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“Exploration and exploitation are the two cornerstones of problem solving by search.” For more than a decade,
Eiben and Schippers’ advocacy for balancing between these two antagonistic cornerstones still greatly in-
fluences the research directions of evolutionary algorithms (EAs) [1998]. This article revisits nearly 100
existing works and surveys how such works have answered the advocacy. The article introduces a fresh
treatment that classifies and discusses existing work within three rational aspects: (1) what and how EA
components contribute to exploration and exploitation; (2) when and how exploration and exploitation are
controlled; and (3) how balance between exploration and exploitation is achieved. With a more comprehen-
sive and systematic understanding of exploration and exploitation, more research in this direction may be
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1. INTRODUCTION

Every search algorithm needs to address the exploration and exploitation of a search
space. Exploration is the process of visiting entirely new regions of a search space,
whilst exploitation is the process of visiting those regions of a search space within
the neighborhood of previously visited points. In order to be successful, a search al-
gorithm needs to establish a good ratio between exploration and exploitation. In this
respect, evolutionary algorithms (EAs) [De Jong 2002; Eiben and Smith 2008], such as
genetic algorithms (GAs) [Michalewicz 1996; Goldberg 2008], evolutionary strategies
(ES) [Bäck 1996], evolutionary programming (EP) [Fogel 1999], and genetic program-
ming (GP) [Koza 1992], to name the more well-known instances, are no exception.
Herrera and Lozano [1996] emphasized this by saying, “The genetic algorithm be-
haviour is determined by the exploitation and exploration relationship kept throughout
the run.” Many researchers believe that EAs are effective because of their good ratio
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between exploration and exploitation. Michalewicz [1996] stated, “Genetic Algorithms
are a class of general purpose (domain independent) search methods which strike a
remarkable balance between exploration and exploitation of the search space.” In spite
of the fact that exploration and exploitation are fundamental concepts, they are often
misunderstood by EA practitioners or even EA researchers.

Eiben and Schippers [1998] provided an early discussion on evolutionary exploration
and exploitation. Their work raised several questions and demonstrated the need for
more research. The aim of their work was to question the common belief that exploita-
tion in EAs is done by selection, whilst exploration is performed by search operators
(e.g., mutation and crossover). Eiben and Schippers also reviewed ten papers in order
to consider existing views, at the time of their writing, about exploration and exploita-
tion in EAs. They found that there was no generally accepted agreement on this topic.
Yet, it seems that their paper, cited by only 32 papers1, has been mainly overlooked.
Perhaps the problem of how to control and measure exploration and exploitation is still
too difficult and/or implicit.

The main objective of this article is to remedy this situation by providing a more
complete treatment of evolutionary exploration and exploitation. Hence, common mis-
understandings and incorrect beliefs about exploration and exploitation in EAs could
be gradually diminished. More importantly, better EAs could be developed by devel-
oping a better understanding of exploration and exploitation. For example, a better
understanding could clarify why one selection mechanism within a particular setting is
better than another, or which crossover/mutation operator to choose. Furthermore, dif-
ferences among EAs might be better understood. Bäck and Schwefel [1993] conducted
an early discussion on differences among GAs, ESs, and EP. They were astonished by
the differences that drive evolution in EAs:

“It is a remarkable fact that each algorithm emphasizes different features
as being most important for a successful evolution process. . . . Both ESs and
EP concentrate on mutation as the main search operator, while the role of
(pure random) mutation in canonical GAs is usually seen to be of secondary
(if any) importance. On the other hand, recombination plays a major role in
canonical GAs, is missing completely in EP, and is urgently necessary for use
in connection to self-adaptation in ESs. One of the characteristics of EP is the
strict denial of recombination being important for the search. Finally, both
canonical GAs and EP emphasize on a necessarily probabilistic selection
mechanism, while from the ESs point of view selection is completely deter-
ministic without any evidence for the necessity of incorporating probabilistic
rules. In contrast, both ESs and EP definitely exclude some individuals from
being selected for reproduction, i.e., they use extinctive selection mecha-
nisms, while canonical GAs generally assign a nonzero selection probability
to each individual, which we term a preservative selection mechanism.”

These differences among EAs can be difficult to understand, not only by beginners
within the field of EAs but also by many experienced EA practitioners, without the
notion of balance between exploration and exploitation. Differences not only appear
among EA instances but also inside the same type of EA. For example, diametrical
recommendations might confuse many if the rationale for including such a feature
is unexplained or misunderstood. Similarly, how to explain that some successful GAs
prevent inbreeding (e.g., by incest prevention [Eshelman and Schaffer 1991]) whilst,
on the other hand, the others (e.g., shifting balance GA [Oppacher and Wineberg 1999])
promote inbreeding? How do we understand such dichotomies? Actually, it is all about

1Search performed on July 12, 2011, using SCOPUS.
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achieving a proper ratio between exploration and exploitation. No evolutionary process
should be studied in isolation, and balance should be achieved synergistically. For
example, the aforementioned inbreeding dichotomy may be explained in the following
manner. Instead of trying to enhance variety by penalizing similarities (e.g., incest
prevention), you could use inbreeding (e.g., shifting balance GA) that may cause genetic
drift if a population is small enough (subpopulations). This will make it possible to
surpass valleys and promote exploration. A stabilizing effect is achieved when such
subpopulations are integrated into a large population with high selection pressure,
achieving equilibrium between exploration and exploitation. Another example may be
found in the recombination of (dis)similar parents, where Horn et al. [1994] concluded
that “information from very different types of trade-offs could be combined to yield other
kinds of good trade-offs,” whilst Ishibuchi et al.’s empirical study [2008] on NSGA-II
showed that similar parents improved the diversity of solution without degrading their
convergence.

Yet another example: inexperienced EA users might find it difficult to understand
that the same EA behaves equally, in terms of the best solution found, despite very
different control parameter settings. Smit and Eiben [2009] showed that by using
algorithmic parameter tuning to solve a simple optimization problem, the Rastrigin
function performed equally well using the following settings: population size 14 vs.
448, tournament proportion 0.8782 vs. 0.3503, and generational gap 0.8443 vs. 0.0215.
The proportion of the population size that is replaced by each generation was much
larger than in the case of smaller populations; there is also a distinctive difference
in the selection pressure. We are convinced that all the aforementioned differences
are much easier to understand in terms of exploring and exploiting the search space,
especially in understanding the balance between exploration and exploitation. The fact
that until now exploration and exploitation have only been implicitly defined in EAs
comes as a big surprise.

From existing papers on survey/taxonomy in metaheuristics, Blum and Roli [2003]
provided different classifications of metaheuristics (nature-inspired vs. non-nature in-
spired, population-based vs. single point search, dynamic vs. static objective function,
one vs. various neighborhood structures, and memory usage vs. non-memory usage),
described inner workings of different metaheuristics (e.g., simulated annealing, tabu
search, evolutionary algorithms, ant colony optimization), and provided a unified view
on diversification and intensification. (Exploration and exploitation by Blum and Roli
[2003] refers to rather short-term strategies tied to randomness, while diversification
and intensification refer to medium- to long-term strategies based on the usage of mem-
ory). Another classification of hybrid metaheuristics was introduced by Talbi [2002].
Yet, diversification and intensification were excluded as the criteria for taxonomy. Liu
et al. [2009] also classified EAs into uniprocess- and multiprocess-driven approaches
regarding how the balance between exploration and exploitation is achieved. In order
to make the classification [Liu et al. 2009] more thorough, another objective of this
article is to provide more comprehensive literature studies and new classifications for
existing approaches.

This article is organized as follows. Section 2 presents the reviews of how exploration
and exploitation can be achieved in EAs. We reemphasize that delimitation of the two
cornerstones is difficult and as yet unachievable within the existing work. Section 3
presents the discussions of when and how to control exploration and exploitation. We
specifically emphasize diversity measurements because of their core role in delimiting
exploration from exploitation. Section 4 provides a comprehensive review of existing
work done in the field of balancing exploration and exploitation in terms of diversity-
driven and other direct criteria. Section 5 concludes the article by indicating future
research directions.
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2. ACHIEVING EXPLORATION AND EXPLOITATION IN EAS

The question of how exploration and exploitation are achieved in EAs may seem
trivial, but this is not so. For example, the discussion on this topic where Eiben and
Schippers [1998] noticed that a common opinion about EAs is that search space is
explored by crossover/mutation operators, whilst exploitation is done by selection,
is at least questionable. Moreover, ultimately Eiben and Schippers concluded that
there was no generally accepted perception about exploration and exploitation in
EAs. Another important conclusion derived from Eiben and Schippers [1998] is that
more intensive research is needed for a deeper understanding of the fundamentals
of evolutionary search processes. Overall, in many papers, oversimplified views are
perceived on this subject. For example, Wong et al. [2003] wrote: “In order to optimize
the efficiency and effectiveness, Genetic Algorithms (GAs) must maintain a balance
between the exploitation of beneficial aspects of existing solutions (by crossover) in
order to improve them, and the exploration of the solution space (by mutation) so as
to increase the probability of finding the optimal solution. This balance is determined
by the crossover rate and the mutation rate.”

In this article, more complete treatment on evolutionary exploration and exploitation
is given, along with those selection processes and other factors that were ignored
in the aforementioned quote. Selection drives the search toward the regions of the
best individuals. Hence, it can be mainly seen as an exploitation operator. However,
Bäck [1994] showed that selection processes can control the level of exploration or
exploitation by varying selection pressure. Higher selection pressure pushes the search
towards more exploitation, and lower selection pressure urges the search towards more
exploration. Maintaining accurate selection pressure and hence a balance between
exploration and exploitation is needed for many optimization problems [Goldberg and
Deb 1991]. Additionally, a mutation operator randomly modifies individuals with a
given probability and thus increases the structural diversity of a population. From
this point of view, a mutation operator is more of an exploration operator. Such an
operator facilitates the recovery of genetic diversity lost during the selection phase
and explores new solutions. Conversely, a mutation operator can also be seen as an
exploitation operator because most of the genetic materials are preserved. The role
of mutation in different EAs is slightly different, too. In ES, mutation is more of an
exploration operator, whilst in GAs, mutation is more of an exploitation operator if the
locality property [Galván-López et al. 2010], described in Section 3.1, holds. A crossover
operator combines two or more parents to generate the possibility of better offspring.
Such a combination can be derived from the idea that an exchange of information
between good individuals will generate an even better offspring. From this perspective,
a crossover operator is more of an exploitation operator. However, a good crossover
operator should also generate individuals within the exploration zone. The potential
number of ways in which an operator can generate a new individual is called its
exploratory power [De Jong and Spears 1992]. In many cases, it is difficult to predict if
newly generated individuals produced by a crossover and/or mutation operator will fall
into the exploration or exploitation zones. It is crucial to understand that we can never
call a crossover/mutation operator a pure exploration/exploitaton operator. At best, we
can hope that most generated individuals will fall into that particular zone.

