,
S52, S53, S54,
S58 [11 studies]

S4, S14, S51, S53
S54 [5 studies]

S4, S5, S18, S19,
S21, S29, S43,
S58 [8 studies]

S4, S5, S10, S13,
S16, S18, S20, S21,
S27, S31, S45, S51,
S58 [13 studies]

Architectural design
decision

S3, S4, S5, S6, S9, S11, S12, S19, S20,
S21, S27, S29, S38 S39,, S46, S52, S53,
S54, S57, S58, S59 [21 studies]

S4, S6, S9,
S19, S20, S21
S27 S54 [8
studies]

S4, S5, S19, S27,
S40, S52, S53,
S54, S57, S58 [10
studies]

S4, S53, S54, S57
[4 studies]

S4, S5, S12, S18,
S19, S21, S29,
S38, S57, S58
[10 studies]

S4, S5, S13, S18,
S20, S21, S27, S31,
S54, S58 [10
studies]

Architectural design
rationale

S4, S5, S6, S17, S20, S27, S38, S39, S48,
S52, S57, S58 [12 studies]

S4, S20, S27
[3 studies]

S5, S16, S27, S48,
S52, S57, S58 [7
studies]

S4, S57 [2 studies] S4, S5, S38, S57,
S58 [5 studies]

S5, S13, S20, S27,
S31, S54, S58 [7
studies]

Architectural view S4, S6, S20, S43 [4 studies] S4, S6, S20 [3
studies]

S4 [1 study] S4, S18, S43 [3
studies]

S4, S18, S20 [3
studies]

Architectural pattern S16, S38, S43, S60 [4 studies] S4, S60 [2
studies]

S4 [1 study] S4, S43 [2
studies]

S4, S16, S60 [3
studies]

Architecturally significant
requirement

S3, S38, S58, S10, S43, S46, S53 [7
studies]

S53, S58 [2
studies]

S53 [1 study] S38, S43, S58 [3
studies]

S58 [1 study]

Requirement S2, S6, S8, S12, S15, S19, S23, S25, S26,
S34, S36, S37, S39, S40, S41, S45, S48,
S50, S55 [19 studies]

S4, S15, S19,
S34, S36, S54
[6 studies]

S19, S25, S26,
S40, S50 [5
studies]

S2, S4, S28, S37 [4
studies]

S4, S12, S19,
S32, S41 [5
studies]

S4, S10, S32, S45 [4
studies]

Functional requirement S7, S11, S22, S30, S35, S43, S44, S52,
S53, S54, S56 [11 studies]

S33, S54 [2
studies]

S35, S52, S53
S54, S56 [5
studies]

S33, S44, S53, S54
[4 studies]

S7, S33, S43 [3
studies]

S30, S31, S54 [3
studies]

Non-functional
requirement

S7, S11, S22 S30, S38, S44, S46, S52,
S53, S54, S56 [11 studies]

S33, S54 [2
studies]

S32, S49, S52,
S53, S54, S56 [6
studies]

S33, S44, S53, S54
[4 studies]

S7, S32, S33,
S38, S43 [5
studies]

S30, S31, S54 [3
studies]

Requirements rationale S17, S53 [2 studies] S33 [1 study] S32, S53 [2
studies]

S17, S33, S53 [3
studies]

S17, S32, S33 [3
studies]

S32 [1 study]

560 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
requirements elicitation (21.7%, 13 studies), and co-evolution of
requirements and architecture (15.0%, 9 studies). Similar to the
cost categories, one study (e.g., [S52]) may cover several benefit
categories of using knowledge-based approaches in SDt, and con-
sequently the sum of the percentages of studies from each category
also exceeds 100% in Table 7.

Fig. 8 presents the distribution of selected studies over the ben-
efit categories for requirements engineering and architecting activ-
ities. We find that knowledge-based approaches in SDt are evenly
used in and benefit both requirements engineering and architect-
ing activities (34 vs. 35 studies). This result shows that knowl-
edge-based approaches are promising and appropriate to support
the documentation from requirements to architecture. Note that
one study may benefit both requirements engineering and archi-
tecting activity (e.g., [S54], to support co-evolution from require-
ments to architecture), and consequently the sum of the studies
in this figure (69) exceeds the number of selected studies (60).

3.5. Evidential support

According to the criteria to identify the evidence level of a study
provided in Section 2.4, we evaluated the evidence level of all the
selected studies and show the distribution of studies in each evi-
dence level in Fig. 9. For instance, [S17] introduces an approach
which adapts the IBIS (issue-based information system)
Table 9
Classification of studies by cost categories of using knowledge-based approaches.

Cost categories Selected studies

Information retrieval from documents S2, S3, S9, S14, S15, S20, S23, S24, S25
Document creation S1, S4, S5, S6, S11, S12, S17, S18, S20,
Document maintenance and evolution S4, S6, S7, S14, S16, S19, S27, S28, S35
Document distribution S13, S19, S31, S32, S33, S37, S45
argumentation model to characterize and capture tacit require-
ments knowledge (e.g., requirements rationale) in order to im-
prove requirements documentation, but this work only
demonstrates the application of the approach with a toy example
(Evidence level 1). 4everedit is a tool that represents document
knowledge following a pre-defined document structure, which
facilitates maintenance of structural and internal consistency of
SD [S37]. Twenty-six editors, from more than five companies, have
successfully applied this tool in a large process engineering project
for one year; consequently the evidence level of [S37] is obtained
from industrial practice (Evidence level 5). From Fig. 9, we find that
more than 50% (33 out of 60) studies on using knowledge-based
approaches in SDt are supported by academic studies (Evidence le-
vel 3). Only 13.3% (8 out of 60) studies have been validated in
industrial practice (Evidence level 5). The results are understand-
able because of the high cost and risk of evaluating knowledge-
based approaches in SDt through industrial practices. No evidence
is obtained from expert opinions or observation (Evidence level 2).
The reason is that there are no consistent criteria for experts to
evaluate the quality of SDt.

Fig. 10 presents the distribution of selected studies in two
dimensions: evidence level and knowledge-based approach em-
ployed in SDt. The number in a bubble represents the number of
studies that use certain knowledge-based approach and are sup-
ported by a specific evidence level (e.g., the biggest bubble denotes
%

, S26, S29, S31, S34, S36, S38, S40, S43, S44, S51, S53, S54, S58, S60 38.3
S21, S22, S30, S43, S45, S48, S50, S54, S55, S57 31.7
, S39, S41, S42, S46, S52, S56, S59, S60 28.3

11.7

Fig. 8. Distribution of studies over the benefit categories for requirements
engineering and architecting activities.

