
46

Pervasive Social Context: Taxonomy and Survey

DANIEL SCHUSTER, TU Dresden, Germany
ALBERTO ROSI and MARCO MAMEI, Unimore, Italy
THOMAS SPRINGER, TU Dresden, Germany
MARKUS ENDLER, PUC Rio, Brazil
FRANCO ZAMBONELLI, Unimore, Italy

As pervasive computing meets social networks, there is a fast growing research field called pervasive social
computing. Applications in this area exploit the richness of information arising out of people using sensor-
equipped pervasive devices in their everyday life combined with intense use of different social networking
services. We call this set of information pervasive social context. We provide a taxonomy to classify pervasive
social context along the dimensions space, time, people, and information source (STiPI) as well as commenting
on the type and reason for creating such context. A survey of recent research shows the applicability and
usefulness of the taxonomy in classifying and assessing applications and systems in the area of pervasive
social computing. Finally, we present some research challenges in this area and illustrate how they affect
the systems being surveyed.
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1. INTRODUCTION

The advent of social networking applications has radically changed the way we use the
Internet. Millions of users nowadays regularly turn to Web sites such as Facebook, Twit-
ter, LinkedIn, or Orkut to keep in touch with friends, read and post comments, join com-
mon interest groups, and publish thoughts, opinions, recommendations, and up-to-date
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information about themselves. As more and more people join and use such social net-
working Web sites, virtual communities are fostered and online social interaction rises.

Meanwhile, the ever-growing popularity of smartphones has caused a comparable
phenomenon in the physical world. Most of these devices are always online while
users carry them around in their daily life. Given the many sensors in these phones,
a more comprehensive capturing and distribution of the physical context of people
becomes possible, comprising how people move and interact, meet other people, as well
as descriptions of visited places and performed activities.

The prospect of coupling the context provided from the social network sphere with
sensing capabilities of current mobile devices creates a deep information space which
we call pervasive social context. Applications and services generating and using this
type of context information offer new possibilities to effectively adapt to people’s phys-
ical and social situation. This leads to (hopefully) more meaningful social interactions
between them, be it in the virtual or physical world.

There is already a large number of applications and services in the field of pervasive
social computing producing and/or consuming context from both social networks and
pervasive sensors. Each of them provides its own view about context information from
the application perspective. Looking at the characteristics of this information, there
are many similarities leading to clusters of applications and services. Understanding
these characteristics well is thus crucial to be able to fully realize and exploit their
potential. We want to classify and differentiate this diverse set of information asking
the popular 5WH questions: who, what, where, when, why, and how with regard to
pervasive social context.

Some of these questions are inherently application dependent. They relate to what
type of context information is used in a given application, and why it is used (i.e., related
to the goal of the application). We elaborate on these two questions in Section 2, giving
an overview of the diversity of information that may be part of the pervasive social
context.

The application-generic aspects where, when, who, and how are the basis of our STiPI
(Space, Time, People, Information source) taxonomy described in Section 3 which is the
main contribution of this article. We apply the taxonomy by surveying recent research
in Section 4, providing a number of example systems for each of the dimensions of the
taxonomy. This further clarifies the exact meaning, proper use, and usefulness of each
dimension of the taxonomy. We discuss open research challenges in Section 5 and the
relation of our taxonomy to other surveys in Section 6. Finally, Section 7 presents some
conclusions and an outlook to future work.

2. TOWARDS PERVASIVE SOCIAL CONTEXT

Before we further elaborate on our notion of pervasive social context, there needs to be
some clarification of the terms used in this article.

2.1. Definition of Terms

We use the term Pervasive Social Computing in the sense introduced by Mokhtar and
Capra [2009] and further defined by Zhou et al. [2010]. This comprises systems and
applications combining functionality from the areas of pervasive computing and social
computing, moving the focus from a user’s physical environment (pervasive comput-
ing) to his/her social environment and from online interactions (social computing) to
interactions with colocated people.

On the other hand, we are talking about different variants of context. The most
popular definition of context in computing is given by Dey [2001], binding context to
entities (persons, places, objects) relevant to the user and the application.
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In social computing, the most important such entities are other people. Stressing on
this issue, social context in computing is often used as a term commonly referring to
the people, groups, and organizations with which an individual is interacting. There
are some variations of this term: Adams et al. [2008] broaden it by adding important
locations and activities while Groh et al. [2010] use social context only in the narrower
sense of small time intervals and space regions. The latter definition is close to what
we call situated social context in an earlier work [Endler et al. 2011].

In pervasive computing, we could equally phrase the term pervasive context (or in-
dividual context as it is called by Groh et al. [2010]), comprising the information char-
acterizing the entities around a pervasive device. This information can be gathered
using sensors for temperature, light, sound, and the like. As soon as these sensors can
measure the location and proximity of other devices and are able to identify the person
carrying the device, we can also sense information about people. Thus the distinction
between social context and pervasive context disappears, leading to the term pervasive
social context.

Definition 1. Pervasive social context of an individual is the set of information
that arises out of direct or indirect interaction with people carrying sensor-equipped
pervasive devices connected to the same social network service.

This comprises the explicit links, profile information, and activities of people within
the social graph, the joint sensor information of the pervasive devices, as well as implicit
information that can be inferred by combining the two.

In this definition we use the term social network service in the same way as Quan
[2011] and other authors, that is, naming any service delivering social networking
functionality. It is furthermore important to mention that Dey’s definition of context is
broad enough to still contain pervasive social context as a subset.

Discussing about gathering this set of context information, in Rosi et al. [2011] we
used the term social sensing to refer to the process of getting information from social
network services. In this vision a social network becomes similar to a sensor providing
information about people and the environment. Other authors [Olguin and Pentland
2008; Eagle et al. 2009] use the term social sensing as a process where the sensors
present in mobile devices are exploited to infer data about activities of people, Miluzzo
et al. [2008] use the term people-centric sensing for the same meaning.