As can be seen from the preceding discussion, exploration and exploitation in EAs is
achieved by selection, mutation, and crossover. But it is difficult to distinguish between
exploration from exploitation in these processes. The line between exploration and ex-
ploitation is blurred. Furthermore, these are not the only factors that have an impact
on exploration and exploitation. Population size and the representation of individuals
have important impacts, too. Directing an evolution process towards exploration or
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exploitation is also possible by population resizing [Harik and Lobo 1999; Smith and
Smuda 1995]. With a larger population size, the search space is explored more than
with a smaller population size. This is an easier way to maintain the diversity but is
often an unsatisfactory solution. Without proper handling, even larger populations can
converge and waste processing time. Moreover, population size also influences other
operators. For example, Spears [1995] showed that uniform crossover outperforms two-
point crossover regarding a small population on a particular problem, but just the op-
posite is true with a large population. It is almost impossible, or at least less possible, to
study a particular feature in isolation. Another tricky point is representation. Mutation
and crossover operators that influence exploration and exploitation mostly depend on
representation of individuals. Hence, representation really matters, and only in a few
cases was representation independence achieved (e.g., geometric crossovers/mutations
derived from the theories of topology and geometry [Moraglio et al. 2007]). It is im-
portant to know at which levels mutation/crossover operators work: at the individual,
sub-individual, or gene level [Smith and Fogarty 1997]. Indeed, many researchers point
out that representation is a critical factor in the success of an EA (e.g., Ishibuchi et al.
[2010b] introduced a representation-dependent nongeometric binary crossover to fur-
ther improve diversity without degrading convergence in evolutionary multiobjective
optimization (EMO)). But, the relationship between an individual’s representation and
the balance between exploration and exploitation is still not well understood, and more
research is needed.

The next important question is how the balance between exploration and exploitation
is achieved in an EA. What is observed from the previous discussion is that the selection
process and variation operators (e.g., crossovers and mutations) are able to somehow
establish and, in most cases, find a good ratio between exploration and exploitation of
the search space. Until now, achieving balance between exploration and exploitation
has been managed by proper control-parameter settings. If crossover and mutation
rates are very high, much of the space will be explored, but there is a high probability
of missing good solutions and of failing to exploit existing solutions. In such a case, EAs
head toward random search. If crossover and mutation rates are low, the search space
is unexplored. In such a case, EAs are closer to hill climbing algorithms. Moreover,
crossover and mutation operators are usually into interactions, and optimizing both
parameters (crossover and mutation rates) cannot be done independently. In such
cases, all combinations of crossover and mutation rates should be experimented. Which
control-parameter settings are most likely to produce the best results is a question that
every EA developer/user has to face. In the EA community the following approaches
have been tried [Lobo et al. 2007].

(1) Trial-and-error approach, which is a time-consuming and tedious method, usually
performed in an ad-hoc manner.

(2) Following general guidelines (e.g., [De Jong 1975; Harik and Lobo 1999; Schaffer
et al. 1989]), which are often inapplicable for specific cases. It is often found that
recommended parameter settings from literature do not lead to the best solutions
for particular cases (e.g., [Smit and Eiben 2009; Zielinski et al. 2009]).

(3) Using parameter-less EA [Harik and Lobo 1999] or GAs without parameters [Bäck
et al. 2000], which are robust but mostly less-efficient approaches.

(4) Using experiences from previous similar applications, which is inapplicable when
such experiences do not exist.

(5) Identifying the features of fitness landscapes by a classifier in order to propose
good control parameter settings [Bogon et al. 2011].

(6) Statistical analysis of control parameter interactions and their effect on algorithms’
performances [Czarn et al. 2004].
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(7) Using mathematical models, which is important but often too simple to be realistic
or too difficult to be understood by ordinary users.

(8) Algorithmic parameter tuning, where the search for the best control parameters
is seen as an optimization problem that can be solved using specific methods.
The more well-known examples are the meta-evolutionary approach (evolution
of evolution) [Grefenstette 1986], racing algorithm [Birattari et al. 2002], se-
quential parameter optimization [Bartz-Beielstein et al. 2005], meta-estimation
of distribution algorithm [Nannen and Eiben 2006], hyper-heuristics [Ochoa
et al. 2008], multiobjective optimization [Dréo 2009], and reinforcement learning
[Montero and Riff 2011]. Work in this category has been recently surveyed and
categorized into sampling methods, model-based methods, screening methods, and
meta-evolutionary algorithms [Eiben and Smit 2011].

It is well known among EA researchers that the control parameter setting is problem-
dependent. The control parameter setting which produces the best result for a partic-
ular problem might not lead to the best result for another problem [Smit and Eiben
2009; Zielinski et al. 2009]. From the exploration/exploitation perspective, this means
that different problems require different amounts of exploration and exploitation. This
implies that a good ratio between exploration and exploitation, and hence a proper or
good balance, is problem-dependent too. For example, for unimodal function optimiza-
tion, less exploration is probably needed than for multimodal function optimization.
Therefore, the goal of any search algorithm is to inherently find a good balance between
exploration and exploitation for different problems. To make the problem even more
difficult, different values for control parameters might be optimal at different stages of
an evolution process, and hence different amounts of exploration and exploitation are
needed during the evolution process. For example, in the early stages, a larger popula-
tion is needed than in the later stages when fine tuning of suboptimal solutions is done.
Eiben et al. [1999] provided an excellent overview of this problem, where parameter
tuning and parameter control were distinguished. For parameter tuning, parameters
are defined before a run (also called offline approach) and do not change during the
evolution process. All the aforementioned approaches (e.g., trial-and-error, algorithmic
parameter tuning) are examples of parameter tuning. Conversely, the parameters in
the latter approach are changed during the run (also called the online approach). Eiben
et al. [1999] classified the methods on how parameters are controlled into deterministic,
adaptive, and self-adaptive categories.

(1) The deterministic category adjusts the parameters by deterministic rules.
(2) The adaptive category utilizes the feedback of an evolution process to control the

directions and magnitudes of the parameters.
(3) The self-adaptive category encodes parameters into individuals and undergoes mu-

tation and recombination (simultaneous evolution of evolution).

Deterministic and adaptive parameter control can also be expressed in algorithmic
ways by using a domain-specific language [Mernik et al. 2005] for programming pa-
rameter control [Liu et al. 2004]. Note that classic meta-evolutionary approaches are
mainly classified under parameter tuning (offline approach), because control param-
eters, evolved at the meta level, remain unchanged during an evolution process at
the base level. Recently, some hybridization between parameter tuning and parameter
control has been proposed (e.g., meta GA combined with an adaptation strategy for the
GA control parameters [Fernandez-Prieto et al. 2011]). As for the meta-EP mentioned
in Bäck and Schwefel [1993], the parameters are encoded and evolved along with the
process and hence are self-adaptive. We also utilize Eiben et al.’s classification [1999]
for classifying the explicit control of exploration and exploitation.
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One common belief is that EAs should start with exploration and then gradually
change into exploitation. Such a policy can be easily described with deterministic ap-
proaches, where the mutation rate decreases along with the evolution (e.g., [Fogarty
1989]). This is generally correct, but such a policy tends to face difficulties when solving
certain problems (e.g., multimodal functions with many optima [Liu et al. 2009; Yao
et al. 1999] or when dynamic environments are evolved), since premature takeover of
exploitation over exploration occurs. Hence, more promising (self-)adaptive approaches
have been proposed. They range from utilizing simple information available from cur-
rent processes, such as fitness values (e.g., [Harik and Lobo 1999]), the number of gen-
erations with no improvements (e.g., [Eiben et al. 2004]), diversity (e.g., [Ursem 2002]),
and entropy (e.g., [Rosca 1995]), to more advanced techniques, such as adaptive genetic
operators and selection [Herrera and Lozano 1996], adaptive representation [Whitley
et al. 1991], and adaptive fitness functions [Majig and Fukushima 2008]. Yet, we en-
visage that new and better (self-)adaptive approaches will be proposed in the future.

It is important to note that with the different settings of control parameters (before or
during the run) one explicitly controls specific processes (e.g., selection, mutation, and
crossover) but only implicitly controls exploration and exploitation. In order to answer
the question of how a good ratio between exploration and exploitation is achieved, Liu
et al. [2009] classified two approaches.

(1) Uniprocess-driven approach.
(2) Multiprocess-driven approach.