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 561
that 27 studies use KCR in SDt and are evaluated by academic stud-
ies). Note that there is a difference between the sum of all the bub-
bles (i.e., numbers of studies) in Fig. 10 (138) and number of
selected studies (60), because one study may employ several
knowledge-based approaches in SDt. From Fig. 10 we find that
all knowledge-based approaches are evaluated in at least four
studies with industrial evidence (i.e., industrial studies or indus-
trial practice), but all the knowledge-based approaches used in
SDt are mainly supported by evidence obtained from academic
studies, except for KRt.

4. Discussion

4.1. Scope of the systematic review

This SLR focuses on how knowledge-based approaches are em-
ployed in SDt, in terms of improving the quality of SDt and use SD
to support software development activities.

When conducting this SLR, we consider the QA of SD in the
search process as part of the search terms (i.e., the outcome in
the PICO criteria of a SLR) collected from standards and literature
on SD, SAD, and SRD, so that the results and conclusions of this
SLR can be applied to SAD and SRD. Meanwhile, we use the most
general term ‘‘knowledge’’ as part of the search terms to maximize
the coverage of potentially-relevant studies retrieval and conse-
quently ensure that the results of this SLR can cover all studies that
use certain knowledge or knowledge-based approaches.

This SLR focuses on studies that elaborate knowledge-based ap-
proaches, not on studies that only introduce knowledge-based
tools. For instance, KaitoroBase is an architecture documentation
tool, which provides support for non-linear navigation and visual-
ization of SAD through an underlying conceptual model [64]. This
Table 10
Classification of studies by benefit categories of using knowledge-based approaches.

Benefit categories Selected studies

Architecture understanding S1, S3, S4, S5, S6, S9, S10, S13, S18, S1
Requirements elicitation S15, S17, S22, S23, S30, S33, S37, S41
Co-evolution of requirements and

architecture
S3, S11, S12, S18, S24, S36, S53, S54,

Requirements comprehension S2, S8, S32, S33, S34, S35, S39, S55
Architecture evolution S1, S6, S16, S19, S21, S52, S59
Requirements analysis S7, S15, S25, S26, S50, S56
Requirements evolution S11, S28, S39, S45, S50
Architecture recovery S14, S20, S60
Requirements traceability S29, S36
work only introduces the structure of the tool and its application,
without any description of the employed knowledge-based ap-
proach that the tool implements. This study is therefore excluded
from this SLR.

4.2. Study quality assessment

The quality of data extraction and synthesis of the selected
studies of this SLR are assessed in this section. An assessment
instrument is presented in Table 11, which is adapted from the cri-
teria for study quality assessment proposed in [9,28]. We include
five questions in this instrument to assess the quality of extracted
data. Q1, Q2, and Q5 are adopted from [9,28] while Q3 and Q4 are
proposed according to the scope and RQs of this SLR. This instru-
ment uses a three-grade scale score (Yes = 1 point, No = 0 point,
and Partially = 0.5 point) to answer Q2 to Q5. The score of Q1 is di-
rectly collected from the data item D8 of Table 4, i.e., evidence le-
vel. The sum of the scores of all the assessment questions for a
study can reflect the quality of a study.

The quality assessment on the selected studies is also useful to
increase the accuracy of the data extraction results. The quality
assessment results are showed in Table 12 according to the assess-
ment questions described in Table 11. The scores of all the studies
are no less than 3.10 and the average score is 4.17. The overall
quality of the selected studies is acceptable. Since we use the inclu-
sion and exclusion criteria specified in Section 2.2 when selecting
studies, the scores of Q2, Q3, and Q4 are high. i.e., the average
scores of Q2 and Q3 are both greater than 0.93 and all the studies
get full scores on Q4. The high scores of Q2 and Q3 also show that
the results of data extraction are in line with the two key concepts
of this SLR, i.e., impact to software documentation and knowledge-
based approaches employed. Meanwhile, the studies that get low
total score in Table 12 are checked again against the inclusion
and exclusion criteria, e.g., [S32], to guarantee the quality of study
selection results.

4.3. Validity threats

According to the guidelines for analyzing the validity threats to
SE methods and processes [73], four types of validity threats are
identified. We discuss these potential threats that influence the
data extraction and the findings of this SLR in this section.

Construct validity: The main constructs in this review are the
two basic concepts ‘‘knowledge-based approaches’’ and ‘‘soft-
ware documentation’’. For the first concept, we use term
‘‘knowledge’’ and its synonyms to make sure that all selected
studies are relevant to knowledge-based approaches or using
knowledge. For the second concept, QA of SD can reflect the
effect of intervention to SDt. QA of SD and their synonyms,
%

9, S24, S27, S31, S38, S40, S42, S43, S46, S47, S48, S51, S52, S57, S58, S60 41.7
, S44, S45, S49, S50, S56, 21.7
S58 15.0

13.3
11.7
10.0

8.3
5.0
3.3

Fig. 9. Distribution of selected studies over evidence levels.

Evidence level

Knowledge-based approaches

KCR = Knowledge Capture & Representation KS = Knowledge Sharing
KRt = Knowledge Retrieval KRv = Knowledge Recovery
KR = Knowledge Reuse KRs = Knowledge Reasoning

KCR KRt KS KRv KRsKR

Demonstration
 / toy examples (0.2)

Expert opinions
/ observations (0.4)

Academic studies (0.6)

Industrial studies (0.8)

Industial practice (1.0)

10

5

4

3

5

4

5

9

2

6

2

4

3

27 6

7

7

13

3

3

32 3 2

Fig. 10. Distribution of studies by evidence level and knowledge-based approach.

Tab
Que

#

Q
Q
Q
Q
Q

562 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
collected and refined from SDt standards and literature, are
used to ensure high coverage of potentially-relevant studies
on the influence to SDt from database search. Meanwhile,
manual search from literature sources is performed comple-
mentary to database search to ensure that relevant studies
are covered as much as possible. Specific journals and
conferences on KM are not included in the literature sources
for the manual search due to the limitation of our knowl-
edge, which may cause the missing of related studies. This
threat is partially mitigated by including the general interven-
tion term ‘‘knowledge’’ in the search terms for the database
search.
Internal validity in a SLR focuses on whether a research is ade-
quately designed and executed to produce reliable findings,
and particularly whether the results really follow from the data
le 11
stions on study quality assessment.

