
IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014 279

Metaheuristic Scheduling for Cloud: A Survey
Chun-Wei Tsai and Joel J. P. C. Rodrigues Senior Member, IEEE

Abstract—Cloud computing has become an increasingly im-
portant research topic given the strong evolution and migration
of many network services to such computational environment.
The problem that arises is related with efficiency management
and utilization of the large amounts of computing resources. This
paper begins with a brief retrospect of traditional scheduling, fol-
lowed by a detailed review of metaheuristic algorithms for solving
the scheduling problems by placing them in a unified framework.
Armed with these two technologies, this paper surveys the most
recent literature about metaheuristic scheduling solutions for
cloud. In addition to applications using metaheuristics, some
important issues and open questions are presented for the
reference of future researches on scheduling for cloud.

Index Terms—Cloud computing, metaheuristics, scheduling.

I. Introduction

THE goal of a scheduler [1]–[5] is to find ways to appro-
priately assign tasks to limited resources that optimize

one or more objectives. It is generally believed that modern
scheduling approaches can be dated back to Johnson’s study
[6]. Nowadays, scheduling is widely used in different applica-
tions, such as manufacturing of printed circuit boards, power
system control, and scheduling of multimedia data objects on
the World Wide Web (WWW) [3]. Since one of the important
applications of modern scheduling is the assignment of tasks
from users of the Internet to limited resources on distributed
computing systems, from the 1980s until now, these systems
have undergone several changes. One of the early changes
was the emergence of cluster systems that integrate a number
of standalone computers together to work as a single system
[7], [8]. To overcome the problem of cluster systems being
only able to use local resources, the next change, grid, has
been developed to combine all the available heterogeneous
resources from geographically distributed institutions [9]. A
recent change is the shift to cloud computing systems [10]–
[13] that leverage the strengths of cluster and grid.

Given the seemingly unlimited computing resources of the
new type of computing systems, unfortunately, there exist no

Manuscript received August 1, 2012; revised December 19, 2012; accepted
March 3, 2013. Date of publication May 16, 2013; date of current ver-
sion February 5, 2014. This work was supported in part by the National
Science Council of Taiwan, under Grant NSC101-2221-E-041-012, Instituto
de Telecomunicações, Next Generation Networks and Applications Group
(NetGNA), Portugal, and National Funding from the Fundação para a Ciência
e a Tecnologia through the PEst-OE/EEI/LA0008/2011 Project.

C.-W. Tsai is with the Department of Applied Informatics and Multimedia,
Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan (e-mail:
cwtsai0807@gmail.com).

J. J. P. C. Rodrigues is with the Instituto de Telecomunicações, University
of Beira Interior, 6201-001 Covilhã, Portugal (e-mail:joeljr@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2013.2256731

polynomial time-scheduling algorithms to optimize the allo-
cation of these computing resources because most scheduling
problems are either NP-hard or NP-complete [14]. Taillard
[15] presented a simple example to explain the dilemma we
are facing, that is, less than 0.02% of the candidate solutions
are between the makespan of the optimum solution and 1.01
times the makespan of the optimum solution. This example
tells us that it will be very difficult to find the optimum
solution for large problems. As a consequence, researchers
have focused on seeking a good algorithm to solve scheduling
problems.

Two common methods for scheduling on current computer
systems are exhaustive algorithm and deterministic algorithm
(DA). In practice, DAs [16] are much better than traditional
exhaustive algorithms because DAs are faster for scheduling
problems. However, the two main disadvantages of DAs are
in that they are not designed for all the data distributions, and
most DAs are inappropriate for large-scale scheduling prob-
lems. Unlike DAs and the exhaustive algorithm, metaheuristic
algorithms (also called approximate algorithms) employ iter-
ative strategies to find solutions in a reasonable time. Numer-
ous research results [15], [17]–[20] were presented to show
that metaheuristic scheduling algorithms can provide better
scheduling results than traditional scheduling algorithms.

However, their focus is not on cloud computing environ-
ment. Although many scheduling methods have been shown
successful on different computing environments (i.e., grid
computing or clustering computing), and some of the ideas
of these scheduling methods perhaps can be directly used
on cloud computing scheduling, they are not designed for
cloud computing and thus may not be the best scheduling
strategy. This paper not only provides a systematic description
of scheduling but also gives a bridge to associate traditional
scheduling with metaheuristic scheduling to provide a guide-
line for the researchers focusing on traditional scheduling to
shift to metaheuristic scheduling on cloud computing systems.
Note that metaheuristic algorithms are used in this paper
to differentiate traditional heuristic algorithms from modern
heuristic algorithms.

The remainder of this paper is organized as follows.
Section II begins with a brief introduction to traditional
scheduling. The main purpose of Section III is to use a unified
metaheuristic framework to associate metaheuristic scheduling
algorithms with others to reduce the effort in learning these
algorithms. Section IV gives a brief review of metaheuristic
scheduling on cloud, which includes the characteristics of
scheduling problems, measurements, and algorithms presented
to solve them. Conclusions and future trends are drawn in
Section V.

1932-8184 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html



280 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

Fig. 1. Simple example illustrating how a set of given tasks are allocated
to a set of given machines. (a) Due day and completion time of each task.
(b) Results obtained by assigning all the tasks to a single machine. (c) Results
obtained by assigning all the tasks to a parallel machine.

II. Traditional Scheduling

The so-called scheduling problem [3], [21], [22] can usually
be considered as a problem the objective of which is to allocate
a set of given tasks T = {T1, T2, . . . , Tn} to a set of given
machines M = {M1, M2, . . . , Mm} subject to the constraints of
optimizing one or more predefined measures or objective func-
tions. When there is one and only one machine, i.e., m = 1, the
scheduling problem is referred to as a single processor (single
machine) scheduling problem. When there is more than one
machine, i.e., m ≥ 2, the scheduling problem is regarded as
a multiprocessor (parallel machine) scheduling problem. The
objective functions makespan, lateness, tardiness, flowtime,
and their variants are widely used in scheduling studies to
measure the performance of scheduling algorithms. For the
details and other measurement methods, readers are referred
to [1] and [22].

A simple example is given in Fig. 1 to make the idea more
concrete. The example shows the results of assigning a set of
six tasks, with the due day and completion time of each task
given in Fig. 1(a), to a single machine and a parallel machine.
In the case of a single processor (single machine), the results
are as shown in Fig. 1(b). That is, with n = 6 and m = 1,
if the objective function is makespan, then Cmax = 12 for the
given solution (6, 1, 2, 5, 4, 3). If the objective function is the
number of tardy jobs,1 then the same solution gives Utot = 1.
In the case of a parallel machine, the results are as given in
Fig. 1(c), which show that if there are two machines (i.e.,
m = 2) and the same objective function is used, then Cmax = 7
with the solution (6, 1, 2, 5, 4, 3). However, Fig. 2(a) shows
that the makespan Cmax can be improved because the total
completion time is 12, and the makespan possible is 6. As
most studies attempt to adjust the combinations (T4 and T3)
on the critical path (T6, T4, and T3) [23], the example given in
Fig. 2(b) shows that the makespan Cmax can be reduced from
7 to 6. These examples illustrate that different constraints and

1That is, the number of tasks that does not meet its due date.

Fig. 2. Simple example used to explain how to improve the scheduling
results given in Fig. 1(c).

object functions can be used to make the problem conform to
the situation we are facing.

Because scheduling is widely used in many problem do-
mains, several studies [1], [4], [16], [24], [25] attempted to
present a taxonomy of scheduling problems in terms of the
description of jobs (e.g., processing time, release date, due
date, and weight), machines (e.g., single versus multiple), and
other details, such as preemption versus nonpreemption, prece-
dence versus nonprecedence, batch versus nonbatch, sequence-
dependent versus sequence-independent, and online versus
offline. These are the constraints that are often employed to
differentiate and describe scheduling problems. A three-field
notation, α/β/γ , was presented in [24] to describe all the
scheduling problems. In this notation, α specifies the type
of machine, such as single machine, parallel machine, flow
shop, and job shop; β specifies the processing characteristics
and constraints, such as sequence-independent or sequence-
dependent; and γ specifies the measures, such as makespan
or the number of tardy (late) jobs. The length of time was
used in [16] to classify scheduling into five levels: long-
range planning, middle-range planning, short-range planning,
scheduling, and reactive scheduling/control. For more details
of the traditional scheduling algorithms, readers are referred
to [1] in which not only a comprehensive survey of the
traditional scheduling algorithms but also valuable comments
from various perspectives were given.