As we rather need distinctive terms to define how information is gathered
(see Section 3.4), we use the terms social mining for mining social network services to
gather information about other persons, and pervasive sensing for gathering informa-
tion from sensors on pervasive devices.

Explicit examples of social mining include information extraction from Twitter posts,
Facebook status updates, location check-ins on Foursquare, or pictures posted on Flickr.
Examples for pervasive sensing are getting GPS, temperature, light, or sound measure-
ments as well as proximity information of other devices measured via Bluetooth.

2.2. What and Why: Type and Reason of Pervasive Social Context

Starting with our 5WH questions, the what and why of pervasive social context need
to be elaborated. What refers to the type of context which is inherently application-
specific. We do not try to build a classification for this aspect as this would only be a
snapshot of current applications not covering future developments.

Table I mentions recent examples for the type of context, namely user activity, lo-
cation, proximity, real-world events, famous places, preferences, etc. This list is by no
means complete but just offers a better understanding about pervasive social context
in practice.
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Table I. Examples of Pervasive Social Context

Example context System
current user activity or motion pattern [Grob et al. 2009]
patterns of recently visited places [Gupta et al. 2009]
detection and classification of events of the real world [Zhao et al. 2006]
unusual crowding in physical locations [Fujisaka et al. 2010]
people that are both socially and physically proximate [Mokhtar et al. 2009][Gupta

et al. 2009][Mehmood et al.
2009]

mining famous city landmarks from blogs for personalized tourist
suggestions

[Ji et al. 2009]

common preferences of a group of co-located users [Gartrell 2008]
social knowledge spaces (i.e. people, content, information, calendar,

authorization rules)
[Zhdanova et al. 2008]

interconnected graph of socially relevant information from different
sources

[Toninelli et al. 2010]

real-time updated contact information [Mehmood et al. 2009]
sharing of live videos of events [Kokku et al. 2008]
crowd-sourced sensing and sharing of the status of the physical

environment
[Demirbas et al. 2010]

awareness of closest, most meaningful contacts [Lugano 2008] [Ankolekar
et al. 2009]

The type of context will be better illustrated by the many systems surveyed in
Section 4. Within these systems, the most popular type of context is proximity of friends,
friends of friends, or yet unknown individuals. Proximity information can further be
used to infer more complex information such as common activities, interests, or visited
places, frequent interaction, or social link patterns. On the other hand, there is lots of
diverse context information that can be detected by crowdsourcing like weather, noise,
unusual crowding of places, or traffic information.

Like the type of context, the reason (why) for producing and consuming context infor-
mation differs from application to application. Often there is the goal to predict future
behavior by past behavior like forecasting box-office revenues for movies from Twitter
posts [Asur and Huberman 2010]. Another goal is to improve emergency response in
disaster situations like earthquakes [Mendoza et al. 2010] or to improve communica-
tion at big events like scientific conferences [Van den Broeck et al. 2010]. In the area
of traffic detection, Traffic AUS (http://itunes.apple.com/au/app/aus-traffic/) and Waze
(http://world.waze.com/) propose social networks for car drivers, in which the data pro-
duced by drivers about the traffic situation can be exploited by other drivers with the
goal to enable and improve real-time navigation.

Again, this only shows the diversity of reasons thus making it hard to assess these
viewpoints within a taxonomy. Other aspects are more application generic and should
be elaborated in the following.

3. WHERE, WHEN, WHO, AND HOW: THE STIPI TAXONOMY

As already introduced, we try to discuss pervasive social context on the basis of the
who, what, where, when, why, and how questions. In Section 2, we discussed the role
of what and why in the context of specific application domains. In this section we will
use the remaining questions to create a taxonomy to classify pervasive social context
from a general (application-independent) perspective.

The goal of the taxonomy is twofold. On the one hand, we try to clearly explain what
we mean by social interactions enriched with pervasive social context. On the other
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Fig. 1. Space dimension.

hand, it will be the basis for organizing our survey of existing systems and approaches
that will be presented in the next section.

We elaborated the following four-dimensional definition space for social interactions,
where each specific definition is characterized by the following.

(1) Space (S). This is the spatial extent in which pervasive social context is produced
and accessed. This answers the where question at the basis of our taxonomy.

(2) Time (Ti). This is the temporal extent in which pervasive social context is produced
and accessed. This answers the when question at the basis of our taxonomy.

(3) People (P). This is the target population that is described by the pervasive social
context. This answers the who question at the basis of our taxonomy.

(4) Information (I). This is the information source from where data about pervasive
social context comes from, and where such data is put together. This answers the
how question at the basis of our taxonomy.

We call it the “STiPI” taxonomy. The choice of these four key dimensions allows to
capture many facets and aspects of social interactions and allows to orderly classify a
large number of existing proposals trying to support this kind of interactive systems.

3.1. Space Dimension (S)

The S dimension determines where—physically—social links and interactions are con-
suming or producing context information. In particular, for each level of geographical
distance among the peers, the spatial dimension defines the kind of relations they could
establish (see Figure 1).

S1: Small scope. This mode of pervasive social context comprehends only colo-
cated/nearby people,that is, people having the potential to interact in direct, face-
to-face mode within close proximity. Examples are people participating in the same
event like a conference or experiencing a common situation such as a car accident at
some street. The idea of small scope applies also for people being at the same place at
different points in time interacting via that place (e.g., by leaving messages/traces to
be retrieved later on).

S2: Medium scope. From a quantitative perspective this mode distinguishes from S1
for the major extents of people interacting, referring to all citizens of a city, region, or
country. From a qualitative perspective it encompasses people sharing the same social
and geo-political aspects of life, for example, all inhabitants of a village struck by an
earthquake, or all people working in the same building during a fire alarm.
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Fig. 2. Time dimension.

S3: Anywhere. In this mode, the current place/location of the peers is of no importance
to establish interaction, but people can interact with everyone.

3.2. Time Dimension (Ti)

The Ti dimension characterizes interactions between peers and the context information
they produce from the perspective of when, in the temporal scale, they happen. More
precisely, this dimension determines the temporal aspect of the social interactions, in
terms of peer discoverability and maintenance of the social links or interactions, which
are directly related to the granularity of the user activity, role, and group membership
(see Figure 2).