Questions

1 In which evidence level the proposed approach of the study is evaluat
2 Is there a clear statement of the benefits and costs for software docum
3 Is there a clear statement of what the knowledge-based approach emp
4 Is there an adequate description of what QA of SD are improved by th
5 Are the limitations of this study discussed explicitly?
[30]. As a threat to the internal validity, researchers may end up
with different data extraction and analysis results. The data
extraction is performed collaboratively by two authors, and
any conflicts are discussed and resolved by all the authors. In
this way, we try to mitigate the threats due to personal bias
on study understanding.
External validity is concerned with establishing the generaliz-
ability of the SLR results, which is related to the degree to which
the primary studies are representative for the review topic. In
order to mitigate external threats, the search process described
in Section 2.3 is defined after several trial searches. We tested
the coverage and representativeness of retrieved studies,
including automatic database search, manual search, and refer-
ences scan.
Reliability: It is possible that some studies excluded in this
review should have been included. To mitigate the threats to
reliability, the selection process and the inclusion and exclusion
criteria are carefully designed and discussed by authors to min-
imize the risk of exclusion of relevant studies.

4.4. Further research

This SLR has illuminated several promising research directions
that are critical but underexplored in current research and
practice:

(1) How to employ knowledge-based approaches to improve
the QA of SD. This area has not received much attention
and the claims lack evidential support. For instance, the
assertions to use knowledge-based approaches to improve
credibility, conciseness, and unambiguity of SD are hardly sup-
ported. There are still many open questions to be answered,
e.g., how to define the quantitative metrics for evaluating
credibility, conciseness, and unambiguity of SD. Furthermore,
text retrieval approaches have been used to evaluate concise-
ness of queries to software artifacts from a system [35], and
the approaches may be adapted to evaluate conciseness of
ed? (the answer of this question can be collected from data item D8 of Table 4)
entation in this study?
loyed is in the study?

e knowledge-based approach employed?

Table 12
Quality assessment results of selected studies.

Study ID Q1 Q2 Q3 Q4 Q5 Total score Study ID Q1 Q2 Q3 Q4 Q5 Total score

S1 0.2 1.0 1.0 1.0 0.0 3.2 S31 1.0 1.0 1.0 1.0 1.0 5.0
S2 0.2 1.0 1.0 1.0 0.0 3.2 S32 0.6 0.5 1.0 1.0 0.0 3.1
S3 0.6 1.0 1.0 1.0 1.0 4.6 S33 1.0 0.5 1.0 1.0 1.0 4.5
S4 0.6 1.0 1.0 1.0 1.0 4.6 S34 0.6 1.0 1.0 1.0 1.0 4.6
S5 0.6 1.0 1.0 1.0 0.0 3.6 S35 0.6 0.5 1.0 1.0 1.0 4.1
S6 0.8 1.0 0.5 1.0 1.0 4.3 S36 0.6 1.0 1.0 1.0 1.0 4.6
S7 0.2 0.5 1.0 1.0 1.0 3.7 S37 1.0 1.0 1.0 1.0 1.0 5.0
S8 0.2 1.0 0.5 1.0 0.5 3.2 S38 1.0 0.5 1.0 1.0 0.0 3.5
S9 0.6 1.0 1.0 1.0 1.0 4.6 S39 0.6 0.5 1.0 1.0 1.0 4.1
S10 0.8 1.0 1.0 1.0 0.5 4.3 S40 0.6 1.0 1.0 1.0 0.0 3.6
S11 0.6 1.0 0.5 1.0 1.0 4.1 S41 0.6 1.0 1.0 1.0 1.0 4.6
S12 0.6 1.0 1.0 1.0 0.0 3.6 S42 0.8 1.0 1.0 1.0 1.0 4.8
S13 0.6 1.0 1.0 1.0 1.0 4.6 S43 0.2 1.0 1.0 1.0 1.0 4.2
S14 0.8 0.5 1.0 1.0 1.0 4.3 S44 0.6 1.0 1.0 1.0 1.0 4.6
S15 0.6 0.5 0.5 1.0 1.0 3.6 S45 0.2 1.0 1.0 1.0 0.0 3.2
S16 0.2 1.0 1.0 1.0 0.0 3.2 S46 0.6 1.0 1.0 1.0 1.0 4.6
S17 0.2 1.0 1.0 1.0 0.0 3.2 S47 0.6 1.0 1.0 1.0 1.0 4.6
S18 0.2 1.0 1.0 1.0 0.5 3.7 S48 0.6 1.0 0.5 1.0 1.0 4.1
S19 0.8 1.0 1.0 1.0 1.0 4.8 S49 0.6 1.0 1.0 1.0 1.0 4.6
S20 0.6 1.0 1.0 1.0 1.0 4.6 S50 0.6 1.0 1.0 1.0 1.0 4.6
S21 0.6 1.0 1.0 1.0 0.5 4.1 S51 0.6 1.0 1.0 1.0 1.0 4.6
S22 0.6 1.0 1.0 1.0 1.0 4.6 S52 1.0 1.0 1.0 1.0 1.0 5.0
S23 0.6 1.0 1.0 1.0 1.0 4.6 S53 0.6 1.0 1.0 1.0 0.0 3.6
S24 0.2 1.0 1.0 1.0 1.0 4.2 S54 0.2 1.0 1.0 1.0 0.0 3.2
S25 0.2 1.0 1.0 1.0 0.0 3.2 S55 0.2 1.0 1.0 1.0 0.0 3.2
S26 0.6 1.0 0.5 1.0 1.0 4.1 S56 1.0 1.0 1.0 1.0 1.0 5.0
S27 0.2 1.0 1.0 1.0 1.0 4.2 S57 0.8 1.0 1.0 1.0 1.0 4.8
S28 0.8 1.0 1.0 1.0 1.0 4.8 S58 0.8 1.0 1.0 1.0 0.0 3.8
S29 1.0 1.0 1.0 1.0 1.0 5.0 S59 0.6 1.0 1.0 1.0 1.0 4.6
S30 0.6 1.0 1.0 1.0 0.0 3.6 S60 1.0 1.0 1.0 1.0 1.0 5.0

Q1 Q2 Q3 Q4 Q5 Total
Average score 0.59 0.93 0.95 1.00 0.70 4.17

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 563
content in SD. We may also use the definition of conciseness
for ontology evaluation [32] to evaluate conciseness of e.g.,
ontology-based SDt [25].

(2) How knowledge-based approaches can improve design prac-
tice by better use of knowledge content in SD. For instance,
architectural patterns and architecturally significant
requirements do not receive much attention in the current
applications of knowledge-based approaches in SDt (see
Table 8). To further improve the practice of SDt activity,
for example how KRv can be used to recover architecturally
significant requirements in SAD, which can be made explicit
in the current project or reused in other projects. A decision-
centric approach is presented in [48] to recover design deci-
sions and their semantically rich traceability links from
architecturally significant requirements to architectural
components, in which knowledge recovery is supported by
machine learning techniques (e.g., classifier training). This
approach may be employed and adapted to recover other
knowledge content in SD.