III. Metaheuristic Scheduling Algorithms

A. Unified Framework of Metaheuristics

We begin with a framework of metaheuristics, followed by
an introduction to the metaheuristic algorithms inspired by
evolution program (EP) [26]. Unlike EP, which assumes that
the solutions to be passed on to the next iterations are selected
by a particular mechanism, the presented framework expands
the scope of EP to contain a larger number of metaheuristic
algorithms. The number of solutions searched each iteration
can be one or more, and the determination operator instead
of the selection operator is used to break the limitation by
selecting some of the current solutions to pass them on to
later iterations.

As Algorithm III-A shows, the initial, transition, evaluation,
and determination operators are employed in this framework
where s denotes the current solution, v the candidate solution,
and f the evaluated value of s. In addition to these operators,
how the solution is encoded (represented) is a critical issue
for applying metaheuristic algorithms to scheduling problems.
Also, to simplify the discussion that follows, T, E, and D will



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 281

Algorithm 1 Metaheuristic Algorithm

1: Create the initial solution s
2: While the termination criterion is not met
3: v = Transition(s) T
4: f = Evaluation(v) E
5: s = Determination(v, f) D
6: End

be used to denote, respectively, the transition, evaluation, and
determination mechanisms of each algorithm described in this
paper.

1) Transition: This operator plays the role of changing2

the current solution(s) to the next state. Perturbative and
constructive [27] are the two common transition methods for
combinatorial problems. Depending on the design of meta-
heuristics, of course, this operator can be very simple or very
complex.

2) Evaluation: This operator is responsible for evaluat-
ing the value of the objection function of the problem in
question, such as makespan of a scheduling problem. Some
metaheuristics do not employ an objection function to measure
the solutions directly. Instead, they use other measurement
mechanisms to determine the value in the decision space. Since
the value can be evaluated either in the objective space or in the
decision space, this implies that the value may not represent
the true quality of the solution of the optimization problem.

3) Determination: This operator plays the role of guiding
the search. That is, this operator determines not only the
directions but also the intensification or diversification of the
search, which in turn may influence the convergence speed.

The example given in Fig. 3 illustrates how a metaheuristic
algorithm for the scheduling problem works, i.e., how the
metaheuristic algorithm uses the transition, evaluation, and
determination operators to search for the solutions. In this ex-
ample, the transition operator is a swap operator that is aimed
at exchanging subsolutions of the same solution or of different
solutions, such as exchanging subsolutions 3 and 4 of solution
s1 and exchanging subsolution 4 of solution s1 and subsolution
3 of solution s2. Exchanging subsolutions of solutions usually
needs a repair mechanism to make sure that the solution is
legal for the problem after they are exchanged. The evaluation
operator in this example is a fitness function to evaluate the fit-
ness values fi of these solutions. As for the determination op-
erator of this example, the metaheuristic algorithm will employ
a predefined mechanism to determine and choose solutions that
have a better chance to end up being the optimal solution. As
this example shows, because f1 is better than the others, it has
a better chance to be passed on to the next iteration.

B. Metaheuristic Algorithms for Scheduling

1) Single-Solution-Based Metaheuristics: A well known
iterative greedy algorithm, hill climbing (HC), is given in
Algorithm III-B to illustrate the basic structure and idea of
metaheuristics. T and E on line 3 of Algorithm III-B indicates

2This operator is also known as the move, recombination, change, or alter
operator in other research works.

Algorithm 2 Hill Climbing

1: Randomly create the initial solution s
2: While the termination criterion is not met
3: v = NeighborSelection(s) T→ E
4: If v is better than s, then s = v D
5: End

Algorithm 3 Simulated Annealing

1: Set the initial temperature according to the annealing
schedule

2: Randomly create the initial solution s
3: While the termination criterion is not met
4: v = NeighborSelection(s) T→ E
5: If v satisfies the probabilistic acceptance criterion

D
6: s = v
7: Update according to the annealing schedule T
8: End

that this operation involves two mechanisms: transition and
evaluation of HC. As far as this example is concerned, the
transition mechanism is used to create neighbors on which the
evaluation mechanism is performed and then the best solution
is chosen. After that, D on line 4 denotes the determination
mechanism of HC performed which compares the new solution
(also called candidate solution) with the current solution and
then uses the better one as the starting point of search at the
next iteration.

The simulated algorithm (SA) can be used to illustrate that
a simple change (as shown in lines 5 to 7 of Algorithm III-B1)
can make an iterative greedy algorithm a metaheuristic
which was first presented by Kirkpatrick et al. [28] and
Černý et al. [29]. The basic idea of SA is to occasionally
accept nonimproving solutions so as to escape from local op-
tima during the convergence process. To emulate the annealing
process, a method that is commonly used in computing the
probability of accepting nonimproving solutions is defined as
follows:

Pa = exp

(−f (v) − f (s)

�

)
(1)

where f (·) denotes the evaluation function; s the current solu-
tion; v the new solution; and � the temperature. As shown in
Algorithm III-B1, like the HC, the SA is an iterative algorithm
that starts with a random initial solution and searches the
neighbors of the current solution for the next solution; unlike
the HC, bad solutions have a small chance to be accepted
as the next search direction (solution) of SA. That is why
SA usually can provide a better result than HC because by
accepting bad solutions from time to time, it can mitigate the
premature problem3 of almost all iterative algorithms, such as
local search algorithm, DAs, and stochastic algorithms.

Four different strategies—interchange neighborhood, shift
neighborhood, ordered search, and random search—were com-

3By the premature problem, it means the problem of falling into local
optimum at early iterations on the convergence process.



282 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

Fig. 3. Simple example illustrating how a metaheuristic algorithm for the scheduling problem works. T, E, and D denote, respectively, the transition operator,
the evaluation operator, and the determination operator.

pared in [30] for analyzing what kind of combination can
provide better results for the flow-shop scheduling problem
than for the others. As observed by Osman and Potts [30], the
SA with shift neighborhood and random search provides better
results than the other combinations which also outperform
Nawaz, Enscore, and Ham’s algorithm (NEH) and its variants
in terms of the quality of the solutions on average. A more
recent study [17] applied SA to the job-shop scheduling
problem in which the neighbor selection operator (i.e., the
transition operator with the framework) only swaps (transits)
subsolutions on the critical path. In addition, simulations are
given to show the impact of annealing schedule.

Different from SA that accepts bad solutions occasionally
to escape from the local optima, Glover [31]–[33] presented
the tabu search (TS) to avoid searching the same solutions
frequently. The TS keeps track of solutions recently visited
into a tabu list to solve this problem, as shown in lines 1 and 4
of Algorithm III-B1. Like HC and SA, the TS algorithm starts
with a single solution and then tries to find a neighbor of the
current solution as the next solution, with the constraint that
the new solution cannot be in the tabu list. If the new solution
v (as shown in line 5 of Algorithm III-B1) is accepted, then it
will be inserted into the tabu list and will stay in the tabu list
until it is replaced by another new solution. The convergence
process of TS can then avoid searching the same solutions for
a while depending on the size of the tabu list, thus forcing the
search algorithm to search for regions not on the same local
optimum region.

The simple TS was employed to solve the flow-shop
scheduling problem in [15]. In order to reduce the computation

Algorithm 4 Tabu Search

1: Empty the tabu list
2: Randonly create the initial solution s
3: While the termination criterion is not met
4: v = NonTabu-NeighborSelection(s) T→ E
5: If v satisfies the improving conditions D
6: s = v
7: Update the tabu list based on s T
8: End

time of TS, a parallel version of TS that uses the master and
slave model was presented in the same study. The master
is responsible for keeping the tabu list, while the slaves
are responsible for finding better candidate solutions from
the neighbors of the current solutions not in the tabu list.
According to the observation of Taillard [15], TS can provide
a better result than NEH in terms of not only the quality but
also the computation time. In addition, the parallel version of
the TS can be used to reduce the computation time of the
TS. A more recent study [34] presented a new search strategy
for TS for the job-shop scheduling problem. Two methods
are employed in this paper to create the neighbors: the first
method is to swap any two subsolutions (operations) on the
same machine if they are on the critical path; the second
method is to swap at least one subsolution not on the critical
path, for if the adjustment is applied to only subsolutions on
the critical path, makespan cannot be reduced. Moreover, the
same study presented an adjustable tabu list the size of which
can be dynamically increased and decreased to balance the



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 283

Algorithm 5 Genetic Algorithm

1: Randomly create the initial population s
2: While the termination criterion is not met
3: f = FitnessFunction(s) E
4: v = Selection(s, f) D
5: v′ = Crossover(v) T
6: v′′ = Mutation(v0) T
7: s = Reproduction(v00)
8: End

intensification and diversification of a search strategy. Methods
for creating the neighbors, swapping, as well as insertion and
block insertion were presented in [35]. In the same study,
it was shown that the speed of the algorithm (BF-TS) they
proposed is faster than T-TS [15] because BF-TS can reduce
the candidate list from (n−1)2 down to 2n and the number of
iterations from 4000–50 000 to 100–500 while providing the
similar result, on average.

