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Metaheuristics are widely recognized as efficient approache s for many hard optimization 
problems. This paper provides a survey of some of the main metaheuristics. It outlines 
the components and concepts that are used in various metaheuristics in order to analyze 
their similarities and differences. The classification adopted in this paper differentiates 
between single solution based metaheuristics and population based metaheuristics . The 
literature survey is accompanied by the presentation of references for further details, 
including applications. Recent trends are also briefly discussed. 

� 2013 Elsevier Inc. All rights reserved. 
1. Introduction 

We roughly define hard optimization problems as problems that cannot be solved to optimality, or to any guaranteed 
bound, by any exact (deterministic) method within a ‘‘reasonable’’ time limit. These problems can be divided into several 
categories depending on whether they are continuous or discrete, constrained or unconstrai ned, mono or multi-objective, 
static or dynamic. In order to find satisfactory solutions for these problems, metaheurist ics can be used. A metaheu ristic 
is an algorithm designed to solve approximat ely a wide range of hard optimization problems without having to deeply adapt 
to each problem. Indeed, the greek prefix ‘‘meta’’, present in the name, is used to indicate that these algorithms are ‘‘higher 
level’’ heuristics , in contrast with problem-specific heuristics. Metaheuristics are generally applied to problems for which 
there is no satisfactory problem-specific algorithm to solve them. They are widely used to solve complex problems in indus- 
try and services, in areas ranging from finance to production managemen t and engineeri ng. 

Almost all metaheu ristics share the following characteristics: they are nature-inspi red (based on some principles from 
physics, biology or ethology); they make use of stochastic components (involving random variables); they do not use the 
gradient or Hessian matrix of the objective function; they have several parameters that need to be fitted to the problem 
at hand. 

In the last thirty years, a great interest has been devoted to metaheuristics. We can try to point out some of the steps that 
have marked the history of metaheu ristics. One pioneer contribution is the proposition of the simulated annealing method 
by Kirkpatrick et al. in 1982 [150]. In 1986, the tabu search was proposed by Glover [104], and the artificial immune system 
was proposed by Farmer et al. [83]. In 1988, Koza registered his first patent on genetic programmin g, later published in 1992 
[154]. In 1989, Goldberg published a well known book on genetic algorithms [110]. In 1992, Dorigo completed his PhD thesis, 
in which he describes his innovative work on ant colony optimization [69]. In 1993, the first algorithm based on bee colonies 
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was proposed by Walker et al. [277]. Another significant progress is the developmen t of the particle swarm optimization by 
Kennedy and Eberhart in 1995 [145]. The same year, Hansen and Ostermeier proposed CMA-ES [121]. In 1996, Mühlenbein
and Paaß proposed the estimation of distribution algorithm [190]. In 1997, Storn and Price proposed differential evolution 
[253]. In 2002, Passino introduced an optimizati on algorithm based on bacterial foraging [200]. Then, Simon proposed a bio- 
geography-b ased optimization algorithm in 2008 [247].

The considerable development of metaheurist ics can be explained by the significant increase in the processing power of 
the computer s, and by the developmen t of massively parallel architectur es. These hardware improvem ents relativize the 
CPU time–costly nature of metaheu ristics. 

A metaheurist ic will be successful on a given optimizati on problem if it can provide a balance between the exploration 
(diversification) and the exploitati on (intensification). Exploitation is needed to identify parts of the search space with high 
quality solutions. Exploitati on is important to intensify the search in some promising areas of the accumulated search expe- 
rience. The main differences between the existing metaheuristics concern the particular way in which they try to achieve 
this balance [28]. Many classification criteria may be used for metaheurist ics. This may be illustrate d by considering the clas- 
sification of metaheuristics in terms of their features with respect to different aspects concerning the search path they fol- 
low, the use of memory, the kind of neighborho od exploration used or the number of current solutions carried from one 
iteration to the next. For a more formal classification of metaheuristics we refer the reader to [28,258]. The metaheurist ic 
classification, which differentiate s between Single-Solution Based Metaheur istics and Population-Bas ed Metaheuristics , is 
often taken to be a fundamenta l distinctio n in the literature. Roughly speaking, basic single-solut ion based metaheuristics 
are more exploitation oriented whereas basic population-bas ed metaheu ristics are more exploration oriented. 

The purpose of this paper is to present a global overview of the main metaheuristics and their principles. That attempt of 
survey on metaheu ristics is structured in the following way. Section 2 shortly presents the class of single-so lution based 
metaheurist ics, and the main algorithms that belong to this class, i.e. the simulated annealing method, the tabu search, 
the GRASP method, the variable neighborhood search, the guided local search, the iterated local search, and their variants. 
Section 3 describes the class of metaheurist ics related to population-based metaheurist ics, which manipulate a collection of 
solutions rather than a single solution at each stage. Section 3.1 describes the field of evolutionary computation and outlines 
the common search components of this family of algorithms (e.g., selection, variation, and replacemen t). In this subsection, 
the focus is on evolutionary algorithms such as genetic algorithms, evolution strategie s, evolutionary programming, and ge- 
netic programmin g. Section 3.2 presents other evolutionar y algorithms such as estimation of distribution algorithms, differ- 
ential evolution, coevolution ary algorithms, cultural algorithms and the scatter search and path relinking. Section 3.3
contains an overview of a family of nature inspired algorithms related to Swarm Intelligence. The main algorithms belonging 
to this field are ant colonies, particle swarm optimization, bacterial foraging, bee colonies, artificial immune systems and bio- 
geography-b ased optimization. Finally, a discussion on the current research status and most promising paths of future re- 
search is presented in Section 4.
2. Single-solutio n based metaheuristi cs 

In this section, we outline single-solut ion based metaheuristics, also called trajectory methods . Unlike population-bas ed 
metaheurist ics, they start with a single initial solution and move away from it, describing a trajector y in the search space. 
Some of them can be seen as ‘‘intelligent’’ extensions of local search algorithms. Trajectory methods mainly encompass the 
simulated annealing method, the tabu search, the GRASP method, the variable neighborho od search, the guided local search, 
the iterated local search, and their variants. 
2.1. Simulated annealing 

The origins of the Simulated Annealin g method (SA) are in statistical mechanics (Metropolis algorithm [179]). It was first
proposed by Kirkpatrick et al. [150], and independen tly by Cerny [42]. SA is inspired by the annealing technique used by the 
metallurgist s to obtain a ‘‘well ordered’’ solid state of minimal energy (while avoiding the ‘‘metastable’’ structures, charac- 
teristic of the local minima of energy). This techniqu e consists in carrying a material at high temperature , then in lowering 
this temperature slowly. 

SA transposes the process of the annealing to the solution of an optimization problem: the objective function of the prob- 
lem, similar to the energy of a material, is then minimized, by introducing a fictitious temperature T, which is a simple con- 
trollable parameter of the algorithm. 

The algorithm starts by generating an initial solution (either randomly or constructed using an heuristic) and by initial- 
izing the temperature paramete r T. Then, at each iteration, a solution s0 is randomly selected in the neighborho od N(s) of the 
current solution s. The solution s0 is accepted as new current solution depending on T and on the values of the objective func- 
tion for s0 and s, denoted by f(s0) and f(s), respectively. If f(s0) 6 f(s), then s0 is accepted and it replaces s. On the other hand, if 

f(s0) > f(s), s0 can also be accepted, with a probability pðT; f ðs0Þ; f ðsÞÞ ¼ exp � f ðs0 Þ�f ðsÞ
T

� �
. The temperature T is decrease d during 

the search process, thus at the beginning of the search, the probability of accepting deteriorati ng moves is high and it grad- 
ually decreases. The high level SA algorithm is presented in Fig. 1.



Fig. 1. Algorithm for the simulated annealing method. 
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One can notice that the algorithm can converge to a solution s, even if a better solution s0 is met during the search process. 
Then, a basic improvement of SA consists in saving the best solution met during the search process. 

SA has been successfully applied to several discrete or continuous optimization problems, though it has been found too 
greedy or unable to solve some combinatori al problems. The adaptation of SA to continuous optimization problems has been 
particularly studied [58]. A wide bibliography can be found in [57,90,152,157,25 5,259] .

Several variants of SA have been proposed in the literature. Three of them are described below. 
2.1.1. Microcanonic annealing 
The principle of Microcanon ic Annealing (MA) is similar to that of SA, and MA can be considered as a variant of SA. The 

main differenc e is that instead of using a Metropolis algorithm, MA uses the Creutz algorithm [59], known as microcanoni cal 
Monte Carlo simulatio n or ‘‘demon’’ algorithm. The Creutz algorithm allows reaching the thermodyna mic equilibriu m in an 
isolated system, i.e. a system where the total energy, which is the sum of the potential energy and the kinetic energy, re- 
mains constant (Etotal = Ep + Ec).

For an optimization problem, the potential energy Ep can be considered as the objective function, to be minimized. The 
kinetic energy Ec is used in a similar manner to the temperature in simulated annealing; it is forced to remain positive. The 
algorithm accepts all disturbance s which cause moves towards the lower energy states, by adding � DE (lost potential en- 
ergy) to the kinetic energy Ec. The moves towards higher energy states are only accepted when DE < Ec, and the energy ac- 
quired in the form of potential energy is cut off from the kinetic energy. Thus, the total energy remains constant. The MA 
algorithm is presented in Fig. 2.

At each energy stage, the ‘‘thermodynam ic equilibrium ’’ is reached as soon as the ratio req ¼ hEci
rðEcÞ of the average kinetic 

energy observed to the standard deviation of the distribution of Ec is ‘‘close’’ to 1. 
Eq. (1) involving the kinetic energy and the temperat ure establishes a link between SA and MA, where kB denotes the 

Boltzmann constant. 
kB T ¼ hEci ð1Þ
MA has several advantag es compared to simulated annealing. It neither requires the transcendent functions like exp to be 
evaluated, nor any random number to be drawn for the acceptance or the rejection of a solution. Their computations can 
be indeed time costly. A relatively recent work shows the successfu l applicati on of MA, hybridized with the Nelder-M ead 
simplex method [193], in microscopic image processin g [191].
2.1.2. Threshold accepting method 
Another variant of SA is the Threshold Accepting method (TA) [77]. The principal difference between TA and SA lies in the 

criterion for acceptance of the candidate solutions: on the one hand, SA accepts a solution that causes deterioration of the 
objective function f only with a certain probability; on the other hand, TA accepts this solution if the degradation of f does not 
exceed a progressive ly decreasing threshold T. The TA algorithm is presented in Fig. 3.

The TA method compares favorably with simulated annealing for combinatori al optimizati on problems , like the traveling 
salesman problem [76]. An adaptation of TA to continuous optimization can be carried out similarly to SA. 



Fig. 3. Algorithm for the threshold accepting method. 

Fig. 2. Algorithm for the microcanonic annealing method. 
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2.1.3. Noising method 
The Noising Method (NM) was proposed by Charon and Hudry [45]. Initially proposed for the clique partitioni ng problem in

a graph, it has been shown to be successful for many combinatori al optimizati on problems. It uses a local search algorithm, 
i.e. an algorithm which, starting from an initial solution, carries out iterative improvements until obtaining a local optimum. 
The basic idea of NM is as follows. Rather than taking the genuine data of an optimization problem directly into account, the 
data are ‘‘perturb ed’’, i.e. the values taken by the objective function are modified in a certain way. Then, the local search algo- 
rithm is applied to the perturbed function. At each iteration of NM, the amplitude of the noising of the objective function 
decreases until it is zero. The reason behind the addition of noise is to be able to escape any possible local optimum of 
the objective function. In NM, a noise is a value taken by a random variable following a given probability distribution 
(e.g. uniform or Gaussian law). The algorithm for NM is presented in Fig. 4.

The authors proposed and analysed different ways to add noise [46]. They showed that, accordin g to the noising carried 
out, NM can be made identical with SA, or with TA, described above. Thus, NM represents a generalization of SA and TA. They 
also published a survey in [47], and recently, they proposed a way to design NM that can tune its paramete rs itself [48].

2.2. Tabu search 

Tabu Search (TS) was formalized in 1986 by Glover [104]. TS was designed to manage an embedded local search algo- 
rithm. It explicitly uses the history of the search, both to escape from local minima and to implement an explorative strategy. 
Its main characterist ic is indeed based on the use of mechanis ms inspired by the human memory. It takes, from this point of 
view, a path opposite to that of SA, which does not use memory, and thus is unable to learn from the past. 



Fig. 4. Algorithm for the noising method. 

Fig. 5. Algorithm for the simple tabu search method. 
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Various types of memory structures are commonly used to remember specific properties of the trajectory through the 
search space that the algorithm has undertak en. A tabu list (from which the name of the metaheu ristic framework derives)
records the last encountered solutions (or some attributes of them) and forbids these solutions (or solutions containing one 
of these attributes ) from being visited again, as long as they are in the list. This list can be viewed as short-term memory, that 
records information on recently visited solutions. Its use prevents from returning to recently visited solutions, therefore it 
prevents from endless cycling and forces the search to accept even deteriorating moves. A simple TS algorithm is presented 
in Fig. 5.

The length of the tabu list controls the memory of the search process. If the length of the list is low, the search will con- 
centrate on small areas of the search space. On the opposite, a high length forces the search process to explore larger regions, 
because it forbids revisiting a higher number of solutions. This length can be varied during the search, leading to more robust 
algorithms, like the Reactive Tabu Search algorithm [19].