For the uniprocess-driven approaches, a good balance between exploration and ex-
ploitation is achieved separately by an individual process (e.g., selection, mutation,
crossover). Each process is independently responsible for the balance, and there is
no coordination between processes for achieving the balance. An illustrative exam-
ple is the crossover operator itself. In the beginning, whilst the population is still
diverse, crossover performs exploration. At the end of the search, the population loses
diversity, and by recombining, similar individuals’ crossover exploratory powers are
lost. The crossover operator itself, without changing the probability of crossover, shifts
gradually from exploration to exploitation. In a similar manner, the non-uniform mu-
tation operator [Zhao 2011] performs search uniformly at the early stage and very
locally at the later stage. Another example is described in Gao and Xu [2011], where
the Henon mutation operator is used as a global or local mutation operator. There is
much additional work categorized within this area (e.g., [Bäck 1994; Eiben et al. 2004;
Harik and Lobo 1999; Ronald 1995; Smith et al. 1993; Tsutsui et al. 1997b], amongst
others). Note that uniprocess approaches do not mean that other processes are unin-
volved in an exploration/exploitation process. Instead, a unique process is focused on
balancing exploration and exploitation by using different techniques (e.g., adjusting
corresponding control parameters). The challenge in this approach is how to achieve
synergy among operators if they are uncooperative. To a lesser extent, researchers
try to achieve balance using a multiprocess-driven approach. Balance is then coordi-
nated among different processes (e.g., with high selection pressure for exploitation,
a high rate mutation/crossover operator is chosen that is biased towards more explo-
ration). An early example of multiprocess-driven approaches was the CHC algorithm
[Eshelman 1991] that combined selection that always preserves the best individuals so
far (exploitation) with a crossover operator that produces maximally different individ-
uals (exploration). Another good example was reported in Fonseca and Fleming [1995],
where it was found that proper collaboration between selection (fitness sharing) and
crossover (mating restriction) significantly improved the performance of multiobjec-
tive GA. McGinley et al. [2011] also introduced ACROMUSE GA that synergistically
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employs crossover for exploitation, mutation for exploration, and adjustable selection
pressure for both exploration and exploitation.

3. ON CONTROLLING EXPLORATION AND EXPLOITATION

When and how should exploration and exploitation be controlled? Let us start with the
easier part of this question, namely when.

Exploration and exploitation can be controlled offline by the proper settings of control
parameters that will have an influence on algorithm search capabilities. However, de-
veloped algorithms will be applied to a vast variety of optimization problems, which will
require different amounts of exploration and exploitation. Since a problem is unknown
in advance, the algorithm’s search capabilities could be enhanced if the amounts of ex-
ploration and exploitation were to be dynamically changed during a run. On the other
hand, due to the conceptual advantages of parameter control over parameter tuning
and existing experimental studies (e.g., [Alba and Dorronsoro 2005; Brest et al. 2006;
Liu et al. 2009; Pan et al. 2011]), exploration and exploitation should be controlled
online during the run.

A tricky issue is to determine on what occasion? Here, again, some deterministic
schema (e.g., every k generations [Hesser and Männer 1991]) or adaptive schema (e.g.,
when best fitness did not change for several generations [Eiben et al. 2004], and when
the diversity of a population drops under some threshold value [Shimodaira 1997;
Ursem 2002]), can be applied. There is a need for intelligently controlling the balance
between exploration and exploitation at different stages. The more intelligent the con-
trol, the better the results can be expected and/or the faster the algorithm will converge.

How to control exploration and exploitation balance is the more difficult part of the
question. Balance between exploration and exploitation is implicit in EAs, and as such,
directly controlling balance is difficult. But before controlling it, we need to know how
to measure it. This is a fact in all scientific and engineering disciplines. How to measure
exploration and exploitation is an open question in EAs [Beyer and Deb 2001], as far
as we are aware. Intrinsic to this problem is that we need to know how these two
phases are identified. If, in each process, both phases can be clearly identified, then
some direct measures can be invented. Currently, indirect measures for exploration
and exploitation are mostly used (see Section 4).

We describe and classify different diversity measures currently in use in the following
section, because exploration is possible only if populations are diverse enough. Those
diversity measures can be used to define the neighborhood relationships needed to
delimit between exploration and exploitation.

3.1. Diversity

Diversity refers to differences among individuals, which can be at the genotype or phe-
notype levels. It is widely accepted within the EA community that the high diversity of
a population greatly contributes to EA performance [Michalewicz 1996]. McPhee and
Hopper [1999] vividly described this viewpoint. “Progress in evolution depends funda-
mentally on the existence of variation of population. Unfortunately, a key problem in
many Evolutionary Computation (EC) systems is the loss of diversity through prema-
ture convergence. This lack of diversity often leads to stagnation, as the system finds
itself trapped in local optima, lacking the genetic diversity needed to escape.” Until
now, diversity has been extensively investigated only in GP [Burke et al. 2004], whilst
in other EAs, there has been no such treatment. Mattiussi et al. [2004] pointed out that
diversity measures for individuals of a population with variable lengths and structures
are much more complicated and might be more computationally extensive. Burke et al.
[2004] investigate how one could improve fitness by controlling the diversity in GP,
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whilst in this article, the similarity between individuals and their offspring, computed
using different diversity measures, will define the exploration or exploitation zones.

There exist many different measures for diversity—genotypic as well as phenotypic—
but there is no single measure that fits all problems and different types of EAs. As some
authors [Burke et al. 2004; Galván-López et al. 2010; Paenke et al. 2009] have already
pointed out, diversity measures are problem-specific. Moreover, if such diversity mea-
sures are going to be used in guiding evolution processes, we need to investigate if
positive correlations exist. Burke et al. [2004] showed that there is not always a posi-
tive correlation between diversity measures and fitness in GP. In such cases, controlling
diversity to improve fitness is unsuccessful.

It is worth mentioning that diversity is only roughly related to exploration and ex-
ploitation. High diversity does not necessarily mean that a diverse population was ob-
tained by a good ratio between exploration and exploitation. Such a diverse population
can be obtained by mere exploration without requiring a good balance between explo-
ration and exploitation. Moreover, a diverse population does not mean that individuals
are fit, just that they are different from each other (e.g., [Bosman and Thierens 2003]
presented some good examples in multiobjective evolutionary algorithms (MOEAs)).
We are interested in diversity that helps to find fit individuals. For this purpose,
Mahfoud [1995] introduced the term useful diversity. A poor but diverse population is
less attractive. Nevertheless, a diverse population is a prerequisite for exploration in
order to avoid premature convergence to local optima. On the other hand, promoting
diversity at all stages of an evolutionary process might even be counterproductive in
a phase where high exploitation is needed. The relationship between diversity and
exploration and exploitation is still unclear, and more research is needed, especially
when identifying the types (phenotypic/genotypic) and amounts of diversity at different
evolutionary stages [Burke et al. 2004].

As already mentioned, diversity can be measured at three levels.

(1) Genotype level (structural/syntactic/genotypic): differences among genomes within
a population.

(2) Phenotype level (behavioural/semantic/phenotypic): differences among fitness val-
ues within a population.

(3) A complex or composite measure: a combination of the previous two cases [Burke
et al. 2004]. Hence, we do not explicitly cover it in this article.

In most cases, identical genotypes will produce the same phenotype in EAs. So one
might assume that a decrease in genotype diversity would necessarily cause a decrease
in phenotype diversity. However, the relationship between genotype and phenotype is
not always straightforward (e.g., noisy functions [Liu et al. 2007], changing environ-
ments). Multiple genes can influence a single phenotypic variable, or a single gene can
influence multiple phenotypic variables. Another important issue is the concept of local-
ity that tells us how well neighboring genotypes correspond to neighboring phenotypes,
which is a key concept affecting exploration and exploitation of EAs. Galván-López et al.
[2010] demonstrated that for an efficient search, the neighborhood has to be preserved.
Namely, neighboring genotypes are mapped to neighboring phenotypes. This is called
‘high locality’. If this is not the case, the distances at both levels do not correspond,
and a search could be misleading. Representation with the property of high locality
enables a more efficient search. Hence, representation really matters. Wineberg and
Oppacher [2003] argued that diversity measures should not only include individuals,
but also whole populations. In other words, distance between populations is needed.

High genotype diversity does not necessarily mean high phenotype diversity. This is
true when one-to-one mapping between genotype and phenotypes does not exist. Such
a mapping depends on the representation used and on the problem to be solved. For
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example, Darwen and Yao [2001] reported that with the Iterated Prisoner’s Dilemma,
high genetic diversity can perversely correspond to low phenotypical diversity. Tsutsui
et al. [1997a; 1997b] experimented with genotype and phenotype diversities. They
found that performance depends on the type of problem under consideration, despite
the fact that phenotype-based measures, usually perform better. There are also some
other benefits of phenotype-based measures, such as the independence of the used
representation schemes. It is often easier and less costly to calculate phenotypic
diversity. This is especially true for GP [Burke et al. 2004]. Moreover, in multiobjective
optimization, phenotype-based measures are more useful, because in this case, the
goal is to find several nondominated solutions. In the following, we categorize and
summarize the work using genotype and phenotype measures, respectively. These
studies discuss population diversity in a qualitative manner, whilst Leung et al. [1997]
provided quantitative analyses of population diversity. Their analyses revealed that
to prevent premature convergence, increases in population size are more important
than the role of variation regarding mutation probability. In Section 3.1.3, we will use
different diversity measures to define neighborhood relationships, which are needed
to delimit exploration from exploitation.

3.1.1. Genotype Measures. We classified genotypic diversity measures into the
following.

—Difference-based. Numerous measures can be classified into this group—from count-
ing different genotypes [Langdon 1998] and counting differently activated neurons
representing particular search regions [Amor and Rettinger 2005], to counting fre-
quencies of alleles [De Jong 1975; D’haeseleer and Bluming 1994]. Two early mea-
sures of allele frequencies proposed by De Jong [1975] are lost alleles and converged
alleles. McPhee and Hopper [1999] proposed a simple measure, namely the number
of different nodes in GP, and compared it with ancestry-based measures. The latter
approach was extended to subtree variety measures in GP [Burke et al. 2002], which
are the ratios of unique subtrees to total subtrees.

—Distance-based. This is probably the most widely used type of diversity measure
nowadays. Various distances are taken into account: Hamming distance, Minkowski
distance (Euclidean distance and Manhattan distance are special cases), cosine dis-
tance of similarity [Fister et al. 2010], edit distance [De Jong et al. 2001], distance to
average point [Ursem 2002], to name a few. One of the first such measures to monitor
population diversity was proposed by Whitley and Starkweather [1990], where the
Hamming distance between the best and worst individuals is calculated. In diver-
sity control oriented genetic algorithms (DCGA) [Shimodaira 1997], the Hamming
distance between the best individual and candidates that determines candidates’
selection pressure has been utilized, and more exploration or exploitation can be de-
termined accordingly. Genotypical-forking GA, as proposed by Tsutsui et al. [1997a],
also utilizes canonical Hamming distance as one of the conditions for performing
forking. McGinley et al. [2011] employed Euclidean distance to adaptively control
mutation and crossover rates. Additionally, healthy population diversity (HPD) is
proposed for controlling selection pressure. Each individual is weighed—expressed
by its fitness proportion to total fitness—when computing Euclidean distance so that
more fit and diverse individuals may be selected.