2) Population-Based Metaheuristics: Two different charac-
teristics of the population-based metaheuristics can be used to
differentiate them from single-solution-based metaheuristics.
First, the number of directions (solutions) searched each
iteration is different. Second, the way the information searched
(experience) propagated iteration by iteration is different, es-
pecially most population-based metaheuristics add other ways
to exchange the search information at each iteration.

Pioneered by Holland [36], the genetic algorithm (GA)
is definitely one of the most important population-based al-
gorithms in terms of not only its performance but also the
easiness of applying it to many problem domains. In terms of
the report of Google Scholar [37], [36] was cited 14 712 times
and [38] was cited 24 941 times. Both are listed in the top 100
cited works of Google Scholar (31 and 10, respectively). As
shown in Algorithm III-B2, the GA contains the initialization,
selection, reproduction, crossover, and mutation operators to
mimic the process of natural evolution. Chromosomes (also
called individuals) that represent the solutions are created
randomly in the initialization stage. Unlike metaheuristic al-
gorithms, which use the objective function to decide which
solutions are better, the so-called fitness function is employed
by GA to evaluate which solutions fit better. More important
is that the fitness function can be useful to differentiate the
solutions based on other criteria, such as rank or proportion.
The design of the selection operator, which plays the role of
determining the search directions at the next iteration, and
the fitness function often goes hand by hand. The crossover
and mutation operators are used to transit the solutions. More
precisely, the crossover operator is aimed at exchanging the
information between solutions, whereas the mutation operator
is aimed at escaping from the local optimum.

Nine representations were pointed out in [39] for the job-
shop scheduling problem. Generally speaking, most of these
representations can also be applied to other metaheuristic
scheduling problems. The classifier system to create schedule
rules for the job-shop scheduling problem was presented in
[18]. The GA was also used in a more recent study [40] to
schedule the Hubble space telescope, at which the job ID and

time segment number are used to encode the solutions. The
same study further indicated that the random crossover oper-
ator provides better results than the other crossover operators,
such as smart crossover and evolving crossover. Some encod-
ing methods for the single machine, multiple machine, and
dynamic scheduling problems were introduced in [41]. The
GA was employed in [42] to solve the scheduling problem.
Instead of using only task sequence to represent the schedule
of all the tasks on a multiple machine, the order of the tasks
to be executed in each processor is used to represent the
schedule so that their transitions are all on the task graph
to guarantee that the new solutions will be legal. A different
research direction was described in [43] that applies multi-
objective GA to the flow-shop scheduling problem to select
the chromosomes on the convergence process. The fitness
function is redesigned accordingly for the multiobjective GA,
and the elite strategy is used to preserve better solutions to
later generations. The simulation results described in [43]
showed that the multiobjective GA provides better results
than the single-objective GA. For the scheduling problem
of heterogeneous computing environments, a directed acyclic
graph (DAG) was used in [44] to represent the chromosomes
(solutions) on the convergence process of the GA. Simulations
given in the same study showed that the rank-based selection
method is better than the value-based selection method.

In addition to the development of GA in the 1990s, swarm
intelligence (SI) [45] is another promising approach developed
at about the same time. One well known SI is ant colony
optimization (ACO) pioneered by Dorigo and his colleagues
[46]–[48]. As shown in Algorithm III-B2, like most SI, ACO
is built on the social insect metaphor for solving optimiza-
tion problems. An interesting characteristic of ACO is the
pheromone table for recording the search experiences of all
the ants from the initial stage up to the current iteration.
ACO performs the transition, evaluation, and determination
operations based on the values in the pheromone table (τ). This
explains how all the ants of ACO share the search information.
Another characteristic of ACO is that all the routing paths
(solutions) are constructed step by step by all the ants which
can be regarded as a constructive transition. Just like ants
searching for routing paths for food, the solution construction
operator of ACO plays the role of performing all the three
operators: transition, evaluation, and determination. One of
the well-known construction methods was presented in [46],
which is defined as

pk
ij =

⎧⎨
⎩

[τij]α[ηij]β∑
j∈N k

i
[τij]α[ηij]β , if j ∈ N k

i

0, otherwise
(2)

where N k
i denotes the set of candidate subsolutions, i.e., the

subsolutions that have not visited by ant k yet and thus can
be selected by ant k at subsolution i; τij and ηij denote,
respectively, the pheromone value and the heuristic value
associated with eij .

The earliest attempt to use ACO to solve the scheduling
problem is the work described in [19] in which the ant system
(AS) is employed to solve the job-shop problem. The results,
however, are far from optimal. A more recent study [49]



284 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

Algorithm 6 Ant Colony Optimization

1: Initialize the pheromone values
2: While the termination criterion is not met
3: v = SolutionConstruction(τ) T→ E→

D
4: τ = PheromoneUpdate(v) T
5: s = LocalSearch(v) T→ E→

D
6: End

fine-tuned the parameter values of AS to improve the result
of applying ACO to the scheduling problem. The way the
probability of selecting edges is computed was modified in
[50] so that bad solutions are accepted occasionally, just like
the SA, to adjust the ratio of intensification and diversification
in the search. Several strategies to enhance the performance
of ACO for the scheduling problem were discussed in [51],
namely elite strategy, 2-opt strategy, and two pheromone
evaluation methods, which can indirectly influence the search
ability of ACO, thus providing better results than SA and GA.
The hybrid ACO presented in [52] combines the beam search
with ACO to improve the result of applying ACO by itself to
the open-shop scheduling problem.

Another well known SI, called particle swarm optimization
(PSO), was presented in [53]. Algorithm III-B2 gives an
outline of the PSO which uses individual trajectories, local
best, and global best to guide the search, i.e., the transition of
solutions. By using positions and velocities of particles, PSO
[53]–[55] is usually suited for continuous optimization prob-
lems. Lines 3–6 of Algorithm III-B2 show, respectively, the
velocity, position, global best, local best update mechanisms.
All these update mechanisms affect the search directions of
PSO at later iterations. The velocity vl

i and position pl
i are

updated as follows:

v�+1
i = ωv�

i + a1ϕ1(pb�
i − p�

i ) + a2ϕ2(gb� − p�
i ) (3)

and

p�+1
i = p�

i + v�+1
i (4)

where the subscript i denotes the particle number; � the
iteration number; pbt

i the personal best position of the ith
particle up to iteration �; gb� the global best position so far; ω

an inertial weight; ϕ1 and ϕ2 two uniformly distributed random
numbers used to determine the influence of pbi and gb; and a1

and a2 two constant values denoting, respectively, the cognitive
and social learning rate.

Because the characteristics of the original PSO are well
suited for continuous optimization problems, the very first
thing to apply PSO to combinatorial optimization problems
is to solve the way solutions are encoded or represented.
Permutation-based and priority-based (random key) represen-
tations were pointed out in [20] as the two common encoding
methods of PSO for the resource-constrained project schedul-
ing problem. Another representation of PSO was employed in
[56] in which “job-to-position” is used to represent the solution

Algorithm 7 Particle Swarm Optimization

1: Initialize the position and velocity of particles
2: While the termination criterion is not met
3: VelocityUpdate(s) T
4: v = PositionUpdate(s) T
5: LocalBestUpdate(v) E→ D
6: GlobalBestUpdate(v) E→ D
7: s = v
8: End

of the flow-shop scheduling problem. Each solution is encoded
as which job will be performed on which position, which can
be easily transformed to a sequence of schedules. In addition,
the length of each solution is simply the number of jobs mul-
tiplied by the number of positions. PSO searches for solutions
by associating with each solution a probability set first and
then modifying this probability set to change the search di-
rections on its convergence process. A more recent study [57]
presented a hybrid PSO to solve the job-shop problem. They
not only modified representation, movement, and velocity of
particles but also used the TS as the local search method for
improving the quality of the solution. A modified discrete
PSO that employs the nearest neighbor and NEH to create a
better starting point for the flow-shop scheduling problem was
presented in [58]. In the same study, variable neighborhood
descent is used to improve the quality of the solution.

IV. Scheduling on Cloud

A. Scheduling Problems on Cloud

Scheduling on cloud can be considered as an epitome
of the studies of cloud; thus, although many studies [10]
attempted to give a precise and clear definition and description
of scheduling on cloud, there still exist various definitions.
A simple way to define the scheduling problem on cloud is
usually represented as the DAG [59]–[64] G(V, E) where V

denotes the set of tasks and E the set of directed edges that
represent the dependencies among tasks. The scheduling on
cloud can be formulated as follows [64]:

minimize f (s) = Cmax(s) +
n∑

i=1

m∑
j=1

TCij

subject toCmax(s) ≤ U(s),

TC(s) ≤ B(s),

(5)

where C(s) denotes the makespan of solution s; TC(s) the
total cost of solution s, which can be a combination of the
computation cost and the cost of transferring the incoming
and outgoing data; TCij the cost of processing the ith task on
the jth machine; U(s) the number of tasks that does not meet
the deadline; and B(s) the number of tasks that does not meet
the stipulated budget.

