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A large class of applications need to execute the same workflow on different datasets of identical size. Efficient
execution of such applications necessitates intelligent distribution of the application components and tasks
on a parallel machine, and the execution can be orchestrated by utilizing task, data, pipelined, and/or
replicated parallelism. The scheduling problem that encompasses all of these techniques is called pipelined
workflow scheduling, and it has been widely studied in the last decade. Multiple models and algorithms have
flourished to tackle various programming paradigms, constraints, machine behaviors, or optimization goals.
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1. INTRODUCTION

For large-scale applications targeted to parallel and distributed computers, finding an
efficient task and communication mapping and schedule is critical to reach the best
possible application performance. At the heart of the scheduling process is a graph,
the workflow, of an application: an abstract representation that expresses the atomic
computation units and their data dependencies. Hence, the application is partitioned
into tasks that are linked by precedence constraints, and it is described by, usually,
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a Directed Acyclic Graph (also called DAG), where the vertices are the tasks and
the edges represent the precedence constraints. In classical workflow scheduling tech-
niques, there is a single dataset to be executed, and the goal is to minimize the latency
or makespan, which corresponds to the total execution time of the workflow, where each
task is executed once [Kwok and Ahmad 1999b].

The graphical representations are not only used for parallelizing computations. In
the mid-70s and early 80s, a graphical representation called dataflow [Dennis 1974,
1980; Davis 1978] emerged as a powerful programming and architectural paradigm.
Lee and Parks [1995] present a rigorous formal foundation of dataflow languages, for
which they coined the term dataflow process networks and presented it as a special
case of Kahn Process Networks (KPN) [Kahn 1974]. In KPN, a group of deterministic
sequential tasks communicate through unbounded first-in, first-out channels. As a
powerful paradigm that implicitely supports parallelism, dataflow networks (hence
KPNs) have been used to exploit parallelism at compile time [Ha and Lee 1997] and
runtime [Nikolov et al. 2008].

With the turn of the new millennium, Grid computing [Foster et al. 2001] emerged
as a global cyber-infrastructure for large-scale, integrative e-Science applications. At
the core of Grid computing sit Grid workflow managers that schedule coarse-grain
computations onto dynamic Grid resources. Yu and Buyya [2005] present an excellent
survey on workflow scheduling for Grid computing. Grid workflow managers, such
as DAGMan [Tannenbaum et al. 2001] (of the Condor project [Litzkow et al. 1988;
Thain et al. 2002]), Pegasus [Deelman et al. 2005], GrADS [Berman et al. 2001],
Taverna [Oinn et al. 2006], and ASKALON [Fahringer et al. 2005], utilize DAGs and
abstract workflow languages for scheduling workflows onto dynamic Grid resources
using performance modeling and prediction systems like Prophesy [Taylor et al. 2003],
NWS [Wolski et al. 1999], and Teuta [Fahringer et al. 2004]. The main focus of such Grid
workflow systems is the discovery and utilization of dynamic resources that span over
multiple administrative domains. It involves handling of authentication and autho-
rization, efficient data transfers, and fault tolerance due to the dynamic nature of the
systems.

The main focus of this article is a special class of workflow scheduling that we call
pipelined workflow scheduling (or in short pipelined scheduling). Indeed, we focus on
the scheduling of applications that continuously operate on a stream of datasets, which
are processed by a given wokflow, and hence the term pipelined. In steady state, similar
to dataflow and Kahn networks, datasets are pumped from one task to its successor.
These datasets all have the same size, and they might be obtained by partitioning
the input into several chunks. For instance, in image analysis [Sertel et al. 2009],
a medical image is partitioned in tiles, and tiles are processed one after the other.
Other examples of such applications include video processing [Guirado et al. 2005],
motion detection [Knobe et al. 1999], signal processing [Choudhary et al. 2000; Hartley
et al. 2009], databases [Chekuri et al. 1995], molecular biology [Rowe et al. 2003],
medical imaging [Guirado et al. 2006], and various scientific data analyses, including
particle physics [Deelman et al. 2003], earthquake [Kim et al. 2004], weather, and
environmental data analyses [Rowe et al. 2003].

The pipelined execution model is the core of many software and programming mid-
dlewares. It is used on different types of parallel machines such as SMP (Intel TBB
[Reinders 2007]), clusters (DataCutter [Beynon et al. 2001], Anthill [Teodoro et al.
2008], Dryad [Isard et al. 2007]), Grid computing environments (Microsoft AXUM
[Microsoft 2009], LONI [MacKenzie-Graham et al. 2008], Kepler [Bowers et al. 2006]),
and more recently on clusters with accelerators (see, for instance, DataCutter [Hartley
et al. 2008] and DataCutter-Lite [Hartley and Çatalyürek 2009]). Multiple models
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and algorithms have emerged to deal with various programming paradigms, hardware
constraints, and scheduling objectives.

It is possible to reuse classical workflow scheduling techniques for pipelined appli-
cations, by first finding an efficient parallel execution schedule for one single dataset
(makespan minimization), and then executing all the datasets using the same schedule,
one after the other. Although some good algorithms are known for such problems [Kwok
and Ahmad 1999a; 1999b], the resulting performance of the system for a pipelined ap-
plication may be far from the peak performance of the target parallel platform. The
workflow may have a limited degree of parallelism for efficient processing of a single
dataset, and hence the parallel machine may not be fully utilized. Rather, for pipelined
applications, we need to decide how to process multiple datasets in parallel. In other
words, pipelined scheduling is dealing with both intra-dataset and inter-dataset par-
allelism (the different types of parallelism are described shortly in more details). Ap-
plications that do not allow the latter kind of parallelism are outside the scope of this
survey. Such applications include those with a feedback loop such as iterative solvers.
When feedback loops are present, applications are typically scheduled by software
pipelining, or by cyclic scheduling techniques (also called cyclic PERT-shop scheduling,
where PERT refers to Project Evaluation and Review Technique). A survey on software
pipelining can be found in Allan et al. [1995], and on cyclic scheduling in Levner et al.
[2010].

To evaluate the performance of a schedule for a pipelined workflow, various opti-
mization criteria are used in the literature. The most common ones are: (i) the latency
(denoted by L), or makespan, which is the maximum time a dataset spends in the sys-
tem, and (ii) the throughput (denoted by T ), which is the number of datasets processed
per time unit. The period of the schedule (denoted by P) is the time elapsed between
two consecutive datasets entering the system. Note that the period is the inverse of
the achieved throughput, hence we will use them interchangeably. Depending on the
application, a combination of multiple performance objectives may be desired. For in-
stance, an interactive video processing application (such as SmartKiosk [Knobe et al.
1999], a computerized system that interacts with multiple people using cameras) needs
to be reactive while ensuring a good frame rate; these constraints call for an efficient
latency/throughput trade-off. Other criteria may include reliability, resource cost, and
energy consumption.

Several types of parallelism can be used to achieve good performance. If one task of
the workflow produces directly or transitively the input of another task, the two tasks
are said to be dependent; otherwise they are independent. Task parallelism is the most
well-known form of parallelism and consists in concurrently executing independent
tasks for the same dataset; it can help minimize the workflow latency.

Pipelined parallelism is used when two dependent tasks in the workflow are being
executed simultaneously on different datasets. The goal is to improve the throughput
of the application, possibly at the price of more communications, hence potentially a
larger latency. Pipelined parallelism was made famous by assembly lines and later
reused in processors in the form of the instruction pipeline in CPUs and the graphic
rendering pipeline in GPUs.

Replicated parallelism can improve the throughput of the application, because
several copies of a single task operate on different datasets concurrently. This is
especially useful in situations where more computational resources than workflow
tasks are available. Replicated parallelism is possible when reordering the processing
of the datasets by one task does not break the application semantics, for instance,
when the tasks perform a stateless transformation. A simple example of a task
allowing replicated parallelism would be computing the square root of the dataset (a
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number), while computing the sum of the numbers processed so far would be stateful
and would not allow replicated parallelism.

Finally, data parallelism may be used when some tasks contain inherent parallelism.
It corresponds to using several processors to execute a single task for a single dataset.
It is commonly used when a task is implemented by a software library that supports
parallelism on its own, or when a strongly coupled parallel execution can be performed.

Note that task parallelism and data parallelism are inherited from classical workflow
scheduling, while pipelined parallelism and replicated parallelism are only found in
pipelined workflow scheduling.

In a nutshell, the main contributions of this survey are the following: (i) proposing a
three-tiered model of pipelined workflow scheduling problems; (ii) structuring existing
work; and (iii) providing detailed explanations on schedule reconstruction techniques,
which are often implicit in the literature.

The rest of this article is organized as follows. Before going into technical details,
Section 2 presents a motivating example to illustrate the various parallelism tech-
niques, task properties, and their impact on objective functions.

The first issue when dealing with a pipelined application is to select the right model
among the tremendous number of variants that exist. To solve this issue, Section 3
organizes the different characteristics that the target application can exhibit into three
components: the workflow model, the system model, and the performance model. This
organization helps position a given problem with respect to related work.

The second issue is to build the relevant scheduling problem from the model of the
target application. There is no direct formulation going from the model to the schedul-
ing problem, so we cannot provide a general method to derive the scheduling problem.
However, in Section 4, we illustrate the main techniques on basic problems, and we
show how the application model impacts the scheduling problem. The scheduling prob-
lems become more or less complicated depending upon the application requirements.
As usual in optimization theory, the most basic (and sometimes unrealistic) problems
can usually be solved in polynomial time, whereas the most refined and accurate mod-
els usually lead to NP-hard problems. Although the complexity of some problems is
still open, Section 4 concludes by highlighting the known frontier between polynomial
and NP-complete problems.

Finally, in Section 5, we survey various techniques that can be used to solve the
scheduling problem, that is, to find the best parallel execution of the application ac-
cording to the performance criteria. We provide optimal algorithms to solve the simplest
problem instances in polynomial time. For the most difficult instances, we present some
general heuristic methods which aim at giving good approximate solutions.

2. MOTIVATING EXAMPLE

In this section, we focus on a simple pipelined application and emphasize the need for
scheduling algorithms.

