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Wireless sensor networks (WSNs) are highly resource constrained in terms of power supply, memory ca-
pacity, communication bandwidth, and processor performance. Compression of sampling, sensor data, and
communications can significantly improve the efficiency of utilization of three of these resources, namely,
power supply, memory and bandwidth. Recently, there have been a large number of proposals describing com-
pression algorithms for WSNs. These proposals are diverse and involve different compression approaches.
It is high time that these individual efforts are put into perspective and a more holistic view taken. In this
article, we take a step in that direction by presenting a survey of the literature in the area of compression
and compression frameworks in WSNs. A comparative study of the various approaches is also provided. In
addition, open research issues, challenges and future research directions are highlighted.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are critically resource constrained by limited power
supply, memory, processing performance, and communication bandwidth [Akyildiz
et al. 2002]. Due to their limited power supply, energy consumption is a key issue
in the design of protocols and algorithms for WSNs. Typically, energy consumption is
dominated by radio communication [Pottie and Kaiser 2000; Barr and Asanović 2006].
The energy consumption of radio communication is directly proportional to the number
of bits of data, that is, data traffic, transmitted within the network [Heinzelman et al.
2000]. Therefore, using compression to reduce the number of bits to be transmitted has
the potential to drastically reduce communication energy costs and so increase net-
work lifetime. Similarly, sampling-level [Candès and Wakin 2008; Haupt et al. 2008]
and communication-level [Lu et al. 2010; Tulone and Madden 2006] compression can
reduce energy costs in WSNs and increase network lifetime. In most cases, the savings
due to compression are greater than linear, since reducing the number of bits transmit-
ted has the knock-on effect of reducing link-level congestion, which in turns reduces
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the number of collisions and re-tries in the network. Consequently, researchers have
been investigating optimal algorithms for compression of sensed data, sampling, and
communications in WSNs.

Unfortunately, most conventional compression algorithms are not directly applica-
ble to WSNs. First, in conventional compression approaches, the key objective is to
save storage, not energy. In WSNs, energy is more important than memory. Thus, en-
ergy saving is the primary evaluation metric. Second, it has been shown [Sadler and
Martonosi 2006] that, in terms of energy consumption, transmission of just one byte
of data is equivalent to execution of roughly four thousand (Chipcon CC2420) to two
million (MaxStream XTend) instructions. These calculations only consider local energy
consumption at the compressing node; network-wide energy savings due to compres-
sion can further compensate for the energy expense of compression. Thus, compression
algorithms with some degree (low or medium) of computational complexity are worth
exploring. On the other hand, excessively computationally complex algorithms are not
worth pursuing. Finally, conventional compression algorithms, originally designed for
desktops or servers, must be restructured to reduce code size and dynamic memory
usage due to the limited memory capacity of WSN nodes—typically less than 50 kB
for code memory and even less for data memory. Recently, researchers have addressed
these challenges by adapting conventional compression techniques and, in some cases,
by proposing new approaches.

Compression in WSNs is a very active research area. Papers published in this area
are highly diverse in their approaches and implementations. To our knowledge, there
are only two articles [Kimura and Latifi 2005; Srisooksai et al. 2012] which provide
survey of the area. However, Kimura and Latifi [2005] is out of date and does not report
recent, dominant, work in the field, whereas, the more recent survey [Srisooksai et al.
2012] focuses only on pure data compression techniques. It excludes aggregation from
the list of data compression techniques due to its route dependency. However, the issue
of the interdependency between compression and routing [Scaglione and Servetto 2002;
Pattem et al. 2004] is well known in WSNs. A number of papers have reported its effect
on compression schemes, including Scaglione and Servetto [2002] for distributed source
coding (DSC), Lee et al. [2009] and Quer et al. [2009] for compressed sensing (CS),
and Ciancio et al. [2006] and Shen and Ortega [2008a] for transform coding. Moreover,
Srisooksai et al. [2012] classified data compression techniques into distributed (exploits
spatial correlation) and local (exploits temporal correlation) approaches for dense and
sparse networks, respectively. However, in dense networks, spatiotemporal correlation
allows use of both the distributed and local approach [Chu et al. 2006; Baron et al.
2005, 2009]. This survey also presents CS as a distributed approach, but CS exploits
intra-signal structures (temporal correlation) within a node. Furthermore, distributed
CS (DCS) that exploits inter-signal or spatial correlation [Baron et al. 2005, 2009] is
missing from the paper. Considering these points, we feel now is an appropriate time
to put recent works into perspective and take a holistic view of the field. This article
takes a step in that direction by presenting a survey of the literature in the area of
compression in WSNs focusing on current, state-of-the-art research. A comprehensive
overview of compression techniques in WSNs is provided together with a comparative
study of the various approaches. Finally, this work points out open research challenges
and recommends future research directions.