Additional intermedi ate-term memory structures can be introduced to bias moves towards promising areas of the search 
space (intensification), as well as long-term memory structure s to encourag e broader exploration of the search space 
(diversification).

The addition of intermediate- term memory structure s, called aspiration criteria , can greatly improve the search process. 
Indeed, the use of a tabu list can prevent attractive moves, even if there is no risk of cycling, or they may lead to an overall 
stagnation of the search process. For example, a move which leads to a solution better than all those visited by the search in 
the preceding iterations does not have any reason to be prohibited. Then, the aspiration criteria, that are a set of rules, are 
used to override tabu restrictions, i.e. if a move is forbidden by the tabu list, then the aspiratio n criteria, if satisfied, can allow 
this move. 

A frequency memory can also be used as a type of long-term memory. This memory structure records how often certain 
attributes have been encountered in solutions on the search trajector y, which allows the search to avoid visiting solutions 
that present the most often encountered attributes or to visit solutions with attributes rarely encountered. 

An extensive description of TS and its concepts can be found in [107]. Good reviews of the method are provided in 
[100,101]. TS was designed for, and has predominatel y been applied to combinatorial optimizati on problems . However, 
adaptations of TS to continuous optimization problems have been proposed [105,60,49].
2.3. GRASP method 

GRASP, for Greedy Randomiz ed Adaptive Search Procedure , is a memory-less multi-sta rt metaheurist ic for combinatori al 
optimization problems, proposed by Feo and Resende in [84,85]. Each iteration of the GRASP algorithm consists of two 



Fig. 6. Template for the GRASP algorithm. 
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steps: construction and local search. The construction step of GRASP is similar to the semi-greedy heuristic proposed inde- 
pendently by Hart and Shogan [129]. The construction step builds a feasible solution using a randomized greedy heuristic. 
In the second step, this solution is used as the initial solution of a local search procedure. After a given number of iter- 
ations, the GRASP algorithm terminat es and the best solution found is returned. A template for the GRASP algorithm is 
presented in Fig. 6.

In the greedy heuristic, a candidate solution is built iteratively, i.e. at each iteration, an element is incorporated into a
partial solution, until a complete solution is built. It means that, for a given problem, one has to define a solution as a set 
of elements . At each iteration of the heuristic, the list of candidate elements is formed by all the elements that can be in- 
cluded in the partial solution, without destroying feasibility. This list is ordered with respect to a greedy function, that mea- 
sures the benefit of selecting each element. Then, the element to be added to the partial solution is randomly chosen among 
the best candidates in this list. The list of the best candidates is called the restricted candidate list (RCL). This random selection 
of an element in the RCL represents the probabili stic aspect of GRASP. The RCL list can be limited either by the number of 
elements (cardinality-based) or by their quality (value-based). In the first case, the RCL list consists of the p best candidate 
elements, where p is a parameter of the algorithm. In the second case, it consists of the candidate elements having an incre-
mental cost (the value of the greedy function) greater or equal to cmin + a(cmax � cmin), where a is a paramete r of the algo- 
rithm, and cmin and cmax are the values of the best and worst elements, respectively. This is the most used strategy [221],
and a is the main paramete r of GRASP, where a 2 [0, 1]. Indeed, this parameter defines the compromise between intensifi-
cation and diversification. 

The performance of GRASP is very sensitive to the a parameter, and many strategies have been proposed to fit it [258]
(initialized to a constant value, dynamically changed according to some probability distribution , or automatically adapted 
during the search process). A self-tuning of a is performed in reactive GRASP , where the value of a is periodically updated 
according to the quality of the obtained solutions [214].

Festa and Resende surveyed the algorithmic aspects of GRASP [86], and its applicati on to combinatori al optimization 
problems [87]. A good bibliograp hy is provided also in [222]. GRASP can be hybridize d in different ways, for instance by 
replacing the local search with another metaheurist ic such as tabu search, simulated annealing, variable neighborho od 
search, iterated local search, among others [220,271,23 5] . It is also often combined with a path-reli nking strategy [88]. Adap- 
tations to continuous optimization problems have also been proposed [134].
2.4. Variable neighborho od search 

Variable Neighborhood Search (VNS) is a metaheuristic proposed by Hansen and Mladenovic [184,186]. Its strategy con- 
sists in the exploration of dynamically changing neighborhoods for a given solution. At the initializatio n step, a set of neigh- 
borhood structure s has to be defined. These neighborho ods can be arbitrarily chosen, but often a sequence N1;N2; . . . ;Nnmax of
neighborho ods with increasing cardinality is defined. In principle they could be included one in the other 
(N1 2 N2 2 . . . 2 Nnmax ). However, such a sequence may produce an inefficient search, because a large number of solutions 
can be revisited [33]. Then an initial solution is generated, and the main cycle of VNS begins. This cycle consists of three 
steps: shaking, local search and move. In the shaking step, a solution s0 is randomly selected in the nth neighborho od of 
the current solution s. Then, s0 is used as the initial solution of a local search procedure, to generate the solution s00. The local 
search can use any neighborho od structure and is not restricted to the set Nn, n = 1, . . . , nmax. At the end of the local search 
process, if s00 is better than s, then s00 replaces s and the cycle starts again with n = 1. Otherwise, the algorithm moves to the 
next neighborho od n + 1 and a new shaking phase starts using this neighborhood. The VNS algorithm is presente d in Fig. 7.

This algorithm is efficient if the neighborho ods used are complemen tary, i.e. if a local optimum for a neighborho od Ni is
not a local optimum for a neighborhood Nj. VNS is based on the variable neighborho od descent (VND), which is a determin- 
istic version of VNS [258] described in Fig. 8. A more general VNS algorithm (GVNS), where VND is used as the local search 
procedure of VNS, has led to many successfu l applications [122]. Recent surveys of VNS and its extensions are available in 
[122,123]. Adaptations to continuous optimization problems have been proposed in [164,185 ,37] . Hybridization of VNS with 
other metaheurist ics, such as GRASP, is also common [271,235]. The use of more than one neighborho od structure is not re- 
stricted to algorithms labeled VNS [250]. In Reactive Search [18], a sophisticated adaptatio n of the neighborho od is per- 
formed, instead of cycling over a predefined set of neighborhoods. 



Fig. 7. Template for the variable neighborhood search algorithm. 

Fig. 8. Template for the variable neighborhood descent algorithm. 
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2.5. Guided local search 

As tabu search, Guided Local Search (GLS) [272,274] makes use of a memory. In GLS, this memory is called an augmented
objective function . Indeed, GLS dynamically changes the objective function optimized by a local search, according to the found 
local optima. First, a set of features ftn,n = 1, . . . , nmax has to be defined. Each feature defines a characterist ic of a solution 
regarding the optimization problem to solve. Then, a cost ci and a penalty value pi are associate d with each feature. For in- 
stance, in the traveling salesman problem, a feature fti can be the presence of an edge from a city A to a city B in the solution, 
and the corresponding cost ci can be the distance, or the travel time, between these two cities. The penalties are initialized to 
0 and updated when the local search reaches a local optimum. Given an objective function f and a solution s, GLS defines the 
augmented objective function f0 as follows: 
f 0ðsÞ ¼ f ðsÞ þ k
Xnmax

i¼1

piIiðsÞ ð2Þ
where k is a paramete r of the algorithm, and Ii(s) is an indicator function that determines whether s exhibits the feature fti:
IiðsÞ ¼
1 if s exhibits the feature fti

0 otherwise 

�
ð3Þ
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Each time a local optimum is found by the local search, GLS intends to penalize the most ‘‘unfavorabl e features’’ of this 
local optimum, i.e. the features having a high cost. This way, solutions exhibiting other features become more attractive, and 
the search can escape from the local optimum. When a local optimum s⁄ is reached, the utility ui of penalizing a feature fti is
calculated as follows: 
uðs�Þ ¼ Iiðs�Þ
ci

1þ pi
ð4Þ
The greater the cost ci of this feature, the greater the utility to penalize it is. Besides, the more times it has been penalized 
(the greater pi), the lower the utility of penalizing it again is. The feature having the greatest utility value is penalized: its 
penalty value pi is increased by 1. In the augmented objective function, the scaling of the penality is adjusted by k. Authors 
suggest that the performance of GLS is not very sensitive to the value of k [183]. Large values of k encourage diversification, 
while small values intensify the search around the local optimum [258]. GLS algorithm is summari zed in Fig. 9.

Sitting on top of a local search algorithm, the adaptation of GLS to continuous optimization is straightforwar d [273].
Extensions to population based metaheurist ics have been proposed [160,286,257]. Mills et al. proposed an extended guided 
local search algorithm (EGLS), adding aspiration criteria and random moves to GLS [182,183]. A recent survey on GLS and its 
applications is available in [276,275].

2.6. Iterated local search 

The definition and framework of Iterated Local Search (ILS) are given by Stützle in his PhD dissertat ion [254]. Stützle does 
not take credit for the approach, and instead highlights specific instances of ILS from the literature, such as iterated descent 
[20], large-step Markov chains [176], iterated Lin-Kernigha n [139], chained local optimization [175], as well as [21] that intro- 
duces the principle, and [140] that summarizes it (list taken from [168,36]).

ILS is a metaheurist ic based on a simple idea: instead of repeatedly applying a local search procedure to randomly gen- 
erated starting solutions, ILS generates the starting solution for the next iteration by perturbing the local optimum found at 
Fig. 9. Template for the guided local search algorithm. 

Fig. 10. Template for the iterated local search algorithm. 
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the current iteration. This is done in the expectati on that the perturba tion mechanism provides a solution located in the ba- 
sin of attraction of a better local optimum. The perturbation mechanism is a key feature of ILS: on the one hand, a too weak 
perturbation may not be sufficient to escape from the basin of attraction of the current local optimum; on the other hand, a
too strong perturba tion would make the algorithm similar to a multistart local search with randomly generate d starting 
solutions. ILS algorithm is summarized in Fig. 10 , where the acceptanc e criterion defines the conditions that the new local 
optimum p⁄ has to satisfy in order to replace the current one s⁄.

The acceptance criterion, combined with the perturbation mechanis m, enables controlling the trade-off between inten- 
sification and diversification. For instance, an extreme acceptance criterion in terms of intensification is to accept only 
improving solutions. Another extreme criterion in terms of diversification is to accept any solution, without regard to its 
quality. Many acceptance criteria that balance the two goals may be applied [258].

A recent review of ILS, its extension s and its applications is available in [168].
3. Population-base d metaheu ristics 

Population- based metaheuristics deal with a set (i.e. a population) of solutions rather than with a single solution. The 
most studied population-based methods are related to Evolutionar y Computation (EC) and Swarm Intelligence (SI). EC algo- 
rithms are inspired by Darwin’s evolutionar y theory, where a population of individuals is modified through recombin ation 
and mutation operators. In SI, the idea is to produce computati onal intelligence by exploitin g simple analogs of social inter- 
action, rather than purely individual cognitive abilities. 
3.1. Evolutionary computation 

Evolutionary Computation (EC) is the general term for several optimization algorithms that are inspired by the Darwinian 
principles of nature’s capability to evolve living beings well adapted to their environment. Usually found grouped under the 
term of EC algorithms (also called Evolutionary Algorithms (EAs)), are the domains of genetic algorithms [135], evolution 
strategies [217], evolutionary programmin g [95], and genetic programming [154]. Despite the differences between these 
techniques, which will be shown later, they all share a commun underlyin g idea of simulating the evolution of individual 
structures via processes of selection, recombin ation, and mutation reproduction, thereby producing better solutions. 

A generic form of a basic EA is shown in Fig. 11 . This form will serve as a template for algorithms that will be discussed 
throughout this section. 

Every iteration of the algorithm corresponds to a generation, where a population of candidate solutions to a given optimi- 
zation problem, called individuals, is capable of reproducing and is subject to genetic variations followed by the environm en- 
tal pressure that causes natural selection (survival of the fittest). New solutions are created by applying recombin ation , that 
combines two or more selected individuals (the so-called parents) to produce one or more new individuals (the children or
offspring), and mutation, that allows the appearance of new traits in the offspring to promote diversity. The fitness (how good 
the solutions are) of the resulting solutions is evaluated and a suitable selection strategy is then applied to determine which 
solutions will be maintain ed into the next generation. As a termination condition, a predefined number of generations (or
function evaluations ) of simulated evolutionary process is usually used, or some more complex stopping criteria can be 
applied.