To formulate the scheduling problem, some researchers [65]
considered adding a penalty factor to confine the search of
solutions so as to avoid solutions containing too many tardy
tasks. To measure the quality of the scheduling results, various
methods are employed in these studies which can be used to



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 285

adapt the aforementioned definition to fit the situation a user of
the scheduling algorithm may face. The average profit, average
utilization, and average response rate [60] are employed to
measure the performance of scheduling algorithms for cloud.
Jiang et al. [62] tried to minimize the cost of a scheduling
solution for cloud in terms of the computation cost, the
communication cost, and the earliest start time. A more recent
study [66] focused on the SLA-based resource conditions, such
as throughput, latency, and cost of service agreement. More-
over, according to our observations, the issues of dependency
of jobs and virtual machines should be part of the definition on
scheduling. To reduce the development cost of applications for
cloud environments, simulation platforms, such as Cloudsim
[67] for cloud computing, have been presented which can also
be used to design and develop better scheduling algorithms.

B. Metaheuristic Scheduling Algorithms

In this section, we turn our discussions to metaheuris-
tic scheduling algorithms for cloud environments, especially
from the following four perspectives: representation, transition,
evaluation, and determination. Then, a more detailed analysis
will be given to these metaheuristics.

1) GA Scheduling Algorithms: Before the scheduling
procedure enters the main iterative process of the GA, just
like the other metaheuristics, the GA has to initialize itself
by constructing an initial solution set that may affect its
convergence process and speed. A two-stage method (test
and computing fitness stages) was used in [68] to create a
good initial solution set of GA. Some heuristic scheduling
algorithms (e.g., round-robin and min-min) are used to create
the candidate initial solutions first, and then some suitable
candidate solutions (in terms of the completion times of tasks
and the communication costs between resources) are selected
as the initial solutions after they pass some tests.

Five representations are commonly used in encoding the
scheduling solutions of GA: 1) binary; 2) n-task sequence;
3) tree; 4) random key; and 5) n × m matrix. The binary
encoding was used in [69] to associate the makespans and
generations with chromosomes the length of which are n×nj

where n denotes the number of jobs and nj the number
of operations needed by job j. That is, each chromosome
represents the order of all the operations of all the jobs.
For instance, let us assume that there are two jobs each of
which requires two operations. The solution s = (0, 0, 1, 1)
represents the order with which the operations are performed.
In this case, the order is as follows: the first operation of
job 0 is first performed, then the second operation of job
0, then the first operation of job 1, and so on. The n-task
sequence was used in [68] to encode the solutions of the GA.
A sequence (vector) s = (s1, s2, . . . , sn) where si denotes to
which available resource task i is assigned is employed to
represent a solution. For instance, s1 = 2 denotes that task
1 is assigned to the second resource (also called machine
or node). To represent the mapping relationship between the
virtual machines, Sawant [70] and Gu et al. [71] used used the
tree structure to encode the scheduling solutions of the GA.
The transition operator, of course, needs to be reconsidered
to guarantee the legality of chromosomes. An interesting

representation was described in [72], which uses the random
key to maintain the feasibility (task priority) of chromosomes,
though this kind of representation requires additional encoding
and decoding methods for the other operators of the GA.
The last representation is to use the matrix to represent the
task model which includes the relationships between jobs and
processors (also called machines or nodes). The predicted
execution time model presented in [73] uses this representation
to record the predicted execution time of task i on processor j.

The selection strategy of the GA usually can be regarded
as the evaluation and determination operators of metaheuristic
algorithms. Different assumptions may lead to different con-
siderations in the design of the fitness functions. For example,
the scheduling goal (fitness function of GA) is not only the
traditional makespan but also the power consumption [74].
The cost of data transfer, communication, and computation as
well as the profit have all been considered in the design of
the fitness functions. To count the total constraint violation
degree for composite services, the fitness function can also
be designed based on the following two conditions: one is
to compute the fitness value based on the proportion of
the scheduling result, while the other is to assume a small
value when some constrains are violated [72]. For the GA,
in addition to the roulette-wheel selection, elitism selection,
and tournament selection operators [71], [75], [76] that are
employed for scheduling on cloud, a variety of selection
operators have also been developed.

Most GAs use two transition operators (crossover and
mutation) to exchange the information between solutions and
to alter the solutions. Both one-point and two-point crossovers
are used by the GA to exchange the information between chro-
mosomes. The fact that cycle crossover is preferred to the one-
point and two-point crossovers was pointed out in [75]. For
a specific chromosome representation, the crossover operator
usually needs to be redesigned. The orthogonal crossover and
mutation operators to transit the chromosomes are designed
for representing agent grid [77]. For the mutation operator,
swapping the genes of a chromosome is commonly used in the
GA. Also, for the tree representation [70], the crossover and
mutation operators need to be redesigned or adopted to make
them applicable. Instead of fixing the crossover rate, some
researchers [76] used the fitness ratio to dynamically adjust the
crossover rate between chromosomes to retain chromosomes
with high fitness values. Two mutation strategies for GA were
presented in [77]. One is to randomly select a task from a
chromosome and then put it into another chromosome while
the other is to exchange two tasks from two chromosomes. A
comparison between different combinations of the crossover,
partially mapped crossover (PMX), order crossover (OX), and
cycle crossover (CX) operators as well as the mutation, swap,
and insertion operators was given in [78]. Their simulation re-
sults show that the PMX crossover operator combined with the
swap mutation operator is faster than the other combinations
to find the same results.

Several research works have been focused on redesigning
the search strategy of the GA to enhance its performance.
An intuitive method is to use the parallel version of the GA
because it has been proved that it can reduce the computation



286 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

time of the GA for a variety of traditional optimization
problems. For this reason, in [79], a coarse-grained parallel
GA was employed to solve the scheduling problem for cloud,
which eventually provides a better result than the simple GA.
Another way to employ high-performance version of the GA
was described in [80] where the immune GA is employed
to modify the search strategy of the GA to increase the
diversity of chromosomes to further improve the final result
of the GA. An efficient framework, called multiagent GA
(MAGA), was used in [81] where a grid structure is used in
representing the population. This approach, however, requires
that chromosomes be exchanged with their neighbors instead
of with all the chromosomes. Same as the original version
of MAGA, the final result of [81] is also better than the
simple GA. In [77], chromosomes were split into two pools
(high and low) in terms of the average energy consumption,
and then chromosomes are selected from these two pools
to exchange the information. The cooperative coevolutionary
GA (CCGA) was presented in [82] to solve the deadline-
constrained scheduling problem. Different from the search
strategies described previously, each gene can come from any
number of chromosomes. In other words, although most GAs
use two parents to create the offspring, CCGA uses one up to n

chromosomes to create the offspring where n denotes the size
of the population. To compensate for the lack of fine-tuning
ability, the local search operator is often used to accelerate the
convergence speed and to improve the final result of the GA
[83].

Because many scheduling problems have more than one
objective, finding a balanced result has become a promis-
ing research topic. Among others, Kessaci et al. [84] and
Zhao et al. [85] treated the scheduling problem as a multi-
objective optimization problem. A intuitive way to solve the
scheduling problem is to employ the well-known multiobjec-
tive GA (NSGA II) the results of which take into account
the cost of CPU, memory, and bandwidth at the same time
[85]. Another study in using the multiobjective GA [84] took
into consideration the energy consumption of data center, CO2

emissions, and generated profits to reduce the utility rate of
energy consumption.

2) Ant Colony Optimization Scheduling Algorithms: The
basic idea of ACO is to use ant to construct the solution
(routing path) step by step, by using the so-called pheromone
matrix. Each ant is like living in a network environment
because each city (also called node) can be regarded as a
computer node in a network. For this reason, ACO is very
suitable for emulating the status of real networks. To solve the
scheduling problem on grid or cloud computing environments,
several studies [86]–[88] used an n by m expected execution
time (ET) matrix where the entries ETij denote the expected
execution time of task Ti on machine Mj . The completion
time (CTij) of ith task on the jth machine is defined as
CTij = bi+ETij, where bi is the beginning time (ready time) of
task Ti. Then, the makespan of a scheduling problem can be
computed by using CTij . Most studies measure the workload
of a task in terms of million instructions per second (MIPS)
[87]. In addition to the makespan that is used to measure
the throughput of the system, the flow time is often used to

measure the QoS of the system [88]. The solution of ACO for a
scheduling problem can be represented as composed of a set of
subsolutions each of which indicates to which machine a task
is assigned (scheduled) and is constructed with a probability

Pij =
τijηij(1/CTij)∑
τijηij(1/CTij)

(6)

where τij denotes the pheromone value associated with Ti and
Mj; ηij the heuristic information. The solution of ACO-based
algorithms can be easily obtained by having them assign (or
schedule) all the tasks to the machines.