Section 2 presents the requirements for compression in WSNs and a brief introduc-
tion of different compressions in WSNs. Section 3 provides an overview of existing
approaches to compression in WSNs along with a comparative study in Section 4.
Open research challenges and suggestions for future research directions are presented
in Section 5. Finally Section 6 concludes the work and points to areas of potential
future work.

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 5, Publication date: November 2013.



Compression in WSNs: A Survey and Comparative Evaluation 5:3

Fig. 1. Hierarchical relationship between types of compression.

2. COMPRESSION IN WIRELESS SENSOR NETWORKS

This section introduces the different types of compression algorithms, examines ap-
plication requirements for compression, and lists the features of common compression
algorithms.

2.1. Types of Compression

In WSNs, the main objective of compression is to reduce energy consumption. Sens-
ing/sampling, computation, and communication are the three operations mainly re-
sponsible for energy consumption in WSNs. Any technique that directly or indirectly
reduces one or more of these operations, while meeting application requirements (e.g.,
distortion, complexity), can be considered as compression. Based on this, compression
in WSNs can be classified as follows.

Sampling Compression (SC). SC is the process of reducing the number of sens-
ing/sampling operations while keeping network coverage (for spatially correlated sen-
sors) and /or distortion loss within an acceptable margin. A number of research works
[Cardei et al. 2005; Subramanian and Fekri 2006] exploit spatially correlated data to
reduce the sensing tasks. These works primarily focus on keeping the sensors in a sleep
state, while a minimal number of sensors are kept active within a group. These are
not the concern of this article. In contrast, CS [Candès and Wakin 2008; Haupt et al.
2008] approaches perform the sampling-level compression by exploiting temporal data
correlations at a sensor node.

Data Compression (DC). Data compression is the process of converting an input data
stream (the source stream or the original raw data) into another data stream (the
compressed stream) that has fewer bits. It can be viewed as the process of discovering
structure that exists in the data and eliminating it by using more efficient encoding.
All nonrandom data has some structure, and this structure can be exploited to obtain a
more compact representation of the data, that is, representation wherein no structure is
noticeable. The terms redundancy and structure are used in the professional literature
and are interchangeable [Salomon 2007; Sayood 2006]. Most work on WSN compression
(e.g., predictive coding, DSC, transform coding) supports data-level compression.

Communication Compression (CC). Typically, this is the process of reducing the
number of packet transmissions and receptions, hence reducing the radio on-time of
transceivers a WSN. The longer the packet to be transmitted or received, the greater
the radio on-time of transceivers [Kimura and Latifi 2005; Salomon 2007; Barr and
Asanović 2006]. Hence reduced packet or data size (e.g., data compression) reduces
radio on-time and reduces communication cost in WSNs. Aggregation, DCS, and pre-
dictive coding support communication-level compression.

Usually, there is a hierarchical relationship between the aforementioned types of
compressions (as shown in Figure 1). For instance, a reduced number of samples
helps in reducing the data/packet length (data compression), which ultimately reduces
the radio on-time of the transceivers (communication compression). It is desirable
to have compression techniques, which support these three levels of compressions.
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Unfortunately, very few of the existing compression techniques do so. As shown in
Figure 1, data compression may operate on compressed samples or noncompressed
samples.

2.2. Requirements

WSNs are used in a wide range of applications. This leads to a diverse range of require-
ments for compression algorithms. For example, mission-critical applications, such as
health monitoring, battlefield, and fire rescue, provide real-time user information and
so can tolerate only bounded latency and data loss. In contrast, other applications,
such as habitat monitoring, may tolerate significant latency and accept certain losses
or distortions in the data presented at the sink. Considering this, we classify the re-
quirements of compression in WSNs in two ways: (i) generic and (ii) application specific.
In the following, we summarize the key elements of each category and refer to these in
later sections of this article when analyzing the compression algorithms.

2.2.1. Generic Requirements. This section summarizes the generic requirements for
compression in WSNs.

Computational Complexity and Memory Requirements. Typically, WSN nodes are
equipped with limited processing and memory capability. For instance, popular WSN
nodes, for example, Mica, TelosB, and Tmote Sky, are equipped with Atmel Atmega128L
and Texas Instruments MSP430 micro-controllers (4-8 MHz clock speed), which have
instruction and data memories of only 128 and 48 KB, respectively [Wikipedia 2012].
Given these limitations, it is essential to design a low-complexity and small code-size
(light-weight) compression algorithm for WSN applications. With these limitations,
all but the simplest of data compression schemes can be challenging to implement in
WSNs [Barr and Asanović 2006; Kimura and Latifi 2005; Sadler and Martonosi 2006].
Algorithms with asymmetric computational complexity are often desirable, whereby
most computation takes place at the decoder (sink), rather than at the encoder (sensor
nodes), thus sensors with minimal computational performance can efficiently compress
data.