Over the years, there have been many overviews and surveys about EAs. The readers interested in the history are referred 
to [13,10]. EAs have been widely applied with a good measure of success to combinatori al optimization problems [33,26],
constrained optimization problems [55], Data Mining and Knowledge Discovery [97], etc. Multi-Objective Evolutionary Algo- 
rithms (MOEAs) are one of the current trends in developing EAs. An excellent overview of current issues, algorithms, and 
existing systems in this area is presented in [54]. Parallel EAs have also deserved interest in the recent past (a good review 
Fig. 11. Evolutionary computation algorithm. 
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can be found in [5]). Another overview paper over self-adaptiv e methods in EAs is given in [180]. They are called self-adap- 
tive, because these algorithms control the setting of their parameters themselves, embedding them into an individua l’s gen- 
ome and evolving them. Some other topics covered by the literature include the use of hybrid EAs, that combine local search 
or some other heuristic search methods [32].
3.1.1. Genetic algorithm 
The Genetic Algorithm (GA) is arguably the most well-known and mostly used evolutionary computation technique. It 

was originally develope d in the early 1970s at the University of Michigan by John Holland and his students, whose re- 
search interests were devoted to the study of adaptive systems [135]. The basic GA is very generic, and there are many 
aspects that can be impleme nted differently according to the problem: representat ion of solution (chromosomes), selection 
strategy, type of crossover (the recombination operator of GAs) and mutation operators, etc. The most common represen- 
tation of the chromosomes applied in GAs is a fixed-length binary string. Simple bit manipulation operations allow the 
implementati on of crossover and mutation operation s. These genetic operators form the essential part of the GA as a prob- 
lem-solving strategy. Emphasis is mainly concentrated on crossove r as the main variation operator, that combines multi- 
ple (usually two) individuals that have been selected together by exchanging some of their parts. There are various 
strategies to do this, e.g. n-point and uniform crossover . An exogenous parameter pc (crossover rate ) indicates the probability 
per individual to undergo crossover. Typical values for pc are in the range [0.6,1.0] [13]. Individuals for producing offspring 
are chosen using a selection strategy after evaluating the fitness value of each individual in the selection pool. Some of the 
popular selection schemes are roulette-whe el selection , tournament selection , ranking selection , etc. A comparison of selection 
schemes used in GAs is given in [111,30]. After crossove r, individuals are subjected to mutation. Mutation introduces some 
randomness into the search to prevent the optimization process from getting trapped into local optima. It is usually con- 
sidered as a secondar y genetic operator that performs a slight perturba tion to the resulting solutions with some low prob- 
ability pm. Typically, the mutation rate is applied with less than 1% probability, but the appropriate value of the mutation 
rate for a given optimization problem is an open research issue. The replacement (survivor selection ) uses the fitness value 
to identify the individuals to maintain as parents for successive generations and is responsible to assure the survival of the 
fittest individuals. Interested readers may consult the book by Goldberg [110] for more detailed background information 
on GAs. 

Since then, many variants of GAs have been developed and applied to a wide range of optimization problems. Overviews 
concerning current issues on GAs can be found in [22,23], [249] for hybrid GAs, [151] for multi-obj ective optimization and 
[6] for Parallel GAs, among others. Indexed bibliographi es of GAs have been compiled by Jarmo T. Alander in various appli- 
cation areas, like in robotics, Software Engineering, Optics and Image Processing, etc. Versions of these bibliographi es are 
available via anonymous ftp or www from the following site: ftp.uwasa. fi/cs/rep ort94–1.
3.1.2. Evolution Strategy 
Similar to GA, Evolution Strategy (ES) imitates the principles of natural evolution as a method to solve optimizati on prob- 

lems. It was introduced in the 60ies by Rechenberg [216,217] and further developed by Schwefel. The first ES algorithm, used 
in the field of experime ntal parameter optimization, was a simple mutation-se lection scheme called two membered ES . Such 
ES is based upon a population consisting of a single parent which produces, by means of normally (Gaussian) distributed 
mutation, a single descendant. The selection operator then determines the fitter individual to become the parent of the next 
generation.

To introduce the concept of population, which has not really been used so far, Rechenbe rg proposed the multimembered
ES, where l > 1 parents can participate in the generation of one offspring individua l. This has been denoted by (l + 1) � ES.
With the introduct ion of more than one parent, an additional recombin ation operator is possible. Two of the l parents are 
chosen at random and recombin ed to give life to an offspring, which also underlies mutation. The selection resembles 
‘‘extinction of the worst’’, may it be the offspring or one of the parents, thus keeping constant the population size. Schwefel 
[237] introduced two further versions of multimembered ES , i.e. (l + k) � ES and (l,k) � ES. The first case indicates that l par-
ents create k P 1 descenda nts by means of recombination and mutation, and, to keep the population size constant , the k
worst out of all l + k individuals are discarded. For a (l,k) � ES, with k > l, the l best individuals of the k offspring become 
the parents of the next population, whereas their parents are deleted, no matter how good or bad their fitness was compared 
to that of the new generation’s individuals. Two other well-known ES versions are known as (l/q + k) � ES and (l/q,k) � ES).
The additional paramete r q refers to the number of parents involved in the procreation of one offspring. 

The mutation in ES is realized through normally distributed numbers with zero mean and standard deviation r, which 
can be interpreted as the mutation step size . It is easy to imagine that the parameters of the normal distribution play an 
essential role for the performanc e of the search algorithm. The simplest method to specify the mutation mechanism is to 
keep r constant over time. Another approach consists in dynamically adjusting r by assigning different values depending 
on the number of generations or by incorporating feedback from the search process. Various methods to control the 
mutation paramete r have been developed. Among these there are for example Rechenberg ’s 1/5 success rule 1 [217], the 
1 The 1/5 rule in (1 + 1) � ES states that: the ratio of successful mutations to all mutations should be 1/5. If it is greater than 1/5, increase the variance; if it is less, 
decrease the mutation variance .
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r-self-adap tation (rSA)2 [217], the meta-ES (mES)3 [239], a hierar chically organized population based ES involving isolation 
periods [132], the mutative self adaptat ion [238], the machine learning approache s [240], or the cumulative pathlength control 
[197].

Adaptivity is not limited to a single paramete r, like the step-size. More recently, a surprisingly effective method, called the 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), was introduced by Hansen, Ostermeier, and Gawelczyk [121] and
further developed in [120]. The CMA-ES is currently the most widely used, and it turns out to be a particularly reliable and 
highly competitive EA for local optimization [120] and also for global optimization [119]. In the ‘‘Special Session on Real- 
Parameter Optimizatio n’’ held at the CEC 2005 Congress, the CMA-ES algorithm obtained the best results among all the eval- 
uated techniques on a benchmark of 25 continuous functions [9]. The performances of the CMA-ES algorithm are also com- 
pared to those of other approaches in the Workshop on Black-Box Optimization Benchmarking BBOB’200 9 and on the test 
functions of the BBOB’2010. 

In recent years, a fair amount of theoretical investigation has contributed substantially to the understand ing of the evo- 
lutionary search strategies on a variety of problem classes. A number of review papers and text books exist with such details 
to which the reader is referred (see [11,13,25,156]).

3.1.3. Evolutionary programmi ng 
Evolutionary Programmi ng (EP) was first presented in the 1960s by L.J. Fogel as an evolutionary approach to artificial

intelligence [95]. Later, in the early 1990s, EP was reintroduce d by D. Fogel to solve more general tasks including prediction 
problems, numerical and combinatori al optimization, and machine learning [91,92].

The representat ions used in EP are typically tailored to the problem domain. In real-valued vector optimizati on, the cod- 
ing will be taken naturally as a string of real values. The initial population is selected at random with respect to a density 
function and is scored with respect to the given objective. In contrast to the GAs, the conventi onal EP does not rely on 
any kind of recombinati on. The mutation is the only operator used to generate new offspring. It is impleme nted by adding 
a random number of certain distribution s to the parent. In the case of standard EP, the normally distributed random muta- 
tion is applied. However , other mutation schemes have been proposed. D. Fogel [93] developed an extension of the standard 
EP, called meta-EP, that self-adapts the standard deviations (or equivalently the variances). The R-meta-EP algorithm [94]
incorporate s the self-adaptation of covariance matrices in addition to standard deviations. Yao and Liu [284] substituted
the normal distribution of the meta-EP operator with a Cauchy-distr ibution in their new algorithm, called fast evolution ary 
programmin g (FEP). In [162], Lee and Yao proposed to use a Levy-distributi on for higher variation s and a greater diversity. In 
Yao’s Improved Fast Evolutionary Programming algorithm (IFEP) [285], two offspring are created from each parent, one using a
Gaussian distribution, and the other using the Cauchy distribution . The parent selection mechanism is deterministic. The 
survivor selection process (replacement) is probabilistic and is based on a stochastic tournament selection. The framework 
of EP is less used than the other families of EAs, due to its similarity with ES, as it turned out in [12].

3.1.4. Genetic programming 
The Genetic Programmi ng (GP) became a popular search technique in the early 1990s due to the work by Koza [154]. It is 

an automate d method for creating a working computer program from a high-level problem statement of ‘‘ what needs to be 
done’’.

GP adopts a similar search strategy as a GA, but uses a program representat ion and special operators. In GP, the individua l
population members are not fixed-length strings as used in GAs, they are computer programs that, when executed, are the 
candidate solutions to the problem at hand. These programs are usually expresse d as syntax trees rather than as lines of code, 
which provides a flexible way of describing them in LISP language, as originally used by J. Koza. The variables and constants 
in the program, called terminals in GP, are leaves of the tree, while the arithmetic operations are internal nodes (typically
called functions). The terminal and function sets form the alphabets of the programs to be made. 

GP starts with an initial population of randomly generated computer programs compose d of functions and terminals 
appropriate to the problem domain. There are many ways to generate the initial population resulting in initial random trees 
of different sizes and shapes. Two of the basic ways, used in most GP systems are called full and grow methods. The full meth-
od creates trees for which the length of every nonbacktrac king path between an endpoint and the root is equal to the spec- 
ified maximum depth. 4 The grow method involves growing trees that are variably shaped. The length of a path between an 
endpoint and the root is no greater than the specified maximum depth. A widely used combin ation of the two methods, known 
as Ramped half-and-h alf [154], involves creating an equal number of trees using a depth parameter that ranges between 2 and 
the maximum specified depth. While these methods are easy to implement and use, they often make it difficult to control the 
statistical distribu tions of important properties such as the sizes and shapes of the generated trees [280]. Other initializatio n
mechan isms, however, have been developed to create different distributions of initial trees, where the general consensus is that 
a more uniform and random distribu tion is better for the evolution ary process [170].
2 Instead of changing r by an exogenous heuristic in a determin istic manner, Schwefel completely viewed r as a part of genetic information of an individual, 
which can be interpreted as self-adapta tion of step sizes . Consequently, it is subject to recombination and mutation as well. 

3 rSA and mES do not exclude each other. A mES may perform SA and a SA can include a lifetime mechanism allowing a variable lifespan of certain 
individuals. 

4 The depth of a tree is defined as the length of the longest nonbacktracking path from the root to an endpoint. 
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The population of programs is then progressive ly evolved over a series of generations , using the principles of Darwinian 
natural selection and biologically inspired operations, including crossover and mutation, which are specialized to act on 
computer programs. To create the next population of individuals, computer programs are probabili stically selected, in pro- 
portion to fitness, from the current population of programs. That is, better individuals are more likely to have more child 
programs than inferior individuals. The most commonly employed method for selecting individuals in GP is tournament
selection, followed by fitness-proportionate selection , but any standard EA selection mechanism can be used [209]. Recombi- 
nation is usually implemented as subtree crossover between two parents. The resulting offspring are composed of subtrees 
from their parents that may be of different sizes and in different positions in their programs. Other forms of crossover have 
been defined and used, such as one-point crossover , context-preserv ing crossover , size-fair crossover and uniform crossover 
[209]. Mutation is another important feature of GP. The most commonly used form of mutation is subtree mutation , which 
randomly selects a mutation point in a tree and substitutes the subtree rooted there with a randomly generated subtree. 
Other forms of mutation include single-node mutations and various forms of code-editing to remove unnecessar y code from 
trees have been proposed in the literature [209,206]. Also, often, in addition to crossove r and mutation, an operation which 
simply copies selected individuals in the next generation is used. This operation , called reproduct ion , is typically applied only 
to produce a fraction of the new generation [280]. The replacement phase concerns the survivor selection of both parent and 
offspring populations. There are two alternatives for implementing this step: the generational approach, where the offspring 
population will replace systematical ly the parent population and the steady-state approach, where the parent population is 
maintained and some of its individuals are replaced by new individuals according to some rules. Advanced GP issues concern 
developing automatical ly defined functions and specialized operators, such as permutation, editing, or encapsulation [155].

The theoretical foundations of GP as well as a review of many real-world applications and important extensions of GP are 
given in [209,280,177]. Contemporar y GPs are widely used in machine learning and data mining tasks, such as prediction and 
classification. There is also a great amount of work done on GP using probabilistic models. The intereste d reader should refer 
to [243] which is a review that includes directions for further research on this area. 
3.2. Other evolutionary algorithm s

Other models of evolutionary algorithms have been proposed in the literature. Among them, one can find estimation of 
distribution algorithms, differential evolution, coevolution ary algorithms, cultural algorithms and Scatter Search and Path 
Relinking.
3.2.1. Estimation of distribution algorithms 
Estimation of Distribution Algorithms (EDAs), also referred to as Probabilistic Model-Buildin g Genetic Algorithm s

(PMBGA), were introduced in the field of evolutionary computation, for the first time, by Mühlenbein and Paaß[190]. These 
algorithms are based on probabili stic models, where genetic recombination and mutation operator s of GA are replaced by 
the following two steps: (1) estimate the probabili ty distribution of selected individua ls (promising solutions) and (2) gen- 
erate new population by sampling this probability distribution . This leads the search towards promising areas of the space of 
solutions. The new solutions are then incorporated into the original population, replacing some of the old ones or all of them. 
The process is repeated until the terminat ion criteria are met. The type of probabilistic models used by EDAs and the meth- 
ods employed to learn them may vary according to the characteristics of the optimizati on problem. 

