
Information Sciences 237 (2013) 82–117
Contents lists available at SciVer se ScienceD irect

Infor mation Sciences

journal homepage: www.elsevier .com/locate / ins
A survey on optimization metaheuristics
0020-0255/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2013.02.041

⇑ Corresponding author.
E-mail address: siarry@u-pec.fr (P. Siarry).
Ilhem Boussaïd a, Julien Lepagnot b, Patrick Siarry b,⇑
a Université des sciences et de la technologie Houari Boumediene, Electrical Engineering and Computer Science Department, El-Alia BP 32 Bab-Ezzouar,
16111 Algiers, Algeria
b Université Paris Est Créteil, LiSSi, 61 avenue du Général de Gaulle 94010 Créteil, France
a r t i c l e i n f o

Article history:
Received 10 February 2012
Received in revised form 17 December 2012
Accepted 26 February 2013
Available online 7 March 2013

Keywords:
Population based metaheuristic
Single solution based metaheuristic
Intensification
Diversification
a b s t r a c t

Metaheuristics are widely recognized as efficient approache s for many hard optimization
problems. This paper provides a survey of some of the main metaheuristics. It outlines
the components and concepts that are used in various metaheuristics in order to analyze
their similarities and differences. The classification adopted in this paper differentiates
between single solution based metaheuristics and population based metaheuristics . The
literature survey is accompanied by the presentation of references for further details,
including applications. Recent trends are also briefly discussed.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

We roughly define hard optimization problems as problems that cannot be solved to optimality, or to any guaranteed
bound, by any exact (deterministic) method within a ‘‘reasonable’’ time limit. These problems can be divided into several
categories depending on whether they are continuous or discrete, constrained or unconstrai ned, mono or multi-objective,
static or dynamic. In order to find satisfactory solutions for these problems, metaheurist ics can be used. A metaheu ristic
is an algorithm designed to solve approximat ely a wide range of hard optimization problems without having to deeply adapt
to each problem. Indeed, the greek prefix ‘‘meta’’, present in the name, is used to indicate that these algorithms are ‘‘higher
level’’ heuristics , in contrast with problem-specific heuristics. Metaheuristics are generally applied to problems for which
there is no satisfactory problem-specific algorithm to solve them. They are widely used to solve complex problems in indus-
try and services, in areas ranging from finance to production managemen t and engineeri ng.

Almost all metaheu ristics share the following characteristics: they are nature-inspi red (based on some principles from
physics, biology or ethology); they make use of stochastic components (involving random variables); they do not use the
gradient or Hessian matrix of the objective function; they have several parameters that need to be fitted to the problem
at hand.

In the last thirty years, a great interest has been devoted to metaheuristics. We can try to point out some of the steps that
have marked the history of metaheu ristics. One pioneer contribution is the proposition of the simulated annealing method
by Kirkpatrick et al. in 1982 [150]. In 1986, the tabu search was proposed by Glover [104], and the artificial immune system
was proposed by Farmer et al. [83]. In 1988, Koza registered his first patent on genetic programmin g, later published in 1992
[154]. In 1989, Goldberg published a well known book on genetic algorithms [110]. In 1992, Dorigo completed his PhD thesis,
in which he describes his innovative work on ant colony optimization [69]. In 1993, the first algorithm based on bee colonies

http://dx.doi.org/10.1016/j.ins.2013.02.041
mailto:siarry@u-pec.fr
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 83
was proposed by Walker et al. [277]. Another significant progress is the developmen t of the particle swarm optimization by
Kennedy and Eberhart in 1995 [145]. The same year, Hansen and Ostermeier proposed CMA-ES [121]. In 1996, Mühlenbein
and Paaß proposed the estimation of distribution algorithm [190]. In 1997, Storn and Price proposed differential evolution
[253]. In 2002, Passino introduced an optimizati on algorithm based on bacterial foraging [200]. Then, Simon proposed a bio-
geography-b ased optimization algorithm in 2008 [247].

The considerable development of metaheurist ics can be explained by the significant increase in the processing power of
the computer s, and by the developmen t of massively parallel architectur es. These hardware improvem ents relativize the
CPU time–costly nature of metaheu ristics.

A metaheurist ic will be successful on a given optimizati on problem if it can provide a balance between the exploration
(diversification) and the exploitati on (intensification). Exploitation is needed to identify parts of the search space with high
quality solutions. Exploitati on is important to intensify the search in some promising areas of the accumulated search expe-
rience. The main differences between the existing metaheuristics concern the particular way in which they try to achieve
this balance [28]. Many classification criteria may be used for metaheurist ics. This may be illustrate d by considering the clas-
sification of metaheuristics in terms of their features with respect to different aspects concerning the search path they fol-
low, the use of memory, the kind of neighborho od exploration used or the number of current solutions carried from one
iteration to the next. For a more formal classification of metaheuristics we refer the reader to [28,258]. The metaheurist ic
classification, which differentiate s between Single-Solution Based Metaheur istics and Population-Bas ed Metaheuristics , is
often taken to be a fundamenta l distinctio n in the literature. Roughly speaking, basic single-solut ion based metaheuristics
are more exploitation oriented whereas basic population-bas ed metaheu ristics are more exploration oriented.

The purpose of this paper is to present a global overview of the main metaheuristics and their principles. That attempt of
survey on metaheu ristics is structured in the following way. Section 2 shortly presents the class of single-so lution based
metaheurist ics, and the main algorithms that belong to this class, i.e. the simulated annealing method, the tabu search,
the GRASP method, the variable neighborhood search, the guided local search, the iterated local search, and their variants.
Section 3 describes the class of metaheurist ics related to population-based metaheurist ics, which manipulate a collection of
solutions rather than a single solution at each stage. Section 3.1 describes the field of evolutionary computation and outlines
the common search components of this family of algorithms (e.g., selection, variation, and replacemen t). In this subsection,
the focus is on evolutionary algorithms such as genetic algorithms, evolution strategie s, evolutionary programming, and ge-
netic programmin g. Section 3.2 presents other evolutionar y algorithms such as estimation of distribution algorithms, differ-
ential evolution, coevolution ary algorithms, cultural algorithms and the scatter search and path relinking. Section 3.3
contains an overview of a family of nature inspired algorithms related to Swarm Intelligence. The main algorithms belonging
to this field are ant colonies, particle swarm optimization, bacterial foraging, bee colonies, artificial immune systems and bio-
geography-b ased optimization. Finally, a discussion on the current research status and most promising paths of future re-
search is presented in Section 4.
2. Single-solutio n based metaheuristi cs

In this section, we outline single-solut ion based metaheuristics, also called trajectory methods . Unlike population-bas ed
metaheurist ics, they start with a single initial solution and move away from it, describing a trajector y in the search space.
Some of them can be seen as ‘‘intelligent’’ extensions of local search algorithms. Trajectory methods mainly encompass the
simulated annealing method, the tabu search, the GRASP method, the variable neighborho od search, the guided local search,
the iterated local search, and their variants.
2.1. Simulated annealing

The origins of the Simulated Annealin g method (SA) are in statistical mechanics (Metropolis algorithm [179]). It was first
proposed by Kirkpatrick et al. [150], and independen tly by Cerny [42]. SA is inspired by the annealing technique used by the
metallurgist s to obtain a ‘‘well ordered’’ solid state of minimal energy (while avoiding the ‘‘metastable’’ structures, charac-
teristic of the local minima of energy). This techniqu e consists in carrying a material at high temperature , then in lowering
this temperature slowly.

SA transposes the process of the annealing to the solution of an optimization problem: the objective function of the prob-
lem, similar to the energy of a material, is then minimized, by introducing a fictitious temperature T, which is a simple con-
trollable parameter of the algorithm.

The algorithm starts by generating an initial solution (either randomly or constructed using an heuristic) and by initial-
izing the temperature paramete r T. Then, at each iteration, a solution s0 is randomly selected in the neighborho od N(s) of the
current solution s. The solution s0 is accepted as new current solution depending on T and on the values of the objective func-
tion for s0 and s, denoted by f(s0) and f(s), respectively. If f(s0) 6 f(s), then s0 is accepted and it replaces s. On the other hand, if

f(s0) > f(s), s0 can also be accepted, with a probability pðT; f ðs0Þ; f ðsÞÞ ¼ exp � f ðs0 Þ�f ðsÞ
T

� �
. The temperature T is decrease d during

the search process, thus at the beginning of the search, the probability of accepting deteriorati ng moves is high and it grad-
ually decreases. The high level SA algorithm is presented in Fig. 1.

Fig. 1. Algorithm for the simulated annealing method.

84 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
One can notice that the algorithm can converge to a solution s, even if a better solution s0 is met during the search process.
Then, a basic improvement of SA consists in saving the best solution met during the search process.

SA has been successfully applied to several discrete or continuous optimization problems, though it has been found too
greedy or unable to solve some combinatori al problems. The adaptation of SA to continuous optimization problems has been
particularly studied [58]. A wide bibliography can be found in [57,90,152,157,25 5,259] .

Several variants of SA have been proposed in the literature. Three of them are described below.
2.1.1. Microcanonic annealing
The principle of Microcanon ic Annealing (MA) is similar to that of SA, and MA can be considered as a variant of SA. The

main differenc e is that instead of using a Metropolis algorithm, MA uses the Creutz algorithm [59], known as microcanoni cal
Monte Carlo simulatio n or ‘‘demon’’ algorithm. The Creutz algorithm allows reaching the thermodyna mic equilibriu m in an
isolated system, i.e. a system where the total energy, which is the sum of the potential energy and the kinetic energy, re-
mains constant (Etotal = Ep + Ec).

For an optimization problem, the potential energy Ep can be considered as the objective function, to be minimized. The
kinetic energy Ec is used in a similar manner to the temperature in simulated annealing; it is forced to remain positive. The
algorithm accepts all disturbance s which cause moves towards the lower energy states, by adding � DE (lost potential en-
ergy) to the kinetic energy Ec. The moves towards higher energy states are only accepted when DE < Ec, and the energy ac-
quired in the form of potential energy is cut off from the kinetic energy. Thus, the total energy remains constant. The MA
algorithm is presented in Fig. 2.

At each energy stage, the ‘‘thermodynam ic equilibrium ’’ is reached as soon as the ratio req ¼ hEci
rðEcÞ of the average kinetic

energy observed to the standard deviation of the distribution of Ec is ‘‘close’’ to 1.
Eq. (1) involving the kinetic energy and the temperat ure establishes a link between SA and MA, where kB denotes the

Boltzmann constant.
kB T ¼ hEci ð1Þ
MA has several advantag es compared to simulated annealing. It neither requires the transcendent functions like exp to be
evaluated, nor any random number to be drawn for the acceptance or the rejection of a solution. Their computations can
be indeed time costly. A relatively recent work shows the successfu l applicati on of MA, hybridized with the Nelder-M ead
simplex method [193], in microscopic image processin g [191].
2.1.2. Threshold accepting method
Another variant of SA is the Threshold Accepting method (TA) [77]. The principal difference between TA and SA lies in the

criterion for acceptance of the candidate solutions: on the one hand, SA accepts a solution that causes deterioration of the
objective function f only with a certain probability; on the other hand, TA accepts this solution if the degradation of f does not
exceed a progressive ly decreasing threshold T. The TA algorithm is presented in Fig. 3.

The TA method compares favorably with simulated annealing for combinatori al optimizati on problems , like the traveling
salesman problem [76]. An adaptation of TA to continuous optimization can be carried out similarly to SA.

Fig. 3. Algorithm for the threshold accepting method.

Fig. 2. Algorithm for the microcanonic annealing method.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 85
2.1.3. Noising method
The Noising Method (NM) was proposed by Charon and Hudry [45]. Initially proposed for the clique partitioni ng problem in

a graph, it has been shown to be successful for many combinatori al optimizati on problems. It uses a local search algorithm,
i.e. an algorithm which, starting from an initial solution, carries out iterative improvements until obtaining a local optimum.
The basic idea of NM is as follows. Rather than taking the genuine data of an optimization problem directly into account, the
data are ‘‘perturb ed’’, i.e. the values taken by the objective function are modified in a certain way. Then, the local search algo-
rithm is applied to the perturbed function. At each iteration of NM, the amplitude of the noising of the objective function
decreases until it is zero. The reason behind the addition of noise is to be able to escape any possible local optimum of
the objective function. In NM, a noise is a value taken by a random variable following a given probability distribution
(e.g. uniform or Gaussian law). The algorithm for NM is presented in Fig. 4.

The authors proposed and analysed different ways to add noise [46]. They showed that, accordin g to the noising carried
out, NM can be made identical with SA, or with TA, described above. Thus, NM represents a generalization of SA and TA. They
also published a survey in [47], and recently, they proposed a way to design NM that can tune its paramete rs itself [48].

2.2. Tabu search

Tabu Search (TS) was formalized in 1986 by Glover [104]. TS was designed to manage an embedded local search algo-
rithm. It explicitly uses the history of the search, both to escape from local minima and to implement an explorative strategy.
Its main characterist ic is indeed based on the use of mechanis ms inspired by the human memory. It takes, from this point of
view, a path opposite to that of SA, which does not use memory, and thus is unable to learn from the past.

Fig. 4. Algorithm for the noising method.

Fig. 5. Algorithm for the simple tabu search method.

86 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
Various types of memory structures are commonly used to remember specific properties of the trajectory through the
search space that the algorithm has undertak en. A tabu list (from which the name of the metaheu ristic framework derives)
records the last encountered solutions (or some attributes of them) and forbids these solutions (or solutions containing one
of these attributes) from being visited again, as long as they are in the list. This list can be viewed as short-term memory, that
records information on recently visited solutions. Its use prevents from returning to recently visited solutions, therefore it
prevents from endless cycling and forces the search to accept even deteriorating moves. A simple TS algorithm is presented
in Fig. 5.

The length of the tabu list controls the memory of the search process. If the length of the list is low, the search will con-
centrate on small areas of the search space. On the opposite, a high length forces the search process to explore larger regions,
because it forbids revisiting a higher number of solutions. This length can be varied during the search, leading to more robust
algorithms, like the Reactive Tabu Search algorithm [19].

Additional intermedi ate-term memory structures can be introduced to bias moves towards promising areas of the search
space (intensification), as well as long-term memory structure s to encourag e broader exploration of the search space
(diversification).

The addition of intermediate- term memory structure s, called aspiration criteria , can greatly improve the search process.
Indeed, the use of a tabu list can prevent attractive moves, even if there is no risk of cycling, or they may lead to an overall
stagnation of the search process. For example, a move which leads to a solution better than all those visited by the search in
the preceding iterations does not have any reason to be prohibited. Then, the aspiration criteria, that are a set of rules, are
used to override tabu restrictions, i.e. if a move is forbidden by the tabu list, then the aspiratio n criteria, if satisfied, can allow
this move.

A frequency memory can also be used as a type of long-term memory. This memory structure records how often certain
attributes have been encountered in solutions on the search trajector y, which allows the search to avoid visiting solutions
that present the most often encountered attributes or to visit solutions with attributes rarely encountered.

An extensive description of TS and its concepts can be found in [107]. Good reviews of the method are provided in
[100,101]. TS was designed for, and has predominatel y been applied to combinatorial optimizati on problems . However,
adaptations of TS to continuous optimization problems have been proposed [105,60,49].
2.3. GRASP method

GRASP, for Greedy Randomiz ed Adaptive Search Procedure , is a memory-less multi-sta rt metaheurist ic for combinatori al
optimization problems, proposed by Feo and Resende in [84,85]. Each iteration of the GRASP algorithm consists of two

Fig. 6. Template for the GRASP algorithm.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 87
steps: construction and local search. The construction step of GRASP is similar to the semi-greedy heuristic proposed inde-
pendently by Hart and Shogan [129]. The construction step builds a feasible solution using a randomized greedy heuristic.
In the second step, this solution is used as the initial solution of a local search procedure. After a given number of iter-
ations, the GRASP algorithm terminat es and the best solution found is returned. A template for the GRASP algorithm is
presented in Fig. 6.

In the greedy heuristic, a candidate solution is built iteratively, i.e. at each iteration, an element is incorporated into a
partial solution, until a complete solution is built. It means that, for a given problem, one has to define a solution as a set
of elements . At each iteration of the heuristic, the list of candidate elements is formed by all the elements that can be in-
cluded in the partial solution, without destroying feasibility. This list is ordered with respect to a greedy function, that mea-
sures the benefit of selecting each element. Then, the element to be added to the partial solution is randomly chosen among
the best candidates in this list. The list of the best candidates is called the restricted candidate list (RCL). This random selection
of an element in the RCL represents the probabili stic aspect of GRASP. The RCL list can be limited either by the number of
elements (cardinality-based) or by their quality (value-based). In the first case, the RCL list consists of the p best candidate
elements, where p is a parameter of the algorithm. In the second case, it consists of the candidate elements having an incre-
mental cost (the value of the greedy function) greater or equal to cmin + a(cmax � cmin), where a is a paramete r of the algo-
rithm, and cmin and cmax are the values of the best and worst elements, respectively. This is the most used strategy [221],
and a is the main paramete r of GRASP, where a 2 [0, 1]. Indeed, this parameter defines the compromise between intensifi-
cation and diversification.

The performance of GRASP is very sensitive to the a parameter, and many strategies have been proposed to fit it [258]
(initialized to a constant value, dynamically changed according to some probability distribution , or automatically adapted
during the search process). A self-tuning of a is performed in reactive GRASP , where the value of a is periodically updated
according to the quality of the obtained solutions [214].

Festa and Resende surveyed the algorithmic aspects of GRASP [86], and its applicati on to combinatori al optimization
problems [87]. A good bibliograp hy is provided also in [222]. GRASP can be hybridize d in different ways, for instance by
replacing the local search with another metaheurist ic such as tabu search, simulated annealing, variable neighborho od
search, iterated local search, among others [220,271,23 5] . It is also often combined with a path-reli nking strategy [88]. Adap-
tations to continuous optimization problems have also been proposed [134].
2.4. Variable neighborho od search

Variable Neighborhood Search (VNS) is a metaheuristic proposed by Hansen and Mladenovic [184,186]. Its strategy con-
sists in the exploration of dynamically changing neighborhoods for a given solution. At the initializatio n step, a set of neigh-
borhood structure s has to be defined. These neighborho ods can be arbitrarily chosen, but often a sequence N1;N2; . . . ;Nnmax of
neighborho ods with increasing cardinality is defined. In principle they could be included one in the other
(N1 2 N2 2 . . . 2 Nnmax). However, such a sequence may produce an inefficient search, because a large number of solutions
can be revisited [33]. Then an initial solution is generated, and the main cycle of VNS begins. This cycle consists of three
steps: shaking, local search and move. In the shaking step, a solution s0 is randomly selected in the nth neighborho od of
the current solution s. Then, s0 is used as the initial solution of a local search procedure, to generate the solution s00. The local
search can use any neighborho od structure and is not restricted to the set Nn, n = 1, . . . , nmax. At the end of the local search
process, if s00 is better than s, then s00 replaces s and the cycle starts again with n = 1. Otherwise, the algorithm moves to the
next neighborho od n + 1 and a new shaking phase starts using this neighborhood. The VNS algorithm is presente d in Fig. 7.