Consider an application composed of four tasks, whose dependencies form a linear
chain: a dataset must first be processed by task t1 before it can be processed by t2,
then t3, and finally t4. The computation weights of tasks t1, t2, t3, and t4 (or task
weights) are set respectively to 5, 2, 3, and 20, as illustrated in Figure 1(a). If two
consecutive tasks are executed on two distinct processors, then some time is required
for communication in order to transfer the intermediate result. The communication
weights are set respectively to 20, 15, and 1 for communications t1 → t2, t2 → t3, and
t3 → t4 (see Figure 1(a)). The communication weight along an edge corresponds to
the size of the intermediate result that has to be sent from the processor in charge
of executing the source task of the edge to the processor in charge of executing the
sink task of the edge, whenever these two processors are different. Note that since all

ACM Computing Surveys, Vol. 45, No. 4, Article 50, Publication date: August 2013.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms 50:5

1

5 2 3 20

20 15
t1 t3 t4t2

(a) application

5
10

1

20

10

1 P2

P1 P3

(b) platform

1

pr
oc
es
so
r

3

time
5.152.00 0.5

10

1

20

10

1 5

5 2 3 20

20 15 1

t1 t2 t3 t4

P1

P2

P3

t1 t3 t4t2

(c) sequential execution on the fastest processor

0.5

1

10

1 5

5 2 3 20

20 15 11

10 20

0

pr
oc
es
so
r

2

20.5

1

3

time
38.937.937.822.5 37.5

P1

P2

P3

t1 t3 t4t2

t1

t2

t3

t4

(d) greedy execution using all processors

3
1

10

1 5

5 2 3 20

20 15 11

10 20

time
0 0.5

1

pr
oc
es
so
r

1 2 32.1

P1

P2

P3

t1 t3 t4t2

t1 t2 t3

t4

(e) resource selection to optimize period

Fig. 1. Motivating example.

input datasets have the same size, the intermediate results when processing different
datasets also are assumed to have identical size, even though this assumption may not
be true for some applications.

The target platform consists of three processors with various speeds and intercon-
nection bandwidths, as illustrated in Figure 1(b). If task t1 is scheduled to be executed
on processor P2, a dataset is processed within 5

1 = 5 time units, while the execution
on the faster processor P1 requires only 5

10 = 0.5 time units (task weight divided by
processor speed). Similarly, the communication of a data of weight c from processor P1
to processor P2 takes c

1 time units, while it is ten times faster to communicate from P1
to P3.
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First examine the execution of the application when mapped sequentially on the
fastest processor, P3 (see Figure 1(c)). For such an execution, there is no communication.
The communication weights and processors that are not used are shaded in grey in
the figure. On the right, the processing of the first dataset (and the beginning of the
second one) is illustrated. Note that because of the dependencies between tasks, this
is actually the fastest way to process a single dataset. The latency is computed as
L = 5+2+3+20

20 = 1.5. A new dataset can be processed once the previous one is finished,
hence the period P = L = 1.5.

Of course, this sequential execution does not exploit any parallelism. Since there are
no independent tasks in this application, we cannot use task parallelism here. How-
ever, we now illustrate pipelined parallelism: different tasks are scheduled on distinct
processors, and thus they can be executed simultaneously on different datasets. In the
execution of Figure 1(d), all processors are used, and we greedily balance the compu-
tation requirement of tasks according to processor speeds. The performance of such
a parallel execution turns out to be quite bad, because several large communications
occur. The latency is now obtained by summing up all computation and communication
times: L = 5

10 + 20 + 2 + 15 + 3
10 + 1

10 + 20
20 = 38.9, as illustrated on the right of the

figure for the first dataset. Moreover, the period is not better than the one obtained
with the sequential execution presented previously, because communications become
the bottleneck of the execution. Indeed, the transfer from t1 to t2 takes 20 time units,
and therefore the period cannot be better than 20: P ≥ 20. This example of execution
illustrates that parallelism should be used with caution.

However, one can obtain a period better than that of the sequential execution as
shown in Figure 1(e). In this case, we enforce some resource selection: the slowest
processor P2 is discarded (in grey) since it only slows down the whole execution. We
process different datasets in parallel (see the execution on the right): within one unit
of time, we can concurrently process one dataset by executing t4 on P3, and another
dataset by executing t1, t2, t3 (sequentially) on P1. This partially sequential execution
avoids all large communication weights (in grey). The communication time corresponds
only to the communication between t3 and t4, from P1 to P3, and it takes a time 1

10 . We
assume that communication and computation can overlap when processing distinct
datasets, and therefore, once the first dataset has been processed (at time 1), P1 can
simultaneously communicate the data to P3 and start computing the second dataset.
Finally, the period is P = 1. Note that this improved period is obtained at the price of
a higher latency: the latency has increased from 1.5 in the fully sequential execution
to L = 1 + 1

10 + 1 = 2.1 here.
This example illustrates the necessity of finding efficient trade-offs between antago-

nistic criteria.

3. MODELING TOOLS

This section gives general information on the various scheduling problems. It should
help the reader understand the key properties of pipelined applications.

All applications of pipelined scheduling are characterized by properties from three
components that we call the workflow model, the system model, and the performance
model. These components correspond to “which kind of program we are scheduling”,
“which parallel machine will host the program”, and “what are we trying to optimize”.
This three-component view is similar to the three-field notation used to define classical
scheduling problems [Brucker 2007].

In the example of Section 2, the workflow model is an application with four tasks
arranged as a linear chain, with computation and communication weights; the system
model is a three-processor platform with speeds and bandwidths; and the performance
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Fig. 2. The components of the workflow model.

model corresponds to the two optimization criteria, latency and period. We present
in Sections 3.1, 3.2, and 3.3 the three models; then Section 3.4 classifies work in the
taxonomy that has been detailed.

3.1. Workflow Model

The workflow model defines the program that is going to be executed; its components
are presented in Figure 2.

As stated in the Introduction, programs are usually represented as Directed Acyclic
Graphs (DAGs) in which nodes represent computation tasks and edges represent de-
pendencies and/or communications between tasks. The shape of the graph is a parame-
ter. Most program DAGs are not arbitrary but instead have some predefined form. For
instance, it is common to find DAGs that are a single linear chain, as in the example
of Section 2. Some other frequently encountered structures are fork graphs (for reduce
operations), trees (in arithmetic expression evaluation; for instance in database [Hasan
and Motwani 1994]), fork-join, and series-parallel graphs (commonly found when using
nested parallelism [Blelloch et al. 1994]). The DAG is sometimes extended with two
zero-weight nodes, a source node, which is made a predecessor of all entry nodes of the
DAG, and a sink node, which is made a successor of all exit nodes of the DAG. This
construction is purely technical and allows for faster computation of dependence paths
in the graph.

The weight of the tasks are important because they represent computation require-
ments. For some applications, all the tasks have the same computation requirement
(they are said to be unit tasks). The weight of communications is defined similarly; it
usually corresponds to the size of the data to be communicated from one task to another
when mapped on different processors. Note that a zero weight may be used to express
a precedence between tasks, when the time to communicate can be ignored.

The tasks of the program may themselves contain parallelism. This adds a level of
parallelism to the execution of the application, that is called data parallelism. Although
the standard model only uses sequential tasks, some applications feature parallel
tasks. Three models of parallel tasks are commonly used (this naming was proposed
by Feitelson et al. [1997] and is now commonly used in job scheduling for production
systems): a rigid task requires a given number of processors to execute; a moldable task
can run on any number of processors, and its computation time is given by a speedup
function (that can either be arbitrary or match a classical model such as the Amdahl’s
law [Amdahl 1967]); and a malleable task can change the number of processors it is
executing on during its execution.

The task execution model indicates whether it is possible to execute concurrent
replicas of a task at the same time or not. Replicating a task may not be possible due
to an internal state of the task; the processing of the next dataset depends upon the
result of the computation of the current one. Such tasks are said to be monolithic;
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Fig. 3. The components of the system model.

otherwise they are replicable. When a task is replicated, it is common to impose some
constraints on the allocation of the datasets to the replicas. For instance, the dealable
stage rule [Cole 2004] forces datasets to be allocated in a round-robin fashion among
the replicas. This constraint is enforced to avoid out-of-order completion and is quite
useful when, say, a replicated task is followed by a monolithic one.

3.2. System Model

The system model describes the parallel machine used to run the program; its compo-
nents are presented in Figure 3 and are now described in more detail.

First, processors may be identical (homogeneous), or instead they can have different
processing capabilities (heterogeneous). There are two common models of heterogeneous
processors. Either their processing capabilities are linked by a constant factor, that is,
the processors have different speeds (known as the related model in scheduling theory
and sometimes called heterogeneous uniform), or they are not speed related, which
means that a processor may be fast on a task but slow on another one (known as the
unrelated model in scheduling theory and sometimes called completely heterogeneous).
Homogeneous and related processors are common in clusters. Unrelated processors
arise when dealing with dedicated hardware or from preventing certain tasks to execute
on some machines (to handle licensing issues or applications that do not fit in some
machine memory). This decomposition in three models is classical in the scheduling
literature [Brucker 2007].

The network defines how the processors are interconnected. The topology of the net-
work describes the presence and capacity of the interconnection links. It is common to
find fully connected networks in the literature, which can model buses as well as Inter-
net connectivity. Arbitrary networks whose topologies are specified explicitly through an
interconnection graph are also common. In between, some systems may exhibit struc-
tured networks such as chains, 2D meshes, 3D torus, etc. Regardless of the connectivity
of the network, links may be of different types. They can be homogeneous—transport
the information in the same way—or they can have different speeds. The most common
heterogeneous link model is the bandwidth model, in which a link is characterized
by its sole bandwidth. There exist other communication models such as the delay
model [Rayward-Smith 1987], which assumes that all the communications are com-
pletely independent. Therefore, the delay model does not require communications to be
scheduled on the network but only requires the processors to wait for a given amount
of time when a communication is required. Frequently, the delay between two tasks
scheduled on two different processors is computed based on the size of the message and
the characteristics (latency and bandwidth) of the link between the processors. The
LogP (Latency, overhead, gap, and Processor) model [Culler et al. 1993] is a realistic
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Fig. 4. The components of the performance model.

communication model for fixed-size messages. It takes into account the transfer time
on the network, the latency of the network, and the time required by a processor to
prepare the communication. The LogGP model [Alexandrov et al. 1995] extends the
LogP model by taking the size of the message into account using a linear model for
the bandwidth. The latter two models are seldom used in pipelined scheduling.

Some assumptions must be made in order to define how communications take place.
The one-port model [Bhat et al. 2003] forbids a processor to be involved in more than one
communication at a time. This simple, but somewhat pessimistic, model is useful for
representing single-threaded systems; it has been reported to accurately model certain
MPI implementations that serialize communications when the messages are larger
than a few megabytes [Saif and Parashar 2004]. The opposite model is the multiport
model that allows a processor to be involved in an arbitrary number of communications
simultaneously. This model is often considered unrealistic since some algorithms will
use a large number of simultaneous communications, which induce large overheads in
practice. An in-between model is the k-port model where the number of simultaneous
communications must be bounded by a parameter of the problem [Hong and Prasanna
2003]. In any case, the model can also limit the total bandwidth that a node can use at
a given time (that corresponds to the capacity of its network card).