By using ACO to solve the scheduling problems on a
cloud environment, many computation resources can often be
considered at the same time on the convergence process, such
as CPU usage, memory, and network bandwidth [89]. In [90],
four types of heuristic information are used: reliability of cloud
service, response time of cloud service, cost of cloud service,
and security ability of cloud service. Because the number of
virtual machines (VM) represents the computing resources on
a cloud environment, in [91], the number of processors on
a VM, MIPS of each processor of a VM, communication
bandwidth, average execution time of a VM, expected exe-
cution time of a task in a VM are all taken into account
in the computation of the probability Pij for constructing
each subsolution of ACO. Still, another way to modify the
pheromone update rule was described in [92] where additional
pheromone is added to describe when a task is assigned to a
machine. To improve the performance of ACO, the local search
operator plays an important role. An intuitive local search
method is to swap subsolutions (tasks) between machines [93].
As far as the search strategy is concerned, dividing ants into
different types is another method to improve the end results of
ACO. Two kinds of ants, red and black, were employed in [94]
where the red ants are used for estimating the system resource,
while the black ants are used for determining the resource
allocation.

3) PSO Scheduling Algorithms: Similar to the GA for
scheduling on cloud, which uses the DAG to describe the
tasks in a workflow application, some studies also employed
DAG for PSO [95]. Because the original design of PSO is for
continuous problems, several methods have been developed
to represent solutions for discrete problems (e.g., scheduling
problem), such as random key representation, transformation,
and priority-based representation. One of the key issues is
that the transition operator needs to be redesigned to fit the
requirements of its representation. Another key issue is how to
encode the solution of PSO for scheduling. A common method
is to encode in each particle a set of 〈task Ti, machine Mj〉
pairs where each pair denotes the assignment of task Ti to
machine (service) Mj . Just like for ACO, which uses the ET
matrix, for PSO, each particle also uses a n by m matrix
to encode the solution. The only difference is that, instead
of the expected execution time, each entry here assumes the
probability pij of assigning task Ti to machine Mj [76], [96].
To keep more information about the network status, the fuzzy
scheme [97] was employed for the PSO where the size of the
fuzzy matrix is also n by m. To decode the fuzzy matrix, the
maximum element of each column is selected.



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 287

Like the GA and ACO, modified fitness functions are also
used to characterize the status of network on cloud. The total
execution cost, communication cost, memory, and processing
resource capacity of each machine are usually considered in
PSO for scheduling on cloud [65]. Adding a penalty factor into
the fitness function is a precise method to guide the search
direction to avoid exceeding the system capacity. The main
motivation for applying the mutation operator to PSO is to
retain or increase the search diversity of each particle on the
convergence process [98], [99]. Just like the mutation operator,
the crossover operator has also been tried for improving the
scheduling result of PSO [100]. From the perspective of search
strategy, PSO resembles GA which suffers from the premature
problem and lacks the fine-tuning ability. Integrating the local
search operator into the search procedure of PSO is a useful
way to fine-tune the scheduling results of PSO [99].

4) Hybrid Metaheuristic Scheduling Algorithms: The un-
derlying idea of hybrid metaheuristics is to integrate two
or more metaheuristic algorithms into a single algorithm to
leverage the strengths of all the underlying algorithms so as
to enhance the performance in terms of either the quality of the
result or the computation time or both. Three different kinds
of combinations are frequently used in hybrid metaheuristic
scheduling algorithms: 1) combining population-based algo-
rithm with single-solution-based algorithm; 2) combining two
population-based algorithms; and 3) combining metaheuristic
algorithm with other heuristic algorithm.

In the case of combining population-based algorithm with
single-solution-based algorithm, the population-based algo-
rithm is normally used to guide the global search, while the
single-solution-based algorithm is employed to fine-tune the
solution of the population-based algorithm. For instance, the
hybrid metaheuristic scheduling algorithm described in [101]
used SA as an operator of GA. To avoid getting stuck in a
particular region, the TS is definitely one of the best choices.
So the hybrid metaheuristic scheduling algorithm described in
[100] used not only the crossover operator to exchange the
information between particles of PSO but also TS to avoid
searching the same regions for a while.

Because most population-based metaheuristic algorithms
are capable of guiding the search directions toward the global
optimum, combining two population-based metaheuristics
should have good reasons. Otherwise, it may slow down the
convergence speed without getting a better result. One of the
most important reasons for combining two population-based
metaheuristics is because of the difference in the convergence
speed [102]. This implies that combining two population-
based metaheuristics with different convergence characteristics
may postpone the time of convergence. Another reason is
that combining metaheuristic algorithms with different search
strategies into a single metaheuristic algorithm may increase
the chance to find a better result. From the viewpoint of
information sharing, we combine two different population-
based metaheuristics because different metaheuristics have dif-
ferent characteristics. If we can leverage the strengths of each
algorithm into a single algorithm, we may be able to enhance
its performance. A simple example is the algorithm described

in [103] where two metaheuristic algorithms with different
convergence characteristics are combined. More precisely, the
algorithm integrates PSO and GA where the GA shares all
the information between chromosomes (solutions), while PSO
shares only the best solution with others.

Most hybrid algorithms utilize one metaheuristic algorithm
and one nonmetaheuristic algorithm. Good examples are the
dynamic cloud scheduling algorithm (DCSA) [104], which
combines a support vector machine (SVM) with GA, and the
adaptive hybrid heuristic (AHH) [64], which combines GA
with dynamic critical path (DCP). To dynamically schedule
the incoming tasks, a resource prediction mechanism was
developed in the DCSA [104]. The system log data (CPU
and memory usage) is first used to train the classification rules
(classifier) of an SVM. Then, these rules can be used to predict
resource availability on the convergence process of the GA.
Because the DCSA uses system logs of nodes of real cloud
systems, the search directions of the metaheuristic algorithm
are generally closer to the status of the system. Like DCSA,
AHH [64] was developed to dynamically schedule the tasks
for services on cloud. AHH consists of two phases: GA and
DCP. The first phase is to use the GA to find the scheduling
solution that has a minimum execution cost in terms of the
budget, deadline, and other requirements specified by the user.
After that, the DCP is used to dynamically schedule the read
tasks on the system.

C. Discussion

The scheduling for cloud computing environments has a
relatively short history, but it is an important technology for
modern computing systems. A number of important survey
articles on scheduling for grid and cloud can be found in the
literature [105]–[110]. In summary, most recent research works
using metaheuristics are focused on three things: modifying
the operators, modifying the fitness function, and hybrid
metaheuristics.

• Modifying the operators: The main focus is on redesign-
ing the transition operators or adding transition operators
inspired by or of other scheduling algorithms. Both affect
the search strategy of the original metaheuristic algorithm.
In addition, some modifications may need to ensure that
solutions created by the new transition operators are legal.

• Modifying the fitness function: The main focus is on
redesigning or adding the fitness function to fit better with
the cloud environment in question. As a consequence, the
cost of data transfer, the cost of communication, the cost
of computation, the profit, and even the energy consump-
tion (e.g., CO2 emissions) are continuously added to the
fitness function. For some studies, the importance of each
objective is no longer the same, that is, the relationships
between these objectives have been redesigned. A good
example is that cost is no longer considered independently
but is considered relative to price.

• Hybrid metaheuristics: Different from modifying the
transition operators or adding the local search operator,
the basic idea of hybrid metaheuristics is to use other
scheduling algorithms or domain knowledge to enhance
the performance of the original algorithm, i.e., use the



288 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

strength of other scheduling algorithms to compensate for
the weakness of the original metaheuristic algorithm. A
good example is a combination of GA and SA where the
GA plays the role of finding the global search directions,
while the SA plays the role of fine-tuning the solutions
found by GA.