Based on this general framewor k, several EDA approaches have been develope d in the last years, where each approach 
learns a specific probabilistic model that conditions the behavior of the EDA from the point of view of complexity and per- 
formance. EDAs can be broadly divided into three classes, according to the complexity of the probabilistic models used to 
capture the interdependen cies between the variables: starting with methods that assume total independency between prob- 
lem variables (univariate EDAs), through the ones that take into account some pairwise interactions (bivariate EDAs), to the 
methods that can accurately model even a very complex problem structure with highly overlapping multivariate building 
blocks (multivari ate EDAs) [159].

In all the approach es belonging to the first category, it is assumed that the n-dimensional joint probability distribution of 
solutions can be factored as a product of independen t univariat e probability distribut ions. Algorithms based on this principle 
work very well on linear problems where the variables are not mutually interacting [188]. It must be noted that, in difficult
optimization problems, different dependency relations can appear between variables and, hence, considering all of them 
independen t may provide a model that does not represent the problem accurately. Common univariate EDAs include Popu- 
lation Based Incrementa l Learning (PBIL)[14], Univariate Marginal Distribut ion Algorithm (UMDA) [188] and Compact Ge- 
netic Algorithm (cGA) [125].

In contrast to univariat e EDAs, algorithms in the bivariate EDAs category consider dependenci es between pairs of vari- 
ables. In this case, it is enough to consider second-order statistics. Examples of such algorithms are Mutual Informati on Max- 
imizing Input Clustering algorithm (MIMIC) [66], Combining Optimizers with Mutual Information Trees (COMIT) [15] and
Bivariate Marginal Distribution Algorithm (BMDA) [205]. These algorithms reproduce and mix building blocks of order 
two very efficiently, and therefore they work very well on linear and quadratic problems . Nonetheless, capturing only some 
pair-wise interactions has still shown to be insufficient for solving problems with multivariate or highly overlapping build- 
ing blocks. That is why multivariate EDAs algorithms have been proposed. 
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Algorithms belonging to this last category use statistics of order greater than two to factorize the probabili ty distribution. 
In this way, multivariate interactio ns between problem variables can be expressed properly without any kind of initial 
restriction. The best known multivari ate EDAs are Bayesian Optimizatio n Algorithm (BOA) [202,203], Estimation of Bayesian 
Networks Algorithm (EBNA) [82], Factorized Distribution Algorithm (FDA) [189], Extended Compact Genetic Algorithm 
(EcGA) [124] and Polytree Approximati on Distribution Algorithm (PADA) [251]. Those EDAs that look for multi-depen dencies 
are capable of solving many hard problems accurately, and reliably with the sacrifice of computation time due to the com- 
plexity of the learning interactions among variables. Nonetheless , despite increased computati onal time, the number of eval- 
uations of the optimized function is reduced significantly. That is why the overall time complexity is significantly reduced for 
large problems [204].

EDAs have been applied to a variety of problems in domains such as engineeri ng, biomedical informatics, and robotics. A
detailed overview of different EDA approach es in both discrete and continuo us domains can be found in [159] and a recent 
survey was published in [130]. However , despite their successful applicati on, there are a wide variety of open questions 
[236] regarding the behavior of this type of algorithms. 

3.2.2. Differential evolution 
Differential Evolution (DE) algorithm is one of the most popular algorithm for the continuo us global optimization prob- 

lems. It was proposed by Storn and Price in the 90’s [253] in order to solve the Chebyshev polynomial fitting problem and has 
proven to be a very reliable optimizati on strategy for many different tasks. 

Like any evolutionary algorithm, a population of candidate solutions for the optimizati on task to be solved is arbitrarily 
initialized. For each generation of the evolution process, new individuals are created by applying reproduction operator s
(crossover and mutation). The fitness of the resulting solutions is evaluated and each individua l (target individual ) of the pop- 
ulation competes against a new individual (trial individual ) to determine which one will be maintained into the next gener- 
ation. The trial individual is created by recombinin g the target individua l with another individual created by mutation (called
mutant individual ). Different variants of DE have been suggested by Price et al. [215] and are conventional ly named DE/ x/ y/ z,
where DE stands for Differential Evolution, x represents a string that denotes the base vector, i.e. the vector being perturbed, 
whether it is ‘‘ rand’’ (a randomly selected population vector) or ‘‘ best’’ (the best vector in the population with respect to fit-
ness value), y is the number of difference vectors considered for perturbation of the base vector x and z denotes the crossover 
scheme, which may be binomial or exponential. The DE/rand/1/bi n-variant, also known as the classical version of DE, is used 
later on for the description of the DE algorithm. 

The mutation in DE is performed by calculatin g vector differences between other randomly selected individua ls of the 
same population. There are several variants how to generate the mutant individual . The most frequently used mutation strat- 
egy (called DE/rand/1/bi n) generates the trial vector V

!
i;g by adding only one weighted difference vector FðX!r2 ;g � X

!
r3 ;gÞ to a

randomly selected base vector X
!

r1 ;g to perturb it. Specifically, for each target vector X
!

i;g , i = 1, 2, . . . ,N, where g denotes the 
current generation and N the number of individua ls in the population, a mutant vector is produced using the following 
formula:
V
!

i;g ¼ X
!

r1 ;g þ FðX!r2 ;g � X
!

r3 ;gÞ ð5Þ
where the indexes r1, r2 and r3 are randomly chosen over [1, N] and should be mutually different from the running index i. F is
a real constant scaling factor within the range [0, 1]. 

Based on the mutant vector, a trial vector U
!

i;g is constructed through a crossover operation which combines components 
from the ith population vector X

!
i;g and its corresponding mutant vector V

!
i;g:
Ui;j;g ¼
Vi;j;g if randð0;1Þ 6 CR or j ¼ jrand

Xi;j;g otherwise

�
ð6Þ
The crossover factor CR is randomly taken from the interval [0, 1] and presents the probability of creating parameters for 
trial vector from a mutant vector. Index jrand is a randomly chosen integer within the range [1, N]. It is responsible for the trial 
vector containing at least one parameter from the mutant vector. rand(0,1) is a uniform random number in range [0, 1]. 
j = 1, 2, . . . , D, where D is the number of paramete rs (dimension) of a single vector. 

Finally, to decide whether or not it should become a member of generation g + 1, the trial vector U
!

i;g is compared to the 
target vector X

!
i;g using the fitness function evaluation: 
X
!

i;gþ1 ¼
U
!

i;g if f ðU!i;gÞ < f ðX!i;gÞ

X
!

i;g otherwise

(
ð7Þ
The main advantage of the differential evolution consists in its fewer control parameters. It has only three input param- 
eters controlling the search process, namely the population size N, the constant of different iation F, which controls the 
amplification of the differential variation, and the crossove r control parameter CR. In the original DE, the control parameters 
are kept fixed during the optimization process. It is not obvious to define a priori which parameter setting should be used as 
this task is problem specific. Therefore, some researchers (see for example [166,261,35]) have developed various strategie s to 
make the setting of the paramete rs self-adaptive accordin g to the learning experience. 
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DE is currently one of the most popular heuristics to solve single-obj ective optimization problems in continuous search 
spaces. Due to this success, its use has been extended to other types of problems, such as multi-objective optimization [181].
However, DE has certain flaws, like slow convergence and stagnation of population. Several modified versions of DE are avail- 
able in literature for improvin g the performance of basic DE. One class of such algorithms includes hybridized versions, 
where DE is combined with some other algorithm to produce a new algorithm. For a more detailed description of many 
of the existing variants and major application areas of DE, readers should refer to [43,194,63].
3.2.3. Coevoluti onary algorithms 
When organisms that are ecologically intimate – for example, predators and prey, hosts and parasites, or insects and the 

flowers that they pollinate – influence each other’s evolution, we say that coevolution is occurring. Biologica l coevolution 
encountered in many natural processes has been an inspiration for coevolutionary algorithms (CoEA), where two or more 
populations of individuals, each adapting to changes in the other, constantly interact and co-evolve simultaneou sly in con- 
trast with traditional single population EAs. 

Significant researching into the CoEAs began in the early 1990’s with the seminal work of Hillis [133] on sorting networks. 
Contrary to conventional EAs, in which individuals are evaluated independen tly of one another through an absolute fitness
measure, the individual fitness in CoEAs is subjective, in the sense that it is a function of its interactions with other 
individuals.

Many variants of CoEAs have been impleme nted since the beginning of 1990s. These variants fall into two categories: 
competitive coevolution and cooperative coevolution . In the case of competitive approach es, the different populations compete 
in solving the global problem and individua ls are rewarded at the expense of those with which they interact. In the case of 
cooperative approaches, however , the various isolated populations are coevolve d to cooperativel y solve the problem; there- 
fore individuals are rewarded when they work well with other individuals and punished when they perform poorly together. 

Competitive coevolut ion is usually used to simulate the behavior of competin g forces in nature, such as predators and 
prey where there is a strong evolutionary pressure for prey to defend themselves better, as future generations of predators 
develop better attacking strategies. Competitive coevolution can lead to an arms race , in which the two populations have 
opposing interests and the success of one population depends on the failure of the other. The idea is that continued minor 
adaptations in some individuals will force competit ive adaptations in others, and these reciprocal forces will drive the algo- 
rithms to generate individuals with ever increased performanc e. Individual fitness is evaluated through competition with 
other individuals in the population. In other words, fitness signifies only the relative strengths of solutions; an increased fit-
ness for one solution leads to a decrease d fitness for another. This inverse fitness interactio n will increase the capabiliti es of 
each population until the global optimal solution is attained [252]. Competitive coevolution ary models are especially suit- 
able for problem domains where it is difficult to explicitly formulate an objective fitness function. The classic example of 
competitive coevolution is [133], which coevolved a population of sorting networks . Competitive coevolution has been since 
successfully applied to game playing strategies [231,210], evolving better pattern recognizers [153], coevolve complex agent 
behaviors [248], etc. 

Cooperative Coevolution is inspired by the ecological relationship of symbiosis where different species live together in a
mutually beneficial relationship. A general framework for cooperative coevolut ionary algorithms has been introduced by 
Potter and De Jong [213] in 1994 for evolving solutions in the form of co-adapted subcomponent s. Potter’s model is usually 
applied in situations where a complex problem can be decomposed into a collection of easier sub-probl ems. 5 Each sub- 
problem is assigned to a population, such that individual s in a given population represen t potential component s of a larger 
solution. Evolution of these populations occurs almost simultan eously, but in isolation to one anothe r, interactin g only to obtain 
fitness. Such a process can be static, in the sense that the division s for the separate componen ts are decided a priori and never 
altered, or dynamic, in the sense that populations of component s may be added or removed as the run progress es [279]. This 
model has been analyzed from the evolutionary dynami cs perspecti ve in [171,279]. Cooperative CoEAs have had success in 
adversaria l domains , e.g., designing artificial neural netwo rks [212], multiobjec tive optimiza tion [260], interaction frequency 
[211], etc. Some variants of Cooperati ve CoEAs have been propos ed, such as co-evolutionar y particle swarms [131] and coevo- 
lutionary differential evolution [246]. A combination of compet itive and cooperative mechanisms has been proposed by Goh 
et al. [109] to solve multiobjec tive optimiza tion problems in a dynamic environm ent. 

Further, both styles of coevolution (i.e., competitive and cooperati ve) can use multiple, reproducti vely isolated popula- 
tions; both can use similar patterns of inter-pop ulation interaction, similar diversity maintenanc e schemes, and so on. Aside 
from the novel problem-de composition scheme of cooperative coevolution , the most salient difference between cooperative 
and competit ive coevolution resides primarily in the game-theor etic properties of the domains to which these algorithms are 
applied [89].
3.2.4. Cultural algorithm s
Cultural Algorithms (CA) are a class of computational models derived from observing the cultural evolution process in 

nature [225]. The term culture was first introduced by the anthropologi st Edward B. Taylor in his book, Primitive Culture 
5 Problem decompo sition consists in determining an appropriate number of subcomponents and the role each will play. The mechanism of dividing the 
optimization proble m f into n sub-problems and treating them almost independe ntly of one another strongly depends on propert ies of the function f.
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[266]. Taylor offered a broad definition, stating that culture is ‘‘ that complex whole which includes knowledge, belief, art, morals, 
law, custom, and any other capabilities and habits acquired by man as a member of society ’’.

The term cultural evolution has been more recently used to refer to the idea that the processes producing cultural stability 
and change are analogous in important respects to those of biological evolution. In this view, just as biological evolution is 
characterized by changing frequencies of genes in populations through time as a result of such processes as natural selection, 
so cultural evolution refers to the changing distribution s of cultural attributes in populations, likewise affected by processes 
such as natural selection but also by others that have no analog in genetic evolution. Using this idea, Reynolds developed a
computational model in which cultural evolution is seen as an inheritance process that operates at both a micro-evoluti onary 
level in terms of transmission of genetic material between individua ls in a population and a macro-evoluti onary level in 
terms of the knowled ge acquired based upon individua l experiences. Fundamental of the macro-ev olutionary level is Ren- 
frew’s notion of individual’s mental mappa, a cognitive map or worldview, that is based on experience with the external 
world and shapes interactions with it [218]. Individual mappa can be merged and modified to form group mappa in order 
to direct the future actions of the group and its individuals. 