(3) How to better apply SD. As shown in Table 7 and Table 8,
we can see that much work has been done on using KCR
to capture and represent knowledge in SD. However, the
application of SD largely depends on the knowledge-based
approaches: KR, KRt, KRs, and KS. The amount of research
on applying SD knowledge is much less than SD knowl-
edge capture and representation. This is to be expected
since knowledge capture and representation is a prerequi-
site to using SD knowledge. The research community
needs to focus more on how SD application can facilitate
cost-effective software development with these knowl-
edge-based approaches in order to make the most use
of SD.
(4) How to measure the costs and benefits of using knowledge-
based approaches in SDt in a qualitative or quantitative way.
The cost and benefit categories identified in this SLR are clas-
sified without qualitative or quantitative comparison since
most studies did not explicitly discuss this issue or provide
such information. Hence we need more research on the
qualitative or quantitative measurement of the costs and
benefits of using knowledge-based approaches in SDt. For
example, Dzidek et al. study the costs and benefits of using
UML documentation in software maintenance [29]. They
introduce six dependent variables (e.g., time, correctness,
and design quality in maintenance tasks) to evaluate quanti-
tatively and qualitatively the costs and benefits of using
UML documentation (i.e., the treatment in controlled exper-
iments). These dependent variables and extension of them
can be potentially used for the measurement of the costs
and benefits of using knowledge-based approaches (the
treatment) in SDt.

5. Conclusions

Software documentation (SDt) is a core artifact as well as an
important and prevalent activity in the software lifecycle [62],
even in agile practices [59]. When SDt improves in quality, the soft-
ware quality will improve too [55], but the costs and benefits of
SDt determine how much documentation is needed [15,17,41].
Knowledge-based approaches have been extensively employed in
software development for decades, as well as in SDt. In this work,
we try to understand how knowledge-based approaches are used
in SDt through a SLR. More specifically, the major objective of this
SLR is to understand how knowledge-based approaches are
employed in SDt, their influences, and the costs and benefits of

564 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
using knowledge-based approaches in SDt, especially in the con-
text of architecture design.

Sixty studies on the review topic are finally included, in which
twelve QA of SD, four cost categories, and nine benefit categories
of using knowledge-based approaches in SDt are identified. Three
categories of benefits out of the nine identified categories are
achieved by using knowledge-based approaches in SDt: architec-
ture understanding, requirements elicitation, and co-evolution of
requirements and architecture. The cost of retrieving information
from documents is the major concern when using knowledge-
based approaches in SDt. The review results show that knowl-
edge-based approaches are promising and appropriate to support
the documentation from requirements to architecture.

In this review, we find an increasing trend in the number of
studies on using knowledge-based approaches in SDt over the last
decade. Among various knowledge-based approaches, KCR is the
most frequently studied approach in SDt, which can be employed
to improve all the twelve QA of SD. The usefulness of KRt and
KRv in SDt is demonstrated, but these two approaches require
more research work. The results of this SLR are also beneficial for
practitioners. They can compare various knowledge-based ap-
proaches in their focused content, applications, and evidence levels
in SDt, and then select or combine the approaches that are suitable
for specific SDt (e.g., requirements or architecture documents) in
their context.
Acknowledgements

This work has been partially sponsored by the Natural Science
Foundation of China (NSFC) under the Grant No. 61170025, KeS-
RAD: Knowledge-enabled Software Requirements to Architecture
Documentation and the Dutch ‘‘Regeling Kenniswerkers’’ Project
KWR09164, ‘‘Stephenson: Architecture knowledge sharing prac-
tices in software product lines for print systems’’.
Appendix A. Primary studies in the review

[S1] A. Alti, A. Boukerram, A. Smeda, S. Maillard, M. Oussalah,
COSABuilder and COSAInstantiator: an extensible tool for archi-
tectural description, International Journal of Software Engineer-
ing and Knowledge Engineering 20(3) (2010) 423–455.
[S2] E. Astesiano, G. Reggio, Knowledge structuring and repre-
sentation in requirement specification, in: Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2002, pp. 143–150.
[S3] G. Buchageher, R. Weinreich, Automatic tracing of deci-
sions to architecture and implementation, in: Proceedings of
the 9th Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2011, pp. 46–55.
[S4] R. Capilla, J.C. Duenas, F. Nava, Viability for codifying and
documenting architectural design decisions with tool support,
Journal of Software Maintenance and Evolution: Research and
Practice 22(2) (2010) 81–119.
[S5] M.C. Carignano, S. Gonnet, H. Leone, A model to represent
architectural design rationale, in: Proceedings of the 7th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA),
2009, pp. 301–304.
[S6] M. Che, D.E. Perry, Scenario-based architectural design
decisions documentation and evolution, in: Proceedings of the
18th IEEE International Conference and Workshops on the Engi-
neering of Computer-Based Systems (ECBS), 2011, pp. 216–225.
[S7] W.C. Chu, C.H. Chang, C.W. Lu, Model-based object-
oriented requirement engineering and its support to software
documents integration, in: Proceedings of the 6th International
Conference on Software Engineering Research and Practice
(SERP), 2008, pp. 431–436.
[S8] A.L. Correa, C.M.L. Werner, Precise specification and valida-
tion of transactional business software, in: Proceedings of the
12th International Requirements Engineering Conference (RE),
2004, pp. 16–25.
[S9] R.C. de Boer, H. van Vliet, Architectural knowledge discov-
ery with latent semantic analysis: Constructing a reading guide
for software product audits, Journal of Systems and Software
81(9) (2008) 1456–1469.
[S10] R.C. de Boer, H. van Vliet, Writing and reading software
documentation: How the development process may affect
understanding, in: Proceedings of the 2nd ICSE Workshop on
Cooperative and Human Aspects on Software Engineering
(CHASE), 2009, pp. 40–48.
[S11] D. Falessi, G. Cantone, M. Becker, Documenting design
decision rationale to improve individual and team design deci-
sion making: an experimental evaluation, in: Proceedings of the
5th ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE), 2006, pp. 134–143.
[S12] D. Falessi, G. Cantone, P. Kruchten, Value-based design
decision rationale documentation: Principles and empirical fea-
sibility study, in: Proceedings of the 7th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), 2008, pp. 189–198.
[S13] R. Farenhorst, P. Lago, H. van Vliet, EAGLE: Effective tool
support for sharing architectural knowledge, International Jour-
nal of Cooperative Information Systems 16(3&4) (2007) 413–
437.
[S14] M. Feilkas, D. Ratiu, E. Jurgens, The loss of architectural
knowledge during system evolution: an industrial case study,
in: Proceedings of the 17th IEEE International Conference on
Program Comprehension (ICPC), 2009, pp. 188–197.
[S15] R. Gacitua, P. Sawyer, V. Gervasi, On the effectiveness of
abstraction identification in requirements engineering, in: Pro-
ceedings of the 18th International Requirements Engineering
Conference (RE), 2010, pp. 5–14.
[S16] H.J. Happel, S. Seedorf, M. Schader, Ontology-enabled doc-
umentation of service-oriented architectures with ontobrowse
semantic wiki, in: Proceedings of Innovation for Enterprise Soft-
ware (PRIMIUM), 2009, pp. 61–80.
[S17] M.A. Hissen, Facilitating tacit-knowledge acquisition
within requirements engineering, in: Proceedings of the 10th
WSEAS International Conference on Applied Computer Science
(ACS), 2010, pp. 27–32.
[S18] T. Holmes, H. Tran, U. Zdun, S. Dustdar, Model-driven and
domain-specific architectural knowledge view for compliance
meta-data in process-driven SOAs, in: Proceedings of the 5th
Workshop on SHAring and Reusing Architectural Knowledge
(SHARK), 2010, pp. 1–7.
[S19] A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching software
architecture documentation, Journal of System and Software
82(8) (2009) 1232–1248.
[S20] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the
fact: Recovering architectural design decisions. Journal of Sys-
tems and Software 81(4) (2008) 536–557.
[S21] A. Jansen, J. van der Ven, P. Avgeriou, D.K. Hammer, Tool
support for architectural decisions, in: Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2007, pp. 4–13.
[S22] H. Kaiya, M. Saeki, Using domain ontology as domain
knowledge for requirements elicitation, in: Proceedings of the
14th International Requirements Engineering Conference (RE),
2006, pp. 189–198.
[S23] H. Kaiya, Y. Shimizu, H. Yasui, K. Kaijiri, M. Saeki, Enhanc-
ing domain knowledge for requirements elicitation with web