T1: Short-term activity. This mode includes all people that meet (or have the potential
to meet) during a short period of time (e.g., while waiting at the bus stop, by bumping
into each other on the street, or being online at the same time in the same social
application).

T2: Mid-term activity. This includes individuals who may interact for some time be-
cause of their mid-term goals, and typically differentiates from T1 for a priori planning
of the activity (e.g., a scheduled work meeting).

T3: Long-term activity. This mode includes people that have a direct or indirect
relationship due to their long-term activity, role, or participation in a common project
or common interest. Examples include families, fellows and friends, club members,
employees, etc.

3.3. People Dimension (P)

The P dimension expresses who are the players involved in situations, consuming
and/or producing context information. In particular, from the “granularity”, or extent,
of peers involved, growing levels of social interactions arise (see Figure 3).

P1: Individuals. The social context of a person consists of individual persons (i.e.,
friends, friends of friends, or unknown individuals) he/she wants to interact with.

P2: Groups. The social context of a person consists of a group or multiple groups of
people he/she wants to interact with. A group can be a cluster of friends from the social
network, a group gathering at some place, or the like.

P3: Anonymous community. The social context of a person consists of an anonymous
community with the same social application.
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Fig. 3. People dimension.

Fig. 4. Information dimension.

3.4. Information Dimension (I)

The I dimension determines how—at information level—social interactions build and
compose the pervasive social context. In particular, information could either come
from the physical world (i.e., pervasive devices) or from the virtual world (i.e., social
networking platforms), or from their composition and integration (see Figure 4).

I1: Information from pervasive sensors. This source provides pervasive social infor-
mation by exploiting pervasive devices. These devices can monitor the activities of the
user (and thus indirectly their “social” profile) and her interactions (and thus indirectly
her “social” network). More in detail, this source encompasses off-the-shelf sensors pos-
sibly embedded in portable and mobile devices like modern smartphones, tablets, and
notebooks. Such kind of pervasive devices—provided with sensing capabilities like GPS,
Bluetooth, gyroscope, microphone, camera, etc.—observe people interacting with the
physical world, recording coordinates for the places they visit, the MAC address of peo-
ple inside Bluetooth or Wi-Fi range, or the pictures of people with whom they interact.

I2: Information from social networks. This source provides pervasive social informa-
tion by exploiting social networking platforms. Such kind of data can contain informa-
tion about what the user is doing (e.g., Twitter), where he/she is (Foursquares), and
also other contextual information [Sakaki et al. 2010]. More in detail, with the term
social mining, as already stated in Section 2, we consider mining any source of infor-
mation that can be identified in social networking services that expresses individual
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Table II. The STiPI Taxonomy Summarized

Dimensions 1 2 3
(S)pace Small Medium Anywhere

scope scope
(Ti)me Short-term Mid-term Long-term

activity activity activity
(P)eople Individuals Groups Anonymous

Community
(I)nformation From pervasive From social From sources
Source sensors networks integration

interests, preferences, and activities in the social sphere. Examples of this source could
be exemplified in Twitter posts, Facebook status updates, pictures posted on Flickr, etc.

I3: Information from integration. The prospect of coupling social networks with per-
vasive sensors makes it possible to provide pervasive applications with higher degrees
of context awareness, further shortening the gap between digital and physical worlds,
and thus providing users with more personalized services. Such integration typically
follows three main directions [Rosi et al. 2011]. First, one can exploit social networks
to extract social information and have such information feeding pervasive services and
applications, thus bringing social networks to the same network level of pervasive sen-
sors. Second, one can exploit social network services as a way to collect and organize
the data coming from pervasive sensors. In this way, the social network infrastructure
is assimilated to the role of middleware for pervasive services and applications, that
is, as a socio-pervasive medium to distribute and fetch pervasive content and infor-
mation. Third, one could think of exploiting existing social network infrastructures
as the ground upon which to build an overlay to perform the integration. Extracting
information from both pervasive-services and social networks and bridging them in
application-specific social network overlays accounts for the specific needs of applica-
tions and services.

3.5. Summary

The STiPI taxonomy, summarized in Table II, helps us to more precisely define perva-
sive social context. This term can be used for any system that makes use of both social
and physical information (I1, I2, or I3) to define a pervasive social context enabling
interaction with individuals, groups, or anonymous communities (P1, P2, or P3), in
small, medium, or large scope regarding location of participants (S1, S2, or S3) within
short-term, mid-term, or long-term activities (T1, T2, or T3).

4. APPLYING THE TAXONOMY

To more clearly show the usefulness of the STiPI taxonomy, we present a short survey
of pervasive social computing applications ordered according to the four introduced
dimensions. This further describes how these applications make use and/or produce
pervasive social context.

4.1. Space Dimension

In this dimension, most research can be categorized into those that support only small-
scope (S1) proximity detection, the ones that focus exclusively on medium scope (S2),
and some works that support both small- and medium-scope colocation detection. There
are also some approaches dealing with (S3), but given their global scale, they tend to
be more Web applications rather than pervasive computing systems.
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In the first category (S1), some of the most prominent systems/approaches are:
SAMOA, MobiClique, VENETA, and WhozThat. SAMOA [Bottazzi et al. 2007] is a
middleware system enabling inference of previously unknown social patterns by some
semantic analysis that tries to match activities/attributes of users and places profiles.
The goal is to determine potential peers for social interaction based on these profiles
and physical small-scope colocation. MobiClique [Pietiläinen et al. 2009] employs a
decentralized proximity detection, where geographical and social context is associated
by means of a social networking service based on a store-carry-forward content dissem-
ination. A similar decentralized approach is also adopted by VENETA [von Arb et al.
2008]. It is a mobile social network platform able to explore the social neighborhood of
a user by detecting common friends of friends which are in the user’s current physi-
cal proximity. This is done by Bluetooth-based proximity detection and by comparing
their phone contact entries. Similarly, WhozThat [Beach et al. 2008] also uses phone
proximity to exchange social network (e.g., Facebook) IDs, which are then used to fetch
personal profiles from the social network.