—Entropy-based. Entropy is a very succinct measure for diversity which is gaining
popularity. It represents the amount of population disorder, where increase in entropy
represents increase in diversity. An additional benefit over previous approaches is
that the distribution of values is also included within this measure, albeit the precise
distribution is unknown. Entropy was shown to be a useful measure for genotypic
diversity [Li et al. 2004; Liu et al. 2007; Masisi et al. 2008; Misevičius 2011].
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—Probability-based. Simpson’s diversity index falls into this group, which is often used
to quantify the biodiversity of a habitat in ecology. It takes into account the number of
species present, as well as the abundance of each species. Simpson’s diversity index
D measures the probability of whether two individuals, randomly selected from a
sample, belong to the same species. D = 0 denotes that the diversity of a population
is infinite, and conversely D = 1 denotes no diversity. Simpson’s diversity index has
been recently applied in EAs [Masisi et al. 2008; Paenke et al. 2009].

—Ancestry (History)-based. Diversity measure is obtained by contrasting the current
population with those populations of previous generations, hence taking into ac-
count ancestries or history. McPhee and Hopper [1999] proposed several techniques
for measuring population diversity based on genetic history. They noticed that an
indicator of genetic diversity in the final population can be the number of individuals
from the initial population that contributed genetic materials to the final population.
They found that this number is extremely low in GP. Moreover, they found that in
90% of their runs, there was a single individual who was the root ancestor of ev-
ery individual within the final population. In most cases, this leads to premature
convergence.

3.1.2. Phenotype Measures. We classify phenotypic diversity measures into the
following.

—Difference-based. The simplest difference-based diversity measure is the number of
different phenotypes [Rosca 1995]. This measure can be easily extended to count
different numbers of classes/ranks, where similar fitness values conform to the same
class/rank producing histograms [Hutter and Legg 2006]. Luerssen [2005] proposed
different ranking techniques, such as mean rank difference, mean rank difference
across fitness cases, and mean rank difference across fitness cases for nondominated
solutions. Luerssen reported that difference-based measures were overall signifi-
cantly more effective than distance-based measures on his set of problems. Another
example of a difference-based measurement is to count the number of individuals
within the neighborhood hypercube, as used in phenotypic forking GA introduced by
Tsutsui et al. [1997a].

—Distance-based. Various distance measures (e.g., Euclidian distance) can be used
to find similarity between individuals within a population. For example, average
distance to other individuals within a population is particularly popular in MOEAs,
where the average distance between the nondominated solutions to the true Pareto
front has been used [Zitzler et al. 2000], or similarly, a distance between an individual
and a nondominated individual [Chaiyaratana et al. 2007]. Adra and Fleming [2011]
also introduced a diversity indicator (Is), which is the normalization measurement
of the Euclidean distance of “the diagonal of the hypercube with vertices set to the
extreme objective values observed in the achieved approximation set” with respect
to the optimal spread. Another example was presented in Ursem [2002], where the
distance to average-point was used. Distances can also be computed as differences
in ranks in order to reduce any bias caused by a specific fitness function.

—Entropy-based. Entropy as a measure of diversity was first proposed by Rosca [1995]
and since then has mainly been used as a succinct measure of phenotypic diversity
[Burke et al. 2004; Liu et al. 2009].

—Probability-based. Simpson’s diversity measure can also be applied to phenotypic
diversity [Paenke et al. 2009].

Note that under phenotypic diversity measures, the ancestry (history)-based classifi-
cation has been omitted. To the best of our knowledge, no such measures currently exist.
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3.1.3. Definition of Exploration and Exploitation by Diversity/Similarity. Despite the fact that
many researchers in their works have frequently mentioned exploration and exploita-
tion, to date, both processes have never been formally defined. Often informal and
somewhat vague definitions of exploration and exploitation processes have been used,
similar to the informal definitions in Section 1, where exploration was defined as
the process of visiting entirely new regions of a search space, whilst exploitation was
defined as the process of visiting those regions of a search space within the neighbor-
hood of previously visited points. Using different genotype and phenotype diversity
measurements, as defined in Section 3, we are now able to define both processes, explo-
ration and exploitation, in a sound manner. Let d(·, ·) denote the diversity/similarity
measurements between two individuals within a population P. Formally, d is a func-
tion P × P → R measuring the similarities between two individuals at genotype or at
phenotype levels (see Sections 3.1 and 3.2).

An example of computing similarity between two individuals x and y within a
Euclidian space R

n is the Euclidian distance dE. This is an example of a distance-based
measurement.

dE(x, y) =
√√√√ n∑

i=1

(xi − yi)2. (1)

Yet another example of computing similarity between two individuals x and y using
the difference-based measurement dR is

dR(x, y) =
{

1 if Rx �= Ry,

0 otherwise,
(2)

where two individuals x and y belong to the class/rank Rx and Ry, respectively.
Crucial for delimiting exploration from exploitation is a definition of similarity to the

closest neighbor SCN . However, when a new individual indnew is created, a similarity
measurement to the closest neighbor SCN can be defined in several ways.

—As a similarity to its parent(s), indparent.
—As a similarity to the most similar individual within the whole population P.
—As a similarity to the most similar individual in the subpopulation P ′ ∧ (P ′ ⊂ P)

(e.g., only to individuals which belong to the same niche).
—As a similarity to the most similar individual throughout the history of populations

{Pt | t = 0..current gen}, where Pt denotes a population within a generation t.

In the first case, similarity to the closest neighbor SCN can be defined as follows.

SCN (indnew, P) = d(indnew, indparent), where indparent ∈ P. (3)

If two or more parents (indparenti , i = 1..k ∧ k > 1) are used for creating a new
individual, then indparent is the most similar contributing parent.

indparent = indparenti with min d(indnew, indparenti ).
i = 1..k

(4)

In the second case, similarity to the closest neighbor SCN can be defined as follows.

SCN (indnew, P) = min d(indnew, ind).
ind ∈ P
indnew �= ind.

(5)

In the third case, similarity to the closest neighbor SCN can be defined as follows.

SCN (indnew, P ′) = min d(indnew, ind).
ind ∈ P′ ∧ (P′ ⊂ P)
indnew �= ind.

(6)
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In the fourth case, similarity to the closest neighbor SCN can be defined as follows.

SCN
(
indnew, Pt

) = min d
(
indnew, ind

)
.

ind ∈ Pt , t = 0..current gen
indnew �= ind

(7)

Note that in the first case, we are only looking for similarity to the closest parent,
whilst in the second and the third cases, the whole population or subpopulation is
taken into account. According to the informal definition of exploitation, where visiting
is within the neighborhood of previously visited points (e.g., not only from current
contributing parent(s) or within a current population), the fourth definition of SCN
seems to be the most appropriate.

Finally, the process of exploration happens when SCN (indnew, P) > X, where X is a
threshold value that defines the boundary of the neighborhood of the closest neighbor
and is problem-dependent. In other words, the exploration process visits points which
are outside of the current neighborhood of the closest neighbor. Similarly, the process
of exploitation happens when SCN (indnew, P) ≤ X.

SCN (indnew, P) > X (exploration); (8)

SCN (indnew, P) ≤ X (exploitation). (9)

4. CLASSIFICATION OF CURRENT APPROACHES FOR BALANCING BETWEEN
EXPLORATION AND EXPLOITATION

The diversity of a population has already been recognized as one of the important fac-
tors from the early years of EAs. From the exploration and exploitation viewpoints, an
increase in diversity indicated that EA was in the phase of exploration, whilst a de-
crease in diversity indicated that EA was in the phase of exploitation. The relationship
between exploration and diversity is indeed profound, and the exploration operators
can also be defined as those that allow for maintaining the diversity of the population
[Soza et al. 2011]. One of the simplest methods for achieving a good balance between
exploration and exploitation is to maintain a diverse population. However, a diverse
population is simply a prerequisite for a good balance between exploration and exploita-
tion rather than a guarantee. For previously mentioned reasons, our classification is
heavily based on diversity, although balance between exploration and exploitation can
also be achieved by other means. The simplest one is fitness. A number of approaches
utilize fitness to indirectly guide exploration and exploitation. For example, the 1/5
success rule uses fitness to determine whether an individual has mutated successfully
and then decides if the mutation rate needs to be changed. On the other hand, in such
cases, diversity is frequently included in the individual’s fitness, and the boundary
between both approaches becomes blurred.

We classify the current approaches regarding the balance between exploration and
exploitation into achieving exploration and exploitation balance through diversity
maintenance, through diversity control, diversity learning, and other more direct ap-
proaches. Whilst the former three groups are primarily interested in population di-
versity and hence only implicitly address exploration and exploitation, the last group
more directly tackles the problem of balance between exploration and exploitation.
This classification is also presented in Figure 1, whilst Table I chronologically presents
the cited papers.