This algorithm is efficient if the neighborho ods used are complemen tary, i.e. if a local optimum for a neighborho od Ni is
not a local optimum for a neighborhood Nj. VNS is based on the variable neighborho od descent (VND), which is a determin-
istic version of VNS [258] described in Fig. 8. A more general VNS algorithm (GVNS), where VND is used as the local search
procedure of VNS, has led to many successfu l applications [122]. Recent surveys of VNS and its extensions are available in
[122,123]. Adaptations to continuous optimization problems have been proposed in [164,185 ,37] . Hybridization of VNS with
other metaheurist ics, such as GRASP, is also common [271,235]. The use of more than one neighborho od structure is not re-
stricted to algorithms labeled VNS [250]. In Reactive Search [18], a sophisticated adaptatio n of the neighborho od is per-
formed, instead of cycling over a predefined set of neighborhoods.

Fig. 7. Template for the variable neighborhood search algorithm.

Fig. 8. Template for the variable neighborhood descent algorithm.

88 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
2.5. Guided local search

As tabu search, Guided Local Search (GLS) [272,274] makes use of a memory. In GLS, this memory is called an augmented
objective function . Indeed, GLS dynamically changes the objective function optimized by a local search, according to the found
local optima. First, a set of features ftn,n = 1, . . . , nmax has to be defined. Each feature defines a characterist ic of a solution
regarding the optimization problem to solve. Then, a cost ci and a penalty value pi are associate d with each feature. For in-
stance, in the traveling salesman problem, a feature fti can be the presence of an edge from a city A to a city B in the solution,
and the corresponding cost ci can be the distance, or the travel time, between these two cities. The penalties are initialized to
0 and updated when the local search reaches a local optimum. Given an objective function f and a solution s, GLS defines the
augmented objective function f0 as follows:
f 0ðsÞ ¼ f ðsÞ þ k
Xnmax

i¼1

piIiðsÞ ð2Þ
where k is a paramete r of the algorithm, and Ii(s) is an indicator function that determines whether s exhibits the feature fti:
IiðsÞ ¼
1 if s exhibits the feature fti

0 otherwise

�
ð3Þ

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 89
Each time a local optimum is found by the local search, GLS intends to penalize the most ‘‘unfavorabl e features’’ of this
local optimum, i.e. the features having a high cost. This way, solutions exhibiting other features become more attractive, and
the search can escape from the local optimum. When a local optimum s⁄ is reached, the utility ui of penalizing a feature fti is
calculated as follows:
uðs�Þ ¼ Iiðs�Þ
ci

1þ pi
ð4Þ
The greater the cost ci of this feature, the greater the utility to penalize it is. Besides, the more times it has been penalized
(the greater pi), the lower the utility of penalizing it again is. The feature having the greatest utility value is penalized: its
penalty value pi is increased by 1. In the augmented objective function, the scaling of the penality is adjusted by k. Authors
suggest that the performance of GLS is not very sensitive to the value of k [183]. Large values of k encourage diversification,
while small values intensify the search around the local optimum [258]. GLS algorithm is summari zed in Fig. 9.

Sitting on top of a local search algorithm, the adaptation of GLS to continuous optimization is straightforwar d [273].
Extensions to population based metaheurist ics have been proposed [160,286,257]. Mills et al. proposed an extended guided
local search algorithm (EGLS), adding aspiration criteria and random moves to GLS [182,183]. A recent survey on GLS and its
applications is available in [276,275].

2.6. Iterated local search

The definition and framework of Iterated Local Search (ILS) are given by Stützle in his PhD dissertat ion [254]. Stützle does
not take credit for the approach, and instead highlights specific instances of ILS from the literature, such as iterated descent
[20], large-step Markov chains [176], iterated Lin-Kernigha n [139], chained local optimization [175], as well as [21] that intro-
duces the principle, and [140] that summarizes it (list taken from [168,36]).

ILS is a metaheurist ic based on a simple idea: instead of repeatedly applying a local search procedure to randomly gen-
erated starting solutions, ILS generates the starting solution for the next iteration by perturbing the local optimum found at
Fig. 9. Template for the guided local search algorithm.

Fig. 10. Template for the iterated local search algorithm.

90 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
the current iteration. This is done in the expectati on that the perturba tion mechanism provides a solution located in the ba-
sin of attraction of a better local optimum. The perturbation mechanism is a key feature of ILS: on the one hand, a too weak
perturbation may not be sufficient to escape from the basin of attraction of the current local optimum; on the other hand, a
too strong perturba tion would make the algorithm similar to a multistart local search with randomly generate d starting
solutions. ILS algorithm is summarized in Fig. 10 , where the acceptanc e criterion defines the conditions that the new local
optimum p⁄ has to satisfy in order to replace the current one s⁄.

The acceptance criterion, combined with the perturbation mechanis m, enables controlling the trade-off between inten-
sification and diversification. For instance, an extreme acceptance criterion in terms of intensification is to accept only
improving solutions. Another extreme criterion in terms of diversification is to accept any solution, without regard to its
quality. Many acceptance criteria that balance the two goals may be applied [258].

A recent review of ILS, its extension s and its applications is available in [168].
3. Population-base d metaheu ristics

Population- based metaheuristics deal with a set (i.e. a population) of solutions rather than with a single solution. The
most studied population-based methods are related to Evolutionar y Computation (EC) and Swarm Intelligence (SI). EC algo-
rithms are inspired by Darwin’s evolutionar y theory, where a population of individuals is modified through recombin ation
and mutation operators. In SI, the idea is to produce computati onal intelligence by exploitin g simple analogs of social inter-
action, rather than purely individual cognitive abilities.
3.1. Evolutionary computation

Evolutionary Computation (EC) is the general term for several optimization algorithms that are inspired by the Darwinian
principles of nature’s capability to evolve living beings well adapted to their environment. Usually found grouped under the
term of EC algorithms (also called Evolutionary Algorithms (EAs)), are the domains of genetic algorithms [135], evolution
strategies [217], evolutionary programmin g [95], and genetic programming [154]. Despite the differences between these
techniques, which will be shown later, they all share a commun underlyin g idea of simulating the evolution of individual
structures via processes of selection, recombin ation, and mutation reproduction, thereby producing better solutions.

A generic form of a basic EA is shown in Fig. 11 . This form will serve as a template for algorithms that will be discussed
throughout this section.

Every iteration of the algorithm corresponds to a generation, where a population of candidate solutions to a given optimi-
zation problem, called individuals, is capable of reproducing and is subject to genetic variations followed by the environm en-
tal pressure that causes natural selection (survival of the fittest). New solutions are created by applying recombin ation , that
combines two or more selected individuals (the so-called parents) to produce one or more new individuals (the children or
offspring), and mutation, that allows the appearance of new traits in the offspring to promote diversity. The fitness (how good
the solutions are) of the resulting solutions is evaluated and a suitable selection strategy is then applied to determine which
solutions will be maintain ed into the next generation. As a termination condition, a predefined number of generations (or
function evaluations) of simulated evolutionary process is usually used, or some more complex stopping criteria can be
applied.

Over the years, there have been many overviews and surveys about EAs. The readers interested in the history are referred
to [13,10]. EAs have been widely applied with a good measure of success to combinatori al optimization problems [33,26],
constrained optimization problems [55], Data Mining and Knowledge Discovery [97], etc. Multi-Objective Evolutionary Algo-
rithms (MOEAs) are one of the current trends in developing EAs. An excellent overview of current issues, algorithms, and
existing systems in this area is presented in [54]. Parallel EAs have also deserved interest in the recent past (a good review
Fig. 11. Evolutionary computation algorithm.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 91
can be found in [5]). Another overview paper over self-adaptiv e methods in EAs is given in [180]. They are called self-adap-
tive, because these algorithms control the setting of their parameters themselves, embedding them into an individua l’s gen-
ome and evolving them. Some other topics covered by the literature include the use of hybrid EAs, that combine local search
or some other heuristic search methods [32].
3.1.1. Genetic algorithm
The Genetic Algorithm (GA) is arguably the most well-known and mostly used evolutionary computation technique. It

was originally develope d in the early 1970s at the University of Michigan by John Holland and his students, whose re-
search interests were devoted to the study of adaptive systems [135]. The basic GA is very generic, and there are many
aspects that can be impleme nted differently according to the problem: representat ion of solution (chromosomes), selection
strategy, type of crossover (the recombination operator of GAs) and mutation operators, etc. The most common represen-
tation of the chromosomes applied in GAs is a fixed-length binary string. Simple bit manipulation operations allow the
implementati on of crossover and mutation operation s. These genetic operators form the essential part of the GA as a prob-
lem-solving strategy. Emphasis is mainly concentrated on crossove r as the main variation operator, that combines multi-
ple (usually two) individuals that have been selected together by exchanging some of their parts. There are various
strategies to do this, e.g. n-point and uniform crossover . An exogenous parameter pc (crossover rate) indicates the probability
per individual to undergo crossover. Typical values for pc are in the range [0.6,1.0] [13]. Individuals for producing offspring
are chosen using a selection strategy after evaluating the fitness value of each individual in the selection pool. Some of the
popular selection schemes are roulette-whe el selection , tournament selection , ranking selection , etc. A comparison of selection
schemes used in GAs is given in [111,30]. After crossove r, individuals are subjected to mutation. Mutation introduces some
randomness into the search to prevent the optimization process from getting trapped into local optima. It is usually con-
sidered as a secondar y genetic operator that performs a slight perturba tion to the resulting solutions with some low prob-
ability pm. Typically, the mutation rate is applied with less than 1% probability, but the appropriate value of the mutation
rate for a given optimization problem is an open research issue. The replacement (survivor selection) uses the fitness value
to identify the individuals to maintain as parents for successive generations and is responsible to assure the survival of the
fittest individuals. Interested readers may consult the book by Goldberg [110] for more detailed background information
on GAs.

Since then, many variants of GAs have been developed and applied to a wide range of optimization problems. Overviews
concerning current issues on GAs can be found in [22,23], [249] for hybrid GAs, [151] for multi-obj ective optimization and
[6] for Parallel GAs, among others. Indexed bibliographi es of GAs have been compiled by Jarmo T. Alander in various appli-
cation areas, like in robotics, Software Engineering, Optics and Image Processing, etc. Versions of these bibliographi es are
available via anonymous ftp or www from the following site: ftp.uwasa. fi/cs/rep ort94–1.
3.1.2. Evolution Strategy
Similar to GA, Evolution Strategy (ES) imitates the principles of natural evolution as a method to solve optimizati on prob-

lems. It was introduced in the 60ies by Rechenberg [216,217] and further developed by Schwefel. The first ES algorithm, used
in the field of experime ntal parameter optimization, was a simple mutation-se lection scheme called two membered ES . Such
ES is based upon a population consisting of a single parent which produces, by means of normally (Gaussian) distributed
mutation, a single descendant. The selection operator then determines the fitter individual to become the parent of the next
generation.

To introduce the concept of population, which has not really been used so far, Rechenbe rg proposed the multimembered
ES, where l > 1 parents can participate in the generation of one offspring individua l. This has been denoted by (l + 1) � ES.
With the introduct ion of more than one parent, an additional recombin ation operator is possible. Two of the l parents are
chosen at random and recombin ed to give life to an offspring, which also underlies mutation. The selection resembles
‘‘extinction of the worst’’, may it be the offspring or one of the parents, thus keeping constant the population size. Schwefel
[237] introduced two further versions of multimembered ES , i.e. (l + k) � ES and (l,k) � ES. The first case indicates that l par-
ents create k P 1 descenda nts by means of recombination and mutation, and, to keep the population size constant , the k
worst out of all l + k individuals are discarded. For a (l,k) � ES, with k > l, the l best individuals of the k offspring become
the parents of the next population, whereas their parents are deleted, no matter how good or bad their fitness was compared
to that of the new generation’s individuals. Two other well-known ES versions are known as (l/q + k) � ES and (l/q,k) � ES).
The additional paramete r q refers to the number of parents involved in the procreation of one offspring.

The mutation in ES is realized through normally distributed numbers with zero mean and standard deviation r, which
can be interpreted as the mutation step size . It is easy to imagine that the parameters of the normal distribution play an
essential role for the performanc e of the search algorithm. The simplest method to specify the mutation mechanism is to
keep r constant over time. Another approach consists in dynamically adjusting r by assigning different values depending
on the number of generations or by incorporating feedback from the search process. Various methods to control the
mutation paramete r have been developed. Among these there are for example Rechenberg ’s 1/5 success rule 1 [217], the
1 The 1/5 rule in (1 + 1) � ES states that: the ratio of successful mutations to all mutations should be 1/5. If it is greater than 1/5, increase the variance; if it is less,
decrease the mutation variance .

92 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
r-self-adap tation (rSA)2 [217], the meta-ES (mES)3 [239], a hierar chically organized population based ES involving isolation
periods [132], the mutative self adaptat ion [238], the machine learning approache s [240], or the cumulative pathlength control
[197].

Adaptivity is not limited to a single paramete r, like the step-size. More recently, a surprisingly effective method, called the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), was introduced by Hansen, Ostermeier, and Gawelczyk [121] and
further developed in [120]. The CMA-ES is currently the most widely used, and it turns out to be a particularly reliable and
highly competitive EA for local optimization [120] and also for global optimization [119]. In the ‘‘Special Session on Real-
Parameter Optimizatio n’’ held at the CEC 2005 Congress, the CMA-ES algorithm obtained the best results among all the eval-
uated techniques on a benchmark of 25 continuous functions [9]. The performances of the CMA-ES algorithm are also com-
pared to those of other approaches in the Workshop on Black-Box Optimization Benchmarking BBOB’200 9 and on the test
functions of the BBOB’2010.

In recent years, a fair amount of theoretical investigation has contributed substantially to the understand ing of the evo-
lutionary search strategies on a variety of problem classes. A number of review papers and text books exist with such details
to which the reader is referred (see [11,13,25,156]).

3.1.3. Evolutionary programmi ng
Evolutionary Programmi ng (EP) was first presented in the 1960s by L.J. Fogel as an evolutionary approach to artificial

intelligence [95]. Later, in the early 1990s, EP was reintroduce d by D. Fogel to solve more general tasks including prediction
problems, numerical and combinatori al optimization, and machine learning [91,92].

The representat ions used in EP are typically tailored to the problem domain. In real-valued vector optimizati on, the cod-
ing will be taken naturally as a string of real values. The initial population is selected at random with respect to a density
function and is scored with respect to the given objective. In contrast to the GAs, the conventi onal EP does not rely on
any kind of recombinati on. The mutation is the only operator used to generate new offspring. It is impleme nted by adding
a random number of certain distribution s to the parent. In the case of standard EP, the normally distributed random muta-
tion is applied. However , other mutation schemes have been proposed. D. Fogel [93] developed an extension of the standard
EP, called meta-EP, that self-adapts the standard deviations (or equivalently the variances). The R-meta-EP algorithm [94]
incorporate s the self-adaptation of covariance matrices in addition to standard deviations. Yao and Liu [284] substituted
the normal distribution of the meta-EP operator with a Cauchy-distr ibution in their new algorithm, called fast evolution ary
programmin g (FEP). In [162], Lee and Yao proposed to use a Levy-distributi on for higher variation s and a greater diversity. In
Yao’s Improved Fast Evolutionary Programming algorithm (IFEP) [285], two offspring are created from each parent, one using a
Gaussian distribution, and the other using the Cauchy distribution . The parent selection mechanism is deterministic. The
survivor selection process (replacement) is probabilistic and is based on a stochastic tournament selection. The framework
of EP is less used than the other families of EAs, due to its similarity with ES, as it turned out in [12].

3.1.4. Genetic programming
The Genetic Programmi ng (GP) became a popular search technique in the early 1990s due to the work by Koza [154]. It is

an automate d method for creating a working computer program from a high-level problem statement of ‘‘ what needs to be
done’’.

GP adopts a similar search strategy as a GA, but uses a program representat ion and special operators. In GP, the individua l
population members are not fixed-length strings as used in GAs, they are computer programs that, when executed, are the
candidate solutions to the problem at hand. These programs are usually expresse d as syntax trees rather than as lines of code,
which provides a flexible way of describing them in LISP language, as originally used by J. Koza. The variables and constants
in the program, called terminals in GP, are leaves of the tree, while the arithmetic operations are internal nodes (typically
called functions). The terminal and function sets form the alphabets of the programs to be made.

GP starts with an initial population of randomly generated computer programs compose d of functions and terminals
appropriate to the problem domain. There are many ways to generate the initial population resulting in initial random trees
of different sizes and shapes. Two of the basic ways, used in most GP systems are called full and grow methods. The full meth-
od creates trees for which the length of every nonbacktrac king path between an endpoint and the root is equal to the spec-
ified maximum depth. 4 The grow method involves growing trees that are variably shaped. The length of a path between an
endpoint and the root is no greater than the specified maximum depth. A widely used combin ation of the two methods, known
as Ramped half-and-h alf [154], involves creating an equal number of trees using a depth parameter that ranges between 2 and
the maximum specified depth. While these methods are easy to implement and use, they often make it difficult to control the
statistical distribu tions of important properties such as the sizes and shapes of the generated trees [280]. Other initializatio n
mechan isms, however, have been developed to create different distributions of initial trees, where the general consensus is that
a more uniform and random distribu tion is better for the evolution ary process [170].
2 Instead of changing r by an exogenous heuristic in a determin istic manner, Schwefel completely viewed r as a part of genetic information of an individual,
which can be interpreted as self-adapta tion of step sizes . Consequently, it is subject to recombination and mutation as well.

3 rSA and mES do not exclude each other. A mES may perform SA and a SA can include a lifetime mechanism allowing a variable lifespan of certain
individuals.

4 The depth of a tree is defined as the length of the longest nonbacktracking path from the root to an endpoint.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 93
The population of programs is then progressive ly evolved over a series of generations , using the principles of Darwinian
natural selection and biologically inspired operations, including crossover and mutation, which are specialized to act on
computer programs. To create the next population of individuals, computer programs are probabili stically selected, in pro-
portion to fitness, from the current population of programs. That is, better individuals are more likely to have more child
programs than inferior individuals. The most commonly employed method for selecting individuals in GP is tournament
selection, followed by fitness-proportionate selection , but any standard EA selection mechanism can be used [209]. Recombi-
nation is usually implemented as subtree crossover between two parents. The resulting offspring are composed of subtrees
from their parents that may be of different sizes and in different positions in their programs. Other forms of crossover have
been defined and used, such as one-point crossover , context-preserv ing crossover , size-fair crossover and uniform crossover
[209]. Mutation is another important feature of GP. The most commonly used form of mutation is subtree mutation , which
randomly selects a mutation point in a tree and substitutes the subtree rooted there with a randomly generated subtree.
Other forms of mutation include single-node mutations and various forms of code-editing to remove unnecessar y code from
trees have been proposed in the literature [209,206]. Also, often, in addition to crossove r and mutation, an operation which
simply copies selected individuals in the next generation is used. This operation , called reproduct ion , is typically applied only
to produce a fraction of the new generation [280]. The replacement phase concerns the survivor selection of both parent and
offspring populations. There are two alternatives for implementing this step: the generational approach, where the offspring
population will replace systematical ly the parent population and the steady-state approach, where the parent population is
maintained and some of its individuals are replaced by new individuals according to some rules. Advanced GP issues concern
developing automatical ly defined functions and specialized operators, such as permutation, editing, or encapsulation [155].