Finally, some machines have hardware dedicated to communication or use multi-
threading to handle communication; thus they can compute while using the network.
This leads to an overlap of communication and computation, as was assumed in the
example of Section 2. However, some machines or software libraries are still mono-
threaded, and then such an overlapping is not possible.

3.3. Performance Model

The performance model describes the goal of the scheduler and tells from two valid
schedules which one is better. Its components are presented in Figures 4.

The most common objective in pipelined scheduling is to maximize the throughput
of the system, which is the number of datasets processed per time unit. In permanent
applications such as interactive real-time systems, it indicates the load that the system
can handle. Recall that this is equivalent to minimizing the period, which is the inverse
of the throughput.

Another common objective is to minimize the latency of the application, which is
basically defined as the time taken by a single dataset to be entirely processed. It
measures the response time of the system to handle each dataset. The objective chosen
to measure response time is most of the time the maximum latency, since the latency
of different datasets may be different. Latency is mainly relevant in interactive sys-
tems. Note that latency minimization corresponds to makespan minimization in DAG
scheduling, when there is a single dataset to process.
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Other objectives have also been studied. When the size of the computing system
increases, hardware and software become more likely to be affected by malfunctions.
There are many formulations of this problem (see Besseron et al. [2009] for details),
but most of the time it reduces to optimizing the probability of correct execution of the
application, which is called the reliability of the system [Girault et al. 2009]. Another
objective function that is extensively studied is the energy consumption, which has
recently become a critical problem, both for economic and environmental reasons [Mills
1999]. It is often assumed that the speed of processors can be dynamically adjusted
[Jejurikar et al. 2004; Wang et al. 2010], and the slower a processor is, the less energy
it consumes. Different models exist, but the main parameters are how the energy cost
is computed from the speed (the energy cost is usually quadratic or cubic in the speed)
and whether possible speeds are given by a continuous interval [Yao et al. 1995; Bansal
et al. 2007] or by a discrete set of values [Okuma et al. 2001; Prathipati 2004].

The advent of more complex systems and modern user requirements increased in-
terest in the optimization of several objectives at the same time. There are various
ways to optimize multiple objectives [Dutot et al. 2009], but the most classical one is
to optimize one of the objectives while ensuring a given threshold value on the other
ones. Deciding which objectives are constrained and which one remains to optimize
makes no theoretical difference [T’kindt and Billaut 2007]. However, there is often an
objective that is a more natural candidate for optimization when designing heuristics.

3.4. Placing Related Work in the Taxonomy

The problem of scheduling pipelined linear chains, with both monolithic and replicable
tasks, on homogeneous or heterogeneous platforms has extensively been addressed
in the scheduling literature [Lee et al. 1998; Subhlok and Vondran 1996; Benoit and
Robert 2008, 2010]. Lee et al. [1998] propose a three-step mapping methodology for
maximizing the throughput of applications comprising a sequence of computation
stages, each one consisting of a set of identical sequential tasks. Subhlok and Vondran
[1996] propose a dynamic programming solution for optimizing latency under through-
put constraints for applications composed of a linear chain of data-parallel tasks. Benoit
and Robert [2008] address the problem of mapping pipelined linear chains on hetero-
geneous systems. Benoit and Robert [2010] explore the theoretical complexity of the
bi-criteria optimization of latency and throughput for chains and fork graphs of replica-
ble and data-parallel tasks under the assumptions of linear clustering and round-robin
processing of input datasets.

Other works that address specific task graph topologies include Choudhary et al.
[1994], which proposes a scheme for the optimal processor assignment for pipelined
computations of monolithic parallel tasks with series-parallel dependencies, and fo-
cuses on minimizing latency under throughput constraints. Also, Hasan and Motwani
[1994] (extended in Chekuri et al. [1995]) discuss throughput optimization for pipelined
operator trees of query graphs that comprise sequential tasks.

Pipelined scheduling of arbitrary precedence task graphs of sequential monolithic
tasks has been explored by a few researchers. In particular, Jonsson and Vasell [1996]
and Hary and Özgüner [1999] discuss heuristics for maximizing the throughput of di-
rected acyclic task graphs on multiprocessor systems using point-to-point networks.
Yang et al. [2003] present an approach for resource optimization under through-
put constraints. Suhendra et al. [2006] propose an integrated approach to optimize
throughput for task scheduling and scratch-pad memory allocation based on integer
linear programming for multiprocessor system-on-chip architectures. Guirado et al.
[2005] propose a task mapping heuristic called EXPERT (EXploiting Pipeline Execu-
tion undeR Time constraints) that minimizes latency of streaming applications while
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satisfying a given throughput constraint. EXPERT identifies maximal clusters of tasks
that can form synchronous stages that meet the throughput constraint, and maps
tasks in each cluster to the same processor so as to reduce communication overhead
and minimize latency.

Pipelined scheduling algorithms for arbitrary DAGs that target heterogeneous sys-
tems include the work of Beynon [2001], which presents the Filter Copy Pipeline (FCP)
scheduling algorithm for optimizing latency and throughput of arbitrary application
DAGs on heterogeneous resources. FCP computes the number of copies of each task
that is necessary to meet the aggregate production rate of its predecessors and maps
these copies to processors that yield their least completion time. Later on, Spencer et al.
[2002] proposed Balanced Filter Copies, which refines Filter Copy Pipeline. Banerjee
et al. [1995] and Ranaweera and Agrawal [2001] address the problem of pipelined
scheduling on heterogeneous systems. Ranaweera and Agrawal [2001] use cluster-
ing and task duplication to reduce the latency of the pipeline while ensuring a good
throughput. However, these works target monolithic tasks, while Spencer et al. [2002]
target replicable tasks. Finally, Vydyanathan et al. [2007] (extended in Vydyanathan
et al. [2010]) address the latency optimization problem under throughput constraints
for arbitrary precedence task graphs of replicable tasks on homogeneous platforms.

An extensive set of papers dealing with pipelined scheduling is summed up in Table I.
Each paper is listed with its characteristics. Since there are too many characteristics
to present, we focus on the main ones: structure of the precedence constraints, type
of computation, replication, performance metric, and communication model. The table
is sorted according to the characteristics so that searching for papers close to a given
problem is made easier. Different papers with the same characteristics are merged into
a single line.

The structure of the precedence constraints (the Structure column) can be a single
chain (C), a structured graph such as a tree or series-parallel graph (S), or an arbi-
trary DAG (D). Processing units have computation capabilities (the Comp. column)
that can be homogeneous (H), heterogeneous related (R), or heterogeneous unrelated
(U). Replication of tasks (the Rep. column) can be authorized (Y) or not (N). The per-
formance metric to compare the schedules (the Metric column) can be the throughput
(T), the latency (L), the reliability (R), the energy consumption (E), or the number of
processors used (N). The multi-objective problems are denoted with an & so that T&L
denotes the bi-objective problem of optimizing both throughput and latency. Finally, the
communication model (the Comm. column) can follow the model with only precedence
constraints and zero communication weights (P), the one-port model (1), the multi-
port model (M), the k-port model (k), the delay model (D), or can be abstracted in the
scheduling problem (abstr). When a paper deals with several scheduling models, the
variations are denoted with a slash (/). For instance, paper Benoit et al. [2008] deals
with scheduling a chain (C) on either homogeneous or heterogeneous related proces-
sors (H/R) without using replication (N) to optimize latency, reliability, or both of them
(L/R/L&R) under the one-port model (1).

4. FORMULATING THE SCHEDULING PROBLEM

The goal of this section is to build a mathematical formulation of the scheduling problem
from a given application. As explained shortly, it is a common practice to consider a more
restrictive formulation than strictly necessary, in order to focus on more structured
schedules that are likely to perform well.

We outline some principles in Section 4.1, and then we detail a few examples to
illustrate the main techniques in Section 4.2. Finally we conclude in Section 4.3 by
highlighting the known frontier between polynomial and NP-complete problems.
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Table I. Papers on pipelined scheduling, with characteristics of the scheduling problems

Reference Structure Comp. Rep. Metric Comm.

[Bokhari 1988][Han et al. 1992]
[Iqbal 1992][Manne and Olstad 1995]

C H N T P

[Nicol 1994][Pınar and Aykanat 2004]
[Lee et al. 1998]

C H N T P

[Devi 2009] C H N T&L P
[Moreno et al. 2008] C H Y T P

[Benoit and Robert 2008] C H/R N T 1
[Agrawal et al. 2008] C H/R N T/L M
[Benoit et al. 2010] C H/R N T/L/E 1
[Benoit et al. 2008] C H/R N L/R/L&R 1

[Benoit and Robert 2009] C H/R Y/N T/L/T&L 1
[Benoit et al. 2009b] C R N T&L 1
[Benoit et al. 2009c] C R N L 1
[Benoit et al. 2007] C R N T/L/T&L 1

[Agrawal et al. 2010] C R N T/L/T&L 1/M
[do Nascimento et al. 2005] C R Y T&N M

[Benoit et al. 2009a] C R Y T 1/M
[Kijsipongse and Ngamsuriyaroj 2010] C R Y/N T M

[Benoit and Robert 2010] C/S H/R Y/N T/L&T P

[Hasan and Motwani 1994]
[Chekuri et al. 1995]

S H N T M

[Choudhary et al. 1994] S H N T&L P
[Jonsson and Vasell 1996] D H N T M
[Hary and Özgüner 1999] D H N T&L M

[Guirado et al. 2005] D H N T&L D
[Knobe et al. 1999] D H N T&L P

[Vydyanathan et al. 2007] D H Y T&L M
[Vydyanathan et al. 2010] D H Y T&L k

[Subhlok and Vondran 1995] D H Y/N T abstr
[Subhlok and Vondran 1996] D H Y/N T&L abstr

[Ranaweera and Agrawal 2001] D H/U N T&L M
[Taura and Chien 1999] D R N T M

[Yang et al. 2003] D R N T&N D
[Beynon 2001][Spencer et al. 2002] D R Y T M

[Banerjee et al. 1995] D U N T D
[Suhendra et al. 2006] D U N T M

4.1. Compacting the Problem

One way to schedule a pipelined application is to explicitly schedule all the tasks of all
the datasets, which amounts to completely unrolling the execution graph and assigning
a start-up time and a processor to each task. In order to ensure that all dependencies
and resource constraints are fulfilled, one must check that all predecessor relations
are satisfied by the schedule, and that every processor does not execute more than one
task at a given time. To do so, it may be necessary to associate a start-up time to each
communication and a fraction of the bandwidth used (multiport model). However, the
number of tasks to schedule could be extremely large, making this approach highly
impractical.
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To avoid this problem, a solution is to construct a more compact schedule which hope-
fully has some useful properties. The overall schedule should be easily deduced from
the compact schedule in an incremental way. Checking whether the overall schedule is
valid or not, and computing the performance index (e.g., throughput, latency) should be
easy operations. To make an analogy with compilation, this amounts to transitioning
from DAG scheduling to loop nest scheduling. In the latter framework, one considers a
loop nest, that is, a collection of several nested loops that enclose a sequence of scalar
statements. Each statement is executed many times, for each value of the surrounding
loop counters. Compiler techniques such as Lamport hyperplane vectors, or space-time
unimodular transformations [Wolfe 1989; Darte et al. 2000; Kennedy and Allen 2002]
can efficiently expose the parallelism within the loop nest, by providing a linear or
affine closed-form expression of scheduling dates for each statement instance within
each loop iteration. On the contrary, a DAG schedule would completely unroll all loops
and provide an exhaustive list of scheduling dates for each statement instance.