4.1. Achieving Exploration and Exploitation Balance through Diversity Maintenance

In this section, our focus is on maintaining diversity through different techniques. In-
stead of measuring diversity and using this measure as feedback for further enhanced
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maintaining

through selection
through crossover/mutation

through changing population

cultural learning
self-organizing maps

binary space partitioning trees
estimation of distribution

using different subpopulations
for exploration and exploitation

triggers cause alternation between
 exploration and exploitation

Approaches for controlling exploration and exploitation 
balance through diversity

fitness-based

replacement-based 

niching

deterministic crowding
probabilistic crowding
restricted tournament selection

explicit and implicit 
fitness sharing
clearing
modified clearing
clustering

species conserving GA
preservation-based

hybrid

controlling

learning

other direct approaches
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non-niching

changing selection pressure
replacement restrictions

varying population size
duplicate elimination
infusion techniques
external archives
migration between 
subpopulations

mating restrictions
disruptive operators

hybrid

ancestry-based

Fig. 1. Current approaches to balancing exploration and exploitation.

diversity, and to improve the balance between exploration and exploitation, it is simply
assumed that the proposed techniques will maintain diversity per se, and hence the
balance between exploration and exploitation will be achieved. However, it is difficult
to determine a useful amount of diversity. High diversity is needed to escape from local
optima, whilst low diversity is needed to fine-tune the solutions. Numerous different
methods, developed mostly in the 1990s, have been used for diversity maintenance.
Mahfoud’s study was one of the first towards a comprehensive theory of diversity
for GAs [Mahfoud 1995], where methods were classified as non-niching and niching.
Both non-niching and niching methods are able to maintain a population of diverse
individuals, whilst niching methods are also capable of locating multiple optimal
solutions. Since this classification also appears in other work (e.g., [Toffolo and Benini
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Table I. Classification of the Cited Work in Chronological Order

Maintenance (Non-niching)

Population-based [Mauldin 1984; Grefenstette 1992; Koza 1992; Ramsey and Grefenstette
1993; McPhee and Hopper 1999; Greenwood et al. 1999; Martin et al.
1999; Zitzler and Thiele 1999; Krink et al. 2000; Ursem 2000; Zitzler et al.
2000; Leung and Wang 2001; Bosman and Thierens 2003; Koumousis and
Katsaras 2006; Chaiyaratana et al. 2007; Gong et al. 2008; Rahnamayan
et al. 2008; Yang 2008; Zhang and Sanderson 2009; Araujo and Merelo
2011; Jia et al. 2011; Li and Wang 2011; Wang et al. 2012]

Selection-based [De Jong 1975; Grefenstette 1986; Michalewicz 1996; Gen and Cheng 1997;
Matsui 1999; Hutter and Legg 2006; Lozano et al. 2008; Chen et al. 2009]

Crossover/Mutation-based [Deb and Goldberg 1989; Eshelman and Schaffer 1991; Eshelman 1991;
De Jong and Spears 1992; Cobb and Grefenstette 1993; Ronald 1995;
Joan-Arinyo et al. 2011]

Hybrid [Ghosh et al. 1996; Harik et al. 1999; Paenke et al. 2009; Qin et al. 2009;
Lee et al. 2011; Mallipeddi et al. 2011]

Maintenance (Niching)

Fitness-based [Holland 1975; Goldberg and Richardson 1987; Smith et al. 1993; Yin and
Germay 1993; Petrowski 1996; Singh and Deb 2006]

Replacement-based [Mahfoud 1995; Harik 1995; Mengshoel and Goldberg 1999]
Preservation-based [Li et al. 2002]
Hybrid [Yu and Suganthan 2010; Liang and Leung 2011]

Controlling

Through selection [Mori et al. 1995; Shimodaira 1997; Bersano-Begey 1997; Bosman and
Thierens 2003; Wong et al. 2003; Chaiyaratana et al. 2007; Adra and
Fleming 2011; McGinley et al. 2011]

Through crossover and
mutation

[Whitley and Starkweather 1990; Srinivas and Patnaik 1994; Wong et al.
2003; Li et al. 2004; Jose-Revuelta 2007; McGinley et al. 2011]

Through changing
population

[Rosca 1995; Tsujimura and Gen 1998; Liu et al. 2009]

Learning

Cultural learning [Jin and Reynolds 1999; Curran and O’Riordan 2006; Becerra and Coello
Coello 2006; Soza et al. 2011]

Self-organizing maps [Amor and Rettinger 2005]
Binary space-partition-
ing tree

[Yuen and Chow 2009; Chow and Yuen 2011]

Estimation of distribution [Mühlenbein and Paaß 1996]
Other Direct Approaches

Using different
sub-populations for
exploration and exploitation

[Tsutsui et al. 1997b, 1997a; Oppacher and Wineberg 1999; Goh et al.
2003]

triggers cause alternation
between exploration and
exploitation

[Hart 1994; Freisleben and Merz 1996; Moscato 1999; Merz and Freisleben
2000; Ursem 2002; Ishibuchi et al. 2003, 2010a; Alba and Dorronsoro 2005;
Krasnogor and Smith 2005; Ong et al. 2006; Misevičius and Rubliauskas
2008; Nguyen et al. 2009; Liao 2010; Blum et al. 2011; Mashinchi et al.
2011; Lin and Chen 2011; Mongus et al. 2012]

Ancestry-based [Črepinšek et al. 2011]

2003; Zitzler and Thiele 1999]), this article adopts it. This article further classifies
non-niching methods into the following.

—Population-based. Diversity is achieved by varying population size, duplicate elimi-
nation, infusion techniques, external archives, or migration between subpopulations.

—Selection-based. Diversity is achieved by changing selection pressure or replacement
restrictions.
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—Crossover/mutation-based. Diversity is achieved by mating restrictions or disruptive
operators.

—Hybrid. Diversity is achieved by ensembles or other specific approaches.

Brief descriptions of non-niching methods are shown as follows.

—Increasing population size. It is among the simplest approaches, but several studies
(e.g., [McPhee and Hopper 1999]) reported that increasing population size does not
always lead to correspondingly increased diversity.

—Duplicate elimination. By using this approach, an individual that already exists
in a population is eliminated, and another randomly generated individual is in-
serted. Duplicate elimination is an important part of the algorithms presented
in Chaiyaratana et al. [2007]. An improvement in duplicate elimination is the
uniqueness-assurance method by Mauldin [1984], where individuals, instead of be-
ing eliminated, are mutated as long as they become sufficiently different (at least
for k bits, where k is decreasing over generations). Hence, this approach can also be
regarded as an example of infusion, which is described next.

—Infusion techniques. New individuals are randomly inserted after a certain number
of generations or special initialization techniques are used (e.g., chaotic initializa-
tion [Li and Wang 2011], orthogonal design [Leung and Wang 2001]). The former
approach is also called reseeding or extinction [Greenwood et al. 1999; Krink et al.
2000]. An early approach is Grefenstette’s random immigrants approach [1992],
where random individuals are inserted into the population every generation. Koza
[1992] introduced decimation, where a substantial percentage of a population has
been replaced by random individuals at regular intervals. Reinitialization has been
proven successful in dynamic and changing environments, where the re-seeding of
good individuals from past cases has been proposed every 150 generations [Ramsey
and Grefenstette 1993]. Koumousis and Katsaras [2006] proposed a Saw-Tooth
GA with periodic reinitialization and variable population sizes achieving better
population diversity and overall performance. Rahnamayan et al. [2008], instead of
inserting random individuals, recently proposed the concept of opposition, inserting
opposite individuals for diversity maintenance. A more sophisticated approach is
presented by Jia et al. [2011], where a chaotic local search was proposed. Since
local search may result in premature convergence, the authors enhanced diversity
and hence exploration abilities by chaotic random local search, where the search
space of the chaotic local search shrinks with the growth of the function evaluations.
Orthogonal crossover [Leung and Wang 2001], which is based on orthogonal design,
can also be seen as a systematic and rational local search maintaining a diversity of
population [Gong et al. 2008; Wang et al. 2012]. If replacement is done as a response
to a lack of progress or a change in a dynamic environment, then these techniques
can be classified as diversity control (as described in the next section). Yang [2008]
recently proposed new immigrant schemes—memory-based and elitism-based
immigrants—for dynamic optimization problems using historical information.

—External archives. External archives have been also used as a diversification
technique. Whilst archives in EMO have been used primarily for keeping track
of nondominated solutions [Zitzler and Thiele 1999; Zitzler et al. 2000; Bosman
and Thierens 2003] and inherently maintaining a diverse population, there have
also been some other proposals for using external archives during single-objective
optimization. For example, Zhang and Sanderson [2009] also used external archives
to maintain diverse population by archiving recently explored inferior solutions.

—Migration between subpopulations (islands). Many (parallel) GAs introduce diversity
and prevent premature stagnation by simply exchanging individuals between sub-
populations. Migrants can replace less fit individuals, randomly chosen individuals,
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or the most similar individuals, etc. The main idea behind this approach is that differ-
ent subpopulations can maintain different promising regions of the search space and
hence maintain diversity [Martin et al. 1999]. The dynamics of exploration and ex-
ploitation are further influenced by the number of subpopulations, the sizes of these
subpopulations, differences in subpopulation interconnections (often referred to as
communication topology), frequency of communication (epoch length), and the qual-
ity of the migrants. Ursem [2000] proposed a multinational genetic algorithm (MGA),
where subpopulations, called nations, are self-formed based on a hill-valley detection
algorithm. A nation consists of a population, government (fittest individuals), and
policy (point in the search space to which a nation is approaching). The hill-valley
detection is responsible for the migration of individuals among nations, the creation
of new nations within unexplored regions, and the merging of nations if they have the
same policy. Ursem showed that diversity maintenance in MGA could lead to better
performance and the ability to track multiple peaks simultaneously, and as such,
could also be regarded as a niching method. Araujo and Merelo [2011] introduced
a MultiKulti algorithm, where subpopulations are constructed as a ring topology,
and migrations will only occur between neighboring subpopulations. Migrants are
selected from a subpopulation if they possess the most different genotype(s) from
the selected representative of the receiving/neighboring subpopulation, where either
the best individual or the consensus sequence (i.e., the sequence that reflects the
most common base or amino acid found at each position in a genome [Watson et al.
2004]) is picked as the representative. Araujo and Merelo showed that such selection
policies and topology increased the diversity and outperformed nonadaptive random
and best-individual migration policies on two discrete optimization problems.

—Changing selection pressure. Many techniques have been proposed to prevent selec-
tion being biased towards highly fit individuals. Two of the simplest techniques are
ranking selection [Michalewicz 1996] and scaling [Grefenstette 1986]. Some more
sophisticated selection mechanisms that try to ensure that the fittest individual will
not always be selected and the weakest individual not always rejected are briefly
described next. Matsui [1999] proposed two selection methods—correlative tour-
nament selection and correlative family-based selection—for improving population
diversity. Hutter and Legg [2006] maintained genetic diversity in terms of fitness
diversity. Fitness values are divided into several classes, and each class has an equal
opportunity of survival and hence preserving diversity through selection. Chen
et al. [2009] recently proposed several different selection schemes (e.g., integrating
power-law distribution and tournament selection) to enhance population diversity in
EP. On the other hand, if the search needs to be more exploitative, elitist strategies
are often employed [Gen and Cheng 1997].