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 565
mining, in: Proceedings of the 17th Asia–Pacific Software Engi-
neering Conference (APSEC), 2010, pp. 3–12.
[S24] A.W. Kiwelekar, R.K. Joshi, Ontological analysis for gener-
ating baseline architectural descriptions, in: Proceedings of the
4th European Conference on Software Architecture (ECSA),
2010, pp. 417–424.
[S25] A. Kozlenkov, A. Zisman, Are their design specifications
consistent with our requirements? in: Proceedings of the 10th
International Requirements Engineering Conference (RE),
2002, pp. 145–154.
[S26] P. Kroha, R. Janetzko, J.E. Labra, Ontologies in checking for
inconsistency of requirements specification, in: Proceedings of
the 3rd International Conference on Advances in Semantic Pro-
cessing (SEMAPRO), 2009, pp. 32–37.
[S27] P. Kruchten, P. Lago, H. van Vliet, Building up and reason-
ing about architectural knowledge, in: Proceedings of the 2nd
International Conference on the Quality of Software Architec-
tures (QoSA), 2006, pp. 43–58.
[S28] M. Kumar, N. Ajmeri, S. Ghaisas, Towards knowledge
assisted agile requirements evolution, in: Proceedings of the
2nd International Workshop on Recommendation Systems for
Software Engineering (RSSE), 2010, pp. 16–20.
[S29] P. Lago, E. Niemela, H. van Vliet, Tool support for traceable
product evolution, in: Proceedings of the 8th European Confer-
ence on Software Maintenance and Reengineering (CSMR),
2004, pp. 261–269.
[S30] Y. Li, N. Narayan, J. Helming, M. Koegel, A domain specific
requirements model for scientific computing, in: Proceedings of
the 33rd International Conference on Software Engineering
(ICSE), 2011, pp. 848–851.
[S31] P. Liang, A. Jansen, P. Avgeriou, A. Tang, L. Xu, Advanced
quality prediction model for software architectural knowl-
edge sharing, Journal of Systems and Software 84(5) (2011)
786–802.
[S32] C. Lopez, L.M. Cysneiros, H. Astudillo, NDR ontology: Shar-
ing and reusing NFR and design rationale knowledge, in: Pro-
ceedings of the 1st International Workshop on Managing
Requirements Knowledge (MaRK), 2008, pp. 1–10.
[S33] M. Luckey, A. Baumann, D. Méndez, Reusing security
requirements using an extended quality model, in: Proceedings
of the 6th ICSE Workshop on Software Engineering for Secure
Systems (SESS), 2010, pp. 1–7.
[S34] A. Marcus, J.I. Maletic, A. Sergeyev, Recovery of traceabil-
ity links between software documentation and source code,
International Journal of Software Engineering and Knowledge
Engineering 15(5) (2005) 811–836.
[S35] A.B.B. Martínez, J.J.P. Arias, A.F. Vilas, On the interplay
between inconsistency and incompleteness in multi-perspec-
tive requirements specifications, Information and Software
Technology 50(4) (2008) 296–321.
[S36] C. McMillan, D. Poshyvanyk, M. Revelle, Combining tex-
tual and structural analysis of software artifacts for traceability
link recovery, in: Proceedings of the 31st International Confer-
ence on Software Engineering (ICSE), 2009, pp. 41–48.
[S37] M. Meisinger, A. Rausch, M. Sihling, 4everedit – team-
based process documentation management, Software Process:
Improvement and Practice 11(6) (2006) 627–642.
[S38] M. Mirakhorli, J. Cleland-Huang, Transforming trace infor-
mation in architectural documents into re-usable and effective
traceability links, in: Proceedings of the 6th Workshop on SHAr-
ing and Reusing Architectural Knowledge (SHARK), 2011, pp.
45–52.
[S39] K. Mohan, P. Xu, L. Cao, B. Ramesh, Improving change
management in software development: Integrating traceability
and software configuration management, Decision Support Sys-
tems 45(4) (2008) 922–936.
[S40] B. Orlic, R. Mak, I. David, J. Lukkien, Concepts and diagram
elements for architectural knowledge management, in: Pro-
ceedings of the 5th European Conference on Software Architec-
ture (ECSA), 2011, pp. 1–10.
[S41] A. Osada, D. Ozawa, H. Kaiya, K. Kaijiri, The role of domain
knowledge representation in requirements elicitation, in: Pro-
ceedings of the 25th IASTED International Multi-Conference:
Software Engineering (SE), 2007, pp. 84–92.
[S42] J.A.D. Pace, J.P. Carlino, M. Blech, A. Soria, M.R. Campo,
Assisting the synchronization of UCM-based architectural docu-
mentation with implementation, in: Proceedings of the 7th
Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2009, pp. 151–160.
[S43] D. Rambabu, T.V. Prabhakar, On archiving architecture
documents, in: Proceedings of the 12th Asia–Pacific Software
Engineering Conference (APSEC), 2005, pp. 351–358.
[S44] R. Rauf, M. Antkiewicz, K. Czarnecki, Logical structure
extraction from software requirements documents, in: Proceed-
ings of the 12th International Requirements Engineering Con-
ference (RE), 2011, pp. 101–110.
[S45] E. Rubin, H. Rubin, Supporting agile software develop-
ment through active documentation, Requirements Engineering
16(2) (2011) 117–132.
[S46] J. Savolainen, T. Mannisto, Conflict-centric software archi-
tectural views: Exposing trade-offs in quality requirements,
IEEE Software 27(6) (2010) 33–37.
[S47] H.H. Schoonewille, W. Heijstek, R.V. Michel, K. Thomas, A
cognitive perspective on developer comprehension of software
design documentation, in: Proceedings of the 30th ACM Inter-
national Conference on Design of Communication (SIGDOC),
2011, pp. 211–218.
[S48] M. Shahin, P. Liang, Z.Y. Li, Architectural design decision
visualization for architecture design: Preliminary results of A
controlled experiment, in: Proceedings of the 4th European
Conference on Software Architecture: Companion Volume
(ECSA), 2011.
[S49] E. Sharifi, R.A. Moghadam, F. Bobillo, M.M. Ebadzadeh, A
fuzzy framework for semantic web service description, match-
making, ranking and selection, in: Proceedings of the 8th Inter-
national Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), 2011, pp. 621–625.
[S50] R. Sharma, and K.K. Biswas, Using courteous logic based
representations for requirements specification, in: Proceedings
of the 4th International Workshop on Managing Requirements
Knowledge (MaRK), 2011, pp. 12–16.
[S51] M.T. Su, J. Hosking, J. Grundy, Capturing architecture doc-
umentation navigation trails for content chunking and sharing,
in: Proceedings of the 9th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2011, pp. 256–259.
[S52] A. Tang, Y. Jin, J. Han, A rationale-based architecture
model for design traceability and reasoning, Journal of Systems
and Software 80(6) (2007) 918–934.
[S53] A. Tang, P. Liang, V. Clerc, H. van Vliet, Traceability in the
co-evolution of architectural requirements and design, in:
Relating Software Requirements and Architectures, Springer,
2011, pp. 35–60.
[S54] A. Tang, P. Liang, H. van Vliet, Software architecture doc-
umentation: the road ahead, in: Proceedings of the 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2011,
pp. 252–255.
[S55] J.T.E. Timm, G.C. Gannod, Specifying semantic web service
compositions using UML and OCL, in: Proceedings of the 14th
International Conference of the Web Services (ICWS), 2007,
pp. 521–528.
[S56] J.J.P. Tsai, A. Liu, Experience on knowledge-based software
engineering: a logic-based requirements language and its