The theoretical foundations of GP as well as a review of many real-world applications and important extensions of GP are
given in [209,280,177]. Contemporar y GPs are widely used in machine learning and data mining tasks, such as prediction and
classification. There is also a great amount of work done on GP using probabilistic models. The intereste d reader should refer
to [243] which is a review that includes directions for further research on this area.
3.2. Other evolutionary algorithm s

Other models of evolutionary algorithms have been proposed in the literature. Among them, one can find estimation of
distribution algorithms, differential evolution, coevolution ary algorithms, cultural algorithms and Scatter Search and Path
Relinking.
3.2.1. Estimation of distribution algorithms
Estimation of Distribution Algorithms (EDAs), also referred to as Probabilistic Model-Buildin g Genetic Algorithm s

(PMBGA), were introduced in the field of evolutionary computation, for the first time, by Mühlenbein and Paaß[190]. These
algorithms are based on probabili stic models, where genetic recombination and mutation operator s of GA are replaced by
the following two steps: (1) estimate the probabili ty distribution of selected individua ls (promising solutions) and (2) gen-
erate new population by sampling this probability distribution . This leads the search towards promising areas of the space of
solutions. The new solutions are then incorporated into the original population, replacing some of the old ones or all of them.
The process is repeated until the terminat ion criteria are met. The type of probabilistic models used by EDAs and the meth-
ods employed to learn them may vary according to the characteristics of the optimizati on problem.

Based on this general framewor k, several EDA approaches have been develope d in the last years, where each approach
learns a specific probabilistic model that conditions the behavior of the EDA from the point of view of complexity and per-
formance. EDAs can be broadly divided into three classes, according to the complexity of the probabilistic models used to
capture the interdependen cies between the variables: starting with methods that assume total independency between prob-
lem variables (univariate EDAs), through the ones that take into account some pairwise interactions (bivariate EDAs), to the
methods that can accurately model even a very complex problem structure with highly overlapping multivariate building
blocks (multivari ate EDAs) [159].

In all the approach es belonging to the first category, it is assumed that the n-dimensional joint probability distribution of
solutions can be factored as a product of independen t univariat e probability distribut ions. Algorithms based on this principle
work very well on linear problems where the variables are not mutually interacting [188]. It must be noted that, in difficult
optimization problems, different dependency relations can appear between variables and, hence, considering all of them
independen t may provide a model that does not represent the problem accurately. Common univariate EDAs include Popu-
lation Based Incrementa l Learning (PBIL)[14], Univariate Marginal Distribut ion Algorithm (UMDA) [188] and Compact Ge-
netic Algorithm (cGA) [125].

In contrast to univariat e EDAs, algorithms in the bivariate EDAs category consider dependenci es between pairs of vari-
ables. In this case, it is enough to consider second-order statistics. Examples of such algorithms are Mutual Informati on Max-
imizing Input Clustering algorithm (MIMIC) [66], Combining Optimizers with Mutual Information Trees (COMIT) [15] and
Bivariate Marginal Distribution Algorithm (BMDA) [205]. These algorithms reproduce and mix building blocks of order
two very efficiently, and therefore they work very well on linear and quadratic problems . Nonetheless, capturing only some
pair-wise interactions has still shown to be insufficient for solving problems with multivariate or highly overlapping build-
ing blocks. That is why multivariate EDAs algorithms have been proposed.

94 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
Algorithms belonging to this last category use statistics of order greater than two to factorize the probabili ty distribution.
In this way, multivariate interactio ns between problem variables can be expressed properly without any kind of initial
restriction. The best known multivari ate EDAs are Bayesian Optimizatio n Algorithm (BOA) [202,203], Estimation of Bayesian
Networks Algorithm (EBNA) [82], Factorized Distribution Algorithm (FDA) [189], Extended Compact Genetic Algorithm
(EcGA) [124] and Polytree Approximati on Distribution Algorithm (PADA) [251]. Those EDAs that look for multi-depen dencies
are capable of solving many hard problems accurately, and reliably with the sacrifice of computation time due to the com-
plexity of the learning interactions among variables. Nonetheless , despite increased computati onal time, the number of eval-
uations of the optimized function is reduced significantly. That is why the overall time complexity is significantly reduced for
large problems [204].

EDAs have been applied to a variety of problems in domains such as engineeri ng, biomedical informatics, and robotics. A
detailed overview of different EDA approach es in both discrete and continuo us domains can be found in [159] and a recent
survey was published in [130]. However , despite their successful applicati on, there are a wide variety of open questions
[236] regarding the behavior of this type of algorithms.

3.2.2. Differential evolution
Differential Evolution (DE) algorithm is one of the most popular algorithm for the continuo us global optimization prob-

lems. It was proposed by Storn and Price in the 90’s [253] in order to solve the Chebyshev polynomial fitting problem and has
proven to be a very reliable optimizati on strategy for many different tasks.

Like any evolutionary algorithm, a population of candidate solutions for the optimizati on task to be solved is arbitrarily
initialized. For each generation of the evolution process, new individuals are created by applying reproduction operator s
(crossover and mutation). The fitness of the resulting solutions is evaluated and each individua l (target individual) of the pop-
ulation competes against a new individual (trial individual) to determine which one will be maintained into the next gener-
ation. The trial individual is created by recombinin g the target individua l with another individual created by mutation (called
mutant individual). Different variants of DE have been suggested by Price et al. [215] and are conventional ly named DE/ x/ y/ z,
where DE stands for Differential Evolution, x represents a string that denotes the base vector, i.e. the vector being perturbed,
whether it is ‘‘ rand’’ (a randomly selected population vector) or ‘‘ best’’ (the best vector in the population with respect to fit-
ness value), y is the number of difference vectors considered for perturbation of the base vector x and z denotes the crossover
scheme, which may be binomial or exponential. The DE/rand/1/bi n-variant, also known as the classical version of DE, is used
later on for the description of the DE algorithm.

The mutation in DE is performed by calculatin g vector differences between other randomly selected individua ls of the
same population. There are several variants how to generate the mutant individual . The most frequently used mutation strat-
egy (called DE/rand/1/bi n) generates the trial vector V

!
i;g by adding only one weighted difference vector FðX!r2 ;g � X

!
r3 ;gÞ to a

randomly selected base vector X
!

r1 ;g to perturb it. Specifically, for each target vector X
!

i;g , i = 1, 2, . . . ,N, where g denotes the
current generation and N the number of individua ls in the population, a mutant vector is produced using the following
formula:
V
!

i;g ¼ X
!

r1 ;g þ FðX!r2 ;g � X
!

r3 ;gÞ ð5Þ
where the indexes r1, r2 and r3 are randomly chosen over [1, N] and should be mutually different from the running index i. F is
a real constant scaling factor within the range [0, 1].

Based on the mutant vector, a trial vector U
!

i;g is constructed through a crossover operation which combines components
from the ith population vector X

!
i;g and its corresponding mutant vector V

!
i;g:
Ui;j;g ¼
Vi;j;g if randð0;1Þ 6 CR or j ¼ jrand

Xi;j;g otherwise

�
ð6Þ
The crossover factor CR is randomly taken from the interval [0, 1] and presents the probability of creating parameters for
trial vector from a mutant vector. Index jrand is a randomly chosen integer within the range [1, N]. It is responsible for the trial
vector containing at least one parameter from the mutant vector. rand(0,1) is a uniform random number in range [0, 1].
j = 1, 2, . . . , D, where D is the number of paramete rs (dimension) of a single vector.

Finally, to decide whether or not it should become a member of generation g + 1, the trial vector U
!

i;g is compared to the
target vector X

!
i;g using the fitness function evaluation:
X
!

i;gþ1 ¼
U
!

i;g if f ðU!i;gÞ < f ðX!i;gÞ

X
!

i;g otherwise

(
ð7Þ
The main advantage of the differential evolution consists in its fewer control parameters. It has only three input param-
eters controlling the search process, namely the population size N, the constant of different iation F, which controls the
amplification of the differential variation, and the crossove r control parameter CR. In the original DE, the control parameters
are kept fixed during the optimization process. It is not obvious to define a priori which parameter setting should be used as
this task is problem specific. Therefore, some researchers (see for example [166,261,35]) have developed various strategie s to
make the setting of the paramete rs self-adaptive accordin g to the learning experience.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 95
DE is currently one of the most popular heuristics to solve single-obj ective optimization problems in continuous search
spaces. Due to this success, its use has been extended to other types of problems, such as multi-objective optimization [181].
However, DE has certain flaws, like slow convergence and stagnation of population. Several modified versions of DE are avail-
able in literature for improvin g the performance of basic DE. One class of such algorithms includes hybridized versions,
where DE is combined with some other algorithm to produce a new algorithm. For a more detailed description of many
of the existing variants and major application areas of DE, readers should refer to [43,194,63].
3.2.3. Coevoluti onary algorithms
When organisms that are ecologically intimate – for example, predators and prey, hosts and parasites, or insects and the

flowers that they pollinate – influence each other’s evolution, we say that coevolution is occurring. Biologica l coevolution
encountered in many natural processes has been an inspiration for coevolutionary algorithms (CoEA), where two or more
populations of individuals, each adapting to changes in the other, constantly interact and co-evolve simultaneou sly in con-
trast with traditional single population EAs.

Significant researching into the CoEAs began in the early 1990’s with the seminal work of Hillis [133] on sorting networks.
Contrary to conventional EAs, in which individuals are evaluated independen tly of one another through an absolute fitness
measure, the individual fitness in CoEAs is subjective, in the sense that it is a function of its interactions with other
individuals.

Many variants of CoEAs have been impleme nted since the beginning of 1990s. These variants fall into two categories:
competitive coevolution and cooperative coevolution . In the case of competitive approach es, the different populations compete
in solving the global problem and individua ls are rewarded at the expense of those with which they interact. In the case of
cooperative approaches, however , the various isolated populations are coevolve d to cooperativel y solve the problem; there-
fore individuals are rewarded when they work well with other individuals and punished when they perform poorly together.

Competitive coevolut ion is usually used to simulate the behavior of competin g forces in nature, such as predators and
prey where there is a strong evolutionary pressure for prey to defend themselves better, as future generations of predators
develop better attacking strategies. Competitive coevolution can lead to an arms race , in which the two populations have
opposing interests and the success of one population depends on the failure of the other. The idea is that continued minor
adaptations in some individuals will force competit ive adaptations in others, and these reciprocal forces will drive the algo-
rithms to generate individuals with ever increased performanc e. Individual fitness is evaluated through competition with
other individuals in the population. In other words, fitness signifies only the relative strengths of solutions; an increased fit-
ness for one solution leads to a decrease d fitness for another. This inverse fitness interactio n will increase the capabiliti es of
each population until the global optimal solution is attained [252]. Competitive coevolution ary models are especially suit-
able for problem domains where it is difficult to explicitly formulate an objective fitness function. The classic example of
competitive coevolution is [133], which coevolved a population of sorting networks . Competitive coevolution has been since
successfully applied to game playing strategies [231,210], evolving better pattern recognizers [153], coevolve complex agent
behaviors [248], etc.

Cooperative Coevolution is inspired by the ecological relationship of symbiosis where different species live together in a
mutually beneficial relationship. A general framework for cooperative coevolut ionary algorithms has been introduced by
Potter and De Jong [213] in 1994 for evolving solutions in the form of co-adapted subcomponent s. Potter’s model is usually
applied in situations where a complex problem can be decomposed into a collection of easier sub-probl ems. 5 Each sub-
problem is assigned to a population, such that individual s in a given population represen t potential component s of a larger
solution. Evolution of these populations occurs almost simultan eously, but in isolation to one anothe r, interactin g only to obtain
fitness. Such a process can be static, in the sense that the division s for the separate componen ts are decided a priori and never
altered, or dynamic, in the sense that populations of component s may be added or removed as the run progress es [279]. This
model has been analyzed from the evolutionary dynami cs perspecti ve in [171,279]. Cooperative CoEAs have had success in
adversaria l domains , e.g., designing artificial neural netwo rks [212], multiobjec tive optimiza tion [260], interaction frequency
[211], etc. Some variants of Cooperati ve CoEAs have been propos ed, such as co-evolutionar y particle swarms [131] and coevo-
lutionary differential evolution [246]. A combination of compet itive and cooperative mechanisms has been proposed by Goh
et al. [109] to solve multiobjec tive optimiza tion problems in a dynamic environm ent.

Further, both styles of coevolution (i.e., competitive and cooperati ve) can use multiple, reproducti vely isolated popula-
tions; both can use similar patterns of inter-pop ulation interaction, similar diversity maintenanc e schemes, and so on. Aside
from the novel problem-de composition scheme of cooperative coevolution , the most salient difference between cooperative
and competit ive coevolution resides primarily in the game-theor etic properties of the domains to which these algorithms are
applied [89].
3.2.4. Cultural algorithm s
Cultural Algorithms (CA) are a class of computational models derived from observing the cultural evolution process in

nature [225]. The term culture was first introduced by the anthropologi st Edward B. Taylor in his book, Primitive Culture
5 Problem decompo sition consists in determining an appropriate number of subcomponents and the role each will play. The mechanism of dividing the
optimization proble m f into n sub-problems and treating them almost independe ntly of one another strongly depends on propert ies of the function f.

96 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
[266]. Taylor offered a broad definition, stating that culture is ‘‘ that complex whole which includes knowledge, belief, art, morals,
law, custom, and any other capabilities and habits acquired by man as a member of society ’’.

The term cultural evolution has been more recently used to refer to the idea that the processes producing cultural stability
and change are analogous in important respects to those of biological evolution. In this view, just as biological evolution is
characterized by changing frequencies of genes in populations through time as a result of such processes as natural selection,
so cultural evolution refers to the changing distribution s of cultural attributes in populations, likewise affected by processes
such as natural selection but also by others that have no analog in genetic evolution. Using this idea, Reynolds developed a
computational model in which cultural evolution is seen as an inheritance process that operates at both a micro-evoluti onary
level in terms of transmission of genetic material between individua ls in a population and a macro-evoluti onary level in
terms of the knowled ge acquired based upon individua l experiences. Fundamental of the macro-ev olutionary level is Ren-
frew’s notion of individual’s mental mappa, a cognitive map or worldview, that is based on experience with the external
world and shapes interactions with it [218]. Individual mappa can be merged and modified to form group mappa in order
to direct the future actions of the group and its individuals.

CAs consist of three components: (1) A Population Space , at the micro-evoluti onary level, that maintains a set of individ-
uals to be evolved and the mechanism s for its evaluation, reproduction, and modification. In population space, any of the
evolutionary algorithms can be adopted and evolutionar y operators aiming at a set of possible solutions to the problem
are realized. (2) A Belief Space , at the macroevolutionar y level, that represents the knowledge that has been acquired by
the population during the evolutionary process. The main principle is to preserve beliefs that are socially accepted and dis-
card unaccept able beliefs. There are at least five basic categories of cultural knowledge that are important in the belief space
of any cultural evolution model: situational, normative, topographic or spatial, historical or temporal, and domain knowl-
edge [227]. (3) The Communications Protocol is used to determine the interaction between the population and the beliefs.

The basic framework of a CA is shown in Fig. 12 . In each generation, individuals in the population space are first evaluated
using an evaluation or performanc e function (Evaluate ()). An Acceptance function (Accept ()) is then used to determine which
of the individuals in the current population will be able to contribute with their knowledge to the belief space. Experiences of
those selected individuals are then added to the contents of the belief space via function Update (). The function Generate ()
includes the influence of the knowledge from the belief space, through the Influence () function, in the generation of off-
spring. The Influence function acts in such a way that the individuals resulting from the applicati on of the variation operators
(i.e., recombin ation and mutation) tend to approach the desirable behavior while staying away from undesirable behaviors.
Such desirable and undesirable behaviors are defined in terms of the information stored in the belief space. The two func-
tions Accept () and Influence () constitute the communi cation link between the population space and the belief space. This
supports the idea of dual inheritan ce in that the population and the belief space are updated each time step based upon feed-
back from each other. Finally, in the replacemen t phase, a selection function (Select ()) is carried out from the current and the
new populations. The CA repeats this process for each generation until the pre-specified termination condition is met.

As such, cultural algorithms are based on hybrid evolutionary systems that integrate evolutionary search and symbolic
reasoning [258]. They are particular ly useful for problems whose solutions require extensive domain knowledge (e.g., con-
strained optimization problems [56]) and dynamic environments (e.g., dynamic optimization problems [234]). The CA per-
formance has been studied using benchmark optimization problems [226] as well as applied successfully in a number of
diverse application areas, such as modeling the evolution of agricultu re [224], job shop scheduling problem [230], re-engi-
neering of Large-scale Semantic Networks [232], combinatori al optimization problems [196], multiobject ive optimization
problems [228], agent-ba sed modeling systems [229], etc. Recently, many optimization methods have been combined with
CAs, such as evolutionar y programmin g [56], particle swarm optimization [165], differential evolution algorithm [24], genet-
ic algorithm [282], and local search [195]. Adaptations of CAs have also been proposed (see for example [117] for multi-
population CAs).
Fig. 12. Cultural algorithm.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 97
3.2.5. Scatter search and path relinking
Scatter Search (SS) and its Path Relinking (PR) generalizati on were originally developed in the late 1990s by F. Glover

[106]. The fundamental concepts and principles of the method were first proposed in the 1970s [103] and were based on
formulation s, dating back to the 1960s [102], for combining decision rules and problem constraints. SS & PR differ from other
evolutionary algorithms by providing unifying principles for joining solutions based on generaliz ed path constructions (in
both Euclidean and neighborho od spaces) and by utilizing strategic designs where other approaches resort to randomizat ion.
They are also intimately related to the Tabu Search metaheuristic, and derive additional advantag es provided by intensifi-
cation and diversification mechanism s that exploit adaptive memory. Interesting connections between the SS & PR ap-
proaches and the particle swarm optimization methodology introduce d by Kennedy and Eberhart [145] have been
identified in [174].

More explicitly, Scatter Search and Path Relinking operate on a set of solutions, the reference set (RefSet), by combining
these solutions to create new ones. Typically, the reference set is relatively small. The algorithm starts with generating the
initial set of solution vectors satisfying the criteria of diversity. The subset of the best vectors are then selected to be reference
solutions. The notion of best is not limited to a measure given exclusively by the evaluation of the objective function but
covers the diversity of solutions. In particular , a solution may be added to the reference set if the diversity of the set improves
even when the objective value of the solution is inferior to that of other competing solutions. A set of new solutions – called
trial solutions – is generated by means of structured combinations of subsets of the current reference solutions. An improve-
ment procedure is then applied in order to try to improve the set of trial solutions. According to the result of such procedure,
the reference set and even the population of solutions are updated to incorporate both high-quality and diversified solutions.
The process is iterated until the reference set does not change anymore.