—Replacement restrictions. De Jong introduced crowding [1975], called standard
crowding, to maintain diversity. Each newly generated individual replaces the
most similar existing individual from a random subpopulation of size CF (the
crowding factor). Lozano et al. [2008] proposed a hybrid replacement scheme where
individuals of poor fitness and low contribution to diversity are replaced, thereby
promoting exploitation (highly fit individuals) and exploration (high contribution
to diversity). Both objectives, that is, optimizing fitness function and enhancing
population diversity, are fulfilled in this manner.

—Mating restrictions. Individuals are allowed to mate if they fulfill special conditions.
A typical example is incest prevention [Eshelman and Schaffer 1991]. Ronald
[1995] introduced genders into mating, where selection of the second mate is based
on a seduction function between the first and second mates. Deb and Goldberg’s
[1989] mating restrictions, where individuals are allowed to mate only if they are
sufficiently distinct, also fall into this category.
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—Disruptive operators. Until now, several disruptive operators have been proposed
which address diversity issues explicitly. A prime example is the hyper-mutation
operator [Eshelman 1991; Cobb and Grefenstette 1993; Joan-Arinyo et al. 2011].
However, De Jong and Spears [1992] pointed out that disruption does not necessarily
imply useful exploration.

—Hybrid approaches. There are some other approaches that can not be easily classified
into the aforementioned classes. This is due to the use of unconventional concepts
(e.g., concepts of age and compact GA) or blending different approaches (e.g.,
ensembles [Mallipeddi et al. 2011]). Inevitably, there may be some approaches we
have missed. Gosh et al. [1996] developed an aging genetic algorithm (aGA), where
the concept of age for an individual is included into the fitness function as well as
into mating. As in nature, adult individuals are considered more fit for mating. On
a given problem, Gosh et al. reported that aGA maintains more diversity in the
population, whilst its performance has also been improved. Paenke et al. [2009]
showed that longer individual lifetime slows down the genotypic diversity loss. The
compact genetic algorithm (cGA) [Harik et al. 1999] used a probability vector for
current population in order to obtain offspring. An element of probability, vector pvi
denotes a probability to assign 1 to the ith gene of an individual. Diversity is simply
achieved by increasing/decreasing pvi by 1

pop size . Lee et al. [2011] extend cGA with
belief vectors, where each element has probability distribution with a mean and
a variance. Diversity is adaptively controlled by calculating entropy and updating
the variance of a belief vector. The SaDE algorithm [Qin et al. 2009] attempted to
maintain a good balance between exploitation and exploration by choosing different
strategies in differential evolution (DE) [Storn and Price 1997] (e.g., DE/rand/1/bin,
DE/best/1/bin) for each individual. Authors have taken advantage of the fact that
different strategies have different exploration/exploitation capabilities.

On the other hand, niching methods promote the formation and maintenance of sta-
ble subpopulations within the neighborhood of optimal solutions, thereby achieving a
population diversity. Niching methods have already been well studied, and readers are
referred to Mahfoud [1995] and Sareni and Krähenbühl [1998] for more information.
We have classified niching methods into the following.

—Fitness-based. Fitness sharing (explicit [Goldberg and Richardson 1987; Holland
1975] and implicit [Smith et al. 1993]), clearing [Petrowski 1996], modified clearing
[Singh and Deb 2006], clustering [Yin and Germay 1993].

—Replacement-based. Deterministic crowding [Mahfoud 1995], probabilistic crowding
[Mengshoel and Goldberg 1999], restricted tournament selection [Harik 1995].

—Preservation-based. Species conserving GA [Li et al. 2002].
—Hybrid. Adaptive elitist-population based GA [Liang and Leung 2011], ensemble of

niching algorithms [Yu and Suganthan 2010].

Although most work done using non-niching and niching methods simply expects an
increase in diversity and hence better balance between exploration and exploitation,
not all diversification is useful. In this respect, niching methods can be regarded as
stronger diversification methods [Friedrich et al. 2008]. There are only a few theoret-
ical works on diversity mechanisms, and we would like to mention the following. De
Jong and Spears [1992] provided the theoretical analysis of crossover operator (multi-
point crossover vs. uniform crossover) with respect to disruptive effect, recombination
potential, and exploratory power. Friedrich et al. [2007] provided a rigorous analysis
of simple diversification mechanisms (duplicate elimination at genotype and pheno-
type levels) and analyzed it with respect to the runtime behaviour of an EA, whilst
Storch [2004] analyzed duplicate elimination with respect to population size. Friedrich
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et al. [2008] also provided the theoretical analysis of niching methods (fitness sharing
and deterministic crowding) on simple bimodal functions. They rigorously proved that
without any diversification method or when only genotype/phenotype duplicate elimi-
nation is used in (μ+1) EA, is the probability of being trapped into local optima almost
1
2 , whilst the probability of finding both optima using fitness sharing or deterministic
crowding is very high.

It is worth mentioning that diversity maintenance is very important to EMO [Smith
et al. 1993; Toffolo and Benini 2003; Zitzler and Thiele 1999]. For example, in order to
maintain the diversity among nondominated solutions, Zitzler et al. [2002] proposed the
k-nearest neighbor clustering technique. Zitzler et al. noticed that not only the average
distance between the nondominated solutions to the true Pareto front is important, but
also the distribution of the nondominated solutions.

4.2. Achieving Exploration and Exploitation Balance through Diversity Control

The main difference between diversity maintenance and diversity control is that in the
latter case, population diversity, individual fitness, and/or fitness improvements are
measured and used as a feedback to steer an evolution process towards exploration or
exploitation. We classify different approaches based on the process/operator responsible
for diversification. Another possibility would be to take into account how population
diversity is measured (genotypic or phenotypic diversity measures, see Section 3).

—Diversity is controlled and preserved through selection. Survival probability can be
computed based on population diversity, or diversity can be included within those
fitness functions that further drive the selection process. Several approaches fall into
this category, and we mention the following. Mori et al. [1995] proposed a thermo-
dynamical genetic algorithm (TDGA), which adopts the concept of temperature and
entropy within the selection rule for better control of population diversity. Shimodaira
[1997] proposed a diversity-control-oriented genetic algorithm (DCGA), where indi-
viduals that are farther from the best individual, but which always survive, have
higher survival probabilities. Chaiyaratana et al. [2007] proposed a modified DCGA,
where survival probability depends on similarity at the phenotype level. Wong et al.
[2003] controlled population diversity by repelling population from the representa-
tive one. This was achieved by including diversity within a fitness function. In such a
manner, individuals with rare alleles would be fitter, and the survival probabilities of
such individuals would be increased. Bersano-Begey [1997] also controlled diversity
through a fitness function, which keeps track of how many individuals have solved
a particular fitness case. In this manner, it is possible to detect when the population
is locked in on a partial solution. This approach can be augmented by tracking over
how many generations this situation has persisted. McGinley et al. [2011] introduced
healthy population diversity as feedback to adaptively controlled selection pressure
through tournament size, in order to avoid premature convergence or exploitation
from the same cluster of highly fitted individuals continuously. Adra and Fleming
[2011] employed the diversity indicator (Is) mentioned in Section 3.1.2 to activate a
diversity mechanism for further improving the performance of NSGA-II in terms of
convergence and diversity. Binary tournament selection with random tie breaking
will be inactive if Is < 1 so that “the exploitation of diversity should not precede the
exploitation of proximity” [Bosman and Thierens 2003].

—Diversity is controlled through crossover and mutation. This is an easy and natural
way to control diversity. Hence, the majority of approaches fall into this category.
The idea is to increase/decrease the probability of crossover and/or mutation after
population diversity, fitness, and/or fitness improvements are computed. Approaches
differ from each other mainly on how diversity is computed: explicitly by different
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diversity measures (see Section 3) and/or implicitly by fitness or fitness improve-
ments. Selected approaches are described as follows. Whitley and Starkweather
[1990] applied the adaptive probability of mutation based on Hamming distance
in order to sustain population diversity. Srinivas and Patnaik [1994] proposed an
adaptive genetic algorithm (AGA), where the adaptive probabilities of mutation and
crossover are used to control the diversity of the population and to achieve good con-
vergence. The probabilities of crossover and mutation are based on the fitness values
of individuals, and in order to achieve balance between exploration and exploitation,
they increase the probabilities of mutation and crossover when the population tends
to get stuck at local optima, and decrease the probabilities when the population is
scattered within the search space. The PRAM algorithm [Wong et al. 2003] adapted
the probabilities of crossover and mutation in order to determine an appropriate
balance between exploration and exploitation. Based on fitness improvement, they
used a set of greedy rules (e.g., expand rule, stay rule, left move rule, and right
move rule) to adapt control parameters. Another example is the diversity-guided
microgenetic algorithm (DGμGA) [Jose-Revuelta 2007], where a fitness-proportional
entropy-based diversity measure is used to guide genetic algorithms. The authors
correctly recognized that high entropy can be obtained when a population is diverse
but far from global optima (usually at the beginning stage), and when a population
is diverse but close to global optima (at the latest stage). This phenomenon is
called entropy ambiguity. In order to eliminate such a phenomenon, the authors
used an additional measure—how fast the convergence occurs—expressed as an
average mean value of individuals’ fitness over k successive generations. When
convergence is unsatisfactory, the whole population is randomly reinitialized. Li
et al. [2004] proposed the adaptive genetic algorithm with diversity-guided mutation
and crossover (AGAD), where mutation and crossover probabilities are adaptively
controlled by diversity measures based on entropy. Note that McGinley et al. [2011]
(categorized in the previous group) also utilized Euclidean distance to adaptively
control mutation and crossover rates, respectively, for exploration and exploitation.