CAs consist of three components: (1) A Population Space , at the micro-evoluti onary level, that maintains a set of individ- 
uals to be evolved and the mechanism s for its evaluation, reproduction, and modification. In population space, any of the 
evolutionary algorithms can be adopted and evolutionar y operators aiming at a set of possible solutions to the problem 
are realized. (2) A Belief Space , at the macroevolutionar y level, that represents the knowledge that has been acquired by 
the population during the evolutionary process. The main principle is to preserve beliefs that are socially accepted and dis- 
card unaccept able beliefs. There are at least five basic categories of cultural knowledge that are important in the belief space 
of any cultural evolution model: situational, normative, topographic or spatial, historical or temporal, and domain knowl- 
edge [227]. (3) The Communications Protocol is used to determine the interaction between the population and the beliefs. 

The basic framework of a CA is shown in Fig. 12 . In each generation, individuals in the population space are first evaluated 
using an evaluation or performanc e function (Evaluate ()). An Acceptance function (Accept ()) is then used to determine which 
of the individuals in the current population will be able to contribute with their knowledge to the belief space. Experiences of 
those selected individuals are then added to the contents of the belief space via function Update (). The function Generate ()
includes the influence of the knowledge from the belief space, through the Influence () function, in the generation of off- 
spring. The Influence function acts in such a way that the individuals resulting from the applicati on of the variation operators 
(i.e., recombin ation and mutation) tend to approach the desirable behavior while staying away from undesirable behaviors. 
Such desirable and undesirable behaviors are defined in terms of the information stored in the belief space. The two func- 
tions Accept () and Influence () constitute the communi cation link between the population space and the belief space. This 
supports the idea of dual inheritan ce in that the population and the belief space are updated each time step based upon feed- 
back from each other. Finally, in the replacemen t phase, a selection function (Select ()) is carried out from the current and the 
new populations. The CA repeats this process for each generation until the pre-specified termination condition is met. 

As such, cultural algorithms are based on hybrid evolutionary systems that integrate evolutionary search and symbolic 
reasoning [258]. They are particular ly useful for problems whose solutions require extensive domain knowledge (e.g., con- 
strained optimization problems [56]) and dynamic environments (e.g., dynamic optimization problems [234]). The CA per- 
formance has been studied using benchmark optimization problems [226] as well as applied successfully in a number of 
diverse application areas, such as modeling the evolution of agricultu re [224], job shop scheduling problem [230], re-engi- 
neering of Large-scale Semantic Networks [232], combinatori al optimization problems [196], multiobject ive optimization 
problems [228], agent-ba sed modeling systems [229], etc. Recently, many optimization methods have been combined with 
CAs, such as evolutionar y programmin g [56], particle swarm optimization [165], differential evolution algorithm [24], genet- 
ic algorithm [282], and local search [195]. Adaptations of CAs have also been proposed (see for example [117] for multi- 
population CAs).
Fig. 12. Cultural algorithm. 
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3.2.5. Scatter search and path relinking 
Scatter Search (SS) and its Path Relinking (PR) generalizati on were originally developed in the late 1990s by F. Glover 

[106]. The fundamental concepts and principles of the method were first proposed in the 1970s [103] and were based on 
formulation s, dating back to the 1960s [102], for combining decision rules and problem constraints. SS & PR differ from other 
evolutionary algorithms by providing unifying principles for joining solutions based on generaliz ed path constructions (in
both Euclidean and neighborho od spaces) and by utilizing strategic designs where other approaches resort to randomizat ion. 
They are also intimately related to the Tabu Search metaheuristic, and derive additional advantag es provided by intensifi-
cation and diversification mechanism s that exploit adaptive memory. Interesting connections between the SS & PR ap- 
proaches and the particle swarm optimization methodology introduce d by Kennedy and Eberhart [145] have been 
identified in [174].

More explicitly, Scatter Search and Path Relinking operate on a set of solutions, the reference set (RefSet), by combining 
these solutions to create new ones. Typically, the reference set is relatively small. The algorithm starts with generating the 
initial set of solution vectors satisfying the criteria of diversity. The subset of the best vectors are then selected to be reference 
solutions. The notion of best is not limited to a measure given exclusively by the evaluation of the objective function but 
covers the diversity of solutions. In particular , a solution may be added to the reference set if the diversity of the set improves 
even when the objective value of the solution is inferior to that of other competing solutions. A set of new solutions – called 
trial solutions – is generated by means of structured combinations of subsets of the current reference solutions. An improve- 
ment procedure is then applied in order to try to improve the set of trial solutions. According to the result of such procedure, 
the reference set and even the population of solutions are updated to incorporate both high-quality and diversified solutions. 
The process is iterated until the reference set does not change anymore. 

The main steps of the Scatter Search and Path Relinking algorithms are presented in Fig. 13 and are explained in the 
following:

� SeedGenerati on () method creates one or more seed solutions, which are arbitrary trial solutions used to initiate the 
remainder of the algorithm. 
� DiversificationGenerator () method generates a collection of diverse trial solutions from an arbitrary trial solution (or seed 

solution).
� Improvemen t () method is used to transform a trial solution into one or more enhanced trial solutions. The local search is 

usually used as an improvement mechanism .
� ReferenceSet Update () method is responsib le for building and maintain ing a reference set consisting of a number of best

solutions found in the course of the algorithm. Solutions gain membership to the reference set according to their quality 
or their diversity. 
� SubsetGenera tion () method operates on the reference set to produce a subset of its solutions as a basis for creating com- 

bined solutions. 
� SolutionCombi nation () method transforms a given subset of solutions produced by the SubsetGenerati on () method into 

one or more combined solution vectors. In SS, new solutions are created from linear combinations of subsets of the cur- 
rent reference solutions in Euclidean space. The linear combinations are chosen to produce points both inside and outside 
the convex regions spanned by the reference solutions. In PR, the process of generating linear combinations of a set of 
reference solutions is generalized to neighborho od spaces, rather than Euclidean space. Linear combinati ons of points 
Fig. 13. Scatter search and path relinking. 
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in the Euclidean space can be reinterpreted as paths between and beyond solutions in a neighborho od space. The path 
between two solutions will generally yield solutions that share common attributes with the input solutions. To generate 
the desired paths, it is only necessar y to select moves that perform the following role: upon starting from an initiating
solution, the moves must progressive ly introduce attributes contributed by a guiding solution (or reduce the distance 
between attributes of the initiating and guiding solutions). The roles of the initiating and guiding solutions are inter- 
changeable; each solution can also be induced to move simultaneously towards the other as a way of generating combi- 
nations. Multiparent path generation possibilit ies emerge in PR by considering the combined attributes provided by a set 
of guiding solutions, where these attributes are weighted to determine which moves are given higher priority. 

SS & PR have been successfully applied to a wide range of applications, Glover et al. [108] provide overviews and a variety 
of references on these methods and the book on Scatter Search [158] provides the basic principles and fundamenta l ideas 
that will allow the readers to create successful applicati ons of scatter search. Recent works on SS & PR are surveyed in [219].

3.3. Swarm intelligence 

Swarm Intelligen ce (SI) is an innovative distributed intelligent paradigm for solving optimization problems that takes 
inspiration from the collective behavior of a group of social insect colonies and of other animal societies. SI systems are typ- 
ically made up of a population of simple agents (an entity capable of performi ng/executing certain operations) interacting 
locally with one another and with their environment. These entities with very limited individual capability can jointly (coop-
eratively) perform many complex tasks necessary for their survival. Although there is normally no centralized control struc- 
ture dictating how individual agents should behave, local interactio ns between such agents often lead to the emergence of 
global and self-organized behavior. 

Several optimization algorithms inspired by the metaphor s of swarming behavior in nature are proposed. Ant colony opti- 
mization, Particle Swarm Optimizatio n, Bacterial foraging optimizati on, Bee Colony Optimizatio n, Artificial Immune Systems 
and Biogeography- Based Optimization are examples to this effect. 

Fundamental s of Computational Swarm Intelligence Book [81] introduce s the reader to the mathematical models of social 
insects collective behavior and shows how they can be used in solving optimization problems. Another book by Chan et al. 
[44] aims at presenting recent developmen ts and applications concerning optimization with SI, making a focus on Ant and 
Particle Swarm Optimization. Das et al. [61] provide a detailed survey of the state of the art research centered around the 
applications of SI algorithms in bioinformat ics. The book by Abraham et al. [2] deals with the application of SI in data mining. 

3.3.1. Ant colony optimization 
Ant Colony Optimization (ACO) was introduced by M. Dorigo and colleagues [72,69,73] as a nature-inspire d metaheuristic 

for the solution of hard combinatori al optimization problems. ACO takes inspiration from the foraging behavior of real ants. 
When searching for food, these ants initially explore the area surrounding their nest by performi ng a randomized walk. 
Along their path between food source and nest, ants deposit a chemical pheromo ne trail on the ground in order to mark some 
favorable path that should guide other ants to the food source [71]. After some time, the shortest path between the nest and 
the food source presents a higher concentration of pheromone and, therefore, attracts more ants. Artificial ant colonies 
exploited this characterist ic of real ant colonies to build solutions to an optimization problem and exchange information 
on their quality through a communicati on scheme that is reminiscent of the one adopted by real ants [70].

Let us denote a combinatorial optimization problem by P = (S,X, f), where S is the search space defined by a finite set of 
decision variables Xi (i = 1, . . . , n),X is a set of constraints among the variables and f ð�Þ : S#Rþ is an objective function to be 
minimized. A feasible solution s 2 S is an assignment to each variable of a value in its domain such that all the problem con- 
straints in X are satisfied.

ACO encodes a given combinatori al optimization problem instance as a construction graph GCðV ; EÞ, a fully connected 
graph whose nodes V are components of solutions, and edges E are connections between components. A solution to the given 
combinatori al optimization problem is encoded as a feasible walk on the construction graph GC. We denote a solution com- 
ponent by cj

i as the instantia tion of a variable Xi with a particular value v j
i . The definition of a solution component depends on 

the problem under consideration. In case of the popular example of Traveling Salesman Problem (TSP) [161], a component of 
the solution is a city that is added to a tour. Ants then need to appropriate ly combine solution components to form feasible 
walks. A pheromone value sij is associate d with each solution component cj

i, this value serves as a form of memory, adapted 
over time to indicate the desirability of choosing solution component cj

i. We denote the set of all solution components by C
and the set of all pheromo ne trail paramete rs by T .

The framewor k of a basic ACO metaheu ristic is shown in Fig. 14 . After initializing parameters and pheromo ne trails, the 
ACO algorithm iterates over three phases: ConstructAntS olutions, DeamonA ctions (optional) and UpdatePher omones. 

Initialization: At the beginning of the algorithm, parameters are set and all pheromone variables are initialized to a value 
s0, which is a parameter of the algorithm. 

ConstructAn tSolutions : A set of m artificial ants incremental ly and stochasti cally builds solutions to the considered 
problem starting from an initially empty partial solution sp = ;. At each constructi on step, the current partial solution sp

is extended by adding a feasible solution component cj
i from the set NðspÞ# C. C denotes the set of all possible solution com- 

ponents and NðspÞ is defined as the set of components that can be added to the current partial solution sp while maintain ing 



Fig. 14. Ant colony optimization. 
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feasibility. In order to choose, which of the available solution components cj
i should be added to the current partial solution 

sp, a probabilistic choice is made. This decision is usually influenced by the amount of pheromone sij associated with each of 
the elements of NðspÞ, and by heuristic information about the problem. The most widely used rule for the stochastic choice is 
that originally proposed for Ant System (AS) [73] and given in Eq. (8).
p cj
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The heuristic information, denoted by the function g(�), assigns to each feasible solution component cj
i 2 NðspÞ a heuristic 

value. This value is used by the ants to make probabili stic decisions on how to move on the construction graph. The param- 
eters a and b determine the relative respective influence of the pheromo ne values and the heuristic values on the decisions of 
the ant [75].

DaemonActi ons : Daemon actions refer to any centraliz ed operation which cannot be performed by a single ant. The most 
used daemon action consists in the application of local search to the constructed solutions. 

UpdatePhe romones : The pheromone update process is intended to make solution components belonging to good solu- 
tions more desirable for ants operating in the following iterations. It consists of two mechanism s: pheromone evaporation and
pheromone deposit . The pheromone evaporation , applied whilst constructing solutions, is the process by means of which the 
pheromone trail intensity on the components decreases over time. The goal is to make the solution components added to a
partial walk on the construction graph less and less attractive as they are visited by ants. From a practical point of view, pher-
omone evaporation is needed to avoid a premature convergence of the algorithm to suboptimal solutions and then favoring 
the exploration of not yet visited areas of the search space. The pheromone deposit is applied after all ants have finished con- 
structing a solution. The pheromone values are increased on solution components that are associate d with a chosen set Supd

of high quality solutions. The goal is to make these solution components more attractive for ants in the following iterations. 
Many different schemes for pheromone update have been proposed within the ACO framework. The pheromone update is 
commonly implemented as [75]:
sij ¼ ð1� qÞsij þ
X

s2Supd jc
j
i
2s

gðsÞ ð9Þ
where Supd is the set of good solutions that are used to deposit pheromo ne, gð�Þ : S # Rþ is a function such that 
f ðsÞ < f ð�sÞ ) gðsÞP gð�sÞ is commonly called the quality function , 0 < q 6 1 is the pheromone evaporati on rate. 