Communication Requirements. Since radio communication consumes a significant
amount of node energy [Sadler and Martonosi 2006; Karl and Willig 2005], compression
algorithms are typically designed to eliminate or reduce the redundant information
exchange between nodes. Unlike conventional communication networks, the purpose of
communication in WSNs is not only moving bits from one node another. Rather, a WSN
is expects to provide meaningful information and/or actions: “People want answers,
not numbers” [Huang 2003]. This means more processing and less communication.
So, if possible, compression techniques should minimize communication at the cost of
increased computation both at the decoder and encoder.

Redundant Sensing. In some scenarios, the sensing coverage of nodes may overlap,
leading to the acquisition, communication, and storage of redundant, perhaps dupli-
cate, information. Compression techniques can be used to identify and exploit this
redundancy to reduce the amount of data sensed and transmitted. Typically, these
approaches use internode communication to establish sensing schedules with a re-
duced frequency of observation. The missing data can be imputed at the sink based
on known data relationships and/or decompression techniques. WSNs, which employ
energy-expensive sensors, benefit most from this form of compression.

On-Route Compression. Conventional compression algorithms compress data at the
source and decompress at the destination only. In contrast, some WSN applications
require that the data is available at intermediate nodes for en-route in-network
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processing or transformation, for example, for aggregation or transcoding. Compression
schemes allowing on-route compression need to be sufficiently flexible to allow the in-
spection, modification, addition and/or removal of data at intermediate nodes. On-route
compression algorithms can be particularly effective for heterogeneous networks con-
sisting of different types of nodes. Lightweight compression at low-performance nodes
can be combined with more powerful compression or processing at higher-performance
or mains-powered routing nodes.

Reliability. Reliability in WSNs has two aspects: communication reliability and data
reliability [Kim 2004; Brown and Sreenan 2007]. Data reliability can be improved by
exploiting spatial redundancy in sensor measurements. Communication reliability can
be improved by exploiting measurement redundancy or by adding error checking bits.
In contrast, compression techniques aim to reduce redundancy in order to increase
energy efficiency. Clearly, there is an interplay or dependency between reliability and
compression.

Robustness. Node failure, due to power shortage or physical damage, and link fail-
ure, due to unreliable wireless communication, are common phenomena in WSNs.
Compression techniques in WSNs need to be robust enough to work properly even if
there is a failure. To tolerate node and link failure, redundant deployment is neces-
sary, which clearly conflicts with one of the key requirements (redundancy removal)
of compression. For robustness, we need reliable communications or reliable topology
or both [Nath et al. 2008], so a trade-off between robustness and energy efficiency in
WSNs may be needed.

Scalability. WSN applications range from small numbers of nodes to large num-
bers (tens to thousands, even hundreds of thousands) [Karl and Willig 2005]. Hence,
compression techniques must scale with network size.

2.2.2. Application-Specific Requirements. WSNs have highly diverse applications with di-
verse requirements. In the following, we briefly describe these diverse and application
specific requirements.

Real-Time vs. Non-Real-Time. WSN applications, which provide real-time user data
or control solutions, such as in healthcare or intelligent transport systems (ITSs),
require bounded latency. Therefore, compression may need to be performed one sample
at a time. This can limit the compression ratio achieved. However, spatial correlations
can still be exploited. Non real-time compression allows processing of data from several
sampling periods in a single batch and transfer in-bulk. This can significantly increase
the compression ratio.

QoS-Awareness. Generally, a WSN provides services to its users by providing infor-
mation about the environment where it is deployed. So, in WSNs, quality of service
(QoS) also means quality of information (QoI). In WSNs, what is relevant is the amount
and quality of information that can be extracted at given sinks/decoders about the ob-
served objects or environment [Karl and Willig 2005]. Typical QoS/QoI metrics in WSNs
include timeliness, reliability, and distortion. The relative importance of these aspects
of QoS [Chen and Varshney 2004] is application dependent, for example, timely deliv-
ery of compressed data to the sink is more important in real-time applications. Due to
the removal of redundancy and approximation in compression, it is often difficult to
maintain these QoS/QoI metrics.

Security. Most WSN applications (e.g., Body Sensor Networks) require a certain de-
gree of security [Perrig et al. 2004]. However, security and data compression algorithms
may conflict. For example, security protocols require that sensor nodes encrypt sensed
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data prior to transmission and decryption and authentication is only performed at the
base station (sink). In contrast, most data compression protocols (e.g., aggregation,
wavelet-transform) process plain text data at intermediate nodes so that energy effi-
ciency is maximized. In addition, lossy compression results in alterations to the sensor
data making authentication difficult. Hence, data compression and security protocols
should be codesigned so that compression can be performed without sacrificing security.