Among the systems belonging to S2, one should mention PeopleNet [Motani et al.
2005], which is a P2P architecture for information search in a set of user-specific geo-
graphic locations, named bazaars. Because a bazaar can span a quite large geographical
region, PeopleNet’s notion of coloction is clearly of medium scope (S2). Another inter-
esting work in this category is MobiSoc [Gupta et al. 2009], which is able to infer
previously unknown social patterns by analyzing people profiles and their mobility
traces. Colocation of users is verified on the server side, rather than employing direct
proximity detection. Since the goal is to discover new social links based on the set of
the user’s commonly visited places, rather than particular places for a “here and now
people discovery”, the spatial dimension is S2. A similar spatial scope is also considered
in the work on mobile social ecosystems [Toninelli et al. 2010].

Among the works on pervasive social context a few have a rather flexible definition
of colocation, and thus span the S1 and S2 modes. One of them is Dodgeball [Ziv and
Mulloth 2006], that was probably the first application combining LBS (Location-Based
Service) and social networks. Dodgeball’s goal was to share the user’s location (as a
symbolic place name) in the social network and to send text messages to friends and
friends of friends within a “distance of up to ten blocks”. Therefore, Dodgeball could
be used both for small-scope and medium-scope interactions, depending on the size
of the coverage set by the user. The other work with a spatially flexible approach is
CenceMe [Miluzzo et al. 2008]. CenceMe is now a commercial social network available
on the iPhone that is able to collect, classify, and infer the user’s present status and
activity from the mobile device’s sensors and export this information, in realtime, into
social networks. It also has a social context classifier running at a central back-end
server that computes a user’s neighborhood condition, that is, the CenceMe buddies in
a user’s surrounding area. Since it is aimed both at detecting new social ties based on
similar visited places (like in Gupta et al. [2009]) and at identifying user proximity, it
supports modes S1 and S2.

As already introduced, S3 systems are more in the realm of Web applications than
pervasive computing. For example, Web collaborative filtering and recommendation
tools [Linden et al. 2003] are S3 systems in that they take advantage of people
in indirect interaction on a global scale. The information produced by these systems
can be regarded as pervasive social context in that it describes the preferences of users
in different scenarios.

4.2. Time Dimension

With regard to the temporal dimension, many of the research systems we reviewed
fall in category T1, that is, supporting short-term activities. A typical example can be
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seen in PeopleTones [Li et al. 2008], where users of the service get an alert whenever
a friend or buddy is in close proximity. The goal is simply to be informed about such a
“nice to know” situation and to be able to contact a person directly, enabling some kind
of spontaneous interaction not possible before (e.g., to have a cup of coffee together
right now).

Most of the systems with proximity detection can be classified in S1 and T1, as
proximity is most often used to involve any here and now activity which is made
possible by the proximity situation. So, many of the systems already introduced for the
spatial dimension like MobiClique [Pietiläinen et al. 2009], SAMOA [Bottazzi et al.
2007], and VENETA [von Arb et al. 2008] fall in category T1.

FLORA [Kokku et al. 2008] is an example of T1 systems beyond proximity, where
users collect information for real-time collaboration. One possible application scenario
is the collection of traffic updates to alert users entering a region with a traffic jam.
Further scenarios include measuring people density at public places, tracking lost
people, or public transport support, for example, letting the bus driver know that a
potential passenger is waiting close to a particular bus stop.

As the distinction between categories T1 and T2 is not too sharp, we only found some
systems supporting mid-term activities as their main focus (T2). Matching of requests
and offers within a region, like in PeopleNet [Motani et al. 2005], is a typical example
of T2 functionality as this is a mid-term activity, with a typical time frame of some days
or weeks. One user may want to sell his used car, while another user is looking for a
car with somehow matching preferences. Other examples for T2 are the framework for
mobile social ecosystems [Toninelli et al. 2010] and MOSS [Zhdanova et al. 2008].

Another important area of research is represented by life-logger- and diary-based
systems [Bell and Gemmell 2009; Ferrari et al. 2011]. They are tools for recording,
in a browsable and machine-processable format, the everyday activities and events of
people, communities, objects, and places. Since they can potentially span the whole
lifetime of an individual they belong to T3 category.

4.3. People Dimension

If we look at the people dimension, most of the systems we surveyed aim at individuals
(P1), that is, the social context consists of concrete persons as the target of interaction.
Within P1, the largest number of systems helps the user to contact people from his list
of friends within a social network or phonebook. Examples are again proximity-based
services, like PeopleTones [Li et al. 2008] and SAMOA [Bottazzi et al. 2007], or systems
tracking friends’ position and their social status, like Google Latitude [Google 2009] or
CenceMe [Miluzzo et al. 2008]. The latter type of systems will only be used within a
smaller circle of close friends as a lot of information is shared to create a high level of
social awareness.

Friendlee [Ankolekar et al. 2009] also targets at close friends only, as it creates a list
of contacts the user often communicates with by analyzing his phone behavior. It thus
provides a possibility to filter out the “real” friends of a mobile user’s phonebook.

If we extend the scope to friends and friends of friends (still within the P1 category),
Dodgeball [Ziv and Mulloth 2006], which was previously described in this article, repre-
sents an early system enabling interaction based on proximity where location has to be
shared manually. Friends and friends-of-friends get an update whenever they are close
to each other. This is inferred centrally using symbolic locations (like names of restau-
rants) only. VENETA [von Arb et al. 2008], also previously described in this article, is
an example for serverless friend-of-friend detection based on Bluetooth technology.

The last subgroup within P1 is the encounter of unknown individuals like in aka-
aki [aka-aki networks GmbH 2010]. Users of such application are interested in finding
new acquaintances. If two users of the system are in close proximity, they exchange
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profile information via Bluetooth and are thus able to check if the other person might
be interesting and to contact him or her directly.