The most common types of schedules that can be compacted are cyclic schedules. If a
schedule has a period P, then all computations and communications are repeated every
P time units: two consecutive datasets are processed in exactly the same way, with a
shift of P time units. The cyclic schedule is constructed from the elementary schedule,
which is the detailed schedule for one single dataset. If task ti is executed on processor
j at time si in the elementary schedule, then the execution of this task ti for dataset x
will be executed at time si + (x − 1)P on the same processor j in the cyclic schedule.
The elementary schedule is a compact representation of the global cyclic schedule,
while it is straightforward to derive the actual start-up time of each task instance, for
each dataset, at runtime. The relation between cyclic and elementary schedule will be
exemplified in Sections 4.2.1 and 4.2.2.

With cyclic schedules, one dataset starts its execution every P time units. Thus, the
system has a throughput T = 1/P. However, the latency L of the application is harder
to compute; in the general case, one must follow the entire processing of a given dataset
(but all datasets have the same latency, which helps simplify the computation). The
latency L is the length of the elementary schedule.

Checking the validity of a cyclic schedule is easier than that of an arbitrary schedule.
Intuitively, it is sufficient to check the datasets released in the last L units of time,
in order to make sure that a processor does not execute two tasks at the same time
and that a communication link is not used twice. Technically, we can build an oper-
ation list [Agrawal et al. 2010] whose size is proportional to the original application
precedence task graph, and does not depend upon the number of datasets that are
processed.

A natural extension of cyclic schedules are periodic schedules, which repeat their op-
eration every K datasets [Levner et al. 2010]. When K = 1, we retrieve cyclic schedules,
but larger values of K are useful to gain performance, in particular through the use of
replicated parallelism. We give an example in which the throughput increases when pe-
riodic schedules are allowed. Suppose that we want to execute a single task of weight 1,
and that the platform consists of three different-speed processors P1, P2, and P3 with
speeds 1/3, 1/5, and 1/8, respectively. For a cyclic schedule, we need to specify on
which processor the task is executed, and the optimal solution is to use the fastest
processor, hence leading to a throughput T = 1/3. However, with the use of replication,
within 120 time units, P1 can process 40 datasets, P2 can process 24 datasets, and P3
can process 15 datasets, resulting in a periodic schedule with K = 40 + 24 + 15 = 79
and a throughput T = 79/120, about twice that of the cyclic schedule. Of course, it is
easy to generalize the example to derive an arbitrarily bad throughput ratio between
cyclic and periodic schedules. Note, however, that the gain in throughput comes with
a price: because of the use of replication, it may become very difficult to compute the
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Fig. 5. An instance of the chain scheduling problem.

throughput. This is because the pace of operation for the entire system is no longer
dictated by a single critical resource, but instead by a cycle of dependent operations
that involves several computation units and communication links (refer to Benoit et al.
[2009a] for details). Periodic schedules are represented in a compact way by a schedule
that specifies the execution of K datasets similarly to the elementary schedule of a
cyclic schedule.

Other common compact schedules consist in giving only the fraction of the time
each processor spends executing each task [Beaumont et al. 2004; Vydyanathan et al.
2010]. Such representations are more convenient when using linear programming tools.
However, reconstructing the actual schedule involves advanced concepts from graph
theory and may be difficult to use in practice (although it can be done in polynomial
time) [Beaumont et al. 2004].

4.2. Examples

The goal of this section is to provide examples to help the reader understand how to
build a scheduling problem from the workflow model, system model and performance
model. We also discuss how the problem varies when basic assumptions are modified.

4.2.1. Chain on Identical Processors with Interval Mapping. We consider the problem of
scheduling a linear chain of n monolithic tasks onto m identical processors (with unit
speed), linked by an infinitely fast network. For 1 ≤ i ≤ n, task ti has a weight pi,
and hence a processing time pi on any processor. Figure 5 presents an instance of this
scheduling problem with four tasks of weights p1 = 1, p2 = 2, p3 = 4, and p4 = 3.

When scheduling chains of tasks, several mapping rules can be enforced.

—The one-to-one mapping rule ensures that each task is mapped to a different proces-
sor. This rule may be useful to deal with tasks having a high memory requirement,
but all inter-task communications must then be paid.

—Another classical rule is the interval mapping rule, which ensures that each processor
executes a set of consecutive tasks. Formally, if a processor executes tasks tibegin and
tiend, then all tasks ti, with ibegin ≤ i ≤ iend, are executed on the same processor. This
rule, which provides an extension of one-to-one mappings, is often used to reduce the
communication overhead of the schedule.

—Finally, the general mapping rule does not enforce any constraint, and thus any
schedule is allowed. Note that for a homogeneous platform with communication
costs, Agrawal et al. [2008] showed for the throughput objective that the optimal
interval mapping is a 2-approximation of the optimal general mapping.

In this section, we consider interval mappings. Therefore, a solution to the scheduling
problem is a partition of the task set {t1, . . . , tn} into m sets or intervals {I1, . . . , Im},
where Ij (1 ≤ j ≤ m) is a set of consecutive tasks. Note that one could want to have
fewer intervals than processors, leaving some processor(s) completely idle, but here we
assume that all the processors are used to make the notation simpler. The length of
an interval is defined as the sum of the processing time of its tasks: Lj = ∑

i∈Ij
pi, for

1 ≤ j ≤ m. Processors are identical (with unit speed), so that all mappings of intervals
onto processors are identical too.
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Fig. 6. The solution of optimal throughput to the instance of Figure 5 using an interval mapping on two
processors.

In this case, the intervals form a compact representation of the schedule. The elemen-
tary schedule represents the execution of a single dataset: task ti starts its execution
at time si = ∑

i′<i pi′ on the processor in charge of its interval. An overall schedule of
period P = max1≤ j≤m Lj can now be constructed: task ti is executed at time si + (x −1)P
on the x-th dataset. A solution of the instance of Figure 5 on two processors that use
the intervals {t1, t2, t3} and {t4} is depicted in Figure 6, where the boxes represent tasks
and datasets are identified by colors. The schedule is focused on the cyan dataset (the
labeled tasks), which follows the green one (partially depicted) and precedes the red
one (partially depicted). Each task is periodically scheduled every 7 time units (a pe-
riod is depicted with dotted lines). Processor 2 is idle during 4 time units within each
period.

One can check that such a schedule is valid: the precedence constraints are respected,
two tasks are never scheduled on the same processor at the same time (the processor
in charge of interval Ij executes tasks for one single dataset during Lj time units, and
the next dataset arrives after max j ′ Lj ′ time units), and the monolithic constraint is
also fulfilled, since all the instances of a task are scheduled on a unique processor.

To conclude, the throughput of the schedule is T = 1
P = 1

max1≤ j≤mLj
, and its latency is

L = ∑
1≤i≤n pi. Note that, given an interval mapping, T is the optimal throughput since

the processor for which Lj = max j ′ Lj ′ will never be idle, and it is the one that defines
the period. Note also that the latency is optimal over all schedules, since

∑
1≤i≤n pi is a

lower bound on the latency.
For such a problem (no communication, identical processors, linear dependency

graph, no replication, interval mapping), the problem of optimizing the throughput
is reduced to the classical chains-on-chains partitioning problem [Pınar and Aykanat
2004], and it can be solved in polynomial time using, for instance, a dynamic program-
ming algorithm.

4.2.2. Chain on Identical Processors with General Mapping. This problem is a slight varia-
tion of the previous one: solutions are no longer restricted to interval mapping sched-
ules, but any mapping may be used. By suppressing the interval mapping constraint,
we can usually obtain a better throughput but the scheduling problem and schedule
reconstruction become harder, as we illustrate in the following example.

The solution of a general mapping can be expressed as a partition of the task set
{t1, . . . , tn} into m sets {A1, . . . , Am}, but these sets are not enforced to be intervals
anymore. The optimal period is then P = max1≤ j≤m

∑
i∈Aj

pi.
We present a generic way to reconstruct from the mapping a cyclic schedule that

preserves the throughput. A core schedule is constructed by scheduling all the tasks
according to the allocation without leaving any idle time and, therefore, reaching the op-
timal period. Task ti in set Aj is scheduled in the core schedule at time si = ∑

i′<i,i′∈Aj
pi′ .

A solution of the instance presented in Figure 5 is depicted in Figure 7 between the
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Fig. 7. The solution of optimal throughput to the instance of Figure 5 using a general mapping on two
processors.
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Fig. 8. A solution of the same throughput with Figure 7, but with a better latency.

dotted lines (time units 0 to 5); it schedules tasks t1 and t3 on processor 1, and tasks t2
and t4 on processor 2.

The notion of core schedule is different than the notion of elementary schedule.
Informally, the elementary schedule describes the execution of a single dataset while
the tasks in the core schedule may process different datasets.

The cyclic schedule is built so that each task takes its predecessor from the previous
period: inside a period, each task is processing a different dataset. We can now follow the
execution of the x-th dataset: it starts being executed for task ti at time si+(i+x−1)P, as
illustrated for the white dataset (x = 0) in Figure 7. This technique produces schedules
with a large latency, between (n−1)P and nP. In the example, the latency is 20, exactly
4 times the period. In Figure 7, the core schedule is given between the dotted lines
(from time step 0 to 5). The elementary schedule is given by restricting the figure to
the white dataset (i.e., removing all other datasets).