566 W. Ding et al. / Information and Software Technology 56 (2014) 545–567
industrial applications, Journal of Systems and Software 82(10)
(2009) 1578–1587.
[S57] U. van Heesch, P. Avgeriou, R. Hilliard, A documentation
framework for architecture decisions, Journal of Systems and
Software 85(4) (2011) 795–820.
[S58] R. Weinreich, G. Buchgeher, Towards supporting the soft-
ware architecture life cycle, Journal of Systems and Software
85(3) (2011) 546–561.
[S59] D. Weyns, B. Michalik, Codifying architecture knowledge
to support online evolution of software product lines, in: Pro-
ceedings of the 6th Workshop on SHAring and Reusing architec-
tural Knowledge (SHARK), 2011, pp. 37–44.
[S60] Y. Zhang, R. Witte, J. Rilling, V. Haarslev, Ontological
approach for the semantic recovery of traceability links
between software artifacts, IET Software 2(3) (2008) 185–203.

Appendix B. Abbreviations used in the review
KCR
 Knowledge capture and representation

KM
 Knowledge management

KR
 Knowledge reuse

KRs
 Knowledge reasoning

KRt
 Knowledge retrieval

KRv
 Knowledge recovery

KS
 Knowledge sharing

PICO
 Population, intervention, comparison, and outcome

QA
 Quality attribute(s)

RQ
 Research question

SAD
 Software architecture document(s)

SD
 Software document(s)

SDt
 Software documentation

SE
 Software engineering

SLR
 Systematic literature review

SRD
 Software requirements document(s)
References

[1] IEEE, IEEE Std. 830-1984, Guide to Software Requirement Specifications, 1984.
[2] IEEE, IEEE Std. 830-1998, IEEE Recommended Practice for Software

Requirements Specifications, 1998.
[3] IEEE, IEEE Std. 1016-1998, Recommended Practice for Software Design

Description, 1998.
[4] IEEE, IEEE Std. 1471-2000, Recommended Practice for Architectural

Description of Software Intensive Systems, 2000.
[5] IEEE, Guide to the Software Engineering Body of Knowledge (SWEBOK), IEEE

Computer Society, 2004.
[6] ISO, ISO 9000-3:1991, Quality Management and Quality Assurance Standards –

Part 3: Guidelines for the Application of ISO 9001 to the Development, Supply
and Maintenance of Software, International Organization for Standardization,
Geneva, Switzerland, 1991.

[7] V.S. Alagar, K. Periyasamy, Specification activities, in: Specification of Software
Systems, second ed., Springer, New York, 2011, pp. 23–34.

[8] M. Alavi, D.E. Leidner, Review: knowledge management and knowledge
management systems: conceptual foundations and research issues, MIS
Quart. 25 (1) (2001) 107–136.

[9] M.S. Ali, M.A. Babar, L. Chen, K.J. Stol, A systematic review of comparative evidence
of aspect-oriented programming, Inf. Softw. Technol. 52 (9) (2010) 871–887.

[10] V. Alves, N. Niu, C. Alves, G. Valenca, Requirements engineering for software
product lines: a systematic literature review, Inf. Softw. Technol. 52 (8) (2010)
806–820.

[11] O. Barais, A.F. Le Meur, L. Duchien, J. Lawall, Software architecture evolution,
in: Software Evolution, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 233–262.

[12] T.T. Barker, Writing Software Documentation: A Task-Oriented Approach,
second ed., Allyn and Bacon, 2003.

[13] Z.A. Barmi, A.H. Ebrahimi, R. Feldt, Alignment of requirements specification
and testing: a systematic mapping study, in: Proceedings of the 4th
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Berlin, Germany, 2011, pp. 476–485.