There is also a number of systems where the interaction based on pervasive social
context is not targeting at individuals but at groups of people (P2). Cluestr [Grob et al.
2009] focuses on the initial group formation process and proposes a list of contacts from
the same group if the user selects a contact from his phonebook. To achieve this, the tool
performs analysis on the social graph extracted from a social network like Facebook.
The interaction will then take place between the user and the group he selected;
that’s why we chose to place Cluestr in the P2 category. Another typical P2 example
is FLORA [Kokku et al. 2008], where groups of persons are built location dependent
to enable real-time collaboration between the users. We already mentioned some of
the envisioned scenarios earlier in this section. An additional interesting P2 system is
Socialaware [Gartrell 2008]. It supports groups gathered at some place, for example,
to create a playlist matching the preferences of the audience near a jukebox.

P3 systems, given their global scale, tend to be more oriented to Web applications.
They consist in approaches to extract information from the global population of a social
network. For example, Bonchi et al. [2011] survey different approaches trying to extract
strategic information from the whole population of social networks.

4.4. Information Dimension

The I1 category is based on proposals that consider modern computing devices as en-
abling technologies for humans to interact with the surrounding world (e.g., to localize
and get information about entities nearby). In most cases, works in literature for this
category fall on S1, T1, and P1 since from the geographical position of each single
user they provide real-time localization-based services built over a GPS position, a
recognized MAC address, or a read RFID tag.

Literature related to this area is extremely wide, as the majority of works in context
awareness for pervasive computing falls in this category. Among the many examples,
we should mention NAVITIME [Arikawa et al. 2007], a navigation service that from
user GPS positions incorporates various modes of transportation and guides users to
their destinations via several types of transportation. Several works use RFID tags for
the purpose of tracking systems [Kim et al. 2008; Min et al. 2007] and for providing
context information. Similarly, Bluetooth and wireless technologies enable mobile users
to enjoy proximity services [Tang 2009; Rashid et al. 2005] in a wide range of scenarios.
Moreover, further mainstream applications for the I1 category consist in environmental
monitoring through Wireless Sensor Networks (WSNs), from indoor to outdoor, from
urban setting to rural and hostile ones [Werner-Allen et al. 2006; Lee et al. 2008].

Systems from the I2 category consider social networks as powerful tools to detect and
predict collective patterns of behavior [Asur and Huberman 2010], possibly associated
with events occurring in a circumscribed region from the real world [Mendoza et al.
2010; Van den Broeck et al. 2010] for a short- and mid-term time span: that puts such
works in S2, T1 (or T2), and P2.

In Crandall et al. [2009], the authors present techniques to automatically identify
the location of points of high interest all over the world, by analyzing the spatial
distribution of millions of geo-tagged pictures posted on Flickr. Results accord with
common-sense opinions and travel guide suggestions.

Similarly, in Zhao et al. [2006] authors propose a system for detecting and framing
events from the real world by exploiting the tags supplied by users in Flickr photos.
The temporal and spatial distributions of tag usage are analyzed and tags related to
aperiodic events and those of periodic events are distinguished. Tags are finally clus-
tered and, for each cluster, a representing picture and tag is extracted. Ji et al. [2009]
report a work on mining famous city landmarks from blogs for personalized tourist
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suggestions. Their main contribution is a graph modeling framework to discover city
landmarks by mining blog photo correlations with community supervision. From our
side, we have developed an unattended system [Mamei et al. 2010] able to extract and
take advantage of up-to-date and spontaneous information embedded with pictures.
With experiments on the Flickr database, we have shown that this system, by learning
from past tourist user experience, is able to make effective recommendations to people
visiting tourist places for the first time.

In Sakaki et al. [2010], it is demonstrated that Twitter, thanks to its real-time
nature, can effectively act as a seismometer for the detection of earthquakes, sim-
ply by observing user tweets. More generally, the ability to identify global trends
and events via Twitter is the core of numerous applications, such as Tweettronics
(http://www.tweettronics.com/), oriented to identify market trends and brand aware-
ness for marketing purposes.

In Fujisaka et al. [2010] authors propose methods for the detection of unusual crowd-
ing in physical locations from existing blog and Twitter communities. Here authors,
by the analysis of common patterns of occurrence in each region over a specified time
period, achieve the extraction of useful and interesting movement patterns, reflecting
the occurrence of critical events in a geographic region.

Facebook is often cited for studies on network evolution and peer (as nodes of
a graph) behavior. Of the many examples in literature (as the already mentioned
VENETA [von Arb et al. 2008] and Cluestr [Grob et al. 2009]) of services extracting
social features from a network, we further mention Hui Yi and Hung Yuan [2010],
which studies and analyzes the patterns of friend-making, and the work of Viswanath
et al. [2009], which studies the dynamic properties of the friendship network. Both of
these works have the potential for improving our understanding of the dynamics of
real-world social networks (and therefore have potentially high commercial and social
impact).

Concerning the I3 category, as already explained, there is a general tendency to
integrate data from social networks with information from pervasive sensing to provide
a more comprehensive context description.

In Olguin and Pentland [2008] authors present the design, implementation, and
deployment of a wearable social platform that can measure and analyze personal and
social behaviors in a variety of settings and applications. Individual and social patterns
of behavior are identified measuring face-to-face interaction, conversational dynamics,
physical proximity to other people, and physical activity levels.

The approach of integrating real-world data from face-to-face proximity, with iden-
tities in online social networks, has also been followed by Van den Broeck et al. [2010]
who have developed an application for people attending scientific conferences. Personal
profiles of the participants are automatically generated using several Web 2.0 systems
and semantic data sources, and integrated in real time with face-to-face proximity
relations detected via RFID badges.

Authors from Lovett et al. [2010] present two heuristic methods for data fusion that
combine the user’s personal calendar with social network posts, in order to produce a
real-time multisensor interpretation of real-world events. This study shows that the
calendar can be significantly improved as a sensor and indexer of real-world events
through data fusion.