The strict rule of splitting the execution in n periods ensures that no precedence
constraint is violated. However, if the precedence constraint between task ti and task
ti+1 is respected in the core schedule, then it is possible to schedule both of them in
a single time period. Consider the schedule depicted in Figure 8. It uses the same
allocation as the one in Figure 7, but tasks t2 and t4 have been swapped in the core
schedule. Thus, tasks t1 and t2 can be scheduled in the same period, leading to a latency
of 13 instead of 20.

Note that the problem of finding the best general mapping for the throughput maxi-
mization problem is NP-complete: it is equivalent to the 2-PARTITION problem [Garey
and Johnson 1979] (consider an instance with two processors).

4.2.3. Chain with a Fixed Processor Allocation. In the previous examples, we have given
hints of techniques to build the best core schedule, given a mapping and a processor
allocation, in simple cases with no communication costs. In those examples, we were
able to schedule tasks in order to reach the optimal throughput and/or latency.

Given a mapping and a processor allocation, obtaining a schedule that reaches the
optimal latency can be done by greedily scheduling the tasks in the order of the chain.
However, this may come at the price of a degradation of the throughput, since idle
times may appear in the schedule. We can ensure that there will be no conflicts if the
period equals the latency (only one dataset in the pipeline at any time step).
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Fig. 9. A series-parallel graph and its binary decomposition tree.

If we are interested in minimizing the period, the presence of communications makes
the problem much more difficult. In the model without computation and communication
overlap, it is actually NP-hard to decide the order of communications (i.e., deciding the
start time of each communication in the core schedule) in order to obtain the minimum
period (see Agrawal et al. [2010] for details). If computation and communication can be
overlapped, the processor works simultaneously on various datasets, and we are able
to build a conflict-free schedule. When a bi-criteria objective function is considered,
more difficulties arise, as the ordering of communications also becomes vital to obtain
a good trade-off between latency and period minimization.

4.2.4. Scheduling Moldable Tasks with Series-Parallel Precedence. Chains are not the only
kind of precedence constraints that are structured enough to help derive interesting
results. For instance, series-parallel graphs [Valdes et al. 1982] are defined by compo-
sition. Given two series-parallel graphs, a series composition merges the sink of one
graph with the root (or source) of the other one; a parallel composition merges the sinks
of both graphs and the roots of both graphs. No other edges are added or removed. The
basic series-parallel graph is composed of two vertices and one edge. Figure 9 gives
an example of a series-parallel graph. The chain of length three (given as t2, t5 and
t7 in Figure 9) is obtained by composing in series the chain of length two with itself.
The diamond graph (given as t1, t3, t4, and t6 in Figure 9) is obtained by composing
in parallel the chain of length three with itself. In parallel computing, series-parallel
workflow graphs appear when using nested parallelism [Blelloch et al. 1994; Blikberg
and Sørevik 2005].

Choudhary et al. [1994] consider the scheduling of series-parallel pipelined prece-
dence task graphs, composed of moldable tasks. A given processor executes a single
task and communications inside the moldable task are assumed included in the par-
allel processing times. There is no communication required between the tasks, just a
precedence constraint. Provided a processor allocation, one can build an elementary
schedule by scheduling the tasks as soon as possible. Since a processor is only involved
in the computation of a single task, this elementary schedule reaches the optimal la-
tency (for the processor allocation). Moreover, the elementary schedule can be executed
with a period equal to the length of the longest task, leading to a cyclic schedule of
optimal throughput (for the processor allocation).

Since the application task graph is a series-parallel graph, the latency and through-
put of a solution can be expressed according to its Binary Decomposition Tree
(BDT) [Valdes et al. 1982]. Each leaf of the BDT is a vertex of the graph and each
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Fig. 10. An arbitrary DAG (the task weight is the label next to the task).

internal node is either a series node S(l, r) or a parallel node P(l, r). A series node
S(l, r) indicates that the subtree l is a predecessor of the subtree r. A parallel node
P(l, r) indicates that both subtrees l and r are independent. A Binary Decomposition
Tree is depicted in Figure 9.

In BDT form, the throughput of a node is the minimum of the throughputs of the
children of the node: T (S(l, r)) = T (P(l, r)) = min(T (l), T (r)). The expression of the
latency depends on the type of considered node. If the node is a parallel node, then the
latency is the maximum of the latencies of its children: L(P(l, r)) = max(L(l),L(r)). If
it is a series node, the latency is the sum of the latencies of its children: L(S(l, r)) =
L(l) + L(r).

4.2.5. Arbitrary DAGs on Homogeneous Processors. Many applications cannot be repre-
sented by a structured graph such as a chain or a series-parallel graph. Arbitrary
DAGs are more general but at the same time they are more difficult to schedule effi-
ciently. Figure 10 presents a sample arbitrary DAG.

Scheduling arbitrary DAGs poses problems that are similar to those encountered
when scheduling chains. Consider first the case of one-to-one mappings, in which each
task is allocated to a different processor. A cyclic schedule is easily built by scheduling
all tasks as soon as possible. Task i is scheduled in the cyclic schedule on processor i
at time si = maxi′∈pred(i) si′ + pi′ . This schedule can be executed periodically every
P = maxi pi with throughput T = 1

maxi pi
. The latency is the longest path in the graph,

that is, L = max si + pi. A schedule built in such a way does not schedule two tasks
on the same processor at the same time; indeed, each task is executed during each
period on its own processor, and its processing time is smaller or equal to the period.
Under the one-to-one mapping constraint, this schedule is optimal for both objective
functions. The solution for the graph of Figure 10 is presented in Figure 11, with a
latency L = 11 and a throughput T = 1

8 .
When there is no constraint enforced on the mapping rule, problems similar to

those of general mappings for linear chains appear (see Section 4.2.2): we cannot
easily derive an efficient cyclic schedule from the processor allocation. Establishing
a cyclic schedule that reaches the optimal throughput given a processor allocation is
easy without communication cost, but it can lead to a large latency. Similarly to the
case of chains, a core schedule is obtained by scheduling all the tasks consecutively
without taking care of the dependencies. This way, we obtain the optimal period (for
this allocation) equal to the load of the most loaded processor. The cyclic schedule is
built so that each task takes its data from the execution of its predecessors in the

ACM Computing Surveys, Vol. 45, No. 4, Article 50, Publication date: August 2013.



A Survey of Pipelined Workflow Scheduling: Models and Algorithms 50:19

pr
oc
es
so
r

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11
time

t3

t5

t2

t4

Fig. 11. One-to-one mapping of the instance of Figure 10 with L = 11 and T = 1
8 . Tasks t1 and t6 have

computation time 0, therefore they are omitted.
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Fig. 12. A general mapping solution of the instance of Figure 10 with L = 15 and T = 1
8 . Tasks t1 and t6

have computation time 0, therefore they are omitted.
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Fig. 13. A general mapping solution of the instance of Figure 10 with L = 11 and T = 1
8 . Tasks t1 and t6

have computation time 0, therefore they are omitted.

last period. Therefore, executing a dataset takes as many periods as the depth of the
precedence task graph. On the instance of Figure 10, the optimal throughput on two
processors is obtained by scheduling t2 alone on a processor. Figure 12 presents a cyclic
schedule for this processor allocation according to this generic technique, leading to a
latency L = 15. Note that t5 could be scheduled in the same period as t3 and in general
this optimization can be done by a greedy algorithm. However, it does not guarantee to
obtain the schedule with the optimal latency, which is presented in Figure 13 and has
a latency L = 11. Indeed, contrarily to linear pipelines, given a processor allocation,
obtaining the cyclic schedule that minimizes the latency is NP-hard [Rayward-Smith
et al. 1995].

The notion of interval mapping cannot be directly applied on a complex DAG. How-
ever, we believe that the interest of interval mapping schedules of chains can be trans-
posed to convex clustered schedules on DAGs. In a convex clustered schedule, if two
tasks are executed on one processor, then all the tasks on all the paths between these
two tasks are scheduled on the same processor [Lepere and Trystram 2002]. Convex
clustered schedules are also called processor-ordered schedules, because the graph of
the inter-processor communications induced by such schedules is acyclic [Guinand et al.
2004]. The execution of the tasks of a given processor can be serialized and executed
without any idle time (provided their execution starts after all the data have arrived).
This leads to a reconstruction technique similar to the one applied on chains of tasks
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Fig. 14. A general mapping solution of the instance of Figure 10 with L = 14 and T = 1
7 when task t2 is

replicable. Tasks t1 and t6 have computation time 0, therefore they are omitted.

following the interval mapping rule. Two processors that are independent in the inter-
processor communication graph can execute their tasks on a given dataset during the
same period in any order, without violation of the precedence constraints. Such a con-
struction leads to the optimal throughput for a given convex clustered mapping of tasks
to processors, and to a latency L ≤ xP ≤ mP, where x is the length of the longest chain
in the graph of communications between processors.

Algorithms to generate convex clustered schedules based on recursive decomposi-
tion have been proposed for classical DAG scheduling problems [Pecero-Sanchez and
Trystram 2005]. In pipelined scheduling, heuristic algorithms based on stages often
generate convex clustered schedules such as Banerjee et al. [1995] and Guirado et al.
[2005]. However, the theoretical properties of such schedules have never been studied
for pipelined workflows.

4.2.6. Scheduling Arbitrary DAGs on Homogeneous Processors with Replication. A task is repli-
cable if it does not contain an internal state. It means that the same task can be ex-
ecuted at the same time on different datasets. Replication allows one to increase the
throughput of the application. (We point out that this is different from duplication,
which consists in executing the same task on the same dataset on multiple different
processors. Redundantly executing some operations aims at either reducing commu-
nication bottlenecks or increasing reliability.) On the instance presented in Figure 10,
only two processors can be useful: the dependencies prevent any three tasks from being
executed simultaneously, so a third processor would improve neither the throughput
nor the latency for monolithic tasks. However, if task t2 is replicable, the third pro-
cessor could be used to replicate the computation of this task, therefore leading to the
schedule depicted in Figure 14.