The main steps of the Scatter Search and Path Relinking algorithms are presented in Fig. 13 and are explained in the
following:

� SeedGenerati on () method creates one or more seed solutions, which are arbitrary trial solutions used to initiate the
remainder of the algorithm.
� DiversificationGenerator () method generates a collection of diverse trial solutions from an arbitrary trial solution (or seed

solution).
� Improvemen t () method is used to transform a trial solution into one or more enhanced trial solutions. The local search is

usually used as an improvement mechanism .
� ReferenceSet Update () method is responsib le for building and maintain ing a reference set consisting of a number of best

solutions found in the course of the algorithm. Solutions gain membership to the reference set according to their quality
or their diversity.
� SubsetGenera tion () method operates on the reference set to produce a subset of its solutions as a basis for creating com-

bined solutions.
� SolutionCombi nation () method transforms a given subset of solutions produced by the SubsetGenerati on () method into

one or more combined solution vectors. In SS, new solutions are created from linear combinations of subsets of the cur-
rent reference solutions in Euclidean space. The linear combinations are chosen to produce points both inside and outside
the convex regions spanned by the reference solutions. In PR, the process of generating linear combinations of a set of
reference solutions is generalized to neighborho od spaces, rather than Euclidean space. Linear combinati ons of points
Fig. 13. Scatter search and path relinking.

98 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
in the Euclidean space can be reinterpreted as paths between and beyond solutions in a neighborho od space. The path
between two solutions will generally yield solutions that share common attributes with the input solutions. To generate
the desired paths, it is only necessar y to select moves that perform the following role: upon starting from an initiating
solution, the moves must progressive ly introduce attributes contributed by a guiding solution (or reduce the distance
between attributes of the initiating and guiding solutions). The roles of the initiating and guiding solutions are inter-
changeable; each solution can also be induced to move simultaneously towards the other as a way of generating combi-
nations. Multiparent path generation possibilit ies emerge in PR by considering the combined attributes provided by a set
of guiding solutions, where these attributes are weighted to determine which moves are given higher priority.

SS & PR have been successfully applied to a wide range of applications, Glover et al. [108] provide overviews and a variety
of references on these methods and the book on Scatter Search [158] provides the basic principles and fundamenta l ideas
that will allow the readers to create successful applicati ons of scatter search. Recent works on SS & PR are surveyed in [219].

3.3. Swarm intelligence

Swarm Intelligen ce (SI) is an innovative distributed intelligent paradigm for solving optimization problems that takes
inspiration from the collective behavior of a group of social insect colonies and of other animal societies. SI systems are typ-
ically made up of a population of simple agents (an entity capable of performi ng/executing certain operations) interacting
locally with one another and with their environment. These entities with very limited individual capability can jointly (coop-
eratively) perform many complex tasks necessary for their survival. Although there is normally no centralized control struc-
ture dictating how individual agents should behave, local interactio ns between such agents often lead to the emergence of
global and self-organized behavior.

Several optimization algorithms inspired by the metaphor s of swarming behavior in nature are proposed. Ant colony opti-
mization, Particle Swarm Optimizatio n, Bacterial foraging optimizati on, Bee Colony Optimizatio n, Artificial Immune Systems
and Biogeography- Based Optimization are examples to this effect.

Fundamental s of Computational Swarm Intelligence Book [81] introduce s the reader to the mathematical models of social
insects collective behavior and shows how they can be used in solving optimization problems. Another book by Chan et al.
[44] aims at presenting recent developmen ts and applications concerning optimization with SI, making a focus on Ant and
Particle Swarm Optimization. Das et al. [61] provide a detailed survey of the state of the art research centered around the
applications of SI algorithms in bioinformat ics. The book by Abraham et al. [2] deals with the application of SI in data mining.

3.3.1. Ant colony optimization
Ant Colony Optimization (ACO) was introduced by M. Dorigo and colleagues [72,69,73] as a nature-inspire d metaheuristic

for the solution of hard combinatori al optimization problems. ACO takes inspiration from the foraging behavior of real ants.
When searching for food, these ants initially explore the area surrounding their nest by performi ng a randomized walk.
Along their path between food source and nest, ants deposit a chemical pheromo ne trail on the ground in order to mark some
favorable path that should guide other ants to the food source [71]. After some time, the shortest path between the nest and
the food source presents a higher concentration of pheromone and, therefore, attracts more ants. Artificial ant colonies
exploited this characterist ic of real ant colonies to build solutions to an optimization problem and exchange information
on their quality through a communicati on scheme that is reminiscent of the one adopted by real ants [70].

Let us denote a combinatorial optimization problem by P = (S,X, f), where S is the search space defined by a finite set of
decision variables Xi (i = 1, . . . , n),X is a set of constraints among the variables and f ð�Þ : S#Rþ is an objective function to be
minimized. A feasible solution s 2 S is an assignment to each variable of a value in its domain such that all the problem con-
straints in X are satisfied.

ACO encodes a given combinatori al optimization problem instance as a construction graph GCðV ; EÞ, a fully connected
graph whose nodes V are components of solutions, and edges E are connections between components. A solution to the given
combinatori al optimization problem is encoded as a feasible walk on the construction graph GC. We denote a solution com-
ponent by cj

i as the instantia tion of a variable Xi with a particular value v j
i . The definition of a solution component depends on

the problem under consideration. In case of the popular example of Traveling Salesman Problem (TSP) [161], a component of
the solution is a city that is added to a tour. Ants then need to appropriate ly combine solution components to form feasible
walks. A pheromone value sij is associate d with each solution component cj

i, this value serves as a form of memory, adapted
over time to indicate the desirability of choosing solution component cj

i. We denote the set of all solution components by C
and the set of all pheromo ne trail paramete rs by T .

The framewor k of a basic ACO metaheu ristic is shown in Fig. 14 . After initializing parameters and pheromo ne trails, the
ACO algorithm iterates over three phases: ConstructAntS olutions, DeamonA ctions (optional) and UpdatePher omones.

Initialization: At the beginning of the algorithm, parameters are set and all pheromone variables are initialized to a value
s0, which is a parameter of the algorithm.

ConstructAn tSolutions : A set of m artificial ants incremental ly and stochasti cally builds solutions to the considered
problem starting from an initially empty partial solution sp = ;. At each constructi on step, the current partial solution sp

is extended by adding a feasible solution component cj
i from the set NðspÞ# C. C denotes the set of all possible solution com-

ponents and NðspÞ is defined as the set of components that can be added to the current partial solution sp while maintain ing

Fig. 14. Ant colony optimization.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 99
feasibility. In order to choose, which of the available solution components cj
i should be added to the current partial solution

sp, a probabilistic choice is made. This decision is usually influenced by the amount of pheromone sij associated with each of
the elements of NðspÞ, and by heuristic information about the problem. The most widely used rule for the stochastic choice is
that originally proposed for Ant System (AS) [73] and given in Eq. (8).
p cj
ijsp

� �
¼

sa
ij: g cj

i

� �h ib

P
cl

i
2N ðspÞs

a
ij: g cl

i

� �� �b ;8cj
i 2 NðspÞ ð8Þ
The heuristic information, denoted by the function g(�), assigns to each feasible solution component cj
i 2 NðspÞ a heuristic

value. This value is used by the ants to make probabili stic decisions on how to move on the construction graph. The param-
eters a and b determine the relative respective influence of the pheromo ne values and the heuristic values on the decisions of
the ant [75].

DaemonActi ons : Daemon actions refer to any centraliz ed operation which cannot be performed by a single ant. The most
used daemon action consists in the application of local search to the constructed solutions.

UpdatePhe romones : The pheromone update process is intended to make solution components belonging to good solu-
tions more desirable for ants operating in the following iterations. It consists of two mechanism s: pheromone evaporation and
pheromone deposit . The pheromone evaporation , applied whilst constructing solutions, is the process by means of which the
pheromone trail intensity on the components decreases over time. The goal is to make the solution components added to a
partial walk on the construction graph less and less attractive as they are visited by ants. From a practical point of view, pher-
omone evaporation is needed to avoid a premature convergence of the algorithm to suboptimal solutions and then favoring
the exploration of not yet visited areas of the search space. The pheromone deposit is applied after all ants have finished con-
structing a solution. The pheromone values are increased on solution components that are associate d with a chosen set Supd

of high quality solutions. The goal is to make these solution components more attractive for ants in the following iterations.
Many different schemes for pheromone update have been proposed within the ACO framework. The pheromone update is
commonly implemented as [75]:
sij ¼ ð1� qÞsij þ
X

s2Supd jc
j
i
2s

gðsÞ ð9Þ
where Supd is the set of good solutions that are used to deposit pheromo ne, gð�Þ : S # Rþ is a function such that
f ðsÞ < f ð�sÞ) gðsÞP gð�sÞ is commonly called the quality function , 0 < q 6 1 is the pheromone evaporati on rate.

Different ACO algorithms have been proposed, all share the same characterist ic idea. A survey on theoretical results on
ACO and its most notable applications are discussed in [74,31,71,70,8]. The authors discussed the relations between ACO
and other approximat e methods for optimization, focused on some research efforts and identified some open questions. A
recent overview of ACO [75] reveals that the majority of the currently published articles on ACO are clearly on its application
to computational ly challenging problems. The authors believe that ACO algorithms will show their greatest advantage when
they will be systematically applied to real-worl d applications with time-varyin g data, multiple objectives, or when the avail-
ability of stochastic informat ion about events or data is rather common.

3.3.2. Particle swarm optimization
Particle Swarm Optimiza tion (PSO) was initially introduced in 1995 by James Kennedy and Russell Eberhart as a global

optimization technique [145]. It uses the metaphor of the flocking behavior of birds to solve optimization problems. There
are a number of differenc es between PSO and evolutionary optimization illustrated in [7], where some of the philosophical
and performance differenc es are explored.

In PSO algorithm many autonomous entities (particles) are stochasti cally generate d in the search space. Each particle is a
candidate solution to the problem, and is represented by a velocity, a location in the search space and has a memory which
helps it in remembering its previous best position. A swarm consists of N particles flying around in a D-dimensional search
space. Moreover, every particle swarm has some sort of topology describing the interconnec tions among the particles. The

100 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
set of particles to which a particle i is topologically connected is called i’s neighborhood. The neighborho od may be the entire
population or some subset of it. Various topologies have been used to identify ‘‘some other particle’’ to influence the indi-
vidual. The two most commonl y used ones are known as gbest (for ‘‘global best’’) and lbest (for ‘‘local best’’). The traditional
particle swarm topology known as gbest was one where the best neighbor in the entire population influenced the target par-
ticle. While this may be conceptu alized as a fully connected graph. The lbest topology, introduce d in [79], is a simple ring
lattice where each individual is connected to K = 2 adjacent members in the population array, with toroidal wrapping (nat-
urally, this can be generalized to K > 2). Kennedy et al. [147] pointed out that the gbest topology had a tendency to converge
very quickly with a higher chance of getting stuck in local optima. On the other hand, the lbest topology was slower but ex-
plored more fully, and typically ended up at a better optimum. The effects of various population topologies on the particle
swarm algorithm were investigated in [148].

In the initialization phase of PSO, the positions and velocities of all individuals are randomly initialize d. At each iteration,
a particle i adjusts its position Xi

!
and velocity Vi

!
along each dimension d of the search space, based on the best position Pi

!
it

has encountered so far in its flight (also called the personal best for the particle) and the best position Pg
	!

found by any other
particle in its topological neighborhood.

The velocity defines the direction and the distance the particle should go. It is updated according to the following
equation:
Vidðt þ 1Þ ¼ VidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞ ð10Þ
where i = 1, 2, . . . ,N, and N is the size of the swarm; u1 and u2 are two random numbers uniformly distribut ed in the range
[0, 1], C1 and C2 are constant multiplier terms known as accelerati on coefficients. They represent the attraction that a particle
has either towards its own success (the cognitive part) or towards the success of its neighbors (the social part), respectively.

The position of each particle is also updated in each iteration by adding the velocity vector to the position vector, i.e.,
Xidðt þ 1Þ ¼ XidðtÞ þ Vidðt þ 1Þ ð11Þ
The general structure of the PSO algorithm can be summarized in Fig. 15 .
In order to keep the particles from flying out of the problem space, Eberhart et al. [78] defined a clamping scheme to limit

the velocity of each particle, so that each component of Vi
!

is kept within the range [�Vmax, +Vmax]. The choice of the param-
eter Vmax required some care since it appeared to influence the balance between explorati on and exploitati on. As has been
noted in [7], the Vmax particle swarm succeeds at finding optimal regions of the search space, but has no feature that enables
it to converge on optima.

To overcome the problem of premature convergence of PSO, many strategies have been developed but by far the most
popular are inertia and constriction. The inertia weight x, introduced in [244], plays the role of balancing the global search
and local search. It can be a positive constant or even a positive linear or nonlinear function of time. A large inertia weight
encourages global exploration (i.e., diversifies the search in the whole search space) while a smaller inertia weight encour-
ages local exploitation (i.e., intensifies the search in the current region) [245]. Using the inertia weight, the rule in Eq. (10)
becomes:
Vidðt þ 1Þ ¼ xVidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞ ð12Þ
Fig. 15. Particle swarm optimization.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 101
Rather than applying inertia to the velocity memory, Clerc and Kennedy applied a constriction factor v [52]. The velocity
update scheme proposed by Clerc can be expressed for the dth dimension of ith particle as:
Vidðt þ 1Þ ¼ vðVidðtÞ þ C1u1ðPidðtÞ � XidðtÞÞ þ C2u2ðPgdðtÞ � XidðtÞÞÞ ð13Þ
The value of the constriction factor is calculated as follows:
v ¼ 2
u� 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p ð14Þ
where u = u1 + u2 > 4.
One of the drawbacks of the standard PSO is premature converge nce and trapping in local optima. A great effort has been

deployed to provide PSO convergence results through the stability analysis of the trajectories [198,52,270]. These studies
were aimed at understand ing theoreticall y how PSO algorithm works and why under certain conditions it might fail to find
a good solution. Considerable research has been also conducted into further refinement of the original formulat ion of PSO in
both continuous and discrete problem spaces [146], and areas such as dynamic environments [29], parallel implementati on
[16] and MultiObject ive Optimiza tion [223]. Modified versions of PSO based on diversity, mutation, crossove r and efficient
initializatio n using different distribution s and low-disc repancy sequences are discussed in [199]. A large number of hybrid
variants have been proposed, such as [269,268,136,8 0] . In 2008, Poli categorized a large number of publications dealing with
PSO applications stored in the IEEE Xplore database [207].

So many papers related with the applications of PSO have been presented in the literature and several survey papers
regarding these studies can be found in [147,51,208,17,26 2,38] .

3.3.3. Bacterial foraging optimizat ion algorithm
Bacterial Foraging Optimization Algorithm (BFOA), introduce d by Passino in 2002 [200], is a relatively new paradigm for

solving optimization problems , inspired by the social foraging behavior of Escherichia coli (E. coli) bacteria present in the hu-
man intestines. For many organisms, the survival- critical activity of foraging involves aggregat ions of organisms in groups,
trying to find and consume nutrients in a manner that maximizes energy obtained from nutrient sources per unit time spent
foraging, while at the same time minimizing exposure to risks from predators [201]. Foraging in groups, or social foraging, is
a key element for avoiding predators and increasing the chance of finding food. A particular ly interesting group foraging
behavior has been demonst rated for several motile species of bacteria, including E. coli bacteria.

During foraging, individual bacteria move by taking small steps while searching for nutrients. Locomotion is achieved via
a set of relatively rigid flagella that help an E. coli bacterium to move in alternating periods of swims and tumbles (tumbles
serve to randomly reorient the bacteria). This alternation between the two modes is called chemotactic steps. Bacteria may
respond directly to local physical cues such as concentratio n of nutrients or distribution of some chemicals (which may be
laid by other individuals). They typically interact with other bacteria and with their growth substrata , such as solid surfaces,
to give rise to complex behavior patterns. To facilitate the migration of bacteria in viscous substrates, such as semisolid agar
surfaces, E. coli cells arrange themselv es in a traveling ring and move over the surface of the agar in a coordinate manner
called swarming motility. This is in contrast to swimming motility, which represents individual cell motility in aqueous envi-
ronment [34]. After the bacterium has collected a sufficient amount of nutrients , it can self-reproduce and divide into two.
The bacteria population can also suffer a process of elimination, through the appearan ce of a noxious substance, or to dis-
perse, through the action of another substance, generating the effects of eliminati on and dispersion.

Based on these biological concepts, the BFOA is formulated on the basis of the following steps: chemota xis, swarming,
reproduction and elimination-dis persal. The general procedure of BFO algorithm is outlined in Fig. 16 .

Chemotaxis: Chemotaxis is the process in which bacteria direct their movements according to certain chemical s in their
environment. This is important for bacteria to find food by climbing up nutrient hills and at the same time avoid noxious
substances. The sensors they use are receptor proteins which are very sensitive and possess high gain. That is, a small change
in the concentration of nutrients can cause a significant change in behavior [167].

Suppose that we want to find the minimum of J(h), where h 2 RD is the position of a bacterium in D-dimension al space
and the cost function J(h) is an attractan t- repellant profile (i.e., it represents where nutrients and noxious substances are
located). Then J(h) 6 0 represents a nutrient rich environment, J(h) = 0 represents neutral medium and J(h) > 0 represents
noxious substances. Let hi (j,k,l) represent ith bacterium at jth chemotactic , kth reproducti ve and lth elimination- dispersal
step.

The position of the bacterium at the (j + 1)th chemotactic step is calculated in terms of the position in the previous che-
motactic step and the step size C(i) (termed as run length unit) applied in a random direction /(i):
hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ/ðiÞ ð15Þ
/(i) is a unit length random direction to describe tumble and is given by:
/ðiÞ ¼ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q ð16Þ

Fig. 16. Bacterial foraging optimization algorithm.

102 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
where DðiÞ 2 RD is a randomly generate d vector with elements within the interval [�1, 1]. The cost of each position is deter-
mined by the following equation:
Jði; j; k; lÞ ¼ Jði; j; k; lÞ þ Jccðh; hiðj; k; lÞÞ ð17Þ
It can be noticed through Eq. (17) that the cost of a determined position J(i, j,k, l) is also affected by the attractive and repul-
sive forces existing among the bacteria of the population given by Jcc (see Eq. (18)). If the cost at the location of the ith bac-
terium at j + 1th chemotactic step, denoted by J(i, j + 1, k, l), is better (lower) than at the position hi(j,k,l) at the jth step, then

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 103
the bacterium will take another chemotactic step of size C(i) in this same direction, up to a maximum number of permissible
steps, called Ns.

Swarming: Swarming is a particular type of motility that is promoted by flagella and allows bacteria to move rapidly over
and between surfaces and through viscous environm ents. Under certain conditions, cells of chemota ctic strains of E. coli ex-
crete an attractant, aggregate in response to gradients of that attractant, and form patterns of varying cell density. Central to
this self-organization into swarm rings is chemotaxis. The cell-to-cell signaling in E. coli swarm may be represented by the
following function:
Jccðh; hiðj; k; lÞÞ ¼
Xs

i¼1

�dattractant exp �wattractant

XD

m¼1

hm � hi
m

� �2
 !" #

þ
Xs

i¼1

hrepellant exp �wrepellant

XD

m¼1

hm � hi
m

� �2
 !" #

ð18Þ
where h = [h1,h2, . . . , hD]T is a point in the D-dimensional search space, Jcc(h,hi (j,k, l)) is the objective function value that is to
be added to the actual objective function, and dattractant, wattractant, hrepellant, wrepellant are the coefficients which determine the
depth and width of the attractant and the height and width of the repellant. These four parameters are to be chosen judi-
ciously for a given problem. hi

m is the mth dimension of the position of the ith bacterium hi in the population of the S bacteria.
Reproduction: After Nc Chemotaxis steps (steps comprehend ing the movement and the cost determination of each bac-

terium position), the bacteria enter into the reproductive step. Suppose there are Nre reproduction steps. For reproduction,
the least healthy bacteria will die, these are the bacteria that could not gather enough nutrients during the chemota ctic
steps, and will be replaced by the same number of healthy ones, thus the population size remains constant. The healthiest
bacteria (those having sufficient nutrients and yielding lower values of fitness function) asexually split into two bacteria and
will be placed in the same location.