Different ACO algorithms have been proposed, all share the same characterist ic idea. A survey on theoretical results on 
ACO and its most notable applications are discussed in [74,31,71,70,8]. The authors discussed the relations between ACO 
and other approximat e methods for optimization, focused on some research efforts and identified some open questions. A
recent overview of ACO [75] reveals that the majority of the currently published articles on ACO are clearly on its application 
to computational ly challenging problems. The authors believe that ACO algorithms will show their greatest advantage when 
they will be systematically applied to real-worl d applications with time-varyin g data, multiple objectives, or when the avail- 
ability of stochastic informat ion about events or data is rather common. 

3.3.2. Particle swarm optimization 
Particle Swarm Optimiza tion (PSO) was initially introduced in 1995 by James Kennedy and Russell Eberhart as a global 

optimization technique [145]. It uses the metaphor of the flocking behavior of birds to solve optimization problems. There 
are a number of differenc es between PSO and evolutionary optimization illustrated in [7], where some of the philosophical 
and performance differenc es are explored. 

In PSO algorithm many autonomous entities (particles) are stochasti cally generate d in the search space. Each particle is a
candidate solution to the problem, and is represented by a velocity, a location in the search space and has a memory which 
helps it in remembering its previous best position. A swarm consists of N particles flying around in a D-dimensional search 
space. Moreover, every particle swarm has some sort of topology describing the interconnec tions among the particles. The 
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set of particles to which a particle i is topologically connected is called i’s neighborhood. The neighborho od may be the entire 
population or some subset of it. Various topologies have been used to identify ‘‘some other particle’’ to influence the indi- 
vidual. The two most commonl y used ones are known as gbest (for ‘‘global best’’) and lbest (for ‘‘local best’’). The traditional 
particle swarm topology known as gbest was one where the best neighbor in the entire population influenced the target par- 
ticle. While this may be conceptu alized as a fully connected graph. The lbest topology, introduce d in [79], is a simple ring 
lattice where each individual is connected to K = 2 adjacent members in the population array, with toroidal wrapping (nat-
urally, this can be generalized to K > 2). Kennedy et al. [147] pointed out that the gbest topology had a tendency to converge 
very quickly with a higher chance of getting stuck in local optima. On the other hand, the lbest topology was slower but ex- 
plored more fully, and typically ended up at a better optimum. The effects of various population topologies on the particle 
swarm algorithm were investigated in [148].

In the initialization phase of PSO, the positions and velocities of all individuals are randomly initialize d. At each iteration, 
a particle i adjusts its position Xi

!
and velocity Vi

!
along each dimension d of the search space, based on the best position Pi

!
it

has encountered so far in its flight (also called the personal best for the particle) and the best position Pg
	!

found by any other 
particle in its topological neighborhood. 

The velocity defines the direction and the distance the particle should go. It is updated according to the following 
equation:
Vidðt þ 1Þ ¼ VidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞ ð10Þ
where i = 1, 2, . . . ,N, and N is the size of the swarm; u1 and u2 are two random numbers uniformly distribut ed in the range 
[0, 1], C1 and C2 are constant multiplier terms known as accelerati on coefficients. They represent the attraction that a particle 
has either towards its own success (the cognitive part) or towards the success of its neighbors (the social part), respectively. 

The position of each particle is also updated in each iteration by adding the velocity vector to the position vector, i.e., 
Xidðt þ 1Þ ¼ XidðtÞ þ Vidðt þ 1Þ ð11Þ
The general structure of the PSO algorithm can be summarized in Fig. 15 .
In order to keep the particles from flying out of the problem space, Eberhart et al. [78] defined a clamping scheme to limit 

the velocity of each particle, so that each component of Vi
!

is kept within the range [�Vmax, +Vmax]. The choice of the param- 
eter Vmax required some care since it appeared to influence the balance between explorati on and exploitati on. As has been 
noted in [7], the Vmax particle swarm succeeds at finding optimal regions of the search space, but has no feature that enables 
it to converge on optima. 

To overcome the problem of premature convergence of PSO, many strategies have been developed but by far the most 
popular are inertia and constriction. The inertia weight x, introduced in [244], plays the role of balancing the global search 
and local search. It can be a positive constant or even a positive linear or nonlinear function of time. A large inertia weight 
encourages global exploration (i.e., diversifies the search in the whole search space) while a smaller inertia weight encour- 
ages local exploitation (i.e., intensifies the search in the current region) [245]. Using the inertia weight, the rule in Eq. (10)
becomes:
Vidðt þ 1Þ ¼ xVidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞ ð12Þ
Fig. 15. Particle swarm optimization. 
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Rather than applying inertia to the velocity memory, Clerc and Kennedy applied a constriction factor v [52]. The velocity 
update scheme proposed by Clerc can be expressed for the dth dimension of ith particle as: 
Vidðt þ 1Þ ¼ vðVidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞÞ ð13Þ
The value of the constriction factor is calculated as follows: 
v ¼ 2
u� 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p ð14Þ
where u = u1 + u2 > 4. 
One of the drawbacks of the standard PSO is premature converge nce and trapping in local optima. A great effort has been 

deployed to provide PSO convergence results through the stability analysis of the trajectories [198,52,270 ]. These studies 
were aimed at understand ing theoreticall y how PSO algorithm works and why under certain conditions it might fail to find
a good solution. Considerable research has been also conducted into further refinement of the original formulat ion of PSO in 
both continuous and discrete problem spaces [146], and areas such as dynamic environments [29], parallel implementati on 
[16] and MultiObject ive Optimiza tion [223]. Modified versions of PSO based on diversity, mutation, crossove r and efficient
initializatio n using different distribution s and low-disc repancy sequences are discussed in [199]. A large number of hybrid 
variants have been proposed, such as [269,268,136,8 0] . In 2008, Poli categorized a large number of publications dealing with 
PSO applications stored in the IEEE Xplore database [207].

So many papers related with the applications of PSO have been presented in the literature and several survey papers 
regarding these studies can be found in [147,51,208,17,26 2,38] .

3.3.3. Bacterial foraging optimizat ion algorithm 
Bacterial Foraging Optimization Algorithm (BFOA), introduce d by Passino in 2002 [200], is a relatively new paradigm for 

solving optimization problems , inspired by the social foraging behavior of Escherichia coli (E. coli ) bacteria present in the hu- 
man intestines. For many organisms, the survival- critical activity of foraging involves aggregat ions of organisms in groups, 
trying to find and consume nutrients in a manner that maximizes energy obtained from nutrient sources per unit time spent 
foraging, while at the same time minimizing exposure to risks from predators [201]. Foraging in groups, or social foraging, is 
a key element for avoiding predators and increasing the chance of finding food. A particular ly interesting group foraging 
behavior has been demonst rated for several motile species of bacteria, including E. coli bacteria.

During foraging, individual bacteria move by taking small steps while searching for nutrients. Locomotion is achieved via 
a set of relatively rigid flagella that help an E. coli bacterium to move in alternating periods of swims and tumbles (tumbles
serve to randomly reorient the bacteria). This alternation between the two modes is called chemotactic steps. Bacteria may 
respond directly to local physical cues such as concentratio n of nutrients or distribution of some chemicals (which may be 
laid by other individuals). They typically interact with other bacteria and with their growth substrata , such as solid surfaces, 
to give rise to complex behavior patterns. To facilitate the migration of bacteria in viscous substrates, such as semisolid agar 
surfaces, E. coli cells arrange themselv es in a traveling ring and move over the surface of the agar in a coordinate manner 
called swarming motility. This is in contrast to swimming motility, which represents individual cell motility in aqueous envi- 
ronment [34]. After the bacterium has collected a sufficient amount of nutrients , it can self-reproduce and divide into two. 
The bacteria population can also suffer a process of elimination, through the appearan ce of a noxious substance, or to dis- 
perse, through the action of another substance, generating the effects of eliminati on and dispersion. 

Based on these biological concepts, the BFOA is formulated on the basis of the following steps: chemota xis, swarming, 
reproduction and elimination-dis persal. The general procedure of BFO algorithm is outlined in Fig. 16 .

Chemotaxis: Chemotaxis is the process in which bacteria direct their movements according to certain chemical s in their 
environment. This is important for bacteria to find food by climbing up nutrient hills and at the same time avoid noxious 
substances. The sensors they use are receptor proteins which are very sensitive and possess high gain. That is, a small change 
in the concentration of nutrients can cause a significant change in behavior [167].

Suppose that we want to find the minimum of J(h), where h 2 RD is the position of a bacterium in D-dimension al space 
and the cost function J(h) is an attractan t- repellant profile (i.e., it represents where nutrients and noxious substances are 
located). Then J(h) 6 0 represents a nutrient rich environment, J(h) = 0 represents neutral medium and J(h) > 0 represents 
noxious substances. Let hi (j,k,l) represent ith bacterium at jth chemotactic , kth reproducti ve and lth elimination- dispersal 
step.

The position of the bacterium at the (j + 1)th chemotactic step is calculated in terms of the position in the previous che- 
motactic step and the step size C(i) (termed as run length unit) applied in a random direction /(i):
hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ/ðiÞ ð15Þ
/(i) is a unit length random direction to describe tumble and is given by: 
/ðiÞ ¼ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q ð16Þ



Fig. 16. Bacterial foraging optimization algorithm. 
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where DðiÞ 2 RD is a randomly generate d vector with elements within the interval [�1, 1]. The cost of each position is deter- 
mined by the following equation: 
Jði; j; k; lÞ ¼ Jði; j; k; lÞ þ Jccðh; hiðj; k; lÞÞ ð17Þ
It can be noticed through Eq. (17) that the cost of a determined position J(i, j,k, l) is also affected by the attractive and repul- 
sive forces existing among the bacteria of the population given by Jcc (see Eq. (18)). If the cost at the location of the ith bac- 
terium at j + 1th chemotactic step, denoted by J(i, j + 1, k, l), is better (lower) than at the position hi(j,k,l) at the jth step, then 
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the bacterium will take another chemotactic step of size C(i) in this same direction, up to a maximum number of permissible 
steps, called Ns.

Swarming: Swarming is a particular type of motility that is promoted by flagella and allows bacteria to move rapidly over 
and between surfaces and through viscous environm ents. Under certain conditions, cells of chemota ctic strains of E. coli ex-
crete an attractant, aggregate in response to gradients of that attractant, and form patterns of varying cell density. Central to 
this self-organization into swarm rings is chemotaxis. The cell-to-cell signaling in E. coli swarm may be represented by the 
following function: 
Jccðh; hiðj; k; lÞÞ ¼
Xs

i¼1

�dattractant exp �wattractant
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hm � hi
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where h = [h1,h2, . . . , hD]T is a point in the D-dimensional search space, Jcc(h,hi (j,k, l)) is the objective function value that is to 
be added to the actual objective function, and dattractant, wattractant, hrepellant, wrepellant are the coefficients which determine the 
depth and width of the attractant and the height and width of the repellant. These four parameters are to be chosen judi- 
ciously for a given problem. hi

m is the mth dimension of the position of the ith bacterium hi in the population of the S bacteria.
Reproduction: After Nc Chemotaxis steps (steps comprehend ing the movement and the cost determination of each bac- 

terium position), the bacteria enter into the reproductive step. Suppose there are Nre reproduction steps. For reproduction, 
the least healthy bacteria will die, these are the bacteria that could not gather enough nutrients during the chemota ctic 
steps, and will be replaced by the same number of healthy ones, thus the population size remains constant. The healthiest 
bacteria (those having sufficient nutrients and yielding lower values of fitness function) asexually split into two bacteria and 
will be placed in the same location. 

Elimination and Dispersal : Changes in the environment can influence the prolifera tion and distribution of bacteria. So 
when local environmental change occurs, gradually (e.g. via consumptio n of nutrients) or suddenly due to some other reason 
(e.g. a significant local rise of temperature), all the bacteria in a region may die or disperse into some new part of the envi- 
ronment. This dispersal has the effect of destroying all the previous chemotactic processes. However , it may have good im- 
pact too, since dispersal may place bacteria into a nutrient rich region. Let Ned be the number of elimination-dis persal events 
and, for each elimination- dispersal event, each bacterium in the population is subjected to eliminati on-dispersal with prob- 
ability Ped, in such a way that, at the end, the number of bacteria in the population remains constant (if a bacterium is elim- 
inated, another one is dispersed to a random location).

In [62], the authors discussed some variations on the original BFOA algorithm and hybridizations of BFOA with other opti- 
mization techniques. They also provided an account of most of the significant applications of BFOA. However , experimenta- 
tion with complex optimization problems reveal that the original BFOA algorithm possesses a poor converge nce behavior 
compared to other nature-inspi red algorithms, like GA and PSO, and its performance also heavily decreases with the growth 
of the search space dimensional ity. 
3.3.4. Bee colony optimization -based algorithms 
Bee colony optimization-bas ed algorithms are a new type of algorithm inspired by the behavior of honeybee colony that 

exhibits many features that can be used as models for intelligent systems and collective behavior. These features include 
waggle dance (communication), food foraging , queen bee , task selection , collective decision making , nest site selection , mating
during flight and marriage in the bee colony, floral/pheromone laying and navigatio n systems [143]. Each model defines a given 
behavior for a specific task. 