Replicating t2 leads to a periodic schedule that executes two datasets every 14 time
units (K = 2). Its throughput is therefore T = 2

14 = 1
7 , which is better than without

replication. The latency is the maximum time a dataset spends in the system. Without
replication, all the datasets spend the same time in the system. With replication, this
statement no longer holds. In the example, the cyan dataset spends 11 time units in
the system whereas the green one spends 14 time units. The latency of the schedule
is therefore L = 14. If task t4 was replicable as well, two copies could be executed in
parallel, improving the throughput to T = 2

11 and the latency to L = 11. A fourth
processor could be used to pipeline the execution of t4 and reach a period of P = 8 and,
hence, a throughput of T = 1

4 .
A schedule with replication is no longer cyclic but instead is periodic, with the

definitions of Section 4.1. Such a schedule can be seen as a pipelined execution of
an unrolled version of the graph. The overall schedule should be specified by giving a
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periodic schedule of length � (the time between the start of the first task of the first
dataset of the period and the completion of the last task of the last dataset of the period),
detailing how to execute K consecutive datasets and providing its period P. Verifying
that the schedule is valid is done in the same way as for classical elementary schedules:
one needs to expand all the periods that have a task running during the schedule, that
is to say the tasks that start during the elementary schedule and within the � time
units before. Such a schedule has a throughput of T = K

P , and its latency should be
computed as the maximum latency of the datasets in the elementary schedule.

Note that if all tasks are replicable, the whole task graph can be replicated on all the
m processors. Each processor executes sequentially exactly one copy of the application.
This leads to a schedule of latency and period P = L = ∑

i pi, and a throughput of
T = m∑

i pi
.

When using replication, it is possible that dataset i is processed before its predecessor
i−1. This behavior mainly appears when processors are heterogeneous. The semantic of
the application might not allow datasets to be processed in such an out-of-order fashion.
For instance, if a task is responsible for compressing its input, providing the datasets
out-of-order will change the output of the program. One can then either impose a delay
or use some other constraints, such as for instance the dealable stage constraint [Cole
2004].

4.2.7. Model Variations. In most cases, heterogeneity does not drastically change the
scheduling model. However, the compact schedule description must then contain the
processor allocation, that is, it must specify which task is executed on which processor.
Otherwise the formulations stay similar.

A technique to reduce latency is to consider duplication [Ahmad and Kwok 1998;
Vydyanathan et al. 2010]. Duplicating a task consists in executing the same task more
than once on different processors for every dataset. Each task receives its data from
one of the duplicates of each of its predecessors. Hence, this allows more flexibility
for dealing with data dependency. The idea is to reduce the communication overheads
at the expense of increasing the computation load. Another goal is to increase the
reliability of the system: whenever the execution of one duplicate would fail, that
of another duplicate could still be successful. The major difference of duplication as
compared to replication is the following: with duplication, a single dataset is executed
in each period, whereas with replication, several datasets can be executed in each
period.

Communication models affect the schedule formulation. The easiest communication
model is the one-port model where a machine communicates with a single other ma-
chine at a time. Therefore, in the schedule, each machine is represented by two proces-
sors, one for the computations and one for the communications. A valid schedule needs
to “execute” a communication task at the same time on the communication processor
of both machines involved in the data transfer. A common variation on the one-port
model is to forbid communication and computation overlap. This model is used in Hary
and Özgüner [1999]. In this case, there is no need for a communication processor; the
communication tasks have to be scheduled on the computation processor [Benoit et al.
2007].

To deal with more than one communication at a time, a realistic model would be
to split the bandwidth equally among the communications. However, such models
are more complicated to analyze and are therefore not used in practice. Two ways
of overcoming the problem exist. The first one is to consider the k-port model where
each machine has a bandwidth B divided equally into k channels. The scheduling
problem amounts to using k communication processors per machine. This model has
been used in Vydyanathan et al. [2010].
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When only the throughput matters (and not the latency), it is enough to ensure that
no network link is overloaded. One can reconstruct a periodic schedule explicitly by
using the model detailed previously, considering each network link as a processor. This
approach has been used in Taura and Chien [1999].

4.3. Complexity

The goal of this section is to provide reference pointers for the complexity of the
pipelined scheduling problem. Lots of works are dedicated to highlighting the fron-
tier between polynomial and NP-hard optimization problems in pipelined scheduling.

The complexity of classical scheduling problems has been studied in Brucker [2007].
One of the main contributions was to determine some constraint changes that always
make the problem harder. Some similar results are valid on pipelined scheduling. For
instance, heterogeneous versions of problems are always harder than their homoge-
neous counterpart, since homogeneous cases can be easily represented as heteroge-
neous problem instances but not vice versa. A problem with an arbitrary task graph or
architecture graph is always harder than the structured counterpart, and in general
considering a superset of graphs makes problems harder. Also, removing communica-
tions makes the problem easier.

As seen in the previous examples, throughput optimization is always NP-hard for
general mappings, but polynomial instances can be found for interval mappings. The
communication model plays a key role in complexity. The optimization of latency is usu-
ally equivalent to the optimization of the makespan in classical DAG scheduling [Kwok
and Ahmad 1999b].

The complexity of multi-objective problem instances relates to three different types of
questions. First, the decision problems of multi-objective problems are directly related
to those for mono-objective problems. A threshold value is given for all the objectives
and the problem is to decide whether a solution exist that matches all these thresh-
olds. Multi-objective decision problems are obviously harder than their mono-objective
counterpart. Second, the counting problem consists in computing how many Pareto-
optimal solutions a multi-objective problem has; a Pareto-optimal solution is such that
no other solution is strictly better than it. Finally, the enumeration problem consists
in enumerating all the Pareto-optimal solutions of an instance. The enumeration prob-
lem is obviously harder than the decision problem and the counting problem, since it is
possible to count the number of solutions with an enumeration algorithm and to decide
whether given thresholds are feasible. A complete discussion of these problems can be
found in T’kindt and Billaut [2007].

The complexity class of enumeration problems expresses the complexity of the prob-
lem as a function of both the size of the input of the problem and the number of
Pareto-optimal solutions leading to classes EP (Enumeration Polynomial) and ENP
(for Enumeration Nondeterministic Polynomial) [T’kindt et al. 2007]. Therefore, the
decision version of a multi-objective problem might be NP-complete, but since it has
an exponential number of Pareto optimal solution, its enumeration version is in EP
(the problem 1 || ∑

C A
i ;

∑
CB

i of Agnetis et al. [2004] is one of the many examples
that exhibit this property). Therefore, the approaches based on exhaustive enumera-
tion can take a long time. However, Papadimitriou and Yannakakis [2000] show that
most multi-objective problems admit an approximate set of Pareto-optimal solutions
whose cardinality is polynomial in the size of the instance (but it is exponential in the
number of objectives and in the quality of the approximation). It was also shown in
Papadimitriou and Yannakakis [2000] that an approximation algorithm for the deci-
sion problem can be used to derive an approximation of the Pareto set in polynomial
time. These results motivate the investigation of algorithms that enforce thresholds on
some objectives and optimize the other ones.
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Table II. Summary of Complexity Results for Period Minimization of a Linear Task Graph

Mapping rule Platform type
Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial polynomial, NP-hard (rep.) NP-hard
interval polynomial NP-hard NP-hard
general NP-hard, polynomial (rep.) NP-hard

Table III. Summary of Complexity Results for Latency Minimization of a Linear Task Graph

Mapping rule Platform type
Fully Hom. Comm. Hom. Hetero.

one-to-one polynomial [Benoit and Robert 2009] NP-hard [Benoit et al. 2008]
interval polynomial [Benoit and Robert 2009] NP-hard [Benoit et al. 2009c]
general polynomial [Benoit et al. 2008]

The complexity of linear graph problems has been widely studied since it roots the
general DAG case and most of the structured graph ones [Benoit and Robert 2008, 2009,
2010; Benoit et al. 2007, 2008, 2009c; Agrawal et al. 2008, 2010]. The large number
of variants for these scheduling problems makes complexity results very difficult to
apprehend. An exhaustive list of such results can be found in Benoit [2009]. We provide
in Tables II and III a summary of complexity results for period and latency optimization
problems, which hold for all communication models. Fully Hom. platforms refer to
homogeneous computations and communications. Comm. Hom. platforms add one level
of heterogeneity (heterogeneous-related processors). Finally, Hetero. platforms are fully
heterogeneous (heterogeneous-related processors and heterogeneous communication
links).

For the period minimization problem, the reader can refer to Benoit and Robert
[2008] for the variant with no replication, and to Benoit and Robert [2010] otherwise
(results denoted with (rep.)). For the latency minimization problem, we report here
results with no data parallelism; otherwise the problem becomes NP-hard as soon as
processors have different speeds (related model), with no communication costs [Benoit
and Robert 2010].

5. SOLVING PROBLEMS

The goal of this section is to give methods to solve the pipelined scheduling problem
using exact algorithms or heuristic techniques.

5.1. Scheduling a Chain of Tasks with Interval Mappings

The first problem that we consider has been presented in Section 4.2.1. It consists
in scheduling a chain of n tasks onto m identical (homogeneous) processors, without
communication, and enforcing the interval mapping constraint. Section 4.2.1 states
that the latency of such schedules is constant, however, the throughput can be optimized
by minimizing the length of the longest interval.

The optimization of the throughput problem is the same combinatorial problem as the
well-known chains-on-chains partitioning problem, which has been solved by a polyno-
mial algorithm in Bokhari [1988], and then refined to reach lower complexity in Iqbal
[1992], Nicol [1994], Manne and Olstad [1995]. For very large problems, some heuris-
tics have also been designed to reduce the scheduling times even further (see Pınar
and Aykanat [2004] for a survey). The first algorithm was based on a shortest path
algorithm in an assignment graph. The approach that follows has a lower complexity
and is easier to understand.
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The core of the technique is the Probe function that takes as a parameter the process-
ing time of the tasks and the length of the longest interval P. It constructs intervals
I = {I1, . . . , Im} such that max1≤ j≤m Lj ≤ P, or shows that no such intervals exist (re-
member that Lj = ∑

i∈Ij
pi, where pi is the processing time of task ti). Probe recursively

allocates the first x tasks of the chain to the first processor so that
∑

i≤x pi ≤ P and∑
i≤x+1 pi > P until no task remains, and then returns the schedule. If the number of

intervals is less than the number of processors, this function builds a schedule having
no interval of length exceeding P. Otherwise, no schedule of maximal interval length
less than P exists with m processors. It can be easily shown that the schedules con-
structed are dominant, that is, if a schedule exists, then there is one respecting this
construction. The last problem is to choose the optimal value for the threshold P. The
optimal value is obtained by using a binary search on the possible values of P, which
are tested using the Probe function. This construction is polynomial but has a quite
high complexity. It is possible to reduce the complexity of the Probe function using pre-
fix sum arrays and binary search so that fewer values of P can be tested by analyzing
the processing time values. In the general case, the lowest complexity is reached by us-
ing Nicol’s algorithm [Nicol 1994] with the algorithm for the Probe function described
in Han et al. [1992], leading to a total complexity of O(n+m2 log(n) log(n/m)) (see Pınar
and Aykanat [2004] for details).