—Diversity is controlled through a changing population. After measuring population
diversity, either the population size or the population alone is changed. Not many
approaches fall into this category. Liu et al. [2009] presented an entropy-based
exploration and exploitation approach for controlling an evolution process. It
tends toward exploration when entropy is low and tends toward exploitation when
entropy is high. Linear, Gaussian, fitness proportional, and cluster entropies were
introduced by extending Rosca’s entropy [Rosca 1995]. The extension was done by
redefining how individuals are classified into different entropy classes, and whether
the class boundaries are changed adaptively or self-adaptively. Despite the fact
that this approach mainly adapts the probabilities of mutation and crossover, some
experiments also adaptively changed population size. Tsujimura and Gen proposed
an entropy-based genetic algorithm (EBGA) [1998], where the diversity of loci is
measured by entropy. When the population diversity is too low, the diversity is
improved by swapping loci with low entropy values.

4.3. Achieving Exploration and Exploitation Balance through Diversity Learning

The main difference between diversity control and diversity learning is that, in the
former case, short-term history (e.g., current population) is often used during diversity
computation, whilst, in the latter case, long-term history is used in combination with
different machine learning techniques to learn (un)explored search areas. The history
of a population has also been an important criterion for the classification of EAs in
Calegary et al. [1999]. Nevertheless, diversity learning approaches are rarely proposed,
and currently researchers are using cultural learning, self-organizing maps, binary
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space partitioning trees, and an estimation of distribution, in order to learn about
promising locations within the search space.

—Curran and O’Riordan [2006] investigated population diversity through cultural
learning, where individuals were able to pass their knowledge to individuals in subse-
quent generations. Researchers in machine learning classify learning into population
learning, lifetime learning, and cultural learning. Population learning is well known
in the EA community and represents an evolving population through generations,
whilst lifetime learning can be achieved in evolutionary algorithms by local search
(memetic algorithms [Moscato 1999]). In this type of learning, individuals acquire
knowledge during their lifetimes, for example, by local search. Using population and
lifetime learning, global search and local optimization are combined. Hence, a bal-
ance between exploration and exploitation can be achieved (this method of achieving
exploration and exploitation balance is further discussed in Section 4.4). An inter-
esting learning introduced into cultural learning is that acquired knowledge can be
passed to subsequent generations without altering their genomes. This is possible in
several different ways. Curran and O’Riordan [2006] used a teacher/pupil scenario,
where pupils (individuals of the current generation) imitate the behaviour of teach-
ers (highly fit individuals in previous generations). Individuals are generated from
their genetic code and are immediately exposed to teaching. Curran and O’Riordan
showed that cultural learning on their test cases significantly increased genotypic
as well as phenotypic diversity. This is credited to a selection process that no longer
selects individuals based on their genetic materials, but instead on an individual’s
ability to learn. Several cultural algorithms have been developed (e.g., [Becerra and
Coello Coello 2006; Soza et al. 2011]), where the search was improved by extracting
domain knowledge (e.g., normative knowledge about intervals for decision variables
where good solutions had been found in the past). The learning outcome influenced
the variation operator and promoted diversity of population. In a similar manner,
Jin and Reynolds [1999] used a cultural algorithm for avoiding infeasible regions
and for promoting the exploration of feasible regions.

—Amor and Rettinger [2005] introduced intelligent exploration of the search space us-
ing self-organizing maps (SOM) [Kohonen 2001]. GASOM (GA using SOM) takes into
account not only the diversity of a current population, but also across the whole evo-
lution process. This concept is called novelty. By using SOM, unexplored regions can
be learned about efficiently by incorporating novelty into the fitness function. Explo-
ration of unexplored regions was encouraged, whilst exploitation was still promoted
by an objective function. And, finally, by reseeding a population with individuals of
high novelty, Amor and Rettinger were able to achieve diversity and a good balance
between exploration and exploitation. Furthermore, the authors showed how the
ratio between exploration and exploitation, albeit very rough, can be computed.

—Yuen and Chow [2009] proposed a novel genetic algorithm, called the non-revisiting
genetic algorithm with parameter-less adaptive mutation (NrGA), which never
revisits previous solutions, and hence population diversity is automatically assured.
This is achieved in an efficient way using a binary space-partitioning (BSP) tree,
with each node carrying the densities of the evaluated solutions. Not only have
previously visited solutions been recorded, but in the case of revisiting, NrGA is
able to find the nearest unvisited subspace and then perform a random mutation
within this subspace. Such a mutation is adaptive and parameter-less, because the
smaller the unvisited subspace, the smaller the mutation step, and vice versa. Yuen
and Chow showed that diversity can be maintained by learning already visited
solutions. The proposed algorithm outperforms canonical GAs with and without
simple diversity mechanisms, a generic real-coded genetic algorithm, as well as the
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covariance matrix adaptation evolution strategy (CMA-ES), on several benchmark
functions. Chow and Yuen [2011] also proposed a history-driven evolutionary
algorithm (HdEA), where a BSP tree records the searched individuals and their
fitness values during the evolution process. Guided anisotropic search is introduced
to govern the search direction based on the history of the BSP tree: an individual is
either exploitatively mutated towards the nearest historical optimum or randomly
mutated if the individual is already a local optimum. HdEA outperforms eight
benchmark real-coded evolutionary algorithms on several multimodal functions.

—Mühlenbein and Paaß [1996] proposed an estimation of distribution algorithm
(EDA) that uses machine learning techniques to learn about locations within the
more promising regions of the search space.

4.4. Other Direct Approaches

Although these approaches, an exception being the approach presented in Črepinšek
et al. [2011], suggested that there is explicit control between exploration and exploita-
tion and that two phases are clearly identified, actually both phases are still inter-
leaved. For example, even though the process can be in the exploration phase, an
individual can be generated by exploiting an already existing region. We have identi-
fied three different subcategories. In the first subcategory, different subpopulations are
used for a particular phase, whilst in the second subcategory, triggers cause switch-
ing between phases. The third subcategory presents an ancestry tree-based approach,
which is currently the only available direct measure for exploration and exploitation.

—Subpopulations are used to delimit exploration from exploitation. Some subpopula-
tions are exclusively used for a particular phase.
—Bi-population GA (bGA) [Tsutsui et al. 1997b] introduced two separate populations

respectively for exploration and exploitation, and implicitly maintained diversity.
Explorer sub-GA mainly performs global exploration of the search space (in ad-
dition, a restart mechanism is implemented that avoids the subpopulation being
trapped in local optima), whilst the exploiter sub-GA performs exploitation of the
fit local areas of the search space around the neighborhood of the best-so-far so-
lutions. The word “mainly” is important here, because a solid line between the
two phases is still undrawn. In the explorer sub-GA, authors use coarse-grained
mutations, whilst in the exploiter sub-GA, fine-grained mutation is used. However,
the same crossover operator is used in both populations. Moreover, in the explorer
sub-GA, a larger population is used than in the exploiter sub-GA. Overall, there is
no guarantee that during the exploitation phase, an individual is generated which
is in the neighborhood of the current individual.

—Tsutsui et al. [1997a] proposed forking GA, where a multipopulation scheme with
one parent population for the exploration mode and one or more child populations
for the exploitation mode are used. Populations can be divided/forked on genotypic
as well on phenotypic search spaces. In the former case, a subspace is defined by
salient schema, whilst in the latter case, a subspace is defined by a neighborhood
hypercube around the current best individual. For genotypic forking GA, whenever
all of the following conditions occur, the population is forked: the best so far has
not been updated for a specified number of generations, the population converges
to smaller diversity where canonical Hamming distance is used, and the order of
the salient schema is more than a specified constant. Similarly, phenotypic fork-
ing GA forks if the best individual so far has not been updated for a specified
number of generations, and the number of individuals within the neighborhood
hypercube is more than its predefined threshold. Tsutsui et al. [1997a] were able
to divide the entire search space into subspaces, and different child populations
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were responsible for exploiting particular subspaces, whilst the parent population
was responsible for the rest of the space. However, in the parent population, new
individuals might be generated, which is in the exploitation zone of the parent
population. In this case, the parent population is not solely exploring the region.
Nevertheless, the forking GA maintains good balance within the exploring parent
population and when exploiting child populations. Finally, it was shown that phe-
notypic forking GA can also be effectively used for niche formation and, as such,
this approach is also mentioned in Section 4.1.

—Oppacher and Wineberg [1999] proposed a shifting balance genetic algorithm
(SBGA) to address multimodal optimization within a dynamic environment (mov-
ing peak problem). The SBGA categorizes a population into core and colony groups.
The objectives of the core and colony groups are to exploit and explore the fitness
landscape, respectively. A containment factor, derived from Hamming distance, is
introduced to determine the ratio of individuals to be selected inside the core for
exploitation and outside the core (i.e., inside colonies) for exploration. It is in-
teresting to note that smaller subpopulations (colonies) are now responsible for
exploration (opposite to forking GA [Tsutsui et al. 1997a]). The rationale for this
is Wright’s shifting balance theory, where small populations are more sensitive
to random genetic drift, which allows populations to cross the low fitness valleys
more easily and better explore that region. On the other hand, selection is more
effective within larger populations. Again, it is hard to delimit exploration from
exploitation on the core population.

—Goh et al. [2003] randomly separated a population into two sexes, female and
male, which are responsible for exploration and exploitation, respectively. The
rationale comes from nature, where for some species, female choice selection is in
play. Females will always mate, while only more attractive males will be selected
for mating. While the balance between exploration and exploitation is promoted,
there is still no explicit control over either phase, since there is nothing to prevent
an individual from being generated, either within an exploration or exploitation
zone.