In summary, because using metaheuristic algorithms to
solve the scheduling problems on cloud is still at its infancy,
numerous studies in the literature are simply not matured
enough in terms of not only the description and definition
of the problems but also the fitness of the operators of the
metaheuristics for scheduling on cloud. As a result, most of the
proposed algorithms are subject to improvement. This is not
saying that these immature studies are not important. Instead,
they are eventually providing not only useful experience but
also foundations to advance later research works in this area.
The main advantages of using metaheuristic algorithm for
scheduling are similar to those of using them for traditional op-
timization problems: 1) metaheuristics generally provide better
results than DAs in terms of the quality; and 2) metaheuristics
generally find approximate solutions faster than traditional
exhaustive algorithms in terms of the computation time. These
characteristics imply that the metaheuristic algorithms provide
a more flexible way to find solutions of scheduling problems.
On the contrary, the disadvantages of metaheuristic scheduling
are 1) metaheuristics generally are slower than DAs; and
2) solutions are not guaranteed to be optimal. That is why
the recent trend in the other research areas is to preprocess
the input data so as to accelerate the execution time of
metaheuristic algorithms.

V. Conclusion

Using metaheuristics to solve the scheduling problem is like
putting a robot in a big maze. How fast the robot finds the
exit depends to a large extent on its vision (search ability)
and intelligence (decision ability). Two of the most important
abilities these research works need to consider are intensifica-
tion and diversification. As the names suggest, an intensified
search implies searching a small region intensively to find the
best solution in that region, called local optimum. In contrast,
a diversified search means searching a larger region for a
solution that is better than the local optimum. Unfortunately,
a larger region does not always guarantee a better solution.
These observations tell us that it is important to seek a balance
between intensification and diversification, which may have a
strong impact on the quality of the scheduling results. The
focus of this paper was on a survey of metaheuristic algorithms
for scheduling on cloud. To make it easier for the audience of
this paper to fully understand all the metaheuristic algorithms
described herein, all the metaheuristic algorithms were placed
in a unified framework.

Nowadays, because cloud computing is relatively new and
nothing is really clear, the assumptions, objectives, and lim-
itations of scheduling problems on cloud differ from study
to study, meaning that although scheduling problems are not
new at all, studies on scheduling problems on cloud are
still at their infancy. A more applicable problem definition is

needed in the future research on cloud scheduling. Although
its definition is not clear now, a better scheduling method
definitely has a higher potential to enhance the performance
of most parts of a cloud computing system. A simple way to
develop the scheduling algorithm is to consider the level of
services such as software as a service, platform as a service,
or infrastructure as a service. Just like most research subjects,
scheduling on cloud computing also fits the product life cycle
theory that is expected to undergo the introduction, growth,
maturity, saturation, and decline stages. Scheduling on cloud
computing today is somewhere between the introduction and
growth stages. Managing the Internet of Things devices and
multimedia contents and conserving energy more effectively
are some of the important research trends on future cloud
computing scheduling.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms and Systems. Englewood
Cliffs, NJ, USA: Prentice-Hall, Inc., 1995.

[2] P. Chrétienne, E. G. Coffman, J. K. Lenstra, and Z. Liu, Eds.,
Scheduling Theory and Its Applications. New York: Wiley, 1995.

[3] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, A survey
of scheduling problems with setup times or costs,” Eur. J. Oper. Res.,
vol. 187, no. 3, pp. 985–1032, 2008.

[4] C. N. Potts and V. A. Strusevich, “Fifty years of scheduling: A survey
of milestones,” J. Oper. Res. Soc., vol. 60, no. S1, pp. S41–S68, 2009.

[5] R. Ramasesh, “Dynamic job shop scheduling: A survey of simulation
research,” Omega, vol. 18, no. 1, pp. 43–57, 1990.

[6] S. M. Johnson, “Optimal two- and three-stage production schedules
with setup times included,” Naval Res. Logistics Quart., vol. 1, no. 1,
pp. 61–68, 1954.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: vision, hype, and reality for
delivering computing as the 5th utility,” Future Generat. Comput. Syst.,
vol. 25, no. 6, pp. 599–616, 2009.

[8] G. F. Pfister, In Search of Clusters, 2nd ed. Upper Saddle River, NJ,
USA: Prentice-Hall, 1998.

[9] I. Foster, “The grid: A new infrastructure for 21st century science,”
in Grid Computing: Making the Global Infrastructure a Reality. New
York: Wiley, 2003, pp. 51–63.

[10] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. Grid Comput. Workshop,
2008, pp. 1–10.

[11] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Proc. Int. Joint Conf. INC, IMS IDC, 2009, pp.
44–51.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A Berkeley view of cloud computing,” Dept. Elect.
Eng. Comput. Sci., Univ. Calif., Berkeley, Tech. Rep. UCB/EECS-
2009-28, 2009.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58,
2010.

[14] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[15] E. Taillard, “Some efficient heuristic methods for the flow shop
sequencing problem,” Eur. J. Oper. Res., vol. 47, no. 1, pp. 65–74,
1990.

[16] T. E. Morton and D. W. Pentico, Heuristic Scheduling Systems: With
Applications to Production Systems and Project Management (Wiley
Series in Engineering and Technology Management). New York: Wiley,
1993.

[17] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job shop
scheduling by simulated annealing,” Oper. Res., vol. 40, no. 1, pp.
113–125, 1992.

[18] M. R. Hilliard, G. E. Liepins, and M. Palmer, “Machine learning
applications to job shop scheduling,” in Proc. Int. Conf. Ind. Eng. Appl.
Artif. Intell. Expert Systems, 1988, vol. 2. pp. 728–737.



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 289

[19] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant System
for Job-shop Scheduling,” Belgian J. Oper. Res., Statist. Comput. Sci.,
vol. 34, no. 1, pp. 39–53, 1994.

[20] H. Zhang, X. Li, H. Li, and F. Huang, “Particle swarm optimization-
based schemes for resource-constrained project scheduling,” Autom.
Construct., vol. 14, no. 3, pp. 393–404, 2005.

[21] J. Bła_zewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Wȩglarz,
Scheduling Computer and Manufacturing Processes. New York:
Springer-Verlag, 2001.

[22] Y. T. J. Leung, Handbook of Scheduling: Algorithms, Models and
Performance Analysis. London, U.K.: Chapman & Hall, 2004.

[23] K. R. Baker, Introduction to Sequencing and Scheduling. New York:
Wiley, 1974.

[24] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,
“Optimization and approximation in deterministic sequencing and
scheduling: A survey,” Ann. Discr. Math., vol. 5, pp. 287–326, Jan.
1979.

[25] P. P. Wang, “Static and dynamic scheduling of customer arrivals to a
single-server system,” Naval Res. Logistics, vol. 40, no. 3, pp. 345–360,
1993.

[26] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer-Verlag, 1996.

[27] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations &
Applications. Amsterdam, The Netherlands: Elsevier, 2004.

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[29] V. Černý, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” J. Optimization Theory Appl.,
vol. 45, no. 1, pp. 41–51, 1985.

[30] I. H. Osman and C. N. Potts, “Simulated annealing for permuta-
tion flow-shop scheduling,” Omega, vol. 17, no. 6, pp. 551–557,
1989.

[31] F. Glover, “Tabu search—part I,” ORSA J. Comput., vol. 1, no. 3, pp.
190–206, 1989.

[32] F. Glover, “Tabu search—part II,” ORSA J. Comput., vol. 2, no. 1, pp.
4–32, 1990.

[33] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer,
1997.

[34] M. Dell’Amico and M. Trubian, “Applying tabu search to the job-shop
scheduling problem,” Ann. Oper. Res., vol. 41, nos. 1–4, pp. 231–252,
1993.

[35] M. Ben-Daya and M. Al-Fawzan, “A tabu search approach for the
flow shop scheduling problem,” Eur. J. Oper. Res.h, vol. 109, no. 1,
pp. 88–95, 1998.

[36] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Ann Arbor, MI, USA: Univ. of Michigan Press, 1975.

[37] Top 100 Cited Works of Google Scholar. (2008, Jul. 21) [Online].
Available: http://www.cse.wustl.edu/ loui/goocites.html

[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA, USA: Addison-Wesley, 1989.

[39] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-
shop scheduling problems using genetic algorithms—I: representation,”
Comput. Ind. Eng., vol. 30, no. 4, pp. 983–997, 1996.

[40] J. L. Sponsler, “Genetic algorithms applied to the scheduling of
the hubble space telescope,” Telemat. Informat., vol. 6, nos. 3–4,
pp. 181–190, 1989.

[41] J. E. Biegel and J. J. Davern, “Genetic algorithm and job shop
scheduling,” Comput. Ind. Eng., vol. 19, nos. 1–4, pp. 81–91,
1990.

[42] E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for
multiprocessor scheduling,” IEEE Trans. Parallel Distrib. Syst., vol. 5,
no. 2, pp. 113–120, Feb. 1994.

[43] T. Murata, H. Ishibuchi, and H. Tanaka, “Multi-objective genetic
algorithm and its applications to flowshop scheduling,” Comput. Ind.
Eng., vol. 30, no. 4, pp. 957–968, 1996.