Elimination and Dispersal : Changes in the environment can influence the prolifera tion and distribution of bacteria. So
when local environmental change occurs, gradually (e.g. via consumptio n of nutrients) or suddenly due to some other reason
(e.g. a significant local rise of temperature), all the bacteria in a region may die or disperse into some new part of the envi-
ronment. This dispersal has the effect of destroying all the previous chemotactic processes. However , it may have good im-
pact too, since dispersal may place bacteria into a nutrient rich region. Let Ned be the number of elimination-dis persal events
and, for each elimination- dispersal event, each bacterium in the population is subjected to eliminati on-dispersal with prob-
ability Ped, in such a way that, at the end, the number of bacteria in the population remains constant (if a bacterium is elim-
inated, another one is dispersed to a random location).

In [62], the authors discussed some variations on the original BFOA algorithm and hybridizations of BFOA with other opti-
mization techniques. They also provided an account of most of the significant applications of BFOA. However , experimenta-
tion with complex optimization problems reveal that the original BFOA algorithm possesses a poor converge nce behavior
compared to other nature-inspi red algorithms, like GA and PSO, and its performance also heavily decreases with the growth
of the search space dimensional ity.
3.3.4. Bee colony optimization -based algorithms
Bee colony optimization-bas ed algorithms are a new type of algorithm inspired by the behavior of honeybee colony that

exhibits many features that can be used as models for intelligent systems and collective behavior. These features include
waggle dance (communication), food foraging , queen bee , task selection , collective decision making , nest site selection , mating
during flight and marriage in the bee colony, floral/pheromone laying and navigatio n systems [143]. Each model defines a given
behavior for a specific task.

The structure of a bee hive . Honeybee colonies contain a single queen mated to a large number of males (drones) and
thousands of workers. The queen is the only egg-laying female in a hive of bees, it secretes a pheromone that keeps all other
females in the colony sterile. A fertile queen is able to selectively lay fertilized or unfertilized eggs. Fertilized eggs hatch into
workers or virgin queens, while unfertilized eggs produce drones. The individual worker bees are always females because
male drones do not contribute to social life apart from mating with queens during nuptial flights. The workers perform dif-
ferent tasks as nurses tending, nest-building, hive defense, and as foragers by collecting nectar and pollen to make honey and
feed the brood.

Based on the queen bee concept, a handle of algorithms were developed in the literature, like Queen-bee Evolution Algo-
rithm (QBE) [141] and Queen bee based crossover operator for GA [144].

Bee Dance and Communic ation. Bees exchange information about the location of food sources by performing a series of
movements, often referred to as the waggle dance . Each hive has a so-called dance floor area in which the bees that have dis-
covered nectar sources dance, in that way trying to promote food locations and persuade their nestmates to follow them. If a
bee decides to leave the hive to collect nectar, it follows one of the bee dancers to one of the nectar areas.

Some bee colony based algorithms have been inspired by the communicati ve procedures of honey bees like Bee hive algo-
rithm [278] and Discrete Bee Dance Algorithm [113].

Mating and marriage process. The queen bee is responsible for producing all of the eggs for the honey bee colony. Unlike
organisms that mate again and again for the production of each offspring, the queen honey bee mates but once for a lifetime

104 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
of egg laying. This occurs in a series of mating flights far from the nest. During these flights, the queen bee will mate in the air
with between seven and twenty drone bees. Sperm from the different drones will be deposited and accumulate d in the
queens’ spermatheca to form the genetic pool of potential broods to be produced by the queen. For every fertilized egg that
is laid by a queen, sperm is retrieved randomly from the mixture in its spermatheca. By mating with a number of drones, the
queen is assured of bringing genetic diversity to the colony’s offspring. Some of those diverse genes may be just the ones
needed for the colony to survive in a changing environm ent.

The main algorithm proposed based on the process of marriage in real honey-bee is the Marriage in Honey Bees Optimi-
zation algorithm (MBO) [1]. In MBO algorithm, the mating-flight can be visualized as a set of transitions in a state-space (the
environment) where the queen moves between the different states in the space in some speed and mates with the drone
encountered at each state probabilisticall y. At the beginning of the mating flight, the queen is initialized with some energy
content and returns to its nest either when its energy is depleted or when its spermatheca is full. A drone mates with a queen
probabilistical ly using the following equation :
probðQ ;DÞ ¼ e�dif=speed ð19Þ
where prob(Q,D) is the probability of adding the sperm of drone D to the spermathec a of queen Q (that is, the probability of a
successful mating); dif represents the absolute difference between the fitness of D and the fitness of Q; speed represents the
flight speed of the queen.

After each transition in the space, the queen’s speed and energy are reduced using the following equations:
speedðt þ 1Þ ¼ a � speedðtÞ ð20Þ
energyðt þ 1Þ ¼ energyðtÞ � step ð21Þ
where a is a factor 2]0, 1[and step is the amount of energy reduction after each transition.
The generic MBO algorithm is presented in Fig. 17 .
Bee Foraging. The foraging behavior of honey bees has been extensively studied and is a useful example of self-organi-

zation. Scout-Bees in nature leave the hive and explore the areas around the colony’s hive. They search for sources of pollen,
nectar and propolis. Finishing the search, scout bees go back to the hive and transfer the collected nectar to receiver bees,
which then store it in cells. Upon their return from a foraging trip, bees communicate the distance, direction, and quality
of a flower site they have explored to their nestmates by making waggle dances on a dance floor inside the hive. The prob-
ability that a dance is followed by a naive bee is correlated with the duration of the dance. Thus dances for a source of high
quality usually attract more followers than dances for a source of low quality. Typically a colony will know each day about a
dozen or more potential food sources, each with its own level of profitability, determined by such variables as the distance
Fig. 17. Marriage in honey bees optimization algorithm.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 105
from the hive and the abundance and quality of the food. To gather its food efficiently, a colony must deploy its foragers
among the flower patches in accordance with their profitabilities [242].

Foraging-ins pired optimizati on algorithms make use of the bees’ decentralize d foraging behavior. During foraging honey
bees balance exploitation of known food sources with exploration for new – and potentially better – food sources in a dy-
namic environm ent. Several foraging based algorithms have been proposed, such as the Bee Colony Optimiza tion Metaheu-
ristic (BCO) [169], Artificial Bee Colony Algorithm (ABC) [142] and Virtual Bee Algorithm (VBA) [283].

In the ABC algorithm, the bees in a colony are divided into three groups: employed bees (forager bees), onlooker bees (ob-
server bees) and scouts (explorer bees). The first half of the colony consists of the employed bees and the second half includes
the onlooker s. The number of employed bees is equal to the number of food sources around the hive. The employed bee
whose food source has been exhausted by the bees becomes a scout for searching new food sources randomly. An employed
bee carries the information about food source and shares this information with a certain probabili ty by waggle dance. On the
other hand onlooker s observe the waggle dance and so are placed on the food sources by using a probabili ty based selection
process. As the nectar amount of a food source increases, the probability value with which the food source is preferred by
onlookers increases, too.

The main steps of the ABC algorithm are given in Fig. 18 .
Nest site selection. As a bee colony becomes overcrowded, a third of the hive stays behind and rears a new queen, while a

swarm of thousands departs with the old queen to produce a daughter colony. Many scout bees working in parallel explore
for potential nest sites, advertise their discoveries to one another, engage in open deliberati on, choose a final site, and nav-
igate together, as a swirling cloud of bees, to their new home [241]. In contrast to foraging, where bees can typically forage at
different locations simultaneously , nest-site selection always involves the selection of a single new site.

Algorithms that take their inspiration from the bee’s nest site selection behavior apply the principle of decision-ma king
process that enables a colony to identify and converge towards one best solution. Several studies, both experime ntal and
theoretical, have investiga ted nest-site selection in honeybees [68,143].

Navigation. Bees can learn the directions and distances of their travels between hive and food sources by a process called
path integration . A familiar food source is specified in the bee’s memory by a vector encoding distance and direction from the
hive. The directional component is defined by the sun compass and the distance component may be estimated by means of
energy investme nt during flight. Also, bees can retrieve flight directions from landmarks when the sun compass is not avail-
able. This vector that is the output of the path integration process is used for navigation on subsequent trips to the food, and
it is also what the bee encodes in its waggle dance. It thus appears that spatial navigation in bees, as in other animals and
humans, is not a unitary process, but involves multiple navigationa l systems [178].

Some bee colony based algorithms have been designed with inspiration from honey bee’s navigational system, like in
[163].

Task selection . Task allocation operates without any central or hierarchical control to direct individuals into particular
tasks. The queen does not issue commands and workers do not direct the behavior of other workers. Two kinds of factors
determine what task an individual worker performs, and when it performs it: (1) internal factors , based on some attribute
of the individual and (2) external factors , based on some environmental stimulus . One internal factor associated with task
is worker age. Younger bees work inside the nest whereas older bees perform defensive and foraging tasks that occur outside
the nest. This leads to a strongly aged-based division of labor. Another important factor affecting the tendency to perform a
task has a genetic origin. A honey bee colony is characteri zed by high genetic diversity among its workers, generate d by high
levels of multiple mating by its queen. Honeybees from different patrilines vary in the rate at which they proceed from one
task to the next as they grow older. In addition, honey bee colonies change their organizational structure in response to var-
iation in colony condition s and the abundance of resource s. For example, a honeybee forager’s decision whether to collect
nectar or remain in the nest depends on how much nectar is already stored in the nest. When extra clean-up work requires
more nest-maintenance workers to be recruited from the reserves inside the nest, the current foragers are more likely to
remain inside the nest [112].
Fig. 18. Artificial bee colony algorithm.

106 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
Inspired by the cooperative behavior of social honey bees, some algorithms have been develope d, among them are Decen-
tralized Honey Bee algorithm [192], Swan [118] and Honey Bee Teamwork Strategy [233].

A recent literature survey of the algorithms inspired by bees’ behavior in the nature and their applicati ons is given in
[143].
3.3.5. Artificial immune systems
The immune system is a network of cells, tissues, and organs that work together to defend the body against attacks by

foreign invaders. The immune system protects organisms from pathogen s (harmful micro-organi sms such as bacteria and
viruses) without prior knowledge of their structure. It has powerful learning and memory capabilities and presents an evo-
lutionary type of response to infectious foreign elements [83]. This property , along with the highly distributed, adaptive , and
self-organizi ng nature offers rich metaphors for its artificial counterpart. Artificial Immune Systems (AIS) attempts to apply
immune system principles to optimization and machine learning problems [264].

There are several reviews of AIS research [127,287,263,1 28] , and a number of books including [64] and [39] covering the
field. The most recent and comprehensive survey on AIS is possibly that from Dasgupta et al. [65].

A few computational algorithms were developed and applied to several different types of problems in order to demon-
strate how principles gleaned from the immune system can be used in the design of engineeri ng tools for solving complex
tasks. Four major AIS algorithms have been constantly developed and gained popularity: (1) negative selection algorithms;
(2) artificial immune networks ; (3) clonal selection algorithms; and (4) the danger theory and dendritic cell algorithms. De-
tailed discussion of these algorithms can be found in [264] and [65].

Negative Selection Based Algorithms. The key to a healthy immune system is its remarkabl e ability to distingui sh be-
tween the body’s own cells, recognized as ‘self’, and foreign cells, or ‘nonself’. Negative selection is the main mechanis m in the
thymus that eliminates self-reacti ve cells, i.e. T-cells whose receptors recognize and bind with self antigens presented in the
thymus. Thus, only T-cells that do not bind to self-protein s are allowed to leave the thymus. These matured T-cells then cir-
culate throughout the body performing immunolog ical functions and protectin g the body against foreign antigens.

The negative selection algorithm is based on the principles of the self–nonself discrimination in the immune system and
was initially introduced by Forrest et al. in 1994 [96] to detect data manipulation caused by a virus in a computer system.
The starting point of this algorithm is to produce a set of self strings, S, that define the normal state of the system. The task
then is to generate a set of detectors, D, that only bind/recognize the complemen t of S. These detectors can then be applied to
new data in order to classify them as being self or non-self. This negative selection algorithm can be summarized in Fig. 19 .

A diverse family of negative selection algorithms has been developed and has been extensively used in anomaly detec-
tion. A survey on negative selection algorithms was published in [138]. Some other researchers proposed negative selection
algorithms that can be found in [264,65].

Clonal Selection Based Algorithms . The clonal selection theory postulates that a vast repertoire of different B-cells, each
encoding antibodies with a predetermin ed shape and specificity, is generated prior to any exposure to an antigen. Exposure
to an antigen then results in the proliferation or clonal expansion of only those B-cells with antibody receptors capable of
reacting with part of the antigen. However, any clone of the activated B-cells with antigen receptors specific to molecule s
of the organism’s own body (self-reactive receptors) is eliminated. Here, the affinity maturation of the B-cells takes place.
During proliferation , a hypermutat ion mechanism becomes activated which diversifies the repertoir e of B-cells. Antigen en-
sures that only those B-cells with high-affinity receptors are selected to different iate into plasma cells and memory cells.
Memory B-cells are developed to make a more effective immune response to antigens that had been encounter ed.

Many algorithms have been inspired by the adaptive immune mechanisms of B-cells [65]. The general one, named CLO-
NALG [41], is based on clonal selection and affinity maturation principles . One cell generation in this algorithm includes the
Fig. 19. Generic negative selection algorithm.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 107
initiation of candidate solutions, selection, clone, mutation, reselection, and population replacemen t, which are somehow
similar to evolutionary algorithms. When applied to pattern matching, CLONALG produces a set of memory antibodies M that
match the members in a set S of patterns considered to be antigens. Fig. 20 outlines the working of CLONALG.

Many other clonal selection based algorithms have been introduced in the literature and have been applied to a wide
range of optimization and clustering problems [128]. A summary of the basic features of these algorithms, their application
areas and hybridization was published in [267].

Artificial Immune Network s. The immune Network theory, as originally proposed by Jerne [137], states that the immune
system is a network in which antibodies, B-cells and T-cells recognize not only things that are foreign to the body, but also
each other, creating a structura lly and functionally plastic network of cells that dynamically adapts to stimuli over time. It is
thus the interactions between cells that give rise to the emergence of complex phenomena such as memory [83] and other
functionaliti es such as tolerance and reactivity [126]. The paper by Farmer et al. [83] is considered the pioneer work which
inspired a variety of immune-ne twork algorithms. One algorithm that has received much attention is aiNet first developed
by de Castro and Von Zuben for the task of data clustering [67] and specialized into a series of algorithms for optimization
and data-mining in a variety of domains over the following years [40,53]. AiNet is a simple extension of CLONALG but ex-
ploits interactions between B-cells according to the immune network theory. The aiNet algorithm is illustrated in Fig. 21 .

A review of different artificial immune network models is presented in the paper by Galeano et al. [98]. Some other exist-
ing Immune network models can be found in [65].

Danger Theory inspired algorithms . The Danger theory attempts to explain the nature and workings of an immune re-
sponse in a way different to the widely held self/nonself viewpoint. It does not deny the existence of self–nonself discrim-
ination but rather states that the human immune system can detect danger in addition to antigens in order to trigger
appropriate immune responses. Danger theory inspired algorithms are still in their infancy. The first paper that proposed
an application of the Danger Theory was published in 2002 by Aickelin and Cayzer [4]. In 2003, Aickelin et al. proposed
the Danger Project [3], an interdisciplina ry project which aims at understanding from an immunologica l perspecti ve the
mechanism s of intrusion detection in the human immune system and applying these findings to AIS with a view to improv-
ing applications in computer security (see for example [116,149]).

Dendritic Cell algorithms . Dendritic cells (DCs) are immune cells that form part of the mammalian immune system.
Their main function is to process antigen material and present it on the surface to other cells of the immune system, thus
functioning as antigen-pre senting cells and regulators of the adaptive immune system through the production of immuno-
regulatory cytokines (immune messenger proteins). DCs are responsible for some of the initial pathogen ic recognition pro-
cess, sampling the environment and differentiating depending on the concentr ation of signals, or perceived misbehavio r, in
the host tissue cells. Maturation of the immature DCs is regulated in response to various safe and danger signals. DCs can
combine these signals with bacterial signatures (or PAMPs for Pathogen Associated Molecular Patterns Signals) to generate
different output concentratio ns of costimulato ry molecules, semi-mature cytokines and mature cytokines.

The dendritic cell algorithm (DCA) is based on the abstracti on of the functionality of the biological DCs. It was first con-
ceptualized and developed by Greensmith et al. [115] (see Fig. 22), which introduced the notion of danger signals, safe sig-
nals and PAMPs which all contribute to the context of a data signal at any given time.

As stated in [114], most of the works that applied DCA were related to computer security, but there are also applications
in wireless sensor networks , robotics and scheduling of processes.

Over the last few years, important investigatio ns have focused on the proposal of theoretical frameworks for the design of
AIS [39]; theoretical investiga tions into existing AIS can be found in [99,265]. Other newly developed models have been re-
cently reported in the literature, for example, Humoral Immune Response, and Pattern Recogniti on Receptor Model. The
interested reader is referred to [65] for a detailed discussion of them.
Fig. 20. Generic clonal selection algorithm.

Fig. 21. Generic immune network algorithm.

Fig. 22. Generic dendritic cell algorithm.

108 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 109
3.3.6. Biogeogra phy-based optimization
Biogeography -Based Optimizatio n algorithm (BBO), developed by Dan Simon in 2008 [247], was strongly influenced by

the equilibriu m theory of island biogeography [173]. The basic premise of this theory is that the rate of change in the number
of species on an island depends critically on the balance between the immigrat ion of new species onto the island and the
emigration of established species.

BBO algorithm maintains a set of candidat e solutions called islands (or habitats), and each island feature is called a Suit-
ability Index Variable (SIV). A quantitat ive performanc e index, called Habitat Suitability Index (HSI), is used as a measure of
how good a solution is, which is analogous to fitness in other population-bas ed optimization algorithms . The greater the total
number of species on the island, which corresponds to a high HSI, the better the solution it contains. The number of species
present on the island is determined by a balance between the rate at which the new species arrive and the rate at which the
old species become extinct on the island. In BBO, each individual has its own immigration rate (k) and emigration rate (l).
These parameters are affected by the number of species (S) in an island and are used to probabili stically share information
between islands. Islands with smaller populations are more vulnerable to extinctio n (i.e. the immigration rate is high). But as
more species inhabit the island, the immigration rate reduces and the emigration rate increases. In BBO, good solutions (i.e.
islands with many species) tend to share their features with poor solutions (i.e. islands with few species), and poor solutions
accept a lot of new features from good solutions. Maximum immigration rate (I) occurs when island is empty and decreases
as more species are added and maximum emigration rate (E) occurs when all possible species Smax are present on the island.
The immigration and emigration rates when there are S species in the habitat are given by Eq. (22):
kS ¼ I 1� S
Smax

� �

lS ¼ E
S

Smax

� �
:

ð22Þ
For the sake of simplicit y, the original BBO has considered a linear migration model where the immigrat ion rate kS and the
emigration rate lS are linear functions of the number of species S in the habitat, but different mathematical models of bio-
geography, that included more complex variables, are presented in [173]. There are, indeed, other important factors which
influence migration rates between habitats, including the distance to the nearest neighboring habitat, the size of the habitat,
climate (temperature and precipitatio n), plant and animal diversity, and human activity. These factors make immigrat ion
and emigration curves complicated, contrary to those described in the original BBO paper [247]. To verify the influence of
different migration models on BBO performanc e, Haiping Ma [172] explores the behavior of six different migration models,
and investigates performance through 23 benchmark functions with a wide range of dimensions and diverse complexitie s.
Experimental results clearly show that different migration models in BBO result in significant changes in performanc e, and
BBO migration models which are closer to nature (that is, nonlinear) are significantly better than linear models for most of
the benchmarks .