[14] M. Biehl, Literature Study on Design Rationale and Design Decision
Documentation for Architecture Descriptions, Technical Report ISRN/KTH/
MMK/R-10/06-SE, Royal Institute of Technology, Stockholm, Sweden, 2010.

[15] D.C. Blair, M.E. Maron, An evaluation of retrieval effectiveness for a full-text
document-retrieval system, Commun. ACM 28 (3) (1985) 289–299.
[16] L.C. Briand, On the many ways software engineering can benefit from
knowledge engineering, in: Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering (SEKE), Ischia, Italy,
2002, pp. 3–6.

[17] L.C. Briand, Software documentation: how much is enough, in: Proceedings of
the 17th European Conference on Software Maintenance and Reengineering
(CSMR), Benevento, Italy, 2003, pp. 13–15.

[18] L. Chen, M.A. Babar, H. Zhang, Towards an evidence-based understanding of
electronic data sources, in: Proceedings of the 14th International Conference
on Evaluation and Assessment in Software Engineering (EASE), Keele, UK,
2010, pp. 135–138.

[19] J. Cleland-Huang, O. Gotel, A. Zisman, Software and Systems Traceability,
Springer, London, 2012.

[20] P. Clements, F. Bachmann, L. Bass, D. Garlan, Documenting Software
Architecutre: Views and Beyond, second ed., Addison-Wesley Professional,
2010.

[21] R. Collobert, J. Weston, A unified architecture for natural language processing:
deep neural networks with multitask learning, in: Proceedings of the 25th
International Conference on Machine Learning (ICML), Helsinki, Finland, 2008,
pp. 160–167.

[22] A. Davis, S. Overmyer, K. Jordan, J. Caruso, Identifying and measuring quality in
a software requirements specification, in: Proceedings of the 1st International
Software Metrics Symposium (METRICS), Baltimore, MD, USA, 1993, pp. 141–
152.

[23] A. Davis, Software Requirments: Objects, Functions, and State, second ed.,
Prentice Hall, Englewood Cliffs, NJ, 1993.

[24] R.C. de Boer, R. Farenhorst, P. Lago, H. van vliet, V. Clerc, A. Jansen,
Architectural knowledge: getting to the core, in: Proceedings of the 3rd
International Conference on the Quality of Software Architectures (QoSA),
Medford, USA, 2007, pp. 197–214.

[25] K.A. de Graaf, A. Tang, P. Liang, H. van Vliet, Ontology-based software
architecture documentation, in: Proceedings of the Joint 10th Working IEEE/
IFIP Conference on Software Architecture & 6th European Conference on
Software Architecture (WICSA/ECSA), Helsinki, Finland, 2012, pp. 121–130.

[26] P. Devanbu, R. Brachman, P.G. Selfridge, B.W. Ballard, LaSSIE: a knowledge-
based software information system, Commun. ACM 34 (5) (1991) 34–49.

[27] T. Dingsoyr, R. Conradi, A survey of case studies of the use of knowledge
management in software engineering, Int. J. Softw. Eng. Knowl. Eng. 12 (4)
(2002) 391–414.

[28] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Inf. Softw. Technol. 50 (9) (2008) 833–859.

[29] W.J. Dzidek, E. Arisholm, L.C. Briand, A realistic empirical evaluation of the
costs and benefits of UML in software maintenance, IEEE Trans. Softw. Eng. 34
(3) (2008) 407–432.

[30] S. Easterbrook, J. Singer, M.A. Storey, D. Damian, Selecting empirical methods
for software engineering research, in: Guide to Advanced Empirical Software
Engineering, Springer, London, UK, 2008, pp. 285–311.

[31] A. Forward, T.C. Lethbridge, The relevance of software documentation, tools
and technologies: a survey, in: Proceedings of the 2nd ACM Symposium on
Document Engineering (DocEng), McLean, Virginia, 2002, pp. 26–33.

[32] A. Gómez-Pérez, Evaluation of ontologies, Int. J. Intell. Syst. 16 (3) (2001) 391–
409.

[33] O.C.Z. Gotel, A.C.W. Finkelstein, An analysis of the requirements traceability
problem, in: Proceedings of the 1st International Conference on Requirements
Engineering (RE), London, UK, 1994, pp. 94–101.

[34] S.J. Greenspan, On the role of domain knowledge-based approaches to
software development, ACM SIGSOFT Softw. Eng. Notes 11 (4) (1986) 34–35.

[35] S. Haiduc, G. Bavota, R. Oliveto, A. Marcus, A. de Lucia, Evaluating the
specificity of text retrieval queries to support software engineering tasks, in:
Proceedings of the 34th International Conference on Software Engineering
(ICSE), Zurich, Switzerland, 2012, pp. 1273–1276.

[36] A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching software architecture
documentation, J. Syst. Softw. 82 (8) (2009) 1232–1248.

[37] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, EBSE Technical Report EBSE-2007-01, Keele
University & University of Durham, 2007.

[38] R.E. Kraut, L.A. Streeter, Coordination in software development, Commun. ACM
38 (3) (1995) 69–81.

[39] P. Kruchten, Documentation of software architecture from a knowledge
management perspective – design representation, in: Software Architecture
Knowledge Management, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 39–57.

[40] P. Kruchten, P. Lago, H. van Vliet, Building up and reasoning about
architectural knowledge, in: Proceedings of the 2nd International Conference
on the Quality of Software Architectures (QoSA), Berlin, Germany, 2006, pp.
43–58.

[41] T.C. Lethbridge, J. Singer, A. Forward, How software engineers use
documentation: the state of the practice, IEEE Softw. 20 (6) (2003) 35–39.

[42] Z. Li, P. Liang, P. Avgeriou, Application of knowledge-based approaches in
software architecture: a systematic mapping study, Inf. Softw. Technol. 55 (5)
(2013) 777–794.

[43] P. Liang, P. Avgeriou, From Architectural Knowledge to Requirements
Knowledge Management, Technical Report RUG-SEARCH-09-L02, SEARCH,
University of Groningen, February, 2009.

[44] P. Liang, P. Avgeriou, K. He, Rationale management challenges in requirements
engineering, in: Proceedings of the 3rd International Workshop on Managing
Requirements Knowledge (MaRK), Sydney, Australia, 2010, pp. 16–21.

http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210

W. Ding et al. / Information and Software Technology 56 (2014) 545–567 567
[45] M. Luckey, A. Baumann, D. Méndez, Reusing security requirements using an
extended quality model, in: Proceedings of the 6th ICSE Workshop on Software
Engineering for Secure Systems (SESS), Cape Town, South Africa, 2010, pp. 1–7.