The same idea can be used to deal with different problems, for instance, with nonover-
lapping communications following the one-port model [Iqbal 1992]. Since there is no
overlapping, the communication time is included in the computation of the through-
put of both processors involved in the communication. Then, setting the boundary of
the interval on a communication larger than the length of the previous task plus its
in-bound communication is never efficient: the two tasks can be merged without los-
ing optimality. (The same argument applies towards the next task.) Detecting these
tasks and merging them can be performed in linear time. The resulting chain is said
to be monotonic. Then, an algorithm similar to the partitioning of a chain in intervals
without communication can be applied, leading to the optimal solution [Iqbal 1992].

The same algorithm can also be used to optimally solve the case with related proces-
sor heterogeneity (processor speeds differ) if the order in which a dataset goes through
the processors is known. This is the case on dedicated hardware where the processor
network forces the order of execution between the processors. However, if this order is
not known, the problem is NP-complete in the strong sense [Benoit et al. 2007], even
without taking communication costs into account. There are too many permutations to
try, but the Probe algorithm sets a solid ground to build heuristics upon.

Benoit and Robert [2008] propose three heuristics to build interval mappings for
optimizing the throughput on heterogeneous processors. The first one, called SPL,
starts by assigning all the tasks to the fastest processor and then greedily splits the
largest interval by unloading work to the fastest available processor. The splitting point
is chosen so as to minimize the period of the new solution. The two other heuristics
BSL and BSC use a binary search on the period of the solution. This period is used
as a goal in the greedy allocation of tasks to processors. BSL allocates the beginning
of the chain of tasks to the processor that will execute the most computations while
respecting the threshold. On the other hand, BSC chooses the allocation that is the
closest to the period. Note that Pınar et al. [2008] survey chains-on-chains partitioning
problems with heterogeneous resources, and propose several heuristics that can be
transposed to throughput optimization without communication costs.

Kijsipongse and Ngamsuriyaroj [2010] propose a heuristic algorithm called Through-
putPipeline to schedule a chain using interval mappings on Grid computing systems
(related processors, bounded multiport, communication and computation overlapping,
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no replication), considering routing through intermediate nodes. ThroughputPipeline
is based on Dijkstra’s shortest path algorithm. Simulation shows that its performance
is within 30% of the general mapping optimal solution (obtained by an Integer Linear
Programming formulation).

Solving the problem of optimizing both the latency and the throughput of a linear
pipeline application has been considered in Subhlok and Vondran [1996] and Benoit
et al. [2007, 2009b]. Bi-objective optimization problems are usually solved by providing
a set of efficient solutions. This set of solutions is generated by using an algorithm
that targets values of one objective while optimizing the other one. The solution space
is explored by executing this algorithm with different values of the threshold, hence
covering the efficient part of the solution space.

Subhlok and Vondran [1995] address the problem of scheduling a chain of tasks
on homogeneous processors to optimize the throughput of the application without
computation and communication overlap. It covers a large range of problems since
it addresses moldable tasks with dedicated communication functions and replicable
tasks. The network is supposed to be homogeneous but the details of the communication
model are abstracted by explicitly giving the communication time in the instance of the
problem. The technique used is based on dynamic programming and leads to an optimal
polynomial algorithm. This result can be extended by adding a latency dimension in
the dynamic program to allow the optimization of the latency under a throughput
constraint [Subhlok and Vondran 1996].

Benoit et al. [2007] propose heuristics that optimize the throughput and latency
when link bandwidths are identical but processors have different speeds (one-port
communications without overlap). Six heuristics are presented, enforcing a constraint
on either the throughput or the latency. All six heuristics are similar to SPL in
that they start by allocating all the tasks to the fastest processor and split the
interval iteratively. The differences are that each interval may be split in two to
use the fastest available processor, or split in three to use the fastest two proces-
sors available. The other differences are about the solution chosen; it could be the
one that maximizes one objective or a ratio of improvement. Benoit et al. [2009b]
propose an integer linear programming formulation to solve the problem optimally
(and with heterogeneous bandwidths). The solving procedure takes a long time even
on a simple instance of 7 tasks and 10 processors (a few hours on a modern com-
puter) but allows assessment of the absolute performance of the previously proposed
heuristics.

5.2. Scheduling a Chain of Tasks with General Mappings

Using general mappings instead of restricting to interval mappings leads to bet-
ter throughput. Without replication and without communication costs, the optimiza-
tion of the throughput on homogeneous processors is NP-complete by reduction to
3-PARTITION. In fact, the mathematical problem is to partition n integers p1, . . . , pn
into m sets A1, . . . , Am so that the length of the largest set max1≤ j≤m

∑
i∈Aj

pi is mini-
mized. This formulation corresponds exactly to the problem of scheduling independent
tasks on identical processors to minimize the makespan, that has been studied for a
long time Graham [1966, 1969] and considered theoretically solved since Hochbaum
and Shmoys [1987].

On homogeneous processors, the classical List Scheduling algorithm schedules tasks
greedily on the least loaded processor, and it is a 2-approximation [Graham 1966], that
is, the value of the obtained solution is at most twice the optimal value. Sorting tasks by
nonincreasing processing times leads to the Largest Processing Time (LPT) algorithm,
which is known to be a 4/3-approximation algorithm [Graham 1969]. An approximation
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algorithm with arbitrary precision that is polynomial in the size of the problem but
exponential in the inverse of the precision (also known as PTAS) based on binary search
and dynamic programming has been proposed in Hochbaum and Shmoys [1987]. The
question of whether an algorithm with arbitrary precision that is polynomial in the
size of the problem and in the inverse of the precision (also known as FPTAS) arises.
However, the problem is NP-complete in the strong sense and FPTAS do not exist for
this problem unless P = NP (see Hochbaum [1997] for details on complexity classes
based on approximation properties).

With heterogeneous processors, there is still a link with the classical makespan op-
timization problem. If processors are heterogeneous related (computing at different
speeds), the throughput optimization problem is the same as scheduling independent
tasks on heterogeneous-related processors. This problem admits a 2-approximation al-
gorithm similar to LPT [Gonzalez et al. 1977]. Hochbaum and Shmoys [1988] provide
an elaborate approximation scheme with very high runtime complexity as well as a
simple 3/2-approximation algorithm. If processors are unrelated (i.e., their speeds de-
pend on the task they are handling), the throughput optimization problem is the same
as scheduling independent tasks on unrelated processors to minimize the makespan.
It can be shown that there exists no approximation algorithm with a ratio better
than 3/2 [Lenstra et al. 1990]. Moreover, a 2-approximation algorithm based on binary
search and linear programming has been proposed in Lenstra et al. [1990] and recently
made simpler and faster by Gairing et al. [2005].

The results on classical scheduling problems remain valid even if the graph is not
linear as long as the performance index is the throughput and there are no commu-
nications. However, they still provide an interesting baseline to assess the impact of
communications.

Kijsipongse and Ngamsuriyaroj [2010] consider the problem of scheduling a chain on
a Grid computer with routing to optimize the throughput. Processors are heterogeneous
(related) and communications follow the bounded multiport model with overlapping. It
first considers the case with replication (called multipath in this terminology). An opti-
mal general mapping is constructed in polynomial time by LPSAG, a flow-based linear
programming formulation (somehow similar to LPsched [do Nascimento et al. 2005]).
Finding the optimal general mapping without replication (single path) is investigated
and shown to be NP-complete. LPSAG is extended into an Integer Linear Program
that finds the optimal general mapping without replication (but possibly in exponen-
tial time). A polynomial heuristic based on Dijkstra’s shortest path algorithm that
only constructs interval mappings is proposed. Experiments show that the heuristic is
within 30% of the Integer Linear Programming solution.

Benoit et al. [2009c] provide a polynomial algorithm to optimize the latency of a
pipelined chain on heterogeneous (related) networks of processors under the one-port
model. The algorithm is based on a dynamic programming formulation.

5.3. Structured Application Graphs

Choudhary et al. [1994] tackle the problem of scheduling pipelined series-parallel
graphs of moldable tasks. (This problem has been presented in Section 4.2.4.) A bi-
criteria problem is solved optimally by optimizing the latency under throughput con-
straint, under the assumption that a processor executes at most one task. The latency
is optimized by computing, for each node of the binary decomposition tree, the op-
timal latency achievable for any number of processors using dynamic programming.
The latency of the series node S(l, r) using m processors is obtained by evaluating
L(S(l, r), m) = min1≤ j≤m−1(L(l, j)+L(r, m− j)). The latency of the parallel node P(l, r) on
m processors is obtained by evaluating L(P(l, r), m) = min1≤ j≤m−1 max(L(l, j),L(r, m−
j)). The leaves of the binary decomposition tree are the tasks of the application and
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their latency is given as an input of the problem. The throughput constraint is ensured
by setting the latency of the tasks to infinity on processor allocations that would not
respect the throughput constraint. Evaluating the latency of a node for a given number
of processors requires O(m) computations and there are 2n−1 ∈ O(n) nodes to estimate
in the tree for m different values of the number of processors. The overall complexity of
the algorithm is O(nm2). Moreover, the authors remark that if both L(l, j) − L(l, j − 1)
and L(r, j) −L(r, j − 1) decrease when j increases, then L(S(l, r), j) has the same prop-
erty. Using that property appropriately enables to obtain the optimal latency for chains
(series graph) in O(mlog n) by considering the whole chain at once (instead of using the
Binary Decomposition Tree form). If a graph is only composed of parallel tasks, con-
sidering the whole graph at once leads to an algorithm of similar complexity. Finally,
Choudhary et al. [1994] show how to efficiently solve the problem of optimizing the
throughput under latency constraint.

Hasan and Motwani [1994] and its refinement [Chekuri et al. 1995] are interested in
optimizing the throughput of pipelined trees for database applications. Homogeneous
processors are used, the communications do not overlap with computations, and the
communications follow the bandwidth bounded multiport model. Therefore the load
of a processor is the sum of the weights of the nodes executed by this processor plus
the weights of the edges to other processors. Since latency is not a concern here, there
is no fine-grain scheduling of tasks and datasets, but only a flow-like solution where
each processor has a large buffer of datasets to execute. This solution is very similar to
the notion of core schedule described in Section 4.2.2. The main contribution of Hasan
and Motwani [1994] is the definition of a monotone tree, which is a modified version
of a tree where two nodes linked by too high communication edge are merged. This
technique is an extension of the monotonic chains used in Iqbal [1992]. It is shown that
such a modification is optimal.