[44] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A. Maciejewski,
“Task matching and scheduling in heterogeneous computing environ-
ments using a genetic-algorithm-based approach,” J. Parallel Distrib.
Comput., vol. 47, no. 1, pp. 8–22, 1997.

[45] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
New York: Wiley, 2006.

[46] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:
Optimization by a colony of cooperating agents,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 26, no. 1, pp. 29–41, Feb.
1996.

[47] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evol. Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[48] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,
USA: MIT Press, July 2004.

[49] S. van der Zwaan and C. Marques, “Ant colony optimisation for job
shop scheduling,” in Proc. Workshop Genetic Algorithms Artif. Life,
1999, pp. 1–8.

[50] V. T’kindt, N. Monmarché, F. Tercinet, and D. Laügt, “An ant
colony optimization algorithm to solve a 2-machine bicriteria flowshop
scheduling problem,” Eur. J. Oper. Res., vol. 142, no. 2, pp. 250–257,
2002.

[51] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimiza-
tion for resource-constrained project scheduling,” IEEE Trans. Evol.
Comput., vol. 6, no. 4, pp. 333–346, Aug. 2002.

[52] C. Blum, “Beam-ACO: Hybridizing ant colony optimization with beam
search: An application to open shop scheduling,” Comput. Oper. Res.,
vol. 32, no. 6, pp. 1565–1591, 2005.

[53] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Nov.–Dec. 1995, pp. 1942–1948.

[54] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm
optimization,” in Evolutionary Programming VII. Berlin, Germany:
Springer-Verlag, 1998, pp. 591–600.

[55] M. Clerc and J. Kennedy, “The particle swarm—explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans.
Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[56] C. J. Liao, C. T. Tseng, and P. Luarn, “A discrete version of particle
swarm optimization for flowshop scheduling problems,” Comput. Oper.
Res., vol. 34, no. 10, pp. 3099–3111, 2007.

[57] D. Y. Shaa and C. Y. Hsu, “A hybrid particle swarm optimization for
job shop scheduling problem,” Comput. Ind. Eng., vol. 51, no. 4, pp.
791–808, 2006.

[58] Q. K. Pan, M. Fatih Tasgetiren, and Y. C. Liang, “A discrete particle
swarm optimization algorithm for the no-wait flowshop scheduling
problem,” Comput. Oper. Res., vol. 35, no. 9, pp. 2807–2839, 2008.

[59] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online
optimization for scheduling preemptable tasks on IaaS cloud systems,”
J. Parallel Distrib. Comput., vol. 72, no. 5, pp. 666–677, 2012.

[60] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven
scheduling for cloud services with data access awareness,” J. Parallel
Distrib. Comput., vol. 72, no. 4, pp. 591–602, 2012.

[61] B. Saovapakhiran, G. Michailidis, and M. Devetsikiotis, “Aggregated-
dag scheduling for job flow maximization in heterogeneous cloud
computing,” in Proc. IEEE Global Telecommun. Conf., Dec. 2011, pp.
1–6.

[62] H.-J. Jiang, K.-C. Huang, H.-Y. Chang, D.-y. Gu, and P.-J. Shih,
“Scheduling concurrent workflows in HPC cloud through exploiting
schedule gaps,” in Algorithms and Architectures for Parallel Process-
ing, vol. 7016. Berlin, Germany: Springer, 2011, pp. 282–293.

[63] J. Yu and R. Buyya, “A taxonomy of workflow management systems
for grid computing,” J. Grid Comput., vol. 3, nos. 3–4, pp. 171–200,
2005.

[64] M. Rahman, X. Li, and H. Palit, “Hybrid heuristic for scheduling data
analytics workflow applications in hybrid cloud environment,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process. Workshops, May 2011, pp.
966–974.

[65] P. Y. Yin, S. S. Yu, P. P. Wang, and Y. T. Wang, “A hybrid par-
ticle swarm optimization algorithm for optimal task assignment in
distributed systems,” Comput. Standards & Interfaces, vol. 28, no. 4,
pp. 441–450, 2006.

[66] Q. Li, “An optimal algorithm for resource scheduling in cloud comput-
ing,” in Advances in Multimedia, Software Engineering and Computing,
vol. 129. Berlin, Germany: Springer, 2012, pp. 293–299.

[67] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Softw.: Practice Exp., vol. 41, no. 1, pp. 23–50, 2011.

[68] A. G. Delavar and Y. Aryan, “A synthetic heuristic algorithm for
independent task scheduling in cloud systems,” Int. J. Comput. Sci.
Issues, vol. 8, no. 6, pp. 289–295, 2011.

[69] D. W. Huang and J. Lin, “Scaling populations of a genetic algorithm for
job shop scheduling problems using MapReduce,” in Proc. IEEE 2nd
Int. Conf. Cloud Comput. Technol. Sci., Nov.–Dec. 2010, pp. 780–785.

[70] S. Sawant, “A genetic algorithm scheduling approach for virtual
machine resources in a cloud computing environment,” M.S. thesis,
Dept. Comput. Sci., San Jose State University, San Jose, CA, USA,
2011.



290 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

[71] J. Gu, J. Hu, T. Zhao, and G. Sun, “A new resource scheduling
strategy based on genetic algorithm in cloud computing environment,”
J. Comput., vol. 7, no. 1, pp. 42–52, 2012.

[72] L. Ai, M. Tang, and C. J. Fidge, “QoS-oriented resource allocation and
scheduling of multiple composite web services in a hybrid cloud using a
random-key genetic algorithm,” Australian J. Intell. Inf. Process. Syst.,
vol. 12, no. 1, pp. 29–34, 2010.

[73] S. Tayal, “Tasks scheduling optimization for the cloud computing
systems,” Int. J. Adv. Eng. Sci. Technol., vol. 5, no. 2, pp. 111–115,
2011.

[74] M.-S. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y.
Zomaya, and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic
for energy-aware scheduling for cloud computing systems,” J. Parallel
Distrib. Comput., vol. 71, no. 11, pp. 1497–1508, 2011.

[75] E. M. Mocanu, M. Florea, M. I. Andreica, and N. Ţuapuş, “Cloud
computing—task scheduling based on genetic algorithms,” in Proc.
IEEE Int. Syst. Conf., Mar. 2012, pp. 1–6.

[76] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks
scheduling based on genetic algorithm in cloud computing,” in Proc.
Int. Conf. Wireless Commun., Netw. Mobile Comput., Sep. 2009, pp.
5548–5551.

[77] G. Shen and Y. Q. Zhang, “A shadow price guided genetic algorithm
for energy aware task scheduling on cloud computers,” in Advances in
Swarm Intelligence, vol. 6728. Berlin, Germany: Springer, 2011, pp.
522–529.

[78] D. Dutta and R. C. Joshi, “A genetic algorithm approach to cost-
based multi-QoS job scheduling in cloud computing environment,”
in Proc. Int. Conf. Workshop Emerging Trends Technol., 2011, pp.
422–427.

[79] Z. Zheng, R. Wang, H. Zhong, and X. Zhang, “An approach for cloud
resource scheduling based on parallel genetic algorithm,” in Proc. Int.
Conf. Comput. Res. Develop., 2011, pp. 444–447.

[80] Y. Laili, L. Zhang, and F. Tao, “Energy adaptive immune genetic algo-
rithm for collaborative design task scheduling in cloud manufacturing
system,” in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage., Dec. 2011,
pp. 1912–1916.

[81] K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng, “Hy-
brid genetic algorithm for cloud computing applications,” in
Proc. IEEE Asia-Pacific Serv. Comput. Conf., Dec. 2011, pp.
182–187.

[82] L. Ai, M. Tang, and C. J. Fidge, “Resource allocation and scheduling of
multiple composite web services in cloud computing using cooperative
coevolution genetic algorithm,” in Proc. 18th Int. Conf. Neural Inf.
Process., 2011, pp. 258–267.

[83] X. Wang, Y. Wang, and H. Zhu, “Energy-efficient multi-job scheduling
model for cloud computing and its genetic algorithm,” Math. Probl.
Eng., vol. 2012, pp. 589243-1–589243-16, Apr. 2012.

[84] Y. Kessaci, N. Melab, and E.-G. Talbi, “A Pareto-based GA for
scheduling HPC applications on distributed cloud infrastructures,”
in Proc. Int. Conf. High Perform. Comput. Simul., Jul. 2011,
pp. 456–462.

[85] J. Zhao, W. Zeng, M. Liu, G. Li, and M. Liu, “Multi-objective opti-
mization model of virtual resources scheduling under cloud computing
and it’s solution,” in Proc. Int. Conf. Cloud Serv. Comput., Dec. 2011,
pp. 185–190.