We now consider the probability PS that the habitat contains exactly S species. The number of species will change from
time t to time (t + Dt) as follows:
PSðt þ DtÞ ¼ PSðtÞð1� kSDt � lSDtÞ þ PS�1kS�1Dt þ PSþ1lSþ1Dt ð23Þ
which states that the number of species on the island in one time step is based on the total number of current species on the
island, the new immigrants and the number of species who leave during the time period. We assume here that Dt is small
enough so that the probabili ty of more than one immigration or emigration can be ignored. In order to have S species at time
(t + Dt), one of the following conditions must hold:

� There were S species at time t, and no immigrat ion or emigration occurred between t and (t + Dt);
� One species immigrat ed onto an island already occupied by (S � 1) species at time t.
� One species emigrate d from an island occupied by (S + 1) species at time t.

The limit of (23) as Dt ? 0 is given by Eq. (24).
_PS ¼
�ðkS þ lSÞPS þ lSþ1PSþ1 if S ¼ 0
�ðkS þ lSÞPS þ kS�1PS�1 þ lSþ1PSþ1 if 1 6 S 6 Smax � 1
�ðkS þ lSÞPS þ kS�1PS�1 if S ¼ Smax

8><
>: ð24Þ
The BBO algorithm is overall described in Fig. 23 .
A habitat’s HSI can change suddenly due to apparently random events (unusually large flotsam arriving from a neighbor-

ing habitat, disease, natural catastrophes , etc.). BBO models this phenomena as SIV mutation , and uses species count prob-
abilities to determine mutation rates. The species count probability PS indicates the likelihoo d that a given solution S was
expected a priori to exist as a solution for the given problem. In this context it should be remarked that very high HSI solu-
tions and very low HSI solutions are both equally improbable. Medium HSI solutions are relatively probable. If a given solu-
tion has a low probability, then it is likely to mutate to some other solution. Conversel y, a solution with high probability is
less likely to mutate. Mutation is used to enhance the diversity of the population, thereby preventing the search from stag-

Fig. 23. Biogeography based optimization algorithm.

Fig. 24. Migration.

110 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
nating. If a habitat S is selected to execute the mutation operation, then a chosen variable (SIV) is randomly modified based
on its associate d probability PS. The mutation rate m(S) is inversely proportional to the solution probability:
mðSÞ ¼ mmax 1� PS

Pmax

� �
ð25Þ
where mmax is a user-defined paramete r, and Pmax = max S PS, S = 1, . . . , Smax.
Migration, described in Fig. 24 , is used to modify existing islands by mixing features within the population, where

rand(0,1) is a uniformly distributed random number in the interval [0, 1] and Xij is the jth SIV of the solution Xi. The BBO
migration strategy is similar to the global recombination approach of evolutionary strategies (ES) [10], in which many par-
ents can contribute to a single offspring. The main differenc e is that recombinati on is used to create new solutions, while in
BBO migration is used to change existing solutions.

BBO has demonst rated good performanc e on various unconstrained and constrained benchmark functions. It has also
been applied to real-world optimizati on problems, including sensor selection , economic load dispatch problems , satellite im-
age classification, power system optimizati on, etc. The web site http://embe ddedlab.csuohi o.edu/BBO/ is dedicated to BBO
and related material.

4. Discussion and conclusion s

This work surveyed several important metaheuristic methods as they are described in the literature. Some of them are
single-solut ion based, and others are population- based, and although they are based on different philosophie s. Nevertheles s,
a number of these metaheuristics are implemented in a more and more similar way. A unified presenta tion of these methods
is proposed under the name of adaptive memory programmin g (AMP) [256]. An important principle behind AMP is that a
memory containing a set of visited solutions is kept, a new solution is constructed using the data in the memory and im-
proved by a local search procedure or a more sophisticated metaheu ristic, the improved solution is then used to update
the memory.

Despite the lack of theoretical foundation, the advantages of metaheu ristics are widely reported in the literature. How-
ever, there are a few general issues which should be addressed in order to exploit the metaheu ristics to their full potential.
The assessment of metaheu ristics is commonly based on experime ntal comparisons . In this case, the use of descriptive

http://embeddedlab.csuohio.edu/BBO/

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 111
statistics, such as the sample mean and the standard deviation, is not sufficient. To ensure fair and meaningful comparisons
of metaheurist ics, different statistical tests may be carried out to analyze and compare the metaheuristics [50]. Many com-
mercial (e.g., SAS/STAT, XPSS) and free softwares (e.g., R, MacAnov a) are available to conduct such an analysis. Furthermore,
it is important to recognize that the number of algorithm parameters has a direct effect on the complexity of the algorithm
and on the number of parameter interactions , which complicates analysis. The importance of tuning metaheuristics is widely
acknowledged in scientific literature since the successful application of metaheurist ics to concrete problems requires the
finding of a good initial parameter setting, which is a tedious and time consumin g task. Attempts have already been made
to reduce paramete r tuning tasks by way of adaptive metaheuristi cs . Recent research reveals that the tuning problem has
much in common with the problems that are typically faced in machine learning [27]. In addition, there is a clear need to
provide software frameworks for metaheur istics that promote software reuse and reduce developmen tal effort. Such frame-
works enable experts and develope rs to evaluate and compare fairly different algorithms, transform ready-to-use algo-
rithms, design new algorithms , and combine and parallelize algorithms [258].

Another research trend is on solving large-scale optimization problems . In fact, the performanc e of most available opti-
mization algorithms deteriorates very quickly when the dimensionality increases. Thus, scalabilit y for high-dimens ional
problems becomes an essential requiremen t for sophisticated optimization algorithm approaches, including parallel imple-
mentations of well-known metaheu ristics, as well as the adaptation of existing techniques for parallel architectur es.

One of the most interesting trends in the last years is on hybrid optimizat ion methods . Indeed, more and more papers are
published about the hybridiza tion of metaheurist ics with other techniques for optimization. Hybridization is not restricted
to the combinati on of different metaheurist ics but includes the use of hybrid algorithms that combine local search or exact
algorithms and metaheurist ics [32]. Moreover, the combination of concepts from different metaheurist ics and different re-
search areas can lead to interesting new approach es, such as [187] which combines fuzzy logic and several optimization
techniques. Such hybridiza tions can be used to take advantage of strengths from each algorithm in order to improve algo-
rithms’ performanc e for more effective and efficient problem-solving.

Despite widespread success of metaheurist ics, there will always be questions related to the usefulnes s of a particular
metaheurist ic for solving a wide range of problems. The No Free Lunch theorems [281] state that all the black-box optimiza-
tion algorithms 6 have the same average performan ce over the entire set of optimiza tion problems. However, this does not pre-
vent some algorithms from being better than others on particu lar classes of problems. Many theoretica l studies on the analysis
of landscap es (i.e., the topologica l structure over which search is being executed) of differen t optimizatio n problems have
shown that not only differen t problems correspo nd to differen t structures but also differen t instances of the same problem cor-
respond to different structure s. Conseq uently, understand ing such structure is a first step towards understand ing behavior of
different search component s of a metaheuri stic, which can ultimate ly lead to design better search algorithms that incorporat e
more problem-speci fic knowledg e. However, the efficiency of metaheuris tics depends on the neighborhoo d operator s provided
by the user and the best alternati ve for a problem domain can only be formalize d by an expert. Hyper- heuristics , which form an
emerging search technology , provide a new approach to overco me the problem of such depende ncies in metaheuris tics. Hyper-
heuristics are assumed to be problem independen t and can be easily utilized by non-expert s as well. The term has been defined
to broadly describe the process of using (meta-) heuristic s to choose the most appropriat e (meta-) heuristics to solve the prob-
lem at hand.

The research community, the number of sessions, workshops, and conferences dealing with metaheurist ics is growing
significantly. Major conferences in the area include the Genetic and Evolutionar y Computation Conferen ce (GECCO), Meta-
heuristic Internationa l Conference (MIC), Internationa l Conferen ce on Metaheuristi cs and Nature Inspired Computing
(META), the IEEE Congress on Evolutionar y Computation (CEC), etc.
References

[1] H.A. Abbass, MBO: marriage in honey bees optimisation: a haplometrosis polygynous swarming approach, in: CEC’2001 Congress on Evolutionary
Computation, 2001, pp. 207–214.

[2] A. Abraham, C. Grosan, V. Ramos, Swarm Intelligence in Data Mining, Studies in Computational Intelligence, Springer, 2006.
[3] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, J. Mcleod, Danger theory: the link between AIS and IDS? Artificial immune systems, in: Artificial Immune

Systems, LNCS, Springer, 2003, pp. 147–155.
[4] U. Aikelin, S. Cayzer, The danger theory and its application to artificial immune systems, in: Proceedings of the 1st International Conference on

Artificial Immune Systems, 2002, pp. 141–148.
[5] E. Alba, Parallel Metaheuristics: A New Class of Algorithms, Wiley-Interscience, 2005.
[6] E. Alba, J.M. Troya, A survey of parallel distributed genetic algorithms, Complexity 4 (1999) 31–52.
[7] P. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, in: V. Porto, N. Saravanan, D.

Waagen, A. Eiben (Eds.), Evolutionary Programming VII, Lecture Notes in Computer Science, vol. 1447, Springer, Berlin, Heidelberg, 1998, pp. 601–610.
[8] D. Angus, C. Woodward, Multiple objective ant colony optimisation, Swarm Intelligence 3 (2009) 69–85.
[9] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: B. McKay, et al. (Eds.), The 2005 IEEE International Congress

on Evolutionary Computation (CEC’05), vol. 2, 2005, pp. 1769–1776.
[10] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University

Press, Oxford, UK, 1996.
[11] T. Bäck, F. Hoffmeister, H.P. Schwefel, A survey of evolution strategies, in: Proceedings of the Fourth International Conference on Genetic Algorithms,

1991, pp. 2–9.
6 A black-box optimization algorithm exploits limited knowledge concerning the optimization problem or the particul ar instance which is being solved.

112 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
[12] T. Bäck, G. Rudolph, H.P. Schwefel, Evolutionary programming and evolution strategies: Similarities and differences, in: Proceedings of the Second
Annual Conference on Evolutionary Programming, 1993, pp. 11–22.

[13] T. Bäck, H.P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation 1 (1993) 1–23.
[14] S. Baluja, Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning,

Technical Report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.
[15] S. Baluja, S. Davies, Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space, in: D.H. Fisher (Ed.),

14th International Conference on Machine Learning, Morgan Kaufmann, 1997, pp. 30–38.
[16] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part i: background and development, Natural Computing 6 (2007) 467–

484. doi:10.1007/s11047-007-9049-5.
[17] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. part ii: hybridisation, combinatorial, multicriteria and constrained

optimization, and indicative applications, Natural Computing 7 (2008) 109–124.
[18] R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimization, Springer, 2008.
[19] R. Battiti, G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing 6 (1994) 126–140.
[20] E.B. Baum, Towards practical ‘‘neural’’ computation for combinatorial optimization problems, in: AIP Conference Proceedings: Neural Networks for

Computing, Snowbird, UT, USA, 1986, pp. 53–58.
[21] J. Baxter, Local optima avoidance in depot location, Journal of the Operational Research Society 32 (1981) 815–819.
[22] D. Beasley, D. Bull, R.R. Martin, An overview of genetic algorithms. Part i: fundamentals, University Computing 15 (1993) 58–69.
[23] D. Beasley, D. Bull, R.R. Martin, An overview of genetic algorithms. Part ii: research topics, University Computing 15 (1993) 170–181.
[24] R.L. Becerra, C.A.C. Coello, A cultural algorithm with differential evolution to solve constrained optimization problems, in: IBERAMIA, 2004, pp. 881–

890.
[25] H.G. Beyer, H.P. Schwefel, Evolution strategies – a comprehensive introduction, Natural Computing 1 (2002) 3–52.
[26] L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Natural Computing 8

(2009) 239–287.
[27] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective, Springer Publishing Company, Incorporated, first ed., 2005 (2nd printing edition,

2009).
[28] M. Birattari, L. Paquete, T. Stützle, K. Varrentrapp, Classification of Metaheuristics and Design of Experiments for the Analysis of Components,

Technical Report AIDA-01-05, FG Intellektik, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany, 2001.
[29] T. Blackwell, Particle swarm optimization in dynamic environments, in: S. Yang, Y.S. Ong, Y. Jin (Eds.), Evolutionary Computation in Dynamic and

Uncertain Environments, Studies in Computational Intelligence, vol. 51, Springer, Berlin, Heidelberg, 2007, pp. 29–49.
[30] T. Blickle, L. Thiele, A comparison of selection schemes used in genetic algorithms, Evolutionary Computation 4 (1995) 311–347.
[31] C. Blum, Ant colony optimization: Introduction and recent trends, Physics of Life Reviews 2 (2005) 353–373.
[32] C. Blum, J. Puchinger, G.R. Raidl, A. Roli, Hybrid metaheuristics in combinatorial optimization: a survey, Applied Soft Computing 11 (2011) 4135–

4151.
[33] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Computing Surveys 35 (2003) 268–308.
[34] M.P. Brenner, L.S. Levitov, E.O. Budrene, Physical mechanisms for chemotactic pattern formation by bacteria, Biophysical Journal 74 (1998) 1677–

1693.
[35] J. Brest, M. Maucec, Self-adaptive differential evolution algorithm using population size reduction and three strategies, soft computing – a fusion of

foundations, Methodologies and Applications 15 (2011) 2157–2174.
[36] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, Clever Algorithms: Nature-Inspired Programming Recipes, Lulu, 2011, pp. 29–

86.
[37] E. Carrizosa, M. Drazic, Z. Drazic, N. Mladenovic, Gaussian variable neighborhood search for continuous optimization, Computers & Operations

Research 39 (2012) 2206–2213.
[38] O. Castillo, P. Melin, Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review, Information Sciences 205 (2012) 1–19.
[39] L.N. de Castro, Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag, London, 2002.
[40] L.N. de Castro, F.J. Von Zuben, aiNet: an artificial immune network for data analysis, in: H.A. Abbass, R.A. Sarker, C.S. Newton (Eds.), Data Mining: A

Heuristic Approach, Idea Group Publishing, 2001, pp. 231–259.
[41] L.N. de Castro, F.J. Von Zuben, Learning and optimization using the clonal selection principle, IEEE Transactions on Evolutionary Computation 6 (2002)

239–251.
[42] V. Cerny, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm, Journal of Optimization Theory and

Applications 45 (1985) 41–51.
[43] U. Chakraborty, Advances in Differential Evolution, first ed., Springer Publishing Company, 2008.
[44] F.T.S. Chan, M. Tiwari, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, I-Tech Education and Publishing, Vienna, Austria, 2007.
[45] I. Charon, O. Hudry, The noising method: a new method for combinatorial optimization, Operations Research Letters 14 (1993) 133–137.
[46] I. Charon, O. Hudry, The noising methods: a generalization of some metaheuristics, European Journal of Operational Research 135 (2001) 86–101.
[47] I. Charon, O. Hudry, The noising methods: a survey, in: P. Hansen, C.C. Ribeiro (Eds.), Essays and Surveys in Metaheuristics, Kluwer Academic

Publishers, 2002, pp. 245–261.
[48] I. Charon, O. Hudry, Self-tuning of the noising methods, Optimization 58 (2009) 1–21.
[49] R. Chelouah, P. Siarry, Tabu search applied to global optimization, European Journal of Operational Research 123 (2000) 256–270.
[50] M. Chiarandini, L. Paquete, M. Preuss, E. Ridge, Experiments on Metaheuristics: Methodological Overview and Open Issues, Technical Report DMF-

2007-03-003, The Danish Mathematical Society, Denmark, 2007.
[51] M. Clerc, Particle Swarm Optimization, ISTE, London, UK, 2006.
[52] M. Clerc, J. Kennedy, The particle swarm – explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on

Evolutionary Computation 6 (2002) 58–73.
[53] G.P. Coelho, F.V. Zuben, omni-aiNet: an immune-inspired approach for omni optimization, in: Proceedings of the 5th International Conference on

Artificial Immune Systems, Springer, 2006, pp. 294–308.
[54] C. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation), Springer Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[55] C.A. Coello Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art,

Computer Methods in Applied Mechanics and Engineering 191 (2002) 1245–1287.
[56] C.A. Coello Coello, R.L. Becerra, Adding knowledge and efficient data structures to evolutionary programming: a cultural algorithm for constrained

optimization, in: GECCO, 2002, pp. 201–209.
[57] N.E. Collins, R.W. Eglese, B. Golden, Simulated annealing – an annotated bibliography, American Journal of Mathematical and Management Sciences 8

(1988) 209–307.
[58] J. Courat, G. Raynaud, I. Mrad, P. Siarry, Electronic component model minimization based on log simulated annealing, IEEE Transactions on Circuits

and Systems: Part I 41 (1994) 790–795.
[59] M. Creutz, Microcanonical Monte Carlo simulation, Physical Review Letters 50 (1983) 1411–1414.
[60] D. Cvijovic, J. Klinowski, Tabu search: an approach to the multiple minima problem, Science 267 (1995) 664–666.
[61] S. Das, A. Abraham, A. Konar, Swarm intelligence algorithms in bioinformatics, in: Computational Intelligence in Bioinformatics, Studies in

Computational Intelligence, vol. 94, Springer, 2008, pp. 113–147.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 113
[62] S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in: A.
Abraham, A.E. Hassanien, P. Siarry, A. Engelbrecht (Eds.), Foundations of Computational Intelligence, Studies in Computational Intelligence, vol. 3,
Springer, Berlin, Heidelberg, 2009, pp. 23–55.