The structure of a bee hive . Honeybee colonies contain a single queen mated to a large number of males (drones) and 
thousands of workers. The queen is the only egg-laying female in a hive of bees, it secretes a pheromone that keeps all other 
females in the colony sterile. A fertile queen is able to selectively lay fertilized or unfertilized eggs. Fertilized eggs hatch into 
workers or virgin queens, while unfertilized eggs produce drones. The individual worker bees are always females because 
male drones do not contribute to social life apart from mating with queens during nuptial flights. The workers perform dif- 
ferent tasks as nurses tending, nest-building, hive defense, and as foragers by collecting nectar and pollen to make honey and 
feed the brood. 

Based on the queen bee concept, a handle of algorithms were developed in the literature, like Queen-bee Evolution Algo- 
rithm (QBE) [141] and Queen bee based crossover operator for GA [144].

Bee Dance and Communic ation. Bees exchange information about the location of food sources by performing a series of 
movements, often referred to as the waggle dance . Each hive has a so-called dance floor area in which the bees that have dis- 
covered nectar sources dance, in that way trying to promote food locations and persuade their nestmates to follow them. If a
bee decides to leave the hive to collect nectar, it follows one of the bee dancers to one of the nectar areas. 

Some bee colony based algorithms have been inspired by the communicati ve procedures of honey bees like Bee hive algo- 
rithm [278] and Discrete Bee Dance Algorithm [113].

Mating and marriage process. The queen bee is responsible for producing all of the eggs for the honey bee colony. Unlike 
organisms that mate again and again for the production of each offspring, the queen honey bee mates but once for a lifetime 
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of egg laying. This occurs in a series of mating flights far from the nest. During these flights, the queen bee will mate in the air 
with between seven and twenty drone bees. Sperm from the different drones will be deposited and accumulate d in the 
queens’ spermatheca to form the genetic pool of potential broods to be produced by the queen. For every fertilized egg that 
is laid by a queen, sperm is retrieved randomly from the mixture in its spermatheca. By mating with a number of drones, the 
queen is assured of bringing genetic diversity to the colony’s offspring. Some of those diverse genes may be just the ones 
needed for the colony to survive in a changing environm ent. 

The main algorithm proposed based on the process of marriage in real honey-bee is the Marriage in Honey Bees Optimi- 
zation algorithm (MBO) [1]. In MBO algorithm, the mating-flight can be visualized as a set of transitions in a state-space (the
environment) where the queen moves between the different states in the space in some speed and mates with the drone 
encountered at each state probabilisticall y. At the beginning of the mating flight, the queen is initialized with some energy 
content and returns to its nest either when its energy is depleted or when its spermatheca is full. A drone mates with a queen 
probabilistical ly using the following equation :
probðQ ;DÞ ¼ e�dif=speed ð19Þ
where prob(Q,D) is the probability of adding the sperm of drone D to the spermathec a of queen Q (that is, the probability of a
successful mating); dif represents the absolute difference between the fitness of D and the fitness of Q; speed represents the 
flight speed of the queen. 

After each transition in the space, the queen’s speed and energy are reduced using the following equations: 
speedðt þ 1Þ ¼ a � speedðtÞ ð20Þ
energyðt þ 1Þ ¼ energyðtÞ � step ð21Þ
where a is a factor 2]0, 1[ and step is the amount of energy reduction after each transition. 
The generic MBO algorithm is presented in Fig. 17 .
Bee Foraging. The foraging behavior of honey bees has been extensively studied and is a useful example of self-organi- 

zation. Scout-Bees in nature leave the hive and explore the areas around the colony’s hive. They search for sources of pollen, 
nectar and propolis. Finishing the search, scout bees go back to the hive and transfer the collected nectar to receiver bees, 
which then store it in cells. Upon their return from a foraging trip, bees communicate the distance, direction, and quality 
of a flower site they have explored to their nestmates by making waggle dances on a dance floor inside the hive. The prob- 
ability that a dance is followed by a naive bee is correlated with the duration of the dance. Thus dances for a source of high 
quality usually attract more followers than dances for a source of low quality. Typically a colony will know each day about a
dozen or more potential food sources, each with its own level of profitability, determined by such variables as the distance 
Fig. 17. Marriage in honey bees optimization algorithm. 
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from the hive and the abundance and quality of the food. To gather its food efficiently, a colony must deploy its foragers 
among the flower patches in accordance with their profitabilities [242].

Foraging-ins pired optimizati on algorithms make use of the bees’ decentralize d foraging behavior. During foraging honey 
bees balance exploitation of known food sources with exploration for new – and potentially better – food sources in a dy- 
namic environm ent. Several foraging based algorithms have been proposed, such as the Bee Colony Optimiza tion Metaheu- 
ristic (BCO) [169], Artificial Bee Colony Algorithm (ABC) [142] and Virtual Bee Algorithm (VBA) [283].

In the ABC algorithm, the bees in a colony are divided into three groups: employed bees (forager bees ), onlooker bees (ob-
server bees ) and scouts (explorer bees ). The first half of the colony consists of the employed bees and the second half includes 
the onlooker s. The number of employed bees is equal to the number of food sources around the hive. The employed bee 
whose food source has been exhausted by the bees becomes a scout for searching new food sources randomly. An employed 
bee carries the information about food source and shares this information with a certain probabili ty by waggle dance. On the 
other hand onlooker s observe the waggle dance and so are placed on the food sources by using a probabili ty based selection 
process. As the nectar amount of a food source increases, the probability value with which the food source is preferred by 
onlookers increases, too. 

The main steps of the ABC algorithm are given in Fig. 18 .
Nest site selection. As a bee colony becomes overcrowded, a third of the hive stays behind and rears a new queen, while a

swarm of thousands departs with the old queen to produce a daughter colony. Many scout bees working in parallel explore 
for potential nest sites, advertise their discoveries to one another, engage in open deliberati on, choose a final site, and nav- 
igate together, as a swirling cloud of bees, to their new home [241]. In contrast to foraging, where bees can typically forage at 
different locations simultaneously , nest-site selection always involves the selection of a single new site. 

Algorithms that take their inspiration from the bee’s nest site selection behavior apply the principle of decision-ma king 
process that enables a colony to identify and converge towards one best solution. Several studies, both experime ntal and 
theoretical, have investiga ted nest-site selection in honeybees [68,143].

Navigation. Bees can learn the directions and distances of their travels between hive and food sources by a process called 
path integration . A familiar food source is specified in the bee’s memory by a vector encoding distance and direction from the 
hive. The directional component is defined by the sun compass and the distance component may be estimated by means of 
energy investme nt during flight. Also, bees can retrieve flight directions from landmarks when the sun compass is not avail- 
able. This vector that is the output of the path integration process is used for navigation on subsequent trips to the food, and 
it is also what the bee encodes in its waggle dance. It thus appears that spatial navigation in bees, as in other animals and 
humans, is not a unitary process, but involves multiple navigationa l systems [178].

Some bee colony based algorithms have been designed with inspiration from honey bee’s navigational system, like in 
[163].

Task selection . Task allocation operates without any central or hierarchical control to direct individuals into particular 
tasks. The queen does not issue commands and workers do not direct the behavior of other workers. Two kinds of factors 
determine what task an individual worker performs, and when it performs it: (1) internal factors , based on some attribute 
of the individual and (2) external factors , based on some environmental stimulus . One internal factor associated with task 
is worker age. Younger bees work inside the nest whereas older bees perform defensive and foraging tasks that occur outside 
the nest. This leads to a strongly aged-based division of labor. Another important factor affecting the tendency to perform a
task has a genetic origin. A honey bee colony is characteri zed by high genetic diversity among its workers, generate d by high 
levels of multiple mating by its queen. Honeybees from different patrilines vary in the rate at which they proceed from one 
task to the next as they grow older. In addition, honey bee colonies change their organizational structure in response to var- 
iation in colony condition s and the abundance of resource s. For example, a honeybee forager’s decision whether to collect 
nectar or remain in the nest depends on how much nectar is already stored in the nest. When extra clean-up work requires 
more nest-maintenance workers to be recruited from the reserves inside the nest, the current foragers are more likely to 
remain inside the nest [112].
Fig. 18. Artificial bee colony algorithm. 
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Inspired by the cooperative behavior of social honey bees, some algorithms have been develope d, among them are Decen- 
tralized Honey Bee algorithm [192], Swan [118] and Honey Bee Teamwork Strategy [233].

A recent literature survey of the algorithms inspired by bees’ behavior in the nature and their applicati ons is given in 
[143].
3.3.5. Artificial immune systems 
The immune system is a network of cells, tissues, and organs that work together to defend the body against attacks by 

foreign invaders. The immune system protects organisms from pathogen s (harmful micro-organi sms such as bacteria and 
viruses) without prior knowledge of their structure. It has powerful learning and memory capabilities and presents an evo- 
lutionary type of response to infectious foreign elements [83]. This property , along with the highly distributed, adaptive , and 
self-organizi ng nature offers rich metaphors for its artificial counterpart. Artificial Immune Systems (AIS) attempts to apply 
immune system principles to optimization and machine learning problems [264].

There are several reviews of AIS research [127,287,263,1 28] , and a number of books including [64] and [39] covering the 
field. The most recent and comprehensive survey on AIS is possibly that from Dasgupta et al. [65].

A few computational algorithms were developed and applied to several different types of problems in order to demon- 
strate how principles gleaned from the immune system can be used in the design of engineeri ng tools for solving complex 
tasks. Four major AIS algorithms have been constantly developed and gained popularity: (1) negative selection algorithms; 
(2) artificial immune networks ; (3) clonal selection algorithms; and (4) the danger theory and dendritic cell algorithms. De- 
tailed discussion of these algorithms can be found in [264] and [65].

Negative Selection Based Algorithms. The key to a healthy immune system is its remarkabl e ability to distingui sh be- 
tween the body’s own cells, recognized as ‘self’, and foreign cells, or ‘nonself’. Negative selection is the main mechanis m in the 
thymus that eliminates self-reacti ve cells, i.e. T-cells whose receptors recognize and bind with self antigens presented in the 
thymus. Thus, only T-cells that do not bind to self-protein s are allowed to leave the thymus. These matured T-cells then cir- 
culate throughout the body performing immunolog ical functions and protectin g the body against foreign antigens. 

The negative selection algorithm is based on the principles of the self–nonself discrimination in the immune system and 
was initially introduced by Forrest et al. in 1994 [96] to detect data manipulation caused by a virus in a computer system. 
The starting point of this algorithm is to produce a set of self strings, S, that define the normal state of the system. The task 
then is to generate a set of detectors, D, that only bind/recognize the complemen t of S. These detectors can then be applied to 
new data in order to classify them as being self or non-self. This negative selection algorithm can be summarized in Fig. 19 .

A diverse family of negative selection algorithms has been developed and has been extensively used in anomaly detec- 
tion. A survey on negative selection algorithms was published in [138]. Some other researchers proposed negative selection 
algorithms that can be found in [264,65].

Clonal Selection Based Algorithms . The clonal selection theory postulates that a vast repertoire of different B-cells, each 
encoding antibodies with a predetermin ed shape and specificity, is generated prior to any exposure to an antigen. Exposure 
to an antigen then results in the proliferation or clonal expansion of only those B-cells with antibody receptors capable of 
reacting with part of the antigen. However, any clone of the activated B-cells with antigen receptors specific to molecule s
of the organism’s own body (self-reactive receptors) is eliminated. Here, the affinity maturation of the B-cells takes place. 
During proliferation , a hypermutat ion mechanism becomes activated which diversifies the repertoir e of B-cells. Antigen en- 
sures that only those B-cells with high-affinity receptors are selected to different iate into plasma cells and memory cells. 
Memory B-cells are developed to make a more effective immune response to antigens that had been encounter ed. 

Many algorithms have been inspired by the adaptive immune mechanisms of B-cells [65]. The general one, named CLO- 
NALG [41], is based on clonal selection and affinity maturation principles . One cell generation in this algorithm includes the 
Fig. 19. Generic negative selection algorithm. 



I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 107
initiation of candidate solutions, selection, clone, mutation, reselection, and population replacemen t, which are somehow 
similar to evolutionary algorithms. When applied to pattern matching, CLONALG produces a set of memory antibodies M that
match the members in a set S of patterns considered to be antigens. Fig. 20 outlines the working of CLONALG. 

Many other clonal selection based algorithms have been introduced in the literature and have been applied to a wide 
range of optimization and clustering problems [128]. A summary of the basic features of these algorithms, their application 
areas and hybridization was published in [267].

Artificial Immune Network s. The immune Network theory, as originally proposed by Jerne [137], states that the immune 
system is a network in which antibodies, B-cells and T-cells recognize not only things that are foreign to the body, but also 
each other, creating a structura lly and functionally plastic network of cells that dynamically adapts to stimuli over time. It is 
thus the interactions between cells that give rise to the emergence of complex phenomena such as memory [83] and other 
functionaliti es such as tolerance and reactivity [126]. The paper by Farmer et al. [83] is considered the pioneer work which 
inspired a variety of immune-ne twork algorithms. One algorithm that has received much attention is aiNet first developed 
by de Castro and Von Zuben for the task of data clustering [67] and specialized into a series of algorithms for optimization 
and data-mining in a variety of domains over the following years [40,53]. AiNet is a simple extension of CLONALG but ex- 
ploits interactions between B-cells according to the immune network theory. The aiNet algorithm is illustrated in Fig. 21 .