[86] S. Fidanova and M. K. Durchova, “Ant algorithm for grid scheduling
problem,” in Proc. Int. Conf. Large-Scale Sci. Comput., 2005, pp. 405–
412.

[87] K. Kousalya and P. Balasubramanie, “Ant algorithm for grid scheduling
powered by local search,” Int. J. Open Probl. Comput. Sci. Math.,
vol. 1, no. 3, pp. 222–240, 2008.

[88] D. Maruthanayagam and R. UmaRani, “Enhanced ant colony algorithm
for grid scheduling,” Int. J. Comput. Technol. Appl., vol. 1, no. 1, pp.
43–53, 2010.

[89] X. Lu and Z. Gu, “A load-adapative cloud resource scheduling model
based on ant colony algorithm,” in Proc. IEEE Int. Conf. Cloud
Comput. Intell. Syst., Sep. 2011, pp. 296–300.

[90] H. Liu, D. Xu, and H. Miao, “Ant colony optimization based service
flow scheduling with various QoS requirements in cloud comput-
ing,” in Proc. 1st ACIS Int. Symp. Softw. Netw. Eng., Dec. 2011,
pp. 53–58.

[91] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Proc. 6th Annu.
ChinaGrid Conf., Aug. 2011, pp. 3–9.

[92] P. Mathiyalagan, S. Suriya, and S. N. Sivan, “Modified ant colony
algorithm for grid scheduling,” Int. J. Comput. Sci. Eng., vol. 2, no. 2,
pp. 132–139, 2010.

[93] K. Kousalya and P. Balasubramanie, “To improve ant algorithm’s grid
scheduling using local search,” Int. J. Comput. Cognit., vol. 2, no. 2,
pp. 71–79, 2009.

[94] A. Kant, A. Sharma, S. Agarwal, and S. Chandra, “An ACO approach
to job scheduling in grid environment,” in Swarm, Evolutionary, and
Memetic Computing, vol. 6466. Berlin, Germany: Springer, 2010, pp.
286–295.

[95] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. IEEE Int. Conf. Adv. Inf.
Netw. Appl., Apr. 2010, pp. 400–407.

[96] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm
optimization for cloud workflow scheduling,” in Proc. Int. Conf.
Comput. Intell. Security, Dec. 2010, pp. 184–188.

[97] H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling jobs on com-
putational grids using a fuzzy particle swarm optimization algorithm,”
Future Generat. Comput. Syst., vol. 26, no. 8, pp. 1336–1343, 2010.

[98] B. Zarei, R. Ghanbarzadeh, P. Khodabande, and H. Toofani, “MHPSO:
A new method to enhance the particle swarm optimizer,” in Proc. Int.
Conf. Digital Inf. Manage., Sep. 2011, pp. 305–309.

[99] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization
in cloud computing based on heuristic algorithm,” J. Netw., vol. 7,
no. 3, pp. 547–553, 2012.

[100] Z. Wang, K. Shuang, L. Yang, and F. Yang, “Energy-aware and
revenue-enhancing combinatorial scheduling in virtualized of cloud
datacenter,” J. Convergence Inf. Technol., vol. 7, no. 8, pp. 62–70,
2012.

[101] G. N. Gan, T. L. Huang, and S. Gao, “Genetic simulated annealing
algorithm for task scheduling based on cloud computing environ-
ment,” in Proc. Int. Conf. Intell. Comput. Integr. Syst., Oct. 2010,
pp. 60–63.

[102] Z. Yan-hua, F. Lei, and Y. Zhi, “Optimization of cloud database route
scheduling based on combination of genetic algorithm and ant colony
algorithm,” Procedia Eng., vol. 15, pp. 3341–3345, 2011.

[103] G. S. Sadasivam and D. Selvaraj, “A novel parallel hybrid PSO-GA
using MapReduce to schedule jobs in Hadoop data grids,” in Proc.
World Congr. Nature Biologically Inspired Comput., Dec. 2010, pp.
377–382.

[104] X. Shi and Y. Zhao, “Dynamic resource scheduling and workflow
management in cloud computing,” in Proc. Int. Conf. Web Inf. Syst.
Eng., 2011, pp. 440–448.

[105] A. Bala and I. Chana, “A survey of various workflow scheduling
algorithms in cloud environment,” in Proc. Nat. Conf. Inf. Commun.
Technol., 2011, pp. 26–30.

[106] N. Kaur, T. S. Aulakh, and R. S. Cheema, “Comparison of workflow
scheduling algorithms in cloud computing,” Int. J. Adv. Comput. Sci.
Appl., vol. 2, no. 10, pp. 81–86, 2011.

[107] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors,” ACM Comput. Surveys,
vol. 31, no. 4, pp. 406–471, 1999.

[108] S. Pandey, “Scheduling and management of data intensive application
workflows in grid and cloud computing environments,” Ph.D. disser-
tation, Dept. Comput. Sci. Softw. Eng., Univ. Melbourne, Melbourne,
Australia, 2010.

[109] A. Fida, “Workflow scheduling for service oriented cloud computing,”
M.S. thesis, Dept. Comput. Sci., Univ. Saskatchewan, Saskatoon,
Canada, 2011.

[110] K. Rameshkumar and D. G. Amalarethinam, “Applying non-traditional
optimization techniques to task scheduling in grid computing—an
overview,” Int. J. Res. Rev. Comput. Sci., vol. 1, no. 4, pp. 33–38,
2010.

Chun-Wei Tsai received the M.S. degree in man-
agement information systems from the National
Pingtung University of Science and Technology,
Pingtung, Taiwan, in 2002, and the Ph.D. degree
in computer science from National Sun Yat-sen
University, Kaohsiung, Taiwan, in 2009.

He was a Post-Doctoral Fellow with the De-
partment of Electrical Engineering, National Cheng
Kung University, Tainan, Taiwan, before joining
the faculty of Applied Geoinformatics and then
the faculty of Applied Informatics and Multimedia,

Chia Nan University of Pharmacy & Science, Tainan, in 2010 and 2012,
respectively, where he is currently an Assistant Professor. His current research
interests include information retrieval, evolutionary computation, internet
technology, and combinatorial optimization.



TSAI AND RODRIGUES: METAHEURISTIC SCHEDULING FOR CLOUD: A SURVEY 291

Joel J. P. C. Rodrigues (S’01–M’06–SM’06)
received a five-year B.S. degree (licentiate) in
informatics engineering from the University of
Coimbra, Coimbra, Portugal, and the M.Sc. and
Ph.D. degrees in informatics engineering from the
University of Beira Interior, Covilhã, Portugal.

He is currently a Professor at the Instituto de
Telecomunicações, University of Beira Interior, and
a Researcher at the Instituto de Telecomunicações,
Associated Lab, Portugal. He has authored or
coauthored more than 170 technical papers in

refereed international journals and conferences, book chapters, a book, and
a patent. His current research interests include delay-tolerant networks,
sensor networks, high-speed networks, eLearning, e-Health, and mobile and
ubiquitous computing.

Dr. Rodrigues is the leader of the NetGNA Research Group
(http://netgna.it.ubi.pt) and the founder and leader of the IEEE
Communications Society’s (ComSoc) Communications Systems Integration
and Modeling Special Interest Group on modeling and simulation tools
(http://mst.it.ubi.pt). He is the Vice-Chair of the IEEE ComSoc Technical
Committee on eHealth and the Chair of the IEEE ComSoc Technical
Committee on Communications Software. He has authored or coauthored

over 250 technical papers in refereed international journals and conferences,
book chapters, a book, and two patents. He is the Editor-in-Chief of the
International Journal on E-Health and Medical Communications and served
several special issues as a Guest Editor such as the IEEE Transactions on

Multimedia, the Elsevier Journal of Network and Computer Applications,
IET Communications, and Journal of Communications. He has served as the
General Chair, Technical Program Committee (TPC) Chair, and Symposium
Chair for many international conferences, including the IEEE International
Conference on Communications/Global Communications Conference, the
International Workshop on Computer-Aided Modeling Analysis and Design
of Communication Links and Networks, the IEEE International Conference
on Systems, Man, and Cybernetics, the International Conference on ITS
Telecommunications, the International Conference on Networking and
Computing, International Conference on Software, Telecommunications and
Computer Networks, among others. He participated in tens of international
TPCs and several editorial review boards including the IEEE Communications
Magazine and the International Journal of Communications Systems. He
is a licensed Professional Engineer, and a member of ACM SIGCOMM, a
member of the Internet Society, an International Academy, Research, and
Industry Association Fellow, and a senior member of the IEEE Computer
Society, the IEEE Communications Society, and the IEEE Education Society.