[63] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Transactions on Evolutionary Computation 15 (2011) 4–31.
[64] D. Dasgupta, Artificial Immune Systems and Their Applications, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.
[65] D. Dasgupta, S. Yu, F. Nino, Recent advances in artificial immune systems: models and applications, Applied Soft Computing 11 (2011) 1574–1587.
[66] J. De Bonet, C. Isbell, P. Viola, Mimic: finding optima by estimating probability densities, in: NIPS, 1996, pp. 424–430.
[67] L.N. de Castro, F.J.V. Zuben, An evolutionary immune network for data clustering, in: Proceedings of the 6th Brazilian Symposium on Neural Networks,

IEEE Computer Society Press, 2000, pp. 84–89.
[68] K. Diwold, M. Beekman, M. Middendorf, Honeybee optimisation – an overview and a new bee inspired optimisation scheme, in: A. Doe (Ed.),

Handbook of Swarm Intelligence, Springer, Berlin, Heidelberg, 2010, pp. 295–327.
[69] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D. Thesis, Politecnico di Milano, Italy, 1992.
[70] M. Dorigo, M. Birattari, T. Stützle, U. Libre, D. Bruxelles, A.F.D. Roosevelt, Ant colony optimization – artificial ants as a computational intelligence

technique, IEEE Computational Intelligence Magazine 1 (2006) 28–39.
[71] M. Dorigo, C. Blum, Ant colony optimization theory: a survey, Theoretical Computer Science 344 (2005) 243–278.
[72] M. Dorigo, V. Maniezzo, A. Colorni, Positive Feedback as a Search Strategy, Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Milan, Italy, 1991.
[73] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and

Cybernetics – Part B 26 (1996) 29–41.
[74] M. Dorigo, T. Stützle, The ant colony optimization metaheuristic: algorithms, applications, and advances, in: F. Glover, G. Kochenberger (Eds.),

Handbook of Metaheuristics, International Series in Operations Research & Amp; Management Science, vol. 57, Springer, New York, 2003, pp. 250–
285.

[75] M. Dorigo, S. Thomas, Ant colony optimization: overview and recent advances, in: M. Gendreau, J.Y. Potvin (Eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science, Springer, US, 2010, pp. 227–263.

[76] J. Dréo, A. Pétrowski, P. Siarry, E. Taillard, Metaheuristics for Hard Optimization: Methods and Case Studies, Springer, 2006.
[77] G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing, Journal of

Computational Physics 90 (1990) 161–175.
[78] R. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence PC Tools, Academic Press Professional, Inc., San Diego, CA, USA, 1996.
[79] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, EP ’98, Piscataway: IEEE, Nagoya, Japan, 1995, pp. 39–43.
[80] A. El Dor, M. Clerc, P. Siarry, Hybridization of differential evolution and particle swarm optimization in a new algorithm: DEPSO-2S, in: Proceedings of

the 2012 International Conference on Swarm and Evolutionary Computation, ICAISC (SIDE-EC), Zakopane, Poland, 2012, pp. 57–65.
[81] A. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley, 2006.
[82] R. Etxeberria, P. Larrañaga, Global Optimization Using Bayesian Networks, in: A.A.O. Rodriguez, M.R.S. Ortiz, R.S. Hermida (Eds.), CIMAF 99, Second

Symposium on Artificial Intelligence, Adaptive Systems, La Habana, 1999, pp. 332–339.
[83] J.D. Farmer, N.H. Packard, A.S. Perelson, The immune system, adaptation, and machine learning, Physica D 2 (1986) 187–204.
[84] T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters 8 (1989) 67–71.
[85] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures, Journal of Global Optimization 6 (1995) 109–133.
[86] P. Festa, M. Resende, An annotated bibliography of GRASP, Part I: algorithms, International Transactions in Operational Research 16 (2009) 1–24.
[87] P. Festa, M. Resende, An annotated bibliography of GRASP, Part II: applications, International Transactions in Operational Research 16 (2009) 131–

172.
[88] P. Festa, M.G.C. Resende, Hybridizations of GRASP with Path-Relinking, Technical Report HYB-GPR-2011, AT&T Labs Research, 2011.
[89] S.G. Ficici, Solution Concepts in Coevolutionary Algorithms, Ph.D. Thesis, Brandeis University, Waltham, MA, USA, 2004. AAI3127125.
[90] M. Fleischer, Simulated annealing: past, present and future, in: Proceedings of the 27th Conference on Winter Simulation, Arlington, VA, USA, 1995,

pp. 155–161.
[91] D.B. Fogel, System Identification through Simulated Evolution: A Machine Learning Approach to Modeling, Ginn Press, 1991.
[92] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, USA, 1995.
[93] D.B. Fogel, L.J. Fogel, J. Atma, Meta-evolutionary programming, in: R. Chen (Ed.), Proceedings of 25th Asilomar Conference on Signals, Systems &

Computers, Pacific Grove, CA, 1991, pp. 540–545.
[94] D.B. Fogel, L.J. Fogel, J. Atma, G. Fogel, Hierarchic methods of evolutionary programming, in: D. Fogel, W. Atmar (Eds.), Proceedings of the First Ann.

Conf. on Evolutionary Programming, Evolutionary Programming Society, La Jolla, CA, 1992, pp. 175–182.
[95] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley, New York, USA, 1966.
[96] S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self-nonself discrimination in a computer, Research in Security and Privacy, 1994. Proceedings., 1994

IEEE Computer Society Symposium on, in: Research in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society Symposium on, 1994, pp.
202–212.

[97] A.A. Freitas, A survey of evolutionary algorithms for data mining and knowledge discovery, in: Advances in Evolutionary Computing, Springer-Verlag
New York, Inc., New York, NY, USA, 2003, pp. 819–845.

[98] J.C. Galeano, A. Veloza-Suan, F.A. González, A comparative analysis of artificial immune network models, in: Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, GECCO ’05, ACM, New York, NY, USA, 2005, pp. 361–368.

[99] S.M. Garrett, How do we evaluate artificial immune systems?, Evolutionary Computation 13 (2005) 145–177
[100] M. Gendreau, Chapter 2: an introduction to tabu search, in: F. Glover, G.A. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer Academic

Publishers, 2003, pp. 37–54.
[101] M. Gendreau, J.Y. Potvin, Chapter 6: Tabu search, in: E.K. Burke, G. Kendall (Eds.), Search Methodologies, Springer, 2006, pp. 165–186.
[102] F. Glover, Parametric combinations of local job shop rules, in: ONR Research Memorandum, No. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA,

1963.
[103] F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences 8 (1977) 156–166.
[104] F. Glover, Future paths for integer programming and links to artificial intelligence, Computers and Operations Research 13 (1986) 533–549.
[105] F. Glover, Tabu search for nonlinear and parametric optimization (with links to genetic algorithms), Discrete Applied Mathematics 49 (1994) 231–

255.
[106] F. Glover, A template for scatter search and path relinking, Lecture Notes on Computer Science 1363 (1997) 13–54.
[107] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
[108] F. Glover, M. Laguna, R. Marti, Scatter search and path relinking: advances and applications, in: F. Glover, G. Kochenberger (Eds.), Handbook of

Metaheuristics, International Series in Operations Research & Management Science, vol. 57, Springer, New York, 2003, pp. 1–35.
[109] C.K. Goh, K.C. Tan, A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization, Transactions on Evolutionary

Computation 13 (2009) 103–127.
[110] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine learning, first ed., Studies in Computational Intelligence, Addison-Wesley

Longman Publishing Co., Inc., 1989.
[111] D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in: Foundations of Genetic Algorithms, Morgan

Kaufman, 1991, pp. 69–93.

114 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
[112] D.M. Gordon, The organization of work in social insect colonies, Complexity 8 (2002) 43–46.
[113] N. Gordon, I.A. Wagner, A.M. Brucks, Discrete bee dance algorithms for pattern formation on a grid, in: Proceedings of the IEEE/WIC International

Conference on Intelligent Agent Technology, IAT ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 545–549.
[114] J. Greensmith, U. Aickelin, The deterministic dendritic cell algorithm, in: Artificial Immune Systems, LNCS, Springer, 2008, pp. 291–302.
[115] J. Greensmith, U. Aickelin, S. Cayzer, Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection, artificial immune

systems, in: Artificial Immune Systems, LNCS, Springer, 2005, pp. 153–167.
[116] J. Greensmith, U. Aickelin, J. Twycross, Detecting danger: applying a novel immunological concept to intrusion detection systems, in: Proceedings 6th

International Conference in Adaptive Computing in Design and Manufacture (ACDM2004), Bristol, UK, 2004.
[117] Y. Guo, J. Cheng, Y. Cao, Y. Lin, A novel multi-population cultural algorithm adopting knowledge migration, Soft Computing 15 (2011) 897–905.
[118] A. Gupta, N. Koul, Swan: a swarm intelligence based framework for network management of ip networks, Proceedings of the International Conference

on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Vol. 01, IEEE Computer Society, Washington, DC, USA, 2007, pp. 114–118.
[119] N. Hansen, The CMA evolution strategy: a comparing review, in: J. Lozano, P. Larranaga, I. Inza, E. Bengoetxea (Eds.), Towards a New Evolutionary

Computation. Advances on Estimation of Distribution Algorithms, Springer, 2006, pp. 75–102.
[120] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evolutionary Computation 9 (2001) 159–195.
[121] N. Hansen, A. Ostermeier, A. Gawelczyk, On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set

adaptation, in: Proceedings of the 6th International Conference on Genetic Algorithms, Morgan Kaufman Publishers Inc., San Francisco, CA, USA, 1995,
pp. 57–64.

[122] P. Hansen, N. Mladenovic, J.A.M. Pérez, Variable neighbourhood search: methods and applications, 4OR 6 (2008) 319–360.
[123] P. Hansen, N. Mladenovic, J.A.M. Pérez, Variable neighbourhood search: algorithms and applications, Annals of Operations Research 175 (2010) 367–

407.
[124] G. Harik, Linkage Learning via Probabilistic Modeling in the EcGA, IlliGAL Report 99010, University of Illinois at Urbana-Champaign, Illinois Genetic

Algorithms Laboratory, Urbana, IL, 1999.
[125] G. Harik, F. Lobo, D. Goldberg, The compact genetic algorithm, in: Proceedings of the IEEE Conference on Evolutionary Computation, 1998, pp. 523–

528.
[126] E. Hart, H. Bersini, F. Santos, Structure versus function: a topological perspective on immune networks, Natural Computing 9 (2010) 603–624.
[127] E. Hart, C. McEwan, J. Timmis, A. Hone, Advances in artificial immune systems, Evolutionary Intelligence 4 (2011) 67–68.
[128] E. Hart, J. Timmis, Application areas of AIS: the past, the present and the future, Applied Soft Computing 8 (2008) 191–201.
[129] J.P. Hart, A.W. Shogan, Semi-greedy heuristics: an empirical study, Operations Research Letters 6 (1987) 107–114.
[130] M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms, Swarm and Evolutionary Computation 1 (2011) 111–

128.
[131] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Engineering Applications of

Artificial Intelligence 20 (2007) 89–99.
[132] M. Herdy, Reproductive isolation as strategy parameter in hierarichally organized evolution strategies, in: PPSN, 1992, p. 209.
[133] W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, Physica D 42 (1990) 228–234.
[134] M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.G.C. Resende, Global optimization by continuous GRASP, Optimization Letters 1 (2007) 201–212.
[135] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA, 1975.
[136] L. Idoumghar, M. Idrissi-Aouad, M. Melkemi, R. Schott, Hybrid PSO-SA type algorithms for multi-modal function optimization and reducing energy

consumption in embedded systems, Journal of Applied Computational Intelligence and Soft Computing 2011 (2011) 1–12.
[137] N.K. Jerne, Towards a network theory of the immune system, Annals of Immunology 125C (1973) 373–389.
[138] Z. Ji, D. Dasgupta, Revisiting negative selection algorithms, Evolutionary Computation 15 (2007) 223–251.
[139] D.S. Johnson, Local optimization and the travelling salesman problem, in: Proceedings of the 17th Colloquium on Automata, Languages, and

Programming, Warwick, England, 1990, pp. 446–461.
[140] D.S. Johnson, L.A. McGeoch, The travelling salesman problem: a case study in local optimization, in: E.H.L. Aarts, J.K. Lenstra (Eds.), Local Search in

Combinatorial Optimization, John Wiley & Sons, 1997, pp. 215–310.
[141] S. Jung, Queen-bee evolution for genetic algorithms, Electronics Letters 39 (2003) 575–576.
[142] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06, Erciyes University, 2005.
[143] D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence, Artificial Intelligence Review 31 (2009) 61–85.
[144] A. Karci, Imitation of bee reproduction as a crossover operator in genetic algorithms, in: PRICAI, 2004, pp. 1015–1016.
[145] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Networks 4 (1995) 1942–1948.
[146] J. Kennedy, R. Eberhart, Discrete binary version of the particle swarm algorithm, in: Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, vol. 5, 1997, p. 4104–4108.
[147] J. Kennedy, R. Eberhart, Y. Shi, Swarm Intelligence, Morgan Kaufman, San Francisco, 2001.
[148] J. Kennedy, R. Mendes, Population structure and particle swarm performance, Proceedings of the World on Congress on Computational Intelligence 2

(2002) 1671–1676.
[149] J. Kim, J. Greensmith, J. Twycross, U. Aickelin, Malicious Code Execution Detection and Response Immune System Inspired by the Danger Theory, CoRR

abs/1003.4142, 2010.
[150] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.
[151] A. Konak, D. Coit, A. Smith, Multi-objective optimization using genetic algorithms: a tutorial, Reliability Engineering & System Safety in Special Issue –

Genetic Algorithms and Reliability 92 (2006) 992–1007.
[152] C. Koulamas, S.R. Antony, R. Jaen, A survey of simulated annealing applications to operations research problems, Omega 22 (1994) 41–56.
[153] T. Kowaliw, N.N. Kharma, C. Jensen, H. Moghnieh, J. Yao, Using competitive co-evolution to evolve better pattern recognisers, International Journal of

Computational Intelligence and Applications 5 (2005) 305–320.
[154] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems), first ed., The MIT

Press, 1992.
[155] J.R. Koza, Introduction to genetic programming, in: K.E. Kinnear Jr. (Ed.), Advances in Genetic Programming, MIT Press, Cambridge, MA, USA, 1994, pp.

21–42.
[156] O. Kramer, A review of constraint-handling techniques for evolution strategies, Applied Computational Intelligence and Sof Computing 2010 (2010)

3:1–3:19.
[157] P.V. Laarhoven, E. Aarts, Simulated Annealing: Theory and Applications, first ed., D. Reidel Publishing Company, 1987.
[158] M. Laguna, R. Martı́, Scatter Search: Methodology and Implementations in C, Kluwer Academic Publishers, Norwell, MA, USA, 2002.
[159] P. Larrañaga, J.A. Lozano (Eds.), Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic Publishers,

Boston, MA, 2002.
[160] L.T. Lau, Guided Genetic Algorithm, Ph.D thesis, University of Essex, 1999.
[161] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem, John Wiley & Sons Ltd., Chichester, 1985.
[162] C.Y. Lee, X. Yao, Evolutionary programming using mutations based on the levy probability distribution, IEEE Transactions on Evolutionary

Computation 8 (2004) 1–13.
[163] N. Lemmens, S. Jong, K. Tuyls, A. Nowe, A bee algorithm for multi-agent systems: recruitment and navigation combined, in: Proceedings of ALAG

2007, an AAMAS 2007 Workshop, Honolulu, Hawai, USA, 2007.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 115
[164] L. Liberti, M. Drazic, Variable neighbourhood search for the global optimization of constrained NLPS, in: Proceedings of the Global Optimization
Workshop, Almeria, Spain, 2005, pp. 18–22.

[165] C.J. Lin, C.H. Chen, C.T. Lin, A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction
applications, IEEE Transactions on Systems, Man, and Cybernetics – Part C 39 (2009) 55–68.

[166] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing 9 (2005) 448–462.
[167] Y. Liu, K. Passino, Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors, Journal of

Optimization Theory and Applications 115 (2002) 603–628.
[168] H.R. Lourenço, O. Martin, T. Stützle, Chapter 12: iterated local search: framework and applications, in: M. Gendreau, Y. Potvin (Eds.), Handbook of

Metaheuristics, second ed., Springer, 2010, pp. 363–397.
[169] P. Lucic, D. Teodorovic, Computing with bees: attacking complex transportation engineering problems, International Journal on Artificial Intelligence

Tools 12 (2003) 375–394.
[170] S. Luke, L. Panait, A survey and comparison of tree generation algorithms, in: L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.M. Voigt, M. Gen, S.

Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
Morgan Kaufmann, San Francisco, California, USA, 2001, pp. 81–88.

[171] S. Luke, P.R. Wiegand, When coevolutionary algorithms exhibit evolutionary dynamics, in: A.M. Barry (Ed.), GECCO 2002: Proceedings of the Bird of a
Feather Workshops, Genetic and Evolutionary Computation Conference, AAAI, New York, 2002, pp. 236–241.

[172] H. Ma, An analysis of the equilibrium of migration models for biogeography-based optimization, Information Sciences 180 (2010) 3444–3464.
[173] R. MacArthur, E. Wilson, The Theory of Biogeography, Princeton University Press, Princeton, NJ, 1967.
[174] R. Martı́, J.J. Pantrigo, A. Duarte, V. Campos, F. Glover, Scatter search and path relinking: a tutorial on the linear arrangement problem, IJSIR 2 (2011)

1–21.
[175] O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics, Annals of Operations Research 63 (1996) 57–75.
[176] O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman problems, Complex Systems 5 (1991) 299–326.
[177] R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic programming: a survey, Genetic Programming and Evolvable

Machines 11 (2010) 365–396.
[178] R. Menzel, R.J. De Marco, U. Greggers, Spatial memory, navigation and dance behaviour in apis mellifera, Journal of Comparative Physiology. A –

Neuroethology, Sensory, Neural, and Behavioral Physiology 192 (2006) 889–903.
[179] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical

Physics 21 (1953) 1087–1090.
[180] S. Meyer-Nieberg, H.G. Beyer, Self-adaptation in evolutionary algorithms, in: F. Lobo, C. Lima, Z. Michalewicz (Eds.), Parameter Setting in

Evolutionary Algorithms, Springer, 2007, pp. 47–75.
[181] E. Mezura-Montes, M. Reyes-Sierra, C. Coello Coello, Multi-objective optimization using differential evolution: a survey of the state-of-the-art, in: U.