Another set of proposals in the I3 area considers social network infrastructures as a
sort of socio-pervasive middleware in which to merge and consolidate data from differ-
ent sources, specifically pervasive sensors, and from which to exploit the functionalities
for data and event management. As from before, works in this category typically in-
volve large region of analysis (S2), consider mid-term time span as weeks or months
(T2), and aggregate people on groups (P2).
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S-Sensors [Baqer and Kamal 2009] provides a framework to globally share locally
measured sensory readings. Authors propose to employ microblogging to publish and
share sensory data and resources, where short messages depicting the status of the
environment are used to convey sensory data of the physical world.

Automated murmurs [Freyne et al. 2009] presents a mobile platform that leverages
the popularity of mobile and social computing to produce a location-sensitive messaging
system which delivers user-generated content to the public on the basis of both physical
location and social relations.

Authors from Patterson et al. [2009] present a prototype system that automatically
infers the users’ place, activity, and availability from sensors on her handheld devices
or laptop computers. Data is then reported to buddies through embedding information
in commercial instant-messaging profile status.

In Demirbas et al. [2010] authors have designed and implemented a crowdsourced
data mining and collaboration service over Twitter, for two application scenarios: a
crowdsourced weather radar, and a participatory noise-mapping application. The whole
system is based on the intuition of exploiting Twitter as a publish-subscribe system for
the storing and the diffusion of information and events about pervasive sensors and
user-provided data.

Finally, there are proposals related to interconnecting and sharing data sensed from
personal devices with the rest of the world. Accordingly, overlays over existing social
networks, as well as brand new application-specific networks, are realized to interface
with such local networks and, to support specific application requirements, implement
or extend existing functionality.

SenseFace [Rahman et al. 2010] is a software overlay suitable for capturing the
sensory data produced from user personal devices, processing and storing the sensory
data in his/her personal gateway (which is a mobile device), and sending the data to a
remote Internet gateway. Finally, the sensory data is disseminated to a list of his/her
social networks.

In Anwar et al. [2005] authors propose an overlay constructed on top of the Orkut
social network. Their aim is to demonstrate an alternative model to query the social
network, where each node chooses its peers to query using metrics that can account
for data coming from pervasive sensors. In authors’ opinion such an approach not only
improves the overall search time but also gives a sizable improvement in lookups,
average round-trip delay, and scalability.

4.5. Discussion

In summary, Figure 5 illustrates how the presented systems fit in the STiPI taxonomy.
As already discussed, it can be noticed that most of the presented works focus on the
first two values of the taxonomy. Systems in the (S3, T3, P3) part of the taxonomy,
dealing with global aspects, lose the notion of “pervasive social” to some degree.

It is also rather natural to see a general correlation among values in the four dimen-
sions, so a lot of systems are classified in (S1, T1, P1) and (S2, T2, P2). Again this is
rather simple to explain: the more the spatial scope, the more people and time can be
considered. The (I) dimension, representing the information source on which systems
are built, tends to be more orthogonal to the other dimensions. For example, profile in-
formation coming from social networks can be used both in confined environments (S1,
T1, P1) for the sake of better contextualizing information and services (e.g., Van den
Broeck et al. [2010]) or in large-scale scenarios to identify areas of interest (e.g., Mamei
et al. [2010]).

In conclusion, the STiPI taxonomy can effectively classify a wealth of works in the
area. The chosen dimensions allow also to identify the general application scenario
(e.g., large or small scale) that is the target for a given system.
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Fig. 5. Applying the STiPI taxonomy. Surveyed systems are places in the four STiPI dimensions.

5. RESEARCH CHALLENGES

Many of the approaches towards the definition of a pervasive social context have been
worked out in research projects and have been tested only with simple prototype sys-
tems (e.g., Ziv and Mulloth [2006], aka-aki networks GmbH [2010], and Miluzzo et al.
[2008]). In spite of the several appealing functions and characteristics embodied in
works from literature, it is clear that creating pervasive social context, taking advan-
tage of a seamless integration between sources of information, still has several open
issues and challenges [Mehmood et al. 2009].

As a matter of fact, the use of information from the social networks, on the one hand
gives access to a wide panorama of information from the social sphere. On the other
hand, it challenges researchers to deal with information sources that: (i) produce data
often in free text with no structure nor codified semantics; (ii) don’t provide a guarantee
on the delivery of specific information about specific facts and at specific times by social
networks; (iii) are completely out of the control loop of system managers and application
developers.

In this section, we discuss the research challenges behind the realization of a per-
vasive social context. While some of these challenges are already present in pervasive
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computing and context-awareness literature, they tend to be exacerbated with the
integration of social networking platforms.

5.1. Sensor Uncertainty

pervasive social context relies on information obtained from both a mobile device’s sen-
sors and the social sphere. However, due to cost effectiveness and limited resources,
many of the sensors found in today’s mobile devices produce data that has low res-
olution, limited precision, and lacks accuracy (i.e., non-up-to-dateness) [Neisse et al.
2008]. Social data further exacerbates the problems, since it is by nature incomplete,
inaccurate, context specific, and dynamic. A typical example is user profile data, which
may be partial (e.g., user does not want to disclose some information), may be vague
(e.g., user mentions only general interest in sports), and may be frequently changed
according to the situation at hand (e.g., user changes his settings to achieve a specific
goal). These problems are further amplified when single-source data (e.g., only data
from an accelerometer) is aggregated to derive higher-level information (e.g., analyzing
accelerometer data to infer the user’s mobility pattern [Miluzzo et al. 2008]).

A solution comes from sources integration, where physical sensors and social sensors
complete each other to resolve uncertainty. Consider, as an example, a typical localiza-
tion problem, where a GPS fails to localize places that are indoor or don’t have a clear
sky view (e.g., the “urban canyon” problem). Here precision could be raised mining on
the social sphere, where a tweet from Twitter, a post from Facebook, etc., could place
somebody in a precise context (e.g., a Facebook post saying: “Me and Marco watching a
football match at Irish Pub”).