Chekuri et al. [1995] present two approximation algorithms for the previous problem.
Both are based on a two-phase decomposition: first the tree is decomposed into a forest
by removing some edges; then the trees are allocated to processors using LPT. Removing
an edge incurs communication costs to both extremities of the edge. It is shown that if
the obtained forest does not have too large trees and the load is kept reasonable, then
LPT will generate an approximation of the optimal solution. Two tree decomposition
algorithms follow. The first one is a simple greedy algorithm with approximation ratio
3.56, the second one is a more complex greedy algorithm with approximation ratio 2.87.

5.4. Scheduling with Replication

Subhlok and Vondran [1995] address the problem of scheduling a chain of moldable
tasks to optimize the throughput using replicated interval mappings: if a task is repli-
cated, its whole interval is replicated too. The algorithm uses dynamic programming
to find the intervals I = {I1, . . . , Ik}, and for interval Ij ∈ I, the number of pro-
cessors mIj and the number of replications rIj for this interval, so that the period

P = maxIj∈I
p(Ij ,mIj )

rIj
is minimized. Note that p(Ij, mIj ) is the period of interval Ij ∈ I ex-

ecuted on mIj processors. However, the algorithm does not return the periodic schedule
that the system should follow. It just states where the tasks should be executed and it
relies on a demand-driven middleware to execute them correctly. A periodic schedule
reaching the same throughput can be computed from the intervals, and the number
of times they should be replicated. However, one needs to specify the execution of a
number of datasets equal to the least common multiple of the number of replication of
all the intervals to completely provide the schedule. Indeed, if one task is replicated
two times and another is replicated three times, the execution of six datasets must be
unrolled for the schedule to be periodic.
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Subhlok and Vondran [1996] add the computation of the latency to Subhlok and
Vondran [1995]. Since the graph is a chain and all the intervals are executed indepen-
dently, it is possible to build a schedule that reaches the optimal latency for a given
processor allocation L = ∑

Ij∈I p(Ij, mIj ). The interval that constrains the throughput
must be executed without idle time, the preceding tasks are scheduled as late as pos-
sible, and the following tasks are scheduled as soon as possible. The optimization of
the latency under a throughput constraint is obtained using a dynamic programming
algorithm, by forbidding the numbers of processors and numbers of replications for
each interval that violate the throughput constraint.

5.5. General Method to Optimize the Throughput

Banerjee et al. [1995] deal with executing a signal processing application on hetero-
geneous machines, where not all tasks can be executed on all type of processors. They
schedule a precedence task graph of sequential monolithic tasks. Communications
follow the bandwidth bounded multiport model with latency, and they overlap with
computations. The proposed algorithm relies on the notion of processor-ordered sched-
ule. (Recall that a schedule is processor ordered if the graph of the communications
between the processors is acyclic.) This property helps ensuring that precedence con-
straints are respected. The algorithm first builds a schedule by clustering some tasks
together to reduce the size of the graph. Then, an exponential algorithm finds the opti-
mal processor-ordered schedule of the clustered task graph. Finally, tasks are greedily
moved from one processor to the other. The last two steps are alternatively executed
as long as the throughput improves.

Beynon [2001] deals with scheduling pipelined task graphs on the Grid. The re-
sources of the Grid are exploited using replication. The author proposes the Filter
Copy Pipeline (FCP) algorithm. FCP considers the application graph in a topological
order, and chooses the number of copies for each task, so that it can process the data
it receives without getting a large backlog. In other words, if the predecessor of a task
handles x datasets per time unit, FCP replicates this task to handle x datasets per
time unit. Those replicas are allocated to processors using the earliest completion time
rule. To improve this approach, Spencer et al. [2002] propose Balanced Filter Copies
that allocates a processor to a single task. In order to ensure the balance, it keeps track
of the network bandwidth used while computing the schedule.

Taura and Chien [1999] are concerned with scheduling a pipelined task graph on
a heterogeneous network of heterogeneous (related) processors with computation and
communication overlap. Since the authors are only interested in the throughput, the
problem reduces to a mapping of tasks to processors, and the throughput of the solution
is given by the most loaded processor or communication link. The algorithm starts by
ordering the tasks in depth-first traversal of a clustering tree. Then tasks are mapped
to the processors using the following algorithm. The processors are, one after the other,
loaded with the first unallocated tasks that minimize the maximum of three quantities:
the current load, the perfectly balanced load of the unallocated tasks on the unallocated
processors, and the communication volume between the tasks currently allocated to
the processor and the unallocated tasks normalized by the total bandwidth of the
processor. Finally, the obtained schedule is iteratively improved by unscheduling some
of the tasks on the most loaded processors and/or links, and scheduling them again.

Yang et al. [2003] deal with scheduling arbitrary precedence task graphs on a Net-
work Of Workstations (NOW). The processors are heterogeneous (related) and allow
for communication and computation overlap. The communications are modeled using
the delay model where the delay is computed using a per-link latency and bandwidth.
Two objectives are optimized: the throughput and number of machines used from the
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NOW. The throughput is given by the user and then the execution is cut in stages
whose lengths are given by the throughput. A processor used in one stage is not reused
in the next one, so that the throughput can be guaranteed. The tasks are allocated
using the earliest-task-first heuristic. The authors also propose some techniques to
compact the schedule, reducing the number of processors used.

5.6. General Method to Optimize Throughput and Latency

Guirado et al. [2005] are interested in scheduling a pipelined precedence task graph
on a homogeneous cluster with communication and computation overlap to optimize
both latency and throughput. The network is assumed completely connected and the
delay model is used. The delay between two tasks scheduled on two processors is
computed using a latency plus bandwidth model. The EXPERT algorithm optimizes
the latency under a throughput constraint. Given a throughput goal T = 1/P, all
tasks are partitioned into stages. Each stage is identified by an integer. Task t is
allocated to the minimum stage k such that topLevel(t) ≤ k × P, where topLevel(t)
is the critical path from the root of the graph to the completion of t. Then, EXPERT
considers all the paths of the graph from root to sink in decreasing order of length,
including communication delays, and for each edge of each path it applies the following
greedy rule: if the two clusters linked by the edge belong to the same stage, and if the
sum of the processing times of the tasks in these clusters is smaller than P, then the
two clusters are merged. Finally, inter-stage clusters are merged as long as the sum of
the processing times of the tasks of the resulting cluster is less than P. Each cluster
is assigned to a different processor (and the throughput goal is declared infeasible if
there are not enough processors). Communication between the processors are grouped
at the end of the execution of the cluster to which they are assigned.

Hary and Özgüner [1999] deal with arbitrary application graphs and homoge-
neous processors and network links. The technique was originally designed for hy-
percube networks, but can be adapted to arbitrary networks. It assumes communica-
tion and computation overlap. The authors are interested in optimizing both latency
and throughput. The proposed algorithm only provides a processor allocation, and the
periodic schedule is reconstructed using a technique similar to the one presented in
Section 4.2.5: within a period, the tasks are ordered in topological order. If a task prece-
dence constraint is not satisfied inside the current period, it enforces the dependency
from the previous period. Given a target period, and therefore throughput, the proposed
method has three phases. The first phase groups the tasks in as many clusters as there
are processors. This phase orders communications in nonincreasing order of their size,
and greedily considers grouping the tasks at both ends of the communication inside
the same cluster, unless both tasks are already assigned to a cluster, or the assignment
would make the sum of the processing times of the tasks in the cluster larger than the
period. At the end of this phase, tasks that are not assigned to a cluster are assigned
using a first-fit rule. Then, in the second phase, the clusters are mapped to computa-
tion nodes to minimize the amount of communication. This is done by first mapping the
clusters randomly to the nodes. Then the processor set is cut in two equals parts and
clusters are pairwise exchanged to decrease communications on the processor cut. The
communications in each part of the processor set are optimized by applying the “cut in
two parts and exchange clusters” procedure recursively. Finally, in the third phase, the
solution is improved iteratively by moving tasks between processors to decrease the
load of the most loaded link.

Vydyanathan et al. [2010] consider optimizing the latency and throughput of arbi-
trary DAGs on homogeneous processors linked by a network of different bandwidths,
with communication/computation overlap, and using replication and duplication. Com-
munications are explicitly scheduled according to the k-port model. The algorithm
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operates in three phases and takes a throughput constraint as a parameter. The first
phase groups tasks together in as many clusters as necessary to match the throughput
constraint. This is achieved by considering the replication of each task to deal with
computational bottlenecks, and the duplication of each task and merging the clusters
of the tasks at both ends of an edge to decrease communication bottlenecks. For each
alteration of the mapping considered, the throughput is evaluated by scheduling the
computations and the communications using a greedy algorithm. In a second phase,
the number of clusters is reduced to the number of processors in the system by merg-
ing clusters to minimize processor idle times. Finally, in the last phase, the latency is
minimized by considering for each task of the critical path its duplication, and merging
to its predecessor cluster or successor cluster.

6. CONCLUSION AND FUTURE WORK

In this survey, we have presented an overview of pipelined workflow scheduling, a
problem that asks for an efficient execution of a streaming application that operates on
a set of consecutive datasets. We described the components of application and platform
models, and how a scheduling problem can be formulated for a given application. We
presented a brief summary of the solution methods for specific problems, highlighting
the frontier between polynomial and NP-hard optimization problems.

Although there is a significant body of literature for this complex problem, realistic
application scenarios still call for more work in the area, both theoretical and prac-
tical. When developing solutions for real-life applications, one has to consider all the
ingredients of the schedule as a whole, including detailed communication models and
memory requirements (especially when more than one dataset is processed in a sin-
gle period). Such additional constraints make the development of efficient scheduling
methods even more difficult.

As the literature shows, having structure either in the application graph or in the exe-
cution platform graph dramatically helps for deriving effective solutions. We think that
extending this concept to the schedule could be useful too. For example, for scheduling
arbitrary DAGs, developing structured schedules, such as convex clustered schedules,
has a potential for yielding new results in this area.

Finally, as the domain evolves, new optimization criteria must be introduced. In this
article, we have mainly dealt with throughput and latency. Other performance-related
objectives arise with the advent of very large-scale platforms, such as increasing the
reliability of the schedule (e.g., through task duplication). Environmental and economic
criteria, such as the energy dissipated throughout the execution, or the rental cost of
the platform, are also likely to play an increasing role. Altogether, we believe that future
research will be devoted to optimizing several performance-oriented and environmental
criteria simultaneously. Achieving a reasonable trade-off between all these multiple
and antagonistic objectives will prove a very interesting algorithmic challenge.
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