Chakraborty (Ed.), Advances in Differential Evolution, Studies in Computational Intelligence, vol. 143, Springer, Berlin, 2008, pp. 173–196.
[182] P. Mills, Extensions to Guided Local Search, PhD thesis, University of Essex, 2002.
[183] P. Mills, E. Tsang, J. Ford, Applying an extended guided local search to the quadratic assignment problem, Annals of Operations Research 118 (2003)

121–135.
[184] N. Mladenovic, A variable neighborhood algorithm – a new metaheuristic for combinatorial optimization, in: Abstracts of Papers Presented at

Optimization Days, Montréal, Canada, 1995, p. 112.
[185] N. Mladenovic, M. Drazic, V. Kovacevic-Vujcic, M. Cangalovic, General variable neighborhood search for the continuous optimization, European

Journal of Operational Research 191 (2008) 753–770.
[186] N. Mladenovic, P. Hansen, Variable neighborhood search, Computers and Operations Research 24 (1997) 1097–1100.
[187] O. Montiel, O. Castillo, P. Melin, A. Rodríguez-Díaz, R. Sepúlveda, Human evolutionary model: a new approach to optimization, Information Sciences

177 (2007) 2075–2098.
[188] H. Mühlenbein, The equation for response to selection and its use for prediction, Evolutionary Computation 5 (1997) 303–346.
[189] H. Mühlenbein, T. Mahnig, The factorized distribution algorithm for additively decomposed functions, in: A. Ochoa, M.R. Soto, R. Santana (Eds.),

Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), Habana, Cuba, 1999, pp. 301–313.
[190] H. Mühlenbein, G. Paaß, From recombination of genes to the estimation of distributions I. Binary parameters, in: Proceedings of the 4th International

Conference on Parallel Problem Solving from Nature, PPSN IV, Springer-Verlag, London, UK, 1996, pp. 178–187.
[191] A. Nakib, H. Oulhadj, P. Siarry, Microscopic image segmentation with two-dimensional exponential entropy based on hybrid microcanonical

annealing, in: IAPR Conference on Machine Vision Applications, Tokyo, Japan, 2007, pp. 420–423.
[192] S. Nakrani, C. Tovey, On honey bees and dynamic server allocation in internet hosting centers, Adaptive Behavior – Animals, Animats, Software

Agents, Robots, Adaptive Systems 12 (2004) 223–240.
[193] J. Nelder, R. Mead, A simplex method for function minimization, The Computer Journal 7 (1965) 308–313.
[194] F. Neri, V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis, Artificial Intelligence Review 33 (2010) 61–106.
[195] T. Nguyen, X. Yao, Hybridizing cultural algorithms and local search, in: E. Corchado, H. Yin, V. Botti, C. Fyfe (Eds.), Intelligent data engineering and

automated learning – IDEAL 2006, Lecture Notes in Computer Science, vol. 4224, Springer, Berlin, Heidelberg, 2006, pp. 586–594.
[196] A. Ochoa, J. Ponce, A. Hernández, L. Li, Resolution of a combinatorial problem using cultural algorithms, JCP 4 (2009) 738–741.
[197] A. Ostermeier, A. Gawelczyk, N. Hansen, A derandomized approach to self-adaptation of evolution strategies, Evolutionary Computation 2 (1994)

369–380.
[198] E. Ozcan, C.K. Mohan, Particle swarm optimization: surfing the waves, in: Proceedings of the IEEE Congress on Evolutionary Computation – CEC 1999,

1999, pp. 1939–1944.
[199] M. Pant, R. Thangaraj, A. Abraham, Particle swarm optimization: performance tuning and empirical analysis, in: A. Abraham, A. Hassanien, P. Siarry,

A. Engelbrecht (Eds.), Foundations of Computational Intelligence, vol. 3, Springer-Verlag, Berlin, Heidelberg, New York, NY, USA, 2009, pp. 101–128.
[200] K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems Magazine 22 (2002) 52–67.
[201] K.M. Passino, Bacterial foraging optimization, International Journal of Swarm Intelligence Research 1 (2010) 1–16.
[202] M. Pelikan, D.E. Goldberg, E. Cant-Paz, BOA: the Bayesian optimization algorithm, Proceedings of the Genetic and Evolutionary Computation

Conference GECCO-99 (Orlando, FL), vol. I, Morgan-Kaufmann Publishers, San Fransisco, CA, 1999, pp. 525–532.
[203] M. Pelikan, D.E. Goldberg, E. Cantú-Paz, Linkage problem, distribution estimation, and bayesian networks, Evolutionary Computation 8 (2000) 311–

340.
[204] M. Pelikan, D.E. Goldberg, F.G. Lobo, A survey of optimization by building and using probabilistic models, Computational Optimization and

Applications 21 (2002) 5–20.
[205] M. Pelikan, H. Mühlenbein, The bivariate marginal distribution algorithm, in: R. Roy, T. Furuhashi, P.K. Chawdhry (Eds.), Advances in Soft Computing

– Engineering Design and Manufacturing, Springer-Verlag, London, 1999, pp. 521–535.
[206] A. Piszcz, T. Soule, A survey of mutation techniques in genetic programming, in: Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’06, ACM, New York, NY, USA, 2006, pp. 951–952.
[207] R. Poli, Analysis of the publications on the applications of particle swarm optimisation, Journal of Artificial Evolution and Applications 2010 (2008) 1–

10.
[208] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization. An overview, Swarm Intelligence 1 (2007) 33–57.
[209] R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming, Lulu Enterprises, UK Ltd., 2008.
[210] J.B. Pollack, A.D. Blair, Co-evolution in the successful learning of backgammon strategy, Machine Learning 32 (1998) 225–240.

116 I. Boussaïd et al. / Information Sciences 237 (2013) 82–117
[211] E. Popovici, K. De Jong, The effects of interaction frequency on the optimization performance of cooperative coevolution, in: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, ACM, New York, NY, USA, 2006, pp. 353–360.

[212] M.A. Potter, K.A. De Jong, Cooperative coevolution: an architecture for evolving coadapted subcomponents, Evolutionary Computation 8 (2000) 1–29.
[213] M.A. Potter, K.A.D. Jong, A cooperative coevolutionary approach to function optimization, in: Proceedings of the International Conference on

Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN III, Springer-
Verlag, London, UK, 1994, pp. 249–257.

[214] M. Prais, C.C. Ribeiro, Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment, INFORMS Journal on Computing
12 (2000) 164–176.

[215] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution A Practical Approach to Global Optimization, Natural Computing Series, Springer-Verlag,
Berlin, Germany, 2005.

[216] I. Rechenberg, Cybernetic Solution Path of an Experimental Problem, Technical Report, Royal Air Force Establishment, 1965.
[217] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution, Frommann-Holzboog, Stuttgart,

1973.
[218] A. Renfrew, Dynamic modeling in archaeology: what, when, and where? Dynamical Modeling and the Study of Change in Archaelogy (1994).
[219] M. Resende, C. Ribeiro, R. Martı́, F. Glover, Scatter search and path relinking: advances and applications, in: M. Gendreau, J.Y. Potvin (Eds.), Handbook

of Metaheuristics, second ed., Springer, 2010, pp. 87–107.
[220] M.G.C. Resende, Metaheuristic hybridization with greedy randomized adaptive search procedures, in: Z.L. Chen, S. Raghavan (Eds.), Tutorials in

Operations Research, INFORMS, 2008, pp. 295–319.
[221] M.G.C. Resende, C.C. Ribeiro, Chapter 8: Greedy randomized adaptive search procedures, in: F. Glover, G.A. Kochenberger (Eds.), Handbook of

Metaheuristics, Kluwer Academic Publishers, 2003, pp. 219–249.
[222] M.G.C. Resende, C.C. Ribeiro, GRASP: Greedy Randomized Adaptive Search Procedures, Technical Report SGRASP2010, AT&T Labs Research, 2010.
[223] M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art, International Journal of Computational

Intelligence Research 2 (2006) 287–308.
[224] R.G. Reynolds, An adaptive computer model of plan collection and early agriculture in the eastern valley of oaxaca, Guila Naquitz: Archaic Foraging

and Early Agriculture in Oaxaca, Mexico (1986) 439–500.
[225] R.G. Reynolds, An introduction to cultural algorithms, in: A.V. Sebalk, L.J. Fogel (Eds.), Proceedings of the Third Annual conference on Evolutionary

Programming, World Scientific Publishing, River Edge, NJ, 1994, pp. 131–139.
[226] R.G. Reynolds, Cultural Algorithms: Theory and Applications, in: New Ideas in Optimization, McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999,

pp. 367–378.
[227] R.G. Reynolds, T.A. Kohler, Z. Kobti, The effects of generalized reciprocal exchange on the resilience of social networks: an example from the

prehispanic mesa verde region, Computational and Mathematical Organization Theory 9 (2003) 227–254.
[228] R.G. Reynolds, D. Liu, Multi-objective cultural algorithms, in: IEEE Congress on Evolutionary Computation, 2011, pp. 1233–1241.
[229] R.G. Reynolds, B. Peng, M.Z. Ali, The role of culture in the emergence of decision-making roles: an example using cultural algorithms, Complexity 13

(2008) 27–42.
[230] D.C. Rivera, R.L. Becerra, A. Coello Coello, Carlos, Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem, Engineering

Optimization 39 (2007) 69–85.
[231] C.D. Rosin, R.K. Belew, New methods for competitive coevolution, Evolution Computing 5 (1997) 1–29.
[232] N. Rychtyckyj, R.G. Reynolds, Using cultural algorithms to re-engineer large-scale semantic networks, International Journal of Software Engineering

and Knowledge Engineering 15 (2005) 665–694.
[233] S. Sadik, A. Ali, H.F. Ahmad, H. Suguri, Using honey bee teamwork strategy in software agents, in: CSCWD’06: 10th International Conference on

Computer Supported Cooperative Work in Design, 2006, pp. 1–6.
[234] S.M. Saleem, Knowledge-Based Solution to Dynamic Optimization Problems using Cultural Algorithms, Ph.D. Thesis, Wayne State University, Detroit,

MI, USA, 2001.
[235] A. Salehipour, K. Sörensen, P. Goos, O. Bräysy, Efficient GRASP + VND and GRASP + VNS metaheuristics for the traveling repairman problem, 4OR 9

(2011) 189–209.
[236] R. Santana, P. Larrañaga, J. Lozano, Research topics in discrete estimation of distribution algorithms based on factorizations, Memetic Computing 1

(2009) 35–54.
[237] H.P. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons Inc., New York, NY, USA, 1981.
[238] H.P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.
[239] H.P. Schwefel, G. Rudolph, Contemporary evolution strategies, in: Proceedings of the Third European Conference on Advances in Artificial Life,

Springer Verlag, London, UK, 1995, pp. 893–907.
[240] M. Sebag, M. Schoenauer, C. Ravise, Inductive learning of mutation step-size in evolutionary parameter optimization, in: Evolutionary Programming,

1997, pp. 247–261.
[241] T.D. Seeley, Honeybee Democracy, Princeton University Press, Princeton, NJ, USA, 2010.
[242] T.D. Seeley, A. Mikheyev, G. Pagano, Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability,

Journal of Comparative Physiology A 186 (2000) 813–819.
[243] Y. Shan, R.I. McKay, D. Essam, H.A. Abbass, A survey of probabilistic model building genetic programming, in: Scalable Optimization via Probabilistic

Modeling, Studies in Computational Intelligence, vol. 33, Springer, 2006, pp. 121–160.
[244] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE International Conference on Evolutionary Computation, IEEE

Computer Society, Washington, DC, USA, 1998, pp. 69–73.
[245] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,

in: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 3, 1999, pp. 1945–1949.
[246] Y.j. Shi, H.f. Teng, Z.q. Li, Cooperative co-evolutionary differential evolution for function optimization, in: L. Wang, K. Chen, Y. Ong (Eds.), Advances in

Natural Computation, Lecture Notes in Computer Science, vol. 3611, Springer, Berlin, Heidelberg, 2005. pp. 428–428.
[247] D. Simon, Biogeography-based optimization, IEEE Transactions on Evolutionary Computation 12 (2008) 702–713.
[248] K. Sims, Evolving 3D morphology and behavior by competition, Artificial Life 1 (1994) 353–372.
[249] A. Sinha, D. Glodberg, A Survey of Hybrid Genetic and Evolutionary algorithms, Technical Report 2003004, Illinois Genetic Algorithms Laboratory

(IlliGAL), 2003.
[250] K. Sörensen, M. Sevaux, P. Schittekat, Adaptive and Multilevel Metaheuristics, Adaptive and Multilevel Metaheuristics, Springer, 2008.
[251] M. Soto, A. Ochoa, S. Acid, L.M. de Campos, Introducing the Polytree Approximation of Distribution Algorithm, in: R.S.E.A. Ochoa, M. Soto (Ed.),

Proceedings of the Second International Symposium on Artificial Intelligence, Adaptive Systems (International Conference CIMAF’99), 1999, pp. 360–
367.

[252] K.O. Stanley, R. Miikkulainen, Competitive coevolution through evolutionary complexification, Journal of Artificial Intelligence Research 21 (2004)
63–100.

[253] R.M. Storn, K.V. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global
Optimization 11 (1997) 341–359.

[254] T. Stützle, Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications, Ph.D. Thesis, Darmstadt University of
Technology, 1998.

I. Boussaïd et al. / Information Sciences 237 (2013) 82–117 117
[255] B. Suman, P. Kumar, A survey of simulated annealing as a tool for single and multiobjective optimization, Journal of the Operational Research Society
57 (2006) 1143–1160.

[256] É.D. Taillard, L.M. Gambardella, M. Gendreau, J.Y. Potvin, Adaptive memory programming: a unified view of metaheuristics, European Journal of
Operational Research 135 (2001) 1–16.

[257] N. Tairan, Q. Zhang, Population-based guided local search: some preliminary experimental results, in: Proceedings of the IEEE Congress on
Evolutionary Computation, Barcelona, Spain, 2010, pp. 1–5.

[258] E.G. Talbi, Metaheuristics: From Design to Implementation, first ed., Wiley-Blackwell, 2009.
[259] C.M. Tan (Ed.), Simulated Annealing, first ed., IN-TECH Education and Publishing, 2008.
[260] K.C. Tan, Y.J. Yang, C.K. Goh, A distributed cooperative coevolutionary algorithm for multiobjective optimization, IEEE Transactions on Evolutionary

Computation 10 (2006) 527–549.
[261] N. Teng, J. Teo, M. Hijazi, A. Hanafi, Self-adaptive population sizing for a tune-free differential evolution, Soft Computing 13 (2009) 709–724.
[262] R. Thangaraj, M. Pant, A. Abraham, P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations, Applied

Mathematics and Computation 217 (2011) 5208–5226.
[263] J. Timmis, P. Andrews, E. Hart, On artificial immune systems and swarm intelligence, Swarm Intelligence 4 (2010) 247–273.
[264] J. Timmis, P. Andrews, N. Owens, E. Clark, An interdisciplinary perspective on artificial immune systems, Evolutionary Intelligence 1 (2008) 5–26.
[265] J. Timmis, A. Hone, T. Stibor, E. Clark, Theoretical advances in artificial immune systems, Theoretical Computer Science 403 (2008) 11–32.
[266] E.B. Tylor, Primitive Culture, vol. 2, seventh ed., New York: Brentano’s, [1872]1924.
[267] B.H. Ulutas, S. Kulturel-Konak, A review of clonal selection algorithm and its applications, Artificial Intelligence Review 36 (2011) 117–138.
[268] F. Valdez, P. Melin, O. Castillo, Bio-inspired optimization methods for minimization of complex mathematical functions, in: Proceedings of the 10th

Mexican International Conference on Artificial Intelligence (MICAI), Puebla, Mexico, 2011a, pp. 131–142.
[269] F. Valdez, P. Melin, O. Castillo, An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms,

Applied Soft Computing 11 (2011) 2625–2632.
[270] F. Vandenbergh, A. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences 176 (2006) 937–971.
[271] J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, GRASP/VND and multi-start evolutionary local search for the single truck and trailer

routing problem with satellite depots, Engineering Applications of Artificial Intelligence 23 (2010) 780–794.
[272] C. Voudouris, Guided Local Search for Combinatorial Optimization Problems, Ph.D Thesis, University of Essex, 1997.
[273] C. Voudouris, Guided local search: an illustrative example in function optimization, BT Technology Journal 16 (1998) 46–50.
[274] C. Voudouris, E. Tsang, Guided local search, European Journal of Operational Research 113 (1999) 469–499.
[275] C. Voudouris, E.P.K. Tsang, A. Alsheddy, Effective application of guided local search, in: J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith

(Eds.), Wiley Encyclopedia of Operations Research and Management Science, John Wiley & Sons, 2010.
[276] C. Voudouris, E.P.K. Tsang, A. Alsheddy, Guided local search, in: J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith (Eds.), Wiley

Encyclopedia of Operations Research and Management Science, John Wiley & Sons, 2010.
[277] A. Walker, J. Hallam, D. Willshaw, Bee-havior in a mobile robot: the construction of a self-organized cognitive map and its use in robot navigation

within a complex, natural environment, in: Proc. ICNN’93, Int. Conf. on Neural Networks, vol. III, IEEE Service Center, Piscataway, NJ, 1993, pp. 1451–
1456.

[278] H.F. Wedde, M. Farooq, Y. Zhang, BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior, in: M. Dorigo, M. Birattari, C.
Blum, L.M. Gambardella, F. Mondada, T. Stützle (Eds.), Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004,
Brussels, Belgium, September 5–8, 2004, Proceedings, Number 3172 in Lecture Notes in Computer Science, Springer, 2004, pp. 83–94.

[279] R.P. Wiegand, An Analysis of Cooperative Coevolutionary Algorithms, Ph.D. Thesis, George Mason University, Fairfax, VA, USA, 2004. AAI3108645.
[280] B.L. William, P. Riccardo, F.M. Nicholas, R.K. John, Genetic programming: an introduction and tutorial, with a survey of techniques and applications,

in: J. Fulcher, L.C. Jain (Eds.), Computational Intelligence: A Compendium, Studies in Computational Intelligence (SCI), vol. 115, Springer-Verlag, 2008,
pp. 927–1028.

[281] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67–82.
[282] C. Wu, N. Zhang, J. Jiang, J. Yang, Y. Liang, Improved bacterial foraging algorithms and their applications to job shop scheduling problems, in:

Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, Part I, ICANNGA ’07, Springer-Verlag, Berlin,
Heidelberg, 2007, pp. 562–569.

[283] X.S. Yang, Engineering optimizations via nature-inspired virtual bee algorithms, in: Artificial Intelligence and Knowledge Engineering Applications: A
Bioinspired Approach: First International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005, volume 3562
of Lecture Notes in Computer Science, Springer, 2005, pp. 317–323.

[284] X. Yao, Y. Liu, Fast evolutionary programming, in: Evolutionary Programming, 1996, pp. 451–460.
[285] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation 3 (1999) 82–102.
[286] Q. Zhang, J. Sun, E. Tsang, J. Ford, Combination of guided local search and estimation of distribution algorithm for quadratic assignment problem, in:

Proceedings of the Genetic and Evolutionary Computation Conference, Chicago, IL, USA, 2003, pp. 42–48.
[287] J. Zheng, Y. Chen, W. Zhang, A survey of artificial immune applications, Artificial Intelligence Review 34 (2010) 19–34.

	A survey on optimization metaheuristics
	1 Introduction
	2 Single-solution based metaheuristics
	2.1 Simulated annealing
	2.1.1 Microcanonic annealing
	2.1.2 Threshold accepting method
	2.1.3 Noising method

	2.2 Tabu search
	2.3 GRASP method
	2.4 Variable neighborhood search
	2.5 Guided local search
	2.6 Iterated local search

	3 Population-based metaheuristics
	3.1 Evolutionary computation
	3.1.1 Genetic algorithm
	3.1.2 Evolution Strategy
	3.1.3 Evolutionary programming
	3.1.4 Genetic programming

	3.2 Other evolutionary algorithms
	3.2.1 Estimation of distribution algorithms
	3.2.2 Differential evolution
	3.2.3 Coevolutionary algorithms
	3.2.4 Cultural algorithms
	3.2.5 Scatter search and path relinking

	3.3 Swarm intelligence
	3.3.1 Ant colony optimization
	3.3.2 Particle swarm optimization
	3.3.3 Bacterial foraging optimization algorithm
	3.3.4 Bee colony optimization-based algorithms
	3.3.5 Artificial immune systems
	3.3.6 Biogeography-based optimization

	4 Discussion and conclusions
	References