Despite the recent efforts to reduce the uncertainty of sensed information through
information integration, much work is still required in the development of reliable and
resource-efficient inference methods which can produce trustworthy pervasive sensor
information.

This kind of challenge mainly applies to systems relying on pervasive sensor infor-
mation (I1) and systems trying to compensate the lack of sensors with data coming
from social networks (I1–I3). Similarly, it mainly applies to systems in the S1, T1, and
P1 area of the STiPI taxonomy, in that in these systems the focus is exactly to make
sense of the available information and compensate sensor uncertainty.

5.2. Sensor Fusion

More sophisticated data mining approaches are needed in order to allow data from
different sources to be fused together, or rather, combined and cross-checked, to allow
trustworthy information inference. Thus, it seems that there is a strong demand for
new and more powerful inference techniques and data mining methods [Memon et al.
2010], to better identify patterns and correlate data sensed from socially related users,
in order to deduce, for example, a user’s immediate information needs.

From our analysis, the majority of works in literature recognize the potential benefits
of cross-analyzing pervasive sensor data with information from social networks. How-
ever, most of the existing inference, correlation, or matchmaking approaches so far are
quite limited and concentrate at a few purposes: discovery/suggestion of new potential
social ties, recommendation of places to visit, detection of social events/crowding, infer-
ence of user (group) motion patterns, and sharing data about the physical environment.

The key problem of all the preceding research is that they are often conducted as
stand-alone data mining exercises and seldom exploited in a synergetic way. Instead,
the real challenge is to integrate several techniques and have them cooperate in their
inference activities. The point is that the knowledge that can be inferred from a mul-
titude of different sensors can be more expressive and high level (other than overall
more correct) than that inferred by independently working sensors. For instance, if a
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body-worn accelerometer detects a “cyclin” activity and the geocoder detects the user
is at home, the activity can be more properly corrected as “using a fitness cycle”.

In any case, before social networks can widely contribute to the mining process, they
have to reach a critical mass of data across many (e.g., spatial) characteristics. For
instance, in our experience on Flickr [Mamei et al. 2010], only a restricted number of
cities in the world already have enough information to make our tourist recommenda-
tion tool applicable.

This kind of challenge mainly applies to S2, T2, P2, and I3 systems. In such systems
the goal is exactly to combine data from multiple sources (multiple people locally inter-
acting both in space and time) to acquire a more comprehensive view of the situation.

5.3. Unified Data Representation and Interpretation

An important challenge is the construction of a shared vocabulary: a description of the
type of objects and/or concepts that exist in the application domain, and their properties
and relations. The vocabulary should be able to cover a wide range of concepts (events,
locations, dates, etc.). This representation should avoid complex and highly structured
formats that would be difficult to be encoded and maintained.

An interesting research direction consists of the use of pragmatic (i.e., tag-based) on-
tologies to encode such diverse information. This comprises both an effective creation
of such descriptions and an effective use by applications [Robu et al. 2009]. Their inte-
gration with shared vocabulary represents a challenge for future research. Ultimately,
this problem boils down to natural language processing and it is even more exacerbated
by the peculiar (and evolving) languages used in social network sites.

In addition, to better interpret such complex data, visualization techniques and tools
should be developed. Data visualization tools can be the user interface to certain appli-
cations, and they could become a core asset to see and understand the data produced
by social networks and pervasive sensors at multiple levels of granularity. Works like
Situvis [Clear et al. 2010] represent an important step in this direction.

This kind of challenge mainly applies to I2 systems. When dealing with information
coming from social networks, the challenge is to construct representation formats to
understand and classify information correctly.

5.4. Privacy Management

Privacy-related challenges are cross-cutting concerns that impact on all the aforesaid
challenges (for example, one will not have data-critical mass if users are uncomfortable
in sharing it). This is a general problem related to pervasive computing that is even
more important when using it to leverage social interactions in a pervasive social con-
text. Despite the fact that people consciously agree to both providing their personal data
and to being tracked by social network services (e.g., many social networks utilize local-
ization services), new rules for respecting and preserving overall user privacy have to be
formulated. In Chen and Rahman [2008] the authors investigate current mobile social
networks and identify their weaknesses and strengths. From another side, aggregating
and anonymizing data can provide a useful rough solution [Shi et al. 2010], but more
investigation is needed to sort out privacy intricacies of future pervasive applications.

Our idea is that privacy management should apply at different levels of content
information, from single personal contextual information, to aggregated one, to inferred
before. At the level of raw data, privacy management requires a user to be conscious
of what data he really wants to share, in the presence of multiple and dynamic data
sources, and reaching such a level of consciousness is far from being easy. In addition,
since the pervasive application will be able to infer and aggregate information, the
issue of understanding what information can be produced at the various levels of the
privacy, and controlling how to share it, arises. For instance, while sharing blurred GPS
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Fig. 6. Challenges in pervasive social context and their relationship with the STiPI taxonomy.

coordinates may be fine (Marco was near latX,lonY at 10.00am) sharing the inferred
place may be not (e.g., Marco was at “The Fox Pub” at 10.00 a.m.). Furthermore, even
when some inferred information can be shared (e.g., Marco was at “The Fox Pub”
at 9.30 p.m.), some aggregated information should not be (Marco was at “The Fox”
at 9.30pm dancing with Anna). Vice versa, it is possible to think that raw data should
not be shared (a biosensor capable of identifying health problems and sensing bio
parameters) and that can be nevertheless shared in some inferred forms (if the same
biosensor is used only to infer happiness levels). Summarizing, these examples, and
many others one can think of, show that the issue of defining proper privacy policies for
information in the pervasive social context is a complex open issue, involving: (i) the
different levels at which data is processed, (ii) the definition of privacy boundaries
reflecting tension between the conflicting goals of enabling services while keeping
confidentiality, (iii) human values to avoid unethical situations and bias.

This kind of challenge mainly applies to P1 systems. When dealing with information
about individuals, privacy issues are extremely relevant. When dealing with groups
and anonymous communities, privacy concerns are less severe.

Figure 6 summarizes these challenges in relationship with the STiPI taxonomy. Of
course, we do not define sharp boundaries but rather zones of influence.