[46] W. Maalej, M.P. Robillard, Patterns of knowledge in API reference
documentation, IEEE Trans. Softw. Eng. 39 (9) (2013) 1264–1282.

[47] N. Maiden, Cherishing ambiguity, IEEE Softw. 29 (6) (2012) 16–17.
[48] M. Mirakhorli, Tracing architecturally significant requirements: a decision-

centric approach, in: Proceedings of the 33rd International Conference on
Software Engineering (ICSE), Hawaii, USA, 2011, pp. 1126–1127.

[49] M. Mirakhorli, J. Cleland-Huang, Transforming trace information in
architectural documents into re-usable and effective traceability links, in:
Proceedings of the 6th International Workshop on SHAring and Reusing
Architectural Knowledge (SHARK), Hawaii, USA, 2011, pp. 45–52.

[50] J. MyIopoulos, Conceptual modeling and telos, in: Conceptual Modeling,
Databases and CASE: An Integrated View of Information Systems
Development, John Wiley & Sons Inc., New York, USA, 1992, pp. 49–68.

[51] E.Y. Nakagawa, D. Feitosa, K.R. Felizardo, Using systematic mapping to explore
software architecture knowledge, in: Proceedings of the 5th Workshop on
SHAring and Reusing Architectural Knowledge (SHARK), Cape Town, South
Africa, 2010, pp. 29–36.

[52] J. Nicolás, A. Toval, On the generation of requirements specifications from
software engineering models: a systematic literature review, Inf. Softw.
Technol. 51 (9) (2009) 1291–1307.

[53] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation, Oxford University Press, 1995.

[54] D.L. Parnas, Document based rational software development, Knowl.-Based
Syst. 22 (3) (2009) 132–141.

[55] D.L. Parnas, Precise documentation: the key to better software, in: The Future
of Software Engineering, Springer, Zürich, Switzerland, 2011, pp. 125–148.

[56] M.C. Paulk, The Capability Maturity Model: Guidelines for Improving the
Software Process, Addison-Wesley, 1995.

[57] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 2008,
pp. 68–77.

[58] L. Reeve, H. Han, Survey of semantic annotation platforms, in: Proceedings of
the 20th ACM Symposium on Applied Computing (SAC), New York, USA, 2005,
pp. 1634–1638.

[59] E. Rubin, H. Rubin, Supporting agile software development through active
documentation, Requirements Eng. 16 (2) (2011) 117–132.

[60] I. Rus, M. Lindvall, Knowledge management in software engineering, IEEE
Softw. 19 (3) (2002) 26–38.
[61] M. Shahin, P. Liang, M.R. Khayyambashi, Architectural design decision:
Existing models and tools, in: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on Software
Architecture (WICSA/ECSA), Cambridge, UK, 2009, pp. 293–296.

[62] I. Sommerville, Software documentation, Software Engineering: The
Supporting Processes, vol. 2, Wiley-IEEE Press, New York, USA, 2002, pp.
171–186.

[63] G. Stark, P. Oman, A. Skillicorn, C.R. Ameele, An examination of the effects of
requirements changes on software maintenance releases, J. Softw. Maint.: Res.
Pract. 11 (5) (1999) 293–309.

[64] M.T. Su, C. Hirsch, J. Hosking, KaitoroBase: Visual exploration of software
architecture documents, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Auckland, New
Zealand, 2009, pp. 657–659.

[65] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M.A. Babar, A comparative study of
architecture knowledge management tools, J. Syst. Softw. 83 (3) (2010) 352–
370.

[66] A. Tang, M.A. Babar, I. Gorton, J. Han, A survey of the use and documentation of
architecture design rationale, in: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Pittsburgh, Pennsylvania, USA,
2005, pp. 89–98.

[67] A. Tang, Y. Jin, J. Han, A rationale-based architecture model for design
traceability and reasoning, J. Syst. Softw. 80 (6) (2007) 918–934.

[68] A. Tang, P. Liang, H. van Vliet, Software architecture documentation: the road
ahead, in: Proceedings of the 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Boulder, Colorado, USA, 2011, pp. 252–255.

[69] A. Tang, H. van Vliet, Modeling constraints improves software architecture
design reasoning, in: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on
Software Architecture (WICSA/ECSA), Cambridge, UK, 2009, pp. 253–256.

[70] J.S. van der Ven, A. Jansen, P. Avgeriou, D.K. Hammer, Using architectural
decisions, in: Proceedings of the 2nd International Conference on the Quality
of Software Architectures (QoSA), Västeras, Sweden, 2006, pp. 1–10.

[71] H. van Vliet, Software architecture knowledge management, in: Proceedings of
the 19th Australian Conference on Software Engineering (ASWEC), Perth, WA,
Australia, 2008, pp. 24–31.

[72] H. van Vliet, Knowledge sharing in software development, in: Proceedings of
the 10th International Conference on Quality Software (QSIC), Zhangjiajie,
China, 2010, p. 2-2.

[73] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering, Springer-Verlag, Berlin,
Heidelberg, 2012.

http://refhub.elsevier.com/S0950-5849(14)00019-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0295
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0295
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0300
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0300
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0335
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0335
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365

	Knowledge-based approaches in software documentation: A systematic literature review
	1 Introduction
	2 Research method
	2.1 Context and research questions
	2.1.1 Knowledge-based approach
	2.1.2 Software documentation
	2.1.3 Research questions

	2.2 Inclusion and exclusion criteria
	2.3 Search process
	2.3.1 Search scope
	2.3.1.1 Time period
	2.3.1.2 Electronic databases
	2.3.1.3 Journals, conferences, and workshops

	2.3.2 Search terms
	2.3.3 Search strategy

	2.4 Data extraction and synthesis

	3 Results
	3.1 Overview of results
	3.2 RQ1: Quality attributes of software documents and knowledge-based approaches
	3.2.1 Quality attributes of software documents
	3.2.2 How knowledge-based approaches improve quality attributes of software documents
	3.2.3 Quality attributes of software documents and their concerned elements in software documents

	3.3 RQ2: Knowledge-based approaches in software documentation
	3.3.1 Distribution of knowledge-based approaches in software documentation
	3.3.2 General and specific knowledge-based approaches
	3.3.3 Knowledge-based approaches and documented content

	3.4 RQ3: Costs and benefits of using knowledge-based approaches
	3.4.1 Costs of using knowledge-based approaches
	3.4.2 Benefits of using knowledge-based approaches

	3.5 Evidential support

	4 Discussion
	4.1 Scope of the systematic review
	4.2 Study quality assessment
	4.3 Validity threats
	4.4 Further research

	5 Conclusions
	Acknowledgements
	Appendix A Primary studies in the review
	Appendix B Abbreviations used in the review
	References