—Population is the same, but different triggers cause alternation between exploration
and exploitation phases.
—EAs with local search can be regarded as a prime example of this case. These

algorithms are also known as hybrid EAs [Blum et al. 2011; Liao 2010; Mashinchi
et al. 2011; Mongus et al. 2012; Misevičius and Rubliauskas 2008], genetic local
search algorithms [Merz and Freisleben 2000], or memetic algorithms [Moscato
1999; Krasnogor and Smith 2005; Ong et al. 2006]. An important part of these
algorithms is a local search step where one or several local optimizers can be ap-
plied to individuals to further refine a solution by exploiting its neighborhood. As
such, this step can be regarded solely as an exploitation operator. The local search
step is usually done after the recombination operators, just prior to the selection
step (one exception is that of Ishibuchi et al. [2010a], who found that better re-
sults were obtained for some multiobjective combinatorial optimization problems
by using local search after the selection step). Hence, the exploitation phase is trig-
gered explicitly by calling the local search method. Even though this approach may
seem to be regarded as an explicit approach to control exploration and exploita-
tion, this is not so. It is because other steps (e.g., mutation and crossover) can
generate a solution in both zones. Hence, exploration and exploitation are still in-
completely separated. Since these algorithms additionally expose the exploitation
phase, special attention must be paid to guarantee that a proper balance between
exploration and exploitation has still been achieved [Ishibuchi et al. 2003]. This
can lead to extensive tuning of the control parameters, too. Freisleben and Merz
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[1996] reported that a local search can lead to a disastrous loss of diversity, thus re-
quiring a completely new selection scheme. Nevertheless, the success of memetic
algorithms has often been credited to a good trade-off between the exploration
abilities of EAs and the exploitation abilities of the local search [Krasnogor and
Smith 2005]. Due to the fact that exploration and exploitation in memetic algo-
rithms still can not be measured and hence controlled, many open problems still
remain (e.g., how often local search should be applied, which individuals in the
population should be exposed to local search? [Hart 1994]). Two selected recent
works regarding such open problems are Nguyen et al. [2009] and Lin and Chen
[2011]. The former introduced a probabilistic model based on the concept of basin
of attraction. Such a model considers exploration and exploitation as independent
processes from probabilistic perspectives and introduces a theoretical individual
learning intensity upper bound. During runtime, if the average of the intensity of
k nearest neighbors is lower than or equal to the upper bound, the upper bound
will be increased so that individual learning (i.e., exploitation) may last longer.
Conversely, the latter defines those quasi-basin classes, considered as local search
zones within the search space, using the concept of subthreshold seekers. As such, a
subthreshold seeker starts to exploit a quasi-basin class (represented as a graph)
until no neighbor is available and then performs a global search until another
subthreshold point is encountered.

—Ursem’s [2002] diversity-guided evolutionary algorithm (DGEA) proposed a simple
diversity measure to guide exploration and exploitation. Diversity is measured as
the sum of Euclidean distance between all individuals and the average point. Such
a measure is then used as a threshold to alternate between exploration and ex-
ploitation phases. During the exploration phase, only mutation is used in DGEA,
whilst during the exploitation phase, only selection and crossover are applied.
According to the discussion in Section 2, this is an oversimplified view, and the
boundary between both phases is still unclear. This is because the crossover op-
erator can also introduce individuals into an exploration zone, and similarly, the
mutation operator can generate individuals within an exploitation zone. However,
Ursem assumed that such cases would be rare, and the whole phase is named as an
exploration/exploitation phase. DGEA outperformed other algorithms on selective
benchmark functions. Ursem’s main conclusion was that improvements more or
less appeared during the exploitation phase, whilst exploration was indispensable
for discovering promising regions.

—Alba and Dorronsoro [2005] proposed an adaptive control of topology in cellular
GAs, where an individual can interact only with nearby neighbors. By changing
the topology of a grid, a neighborhood is changed and exploration is promoted,
whilst exploitation takes place inside each neighborhood using genetic operators.
The exploration/exploitation ratio is defined as the quotient between neighborhood
and topology radii. They found that similar ratios show similar selection pressures
regardless of different topologies. Hence reducing the ratio actually means promot-
ing exploration. Alba and Dorronsoro proposed several deterministic and adaptive
approaches for controlling the ratio and, hence, adaptively controlling exploration
and exploitation. For example, when convergence speed falls below a specified
threshold value, then the grid topology is changed to square, which has a higher
ratio, and the evolution process is switched to exploitation. In contrast, when
the convergence speed is higher than the specified threshold value, then the grid
topology is changed to a narrower shape, which has a lower ratio, and the evolution
process is switched to exploration. Such behaviour mimics automated shifting
between the exploration and exploitation phases. Adaptive control outperformed
tuning and deterministic control, whilst among adaptive control techniques, those
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which start with exploration first (narrow-shaped grid) were more successful
than others. This again supports our belief that a search process needs to identify
promising regions first and then gradually search within the neighborhood to
avoid premature convergence. However, exploration and exploitation are again not
explicitly defined, and this approach suffers the same problem as others. Namely,
even during the exploration phase, an individual can be generated within the ex-
ploitation zone, since both phases use the same crossover and mutation operators.

—Črepinšek et al. [2011] introduced an ancestry tree-based approach for explicitly
measuring exploration and exploitation. The evolution of a whole population through
generations is recorded on an ancestry tree. Different diversity measures (see Sec-
tion 3) can then be applied to find similarities between individuals on the ancestry
tree. Whenever similarity between an individual and its direct offspring is bigger
than a predefined threshold value, which defines neighborhood boundary, the ances-
try tree is split and forms a new exploitation tree. The root node of the exploitation
tree is then obtained by exploration and the other nodes by exploitation. If the root
nodes of exploitation trees are connected, an exploration tree is derived. Different
exploration and exploitation measures (e.g., progressiveness and the influence of se-
lection pressure) can be obtained by simply identifying various tree characteristics
(e.g., width and height). If the exploration and exploitation measures are computed
online, then the exploration and exploitation can be controlled.

5. CONCLUSION AND FUTURE DIRECTIONS

Exploration and exploitation are fundamental concepts of any search algorithm, and it
is surprising that these concepts are not better understood in EAs. We also noticed in
many papers that there are oversimplified beliefs on how EAs explore and exploit the
search space. Hence, one of the goals of this article is to encourage a fresh treatment
of exploration and exploitation in EAs, namely, those parts of EAs that contribute
to exploration and exploitation: selection, variation operators, population size, and
representation; how the balance between exploration and exploitation is achieved:
implicitly by parameter tuning and parameter control using uniprocess or multiprocess
driven approaches; when the balance between exploration and exploitation should
be controlled: online using deterministic, adaptive, or self-adaptive approaches; and
how the balance between exploration and exploitation can be controlled: by diversity
maintenance, diversity control, diversity learning, or other direct approaches.

Exploration and exploitation are conflicting objectives of the search process. Even
though tension between exploration and exploitation is a recurring theme in EAs since
Holland’s seminal work [1975], there are still many open problems which need to be
solved. Our survey also showed many opportunities for further work. More specifically,
some of the following issues needing further attention.

—First of all, phases of exploration and exploitation must be formally defined by
also taking into account problem dependency. New regions and neighborhoods of
previously visited points need a precise mathematical definition and metrics.

—Regarding which parts of EAs contribute to exploration and exploitation, more re-
search is needed for understanding how different operators (selection, crossover,
mutation) contribute to exploration and exploitation during uniprocess- and
multiprocess-driven approaches. In order to solve this problem, new direct measures
need to be developed (e.g., [Črepinšek et al. 2011]). Another useful direction for work
is to discover good ratios between exploration and exploitation for different types of
problems (e.g., single-objective vs. multiobjective) and what kind of operators syner-
gistically achieve such results. Furthermore, the relationship between an individual
representation and exploration and exploitation should be better understood, as well

ACM Computing Surveys, Vol. 45, No. 3, Article 35, Publication date: June 2013.
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as how the properties of the search space (problem being solved) influence exploration
and exploitation. Hence, a formal analysis specifying the balance equation [De Jong
and Spears 1992] involving all the previously mentioned factors is still unavailable.

—Regarding how the balance between exploration and exploitation is achieved, more
research work is needed to understand how the control-parameter setting influences
exploration and exploitation. Currently, indirect measures for exploration and ex-
ploitation are mostly used, and consequently, control of exploration and exploitation
during the run (online) is hard to achieve. By proposing new direct measures for
exploration and exploitation, we would be able to better control exploration and
exploitation by deterministic, adaptive, or even self-adaptive approaches, thus
achieving better balance between exploration and exploitation during different
phases of an evolutionary run.

—Regarding when the balance between exploration and exploitation should be
controlled, there are plenty of open questions. Even though the control of exploration
and exploitation is preferred whilst online, there are still many other issues that
require answers. For example, in what order should the phases of exploration and
exploitation appear? Intuitively, the exploration phase is usually performed first in
order to discover the potential search zones, then the exploitation phase fine-tunes
in order to reach a global optimal. Currently, this is not under user control, and the
phases of exploration and exploitation are interleaved. However, interleaved phases,
where exploration and exploitation are done in parallel, might work quite well or
even better than a situation where the phases are separated. This issue is sparsely
covered in EA research currently and needs more attention. Besides the orders of
both phases, an open issue is how often they should appear in consequence. Should
these phases alternate within each generation? Should they be present within each
generation? Another unresolved problem is whether control parameters and whole
populations should be preserved when we switch from one phase to the other.

—Regarding how the balance between exploration and exploitation can be controlled,
we envisage that many sophisticated approaches will be developed over the forth-
coming years. More research work is needed, especially in the areas of diversity
learning and direct approaches to control exploration and exploitation. One of
the urgent steps for future research work is to better understand the influence
of diversity for achieving good balance between exploration and exploitation.
Theoretical analysis of more advanced diversification techniques (see Section 4.1)
are needed [Friedrich et al. 2007, 2008].

—Since direct measures for exploration and exploitation are rare, we need to investi-
gate how effective the proposed measures are for explicit control of exploration and
exploitation. By using direct measures for the exploration and exploitation compar-
isons, the explorative and exploitative power of different EAs would become possible.
For example, an interesting examination would be to compare the exploration and
exploitation powers of a single-objective EA for unimodal and multimodal problems,
comparing behavior of EMO on two-objectives versus many-objectives problems, or
an examination of exploration and exploitation in the context of dynamic/adaptive
problems. An open issue is whether direct measures for exploration and exploitation
can further improve the performances of the more competitive EAs. Moreover, many
other different analyses are realizable: analysis of different parameter controls for
exploration and exploitation, analysis of different diversity maintenance/diversity
control/diversity learning approaches to exploration and exploitation, etc.

We hope that this work will trigger more interest in these issues and more research
will be devoted to the fundamental understanding of how EAs explore and exploit
the search space. We are convinced that such knowledge would help EA researchers
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and practitioners to better understand a particular EA, to improve it, or to develop a
new one.
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