A review of different artificial immune network models is presented in the paper by Galeano et al. [98]. Some other exist- 
ing Immune network models can be found in [65].

Danger Theory inspired algorithms . The Danger theory attempts to explain the nature and workings of an immune re- 
sponse in a way different to the widely held self/nonself viewpoint. It does not deny the existence of self–nonself discrim- 
ination but rather states that the human immune system can detect danger in addition to antigens in order to trigger 
appropriate immune responses. Danger theory inspired algorithms are still in their infancy. The first paper that proposed 
an application of the Danger Theory was published in 2002 by Aickelin and Cayzer [4]. In 2003, Aickelin et al. proposed 
the Danger Project [3], an interdisciplina ry project which aims at understanding from an immunologica l perspecti ve the 
mechanism s of intrusion detection in the human immune system and applying these findings to AIS with a view to improv- 
ing applications in computer security (see for example [116,149 ]).

Dendritic Cell algorithms . Dendritic cells (DCs) are immune cells that form part of the mammalian immune system. 
Their main function is to process antigen material and present it on the surface to other cells of the immune system, thus 
functioning as antigen-pre senting cells and regulators of the adaptive immune system through the production of immuno- 
regulatory cytokines (immune messenger proteins). DCs are responsible for some of the initial pathogen ic recognition pro- 
cess, sampling the environment and differentiating depending on the concentr ation of signals, or perceived misbehavio r, in 
the host tissue cells. Maturation of the immature DCs is regulated in response to various safe and danger signals. DCs can 
combine these signals with bacterial signatures (or PAMPs for Pathogen Associated Molecular Patterns Signals) to generate 
different output concentratio ns of costimulato ry molecules, semi-mature cytokines and mature cytokines. 

The dendritic cell algorithm (DCA) is based on the abstracti on of the functionality of the biological DCs. It was first con- 
ceptualized and developed by Greensmith et al. [115] (see Fig. 22 ), which introduced the notion of danger signals, safe sig- 
nals and PAMPs which all contribute to the context of a data signal at any given time. 

As stated in [114], most of the works that applied DCA were related to computer security, but there are also applications 
in wireless sensor networks , robotics and scheduling of processes. 

Over the last few years, important investigatio ns have focused on the proposal of theoretical frameworks for the design of 
AIS [39]; theoretical investiga tions into existing AIS can be found in [99,265]. Other newly developed models have been re- 
cently reported in the literature, for example, Humoral Immune Response, and Pattern Recogniti on Receptor Model. The 
interested reader is referred to [65] for a detailed discussion of them. 
Fig. 20. Generic clonal selection algorithm. 
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Fig. 22. Generic dendritic cell algorithm. 
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3.3.6. Biogeogra phy-based optimization 
Biogeography -Based Optimizatio n algorithm (BBO), developed by Dan Simon in 2008 [247], was strongly influenced by 

the equilibriu m theory of island biogeography [173]. The basic premise of this theory is that the rate of change in the number 
of species on an island depends critically on the balance between the immigrat ion of new species onto the island and the 
emigration of established species. 

BBO algorithm maintains a set of candidat e solutions called islands (or habitats), and each island feature is called a Suit-
ability Index Variable (SIV). A quantitat ive performanc e index, called Habitat Suitability Index (HSI), is used as a measure of 
how good a solution is, which is analogous to fitness in other population-bas ed optimization algorithms . The greater the total 
number of species on the island, which corresponds to a high HSI, the better the solution it contains. The number of species 
present on the island is determined by a balance between the rate at which the new species arrive and the rate at which the 
old species become extinct on the island. In BBO, each individual has its own immigration rate (k) and emigration rate (l).
These parameters are affected by the number of species (S) in an island and are used to probabili stically share information 
between islands. Islands with smaller populations are more vulnerable to extinctio n (i.e. the immigration rate is high). But as 
more species inhabit the island, the immigration rate reduces and the emigration rate increases. In BBO, good solutions (i.e.
islands with many species) tend to share their features with poor solutions (i.e. islands with few species), and poor solutions 
accept a lot of new features from good solutions. Maximum immigration rate (I) occurs when island is empty and decreases 
as more species are added and maximum emigration rate (E) occurs when all possible species Smax are present on the island. 
The immigration and emigration rates when there are S species in the habitat are given by Eq. (22):
kS ¼ I 1� S
Smax

� �

lS ¼ E
S

Smax

� �
:

ð22Þ
For the sake of simplicit y, the original BBO has considered a linear migration model where the immigrat ion rate kS and the 
emigration rate lS are linear functions of the number of species S in the habitat, but different mathematical models of bio- 
geography, that included more complex variables, are presented in [173]. There are, indeed, other important factors which 
influence migration rates between habitats, including the distance to the nearest neighboring habitat, the size of the habitat, 
climate (temperature and precipitatio n), plant and animal diversity, and human activity. These factors make immigrat ion 
and emigration curves complicated, contrary to those described in the original BBO paper [247]. To verify the influence of 
different migration models on BBO performanc e, Haiping Ma [172] explores the behavior of six different migration models, 
and investigates performance through 23 benchmark functions with a wide range of dimensions and diverse complexitie s. 
Experimental results clearly show that different migration models in BBO result in significant changes in performanc e, and 
BBO migration models which are closer to nature (that is, nonlinear) are significantly better than linear models for most of 
the benchmarks .

We now consider the probability PS that the habitat contains exactly S species. The number of species will change from 
time t to time (t + Dt) as follows: 
PSðt þ DtÞ ¼ PSðtÞð1� kSDt � lSDtÞ þ PS�1kS�1Dt þ PSþ1lSþ1Dt ð23Þ
which states that the number of species on the island in one time step is based on the total number of current species on the 
island, the new immigrants and the number of species who leave during the time period. We assume here that Dt is small 
enough so that the probabili ty of more than one immigration or emigration can be ignored. In order to have S species at time 
(t + Dt), one of the following conditions must hold: 

� There were S species at time t, and no immigrat ion or emigration occurred between t and (t + Dt);
� One species immigrat ed onto an island already occupied by (S � 1) species at time t.
� One species emigrate d from an island occupied by (S + 1) species at time t.

The limit of (23) as Dt ? 0 is given by Eq. (24).
_PS ¼
�ðkS þ lSÞPS þ lSþ1PSþ1 if S ¼ 0
�ðkS þ lSÞPS þ kS�1PS�1 þ lSþ1PSþ1 if 1 6 S 6 Smax � 1
�ðkS þ lSÞPS þ kS�1PS�1 if S ¼ Smax

8><
>: ð24Þ
The BBO algorithm is overall described in Fig. 23 .
A habitat’s HSI can change suddenly due to apparently random events (unusually large flotsam arriving from a neighbor- 

ing habitat, disease, natural catastrophes , etc.). BBO models this phenomena as SIV mutation , and uses species count prob- 
abilities to determine mutation rates. The species count probability PS indicates the likelihoo d that a given solution S was
expected a priori to exist as a solution for the given problem. In this context it should be remarked that very high HSI solu-
tions and very low HSI solutions are both equally improbable. Medium HSI solutions are relatively probable. If a given solu- 
tion has a low probability, then it is likely to mutate to some other solution. Conversel y, a solution with high probability is 
less likely to mutate. Mutation is used to enhance the diversity of the population, thereby preventing the search from stag- 



Fig. 23. Biogeography based optimization algorithm. 

Fig. 24. Migration.
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nating. If a habitat S is selected to execute the mutation operation, then a chosen variable (SIV) is randomly modified based 
on its associate d probability PS. The mutation rate m(S) is inversely proportional to the solution probability: 
mðSÞ ¼ mmax 1� PS

Pmax

� �
ð25Þ
where mmax is a user-defined paramete r, and Pmax = max S PS, S = 1, . . . , Smax.
Migration, described in Fig. 24 , is used to modify existing islands by mixing features within the population, where 

rand(0,1) is a uniformly distributed random number in the interval [0, 1] and Xij is the jth SIV of the solution Xi. The BBO 
migration strategy is similar to the global recombination approach of evolutionary strategies (ES) [10], in which many par- 
ents can contribute to a single offspring. The main differenc e is that recombinati on is used to create new solutions, while in 
BBO migration is used to change existing solutions. 

BBO has demonst rated good performanc e on various unconstrained and constrained benchmark functions. It has also 
been applied to real-world optimizati on problems, including sensor selection , economic load dispatch problems , satellite im- 
age classification, power system optimizati on, etc. The web site http://embe ddedlab.csuohi o.edu/BBO/ is dedicated to BBO 
and related material. 

4. Discussion and conclusion s

This work surveyed several important metaheuristic methods as they are described in the literature. Some of them are 
single-solut ion based, and others are population- based, and although they are based on different philosophie s. Nevertheles s, 
a number of these metaheuristics are implemented in a more and more similar way. A unified presenta tion of these methods 
is proposed under the name of adaptive memory programmin g (AMP) [256]. An important principle behind AMP is that a
memory containing a set of visited solutions is kept, a new solution is constructed using the data in the memory and im- 
proved by a local search procedure or a more sophisticated metaheu ristic, the improved solution is then used to update 
the memory. 

Despite the lack of theoretical foundation, the advantages of metaheu ristics are widely reported in the literature. How- 
ever, there are a few general issues which should be addressed in order to exploit the metaheu ristics to their full potential. 
The assessment of metaheu ristics is commonly based on experime ntal comparisons . In this case, the use of descriptive 
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statistics, such as the sample mean and the standard deviation, is not sufficient. To ensure fair and meaningful comparisons 
of metaheurist ics, different statistical tests may be carried out to analyze and compare the metaheuristics [50]. Many com- 
mercial (e.g., SAS/STAT, XPSS) and free softwares (e.g., R, MacAnov a) are available to conduct such an analysis. Furthermore, 
it is important to recognize that the number of algorithm parameters has a direct effect on the complexity of the algorithm 
and on the number of parameter interactions , which complicates analysis. The importance of tuning metaheuristics is widely 
acknowledged in scientific literature since the successful application of metaheurist ics to concrete problems requires the 
finding of a good initial parameter setting, which is a tedious and time consumin g task. Attempts have already been made 
to reduce paramete r tuning tasks by way of adaptive metaheuristi cs . Recent research reveals that the tuning problem has 
much in common with the problems that are typically faced in machine learning [27]. In addition, there is a clear need to 
provide software frameworks for metaheur istics that promote software reuse and reduce developmen tal effort. Such frame- 
works enable experts and develope rs to evaluate and compare fairly different algorithms, transform ready-to-use algo- 
rithms, design new algorithms , and combine and parallelize algorithms [258].

Another research trend is on solving large-scale optimization problems . In fact, the performanc e of most available opti- 
mization algorithms deteriorates very quickly when the dimensionality increases. Thus, scalabilit y for high-dimens ional 
problems becomes an essential requiremen t for sophisticated optimization algorithm approaches, including parallel imple- 
mentations of well-known metaheu ristics, as well as the adaptation of existing techniques for parallel architectur es. 

One of the most interesting trends in the last years is on hybrid optimizat ion methods . Indeed, more and more papers are 
published about the hybridiza tion of metaheurist ics with other techniques for optimization. Hybridization is not restricted 
to the combinati on of different metaheurist ics but includes the use of hybrid algorithms that combine local search or exact 
algorithms and metaheurist ics [32]. Moreover, the combination of concepts from different metaheurist ics and different re- 
search areas can lead to interesting new approach es, such as [187] which combines fuzzy logic and several optimization 
techniques. Such hybridiza tions can be used to take advantage of strengths from each algorithm in order to improve algo- 
rithms’ performanc e for more effective and efficient problem-solving. 

Despite widespread success of metaheurist ics, there will always be questions related to the usefulnes s of a particular 
metaheurist ic for solving a wide range of problems. The No Free Lunch theorems [281] state that all the black-box optimiza- 
tion algorithms 6 have the same average performan ce over the entire set of optimiza tion problems. However, this does not pre- 
vent some algorithms from being better than others on particu lar classes of problems. Many theoretica l studies on the analysis 
of landscap es (i.e., the topologica l structure over which search is being executed) of differen t optimizatio n problems have 
shown that not only differen t problems correspo nd to differen t structures but also differen t instances of the same problem cor- 
respond to different structure s. Conseq uently, understand ing such structure is a first step towards understand ing behavior of 
different search component s of a metaheuri stic, which can ultimate ly lead to design better search algorithms that incorporat e
more problem-speci fic knowledg e. However, the efficiency of metaheuris tics depends on the neighborhoo d operator s provided 
by the user and the best alternati ve for a problem domain can only be formalize d by an expert. Hyper- heuristics , which form an 
emerging search technology , provide a new approach to overco me the problem of such depende ncies in metaheuris tics. Hyper- 
heuristics are assumed to be problem independen t and can be easily utilized by non-expert s as well. The term has been defined
to broadly describe the process of using (meta-) heuristic s to choose the most appropriat e (meta-) heuristics to solve the prob- 
lem at hand. 

The research community, the number of sessions, workshops, and conferences dealing with metaheurist ics is growing 
significantly. Major conferences in the area include the Genetic and Evolutionar y Computation Conferen ce (GECCO), Meta- 
heuristic Internationa l Conference (MIC), Internationa l Conferen ce on Metaheuristi cs and Nature Inspired Computing 
(META), the IEEE Congress on Evolutionar y Computation (CEC), etc. 
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