6. RELATED WORK AND SURVEYS

Our work is not the first attempt to classify systems combining a mobile device’s sensor
data and social information to support new means of social interactions. In the follow-
ing, we review related taxonomies and surveys in the areas of social signal processing,
social networking, pervasive sensing and social mining, and pervasive social computing.

6.1. Social Signal Processing

Earlier attempts started within the area of Social Signal Processing (SSP), thus an-
alyzing human behavior based on lower-level verbal and nonverbal cues like blinks,
smiles, and voice with the goal to detect higher-level behavior context like activity level,
engagement, or stress. Pentland [2005] provides an overview of SSP systems developed
at MIT, defines different social signals, and already uses the term social context for
this type of information. A taxonomy and survey of SSP [Vinciarelli et al. 2009] defines
the most important social behaviors and the technologies needed to detect them. Zhou
et al. [2010] add a generic architecture for SSP as part of their five facets of pervasive
social computing. These works on SSP focus on the problem of how to transfer one part
of what we call pervasive social context into another more meaningful part. They are
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thus complementing our survey more specifically defining special types of context and
the concrete techniques to infer them.

6.2. Social Networking

The second group of related surveys can be found in the research area of social net-
working. In Jones and Grandhi [2005] the authors propose and describe a framework
for classifying people-to-people-to-geographical places (P3) systems according to two
dimensions, considering if they are synchronous or asynchronous, and people- or place-
centered. While the former can be mapped to our time dimension, the latter rather
concerns two different design techniques each involving both space and people dimen-
sions. Thus place versus people-centered is a classification mean which can optionally
be used in addition to our taxonomy.

Quan [2011] categorizes conventional social network services on a more technical
level concerning services for identification and profile, social graph, social presence,
and social interactions. Our work does not provide any such technical issues thus
focusing on the characteristics of the wealth of context information that arises out of
the combination of social networking and pervasive computing. This is complementary
to Quan [2011] and other surveys providing a technical overview like the surveys on
SSP mentioned in Section 6.1.

6.3. Pervasive Sensing and Social Mining

Regarding the field of pervasive sensing and social mining, in Aggrawal and Abdelzaher
[2011] the authors provide a broad survey of recent research in the field of integrating
sensors and social networks, presenting the main technological enablers, some model-
ing approaches, and several key challenges of this field, as well as some solutions. Un-
like our work, they do not propose a taxonomy, nor attempt to classify current systems.

Building on this work, in our earlier work [Rosi et al. 2011] we classified and sur-
veyed possible approaches of integrating pervasive sensing and social mining. This was
further developed into the I dimension of the STiPI taxonomy as presented here.

6.4. Pervasive Social Computing

The more recent research trend of pervasive social computing already yielded a few
surveys, focusing on different aspects of this area. A quite comprehensive survey is
Zhou et al. [2010] defining five facets of pervasive social computing: physical environ-
ment awareness, behavior awareness, community awareness, interaction awareness,
and content awareness. A generic architecture is presented for each of the five facets
showing its technical realization. If we replace “awareness” with “context”, this can be
used as a good taxonomy to classify the what of pervasive social context information.
As already mentioned in Section 2.2 using such type classification involves the danger
of being obsoleted by new developments.

More targeted towards what we call pervasive social context, Groh et al. [2010]
propose a general model of individual social situations as comprised of a four-tuple
(T, S, P, C) consisting of a time span (start time and end time), a subset of three-
dimensional space (a polygon on a map), a set of participants, and tags that freely
describe semantics (mainly activity) of the situation. This is related to our approach
as it also identifies the when, where, and who to be part of the social context while it
does not define any subcategories for these dimensions like in our work. Thus the T,
S, and P aspects each concern specific time spans, areas, and people and not classes
of timeliness, space locality, and users as in our taxonomy. The content tags further
describe the type of context event to be logged. The situation model of Groh et al. [2010]
adds quite well to our work, as it shows a way how to use and benefit from at least part
of the dimensions defined in the STiPI taxonomy.
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In our earlier work [Endler et al. 2011] we define a taxonomy for charaterizing time-
and space-constrained social context, which we call situated social context. Based on the
introduced spatial, temporal, inference, and people dimensions the taxonomy was called
STIP taxonomy. This taxonomy is the foundation of the STiPI taxonomy introduced in
this article. The classes introduced in each dimension were slightly adjusted to the
perspective on pervasive social context introduced in this article. The I dimension
completely changed its meaning to information source dimension.

7. CONCLUSIONS

In this survey, we introduced pervasive social context as a new information-centered
view on pervasive social computing. While in line with traditional definitions of Context
as used in the pervasive computing community for years, it is a useful term to precisely
name the plethora of information available to pervasive social applications.

Pervasive social context provides manifold information to stimulate, trigger, and
maintain rich social interactions in pervasive social applications. Many systems al-
ready use pervasive sensing and/or social mining, may it be to enable interactions
between people in close proximity, collect data collectively, or to feed social information
to existing pervasive services.

The main contribution of this article is the STiPI taxonomy based on the four di-
mensions space, time, people, and information source. We used it to classify recent
research in the area of pervasive social computing thus providing a broad overview of
this fast emerging field. We presented main research challenges for providing pervasive
social context thus showing the need for more research activities, especially targeted
at providing and utilizing context information.

The taxonomy and survey presented here are useful tools to keep pace with the fast
development in the area of pervasive social computing. What is still missing is a com-
prehensive technical survey or book analyzing, describing and clustering techniques
used to create pervasive social context. As mentioned earlier, there are already tax-
onomies and surveys for certain aspects like social signal processing, pervasive sensing,
or social mining. Our work, as well as the works mentioned in Section 6, could form
the basis for a more comprehensive view on pervasive social computing.

The final goal would be to identify a general infrastructure to support applications
producing and consuming pervasive social context. This infrastructure should be ca-
pable of efficiently gathering, storing, securing, and finding context information in a
generic way, thus enabling any application to use it transparently.
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