2.3. Features

A list of typical features of compression for WSNs is provided.

Lossless vs. Lossy. Some compression algorithms are designed to support exact re-
construction of the original data after decompression (lossless). In other cases, the
reconstructed data is only an approximation of the original (lossy). Use of a lossy al-
gorithm may lead to loss of information, but generally ensures a higher compression
ratio.

Distortion vs. Accuracy. In the case of lossy compression, there is a trade-off between
the data rate (R) achieved and the distortion (D) in the reconstructed signal. Mean
Square Error (MSE) is a natural distortion metric. However, MSE can be misleading,
since different types of distortion may have very different effects on the statistical
inferences, which can be drawn after decompression. In addition, the energy consump-
tion of communication should be taken into account. In order to address this issues,
previous work has proposed the use of a rate-energy-accuracy (R-E-A) metric [Chen
2006].

Data Aggregation. In some applications, only a summary of the sensor data is re-
quired. For example, statistical queries, such as MIN, AV G, MAX, allow for compact
responses from the sensors. However, the original sample values cannot be recon-
structed from the summarized representation. Aggregation requires in-network pro-
cessing of sensor data but can greatly reduce communication overhead.

Data Correlation. Since sensor nodes are normally deployed in close proximity, corre-
lations between the sensed values at different nodes is often high (spatial correlation).
Furthermore, since sensors observe events in a continuous manner, observed succes-
sive discrete signal samples often exhibit high correlation (temporal correlation). WSN
compression algorithms typically exploit these correlations in order to improve the
compression ratio achieved.

Symmetric vs. Asymmetric. In the case of symmetric algorithms, the computational
complexity of compression and decompression are similar. In the asymmetric case,
compression and decompression have different computational complexity. Traditional
schemes tend to have higher computational complexity on the compression side. In
contrast, in WSNs, it is desirable that compression, which is typically performed on
the motes, is low complexity and that decompression, which is typically performed at
the sink, is high complexity.

Nonadaptive vs. Adaptive. In nonadaptive compression, the compression operations
and parameters are fixed. This type of compression is suitable for stationary data,
that is, when the statistics of the data do not change with time. In contrast, adaptive
or dynamic compression methods monitor the raw data statistics and modify their
operation and/or parameters in order to improve performance [Lee and Jung 2010].
This approach is more complex but provides better performance for nonstationary data.
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3. SURVEY OF EXISTING COMPRESSION ALGORITHMS IN WSNS

Compression is key in reducing the energy consumption in WSNs. Consequently, a
large number of compression techniques have been proposed in the literature. Herein,
existing works are categorized based on the compression technique utilized. The follow-
ing sections summarize text-based compression, data aggregation, distributed source
coding, transform-based compression, compressive sensing, and predictive coding and
their variants.

3.1. Text-Based Compression

The dictionary-based Lempel-Ziv-Welch (LZW) algorithm [Welch 1984] is a popular
lossless compression scheme for text data. It encodes new strings based on previously
encountered strings. Research works, which address the use of dictionary/text-based
compression in WSNs are few in number. S-LZW [Sadler and Martonosi 2006] is the
only work, to our knowledge, which explicitly adopts the LZW concept to reduce data
transmission in WSN. S-LZW treats sensed data as strings and divides the strings
into fixed-size blocks, with each being compressed using the LZW algorithm. Although
S-LZW is appropriate for sensor nodes, it does not take specific advantage of sensor
data characteristics, especially the spatial and temporal correlations, which exist in
sensed data. Sensor data tends to be repetitive over short intervals. Even sensor data,
which exhibits large sudden changes in value, tends to be repetitive over consecutive
samples due to the use of high sampling rates designed to allow accurate capture of
these sudden changes. S-LZW was optimized for these situations by means of a Mini-
Cache (S-LZW-MC) [Sadler and Martonosi 2006]. In this approach, the most important
design decision is the size of the mini-cache. Results show that, in most scenarios,
S-LZW-MC with 32 mini-cache entries outperforms basic S-LZW.

The S-LZW-MC algorithm conserves energy by taking advantage of the character-
istic locality patterns of sensor data through use of the Burrows-Wheeler Transform
(BWT) [Burrows et al. 1994]. In this approach, BWT is utilized as a data precondi-
tioning step before application of S-LZW. Due to the computational complexity of the
method, it does not provide any improvements in energy consumption for nodes with
short range radios (CC2420) but does provide savings for nodes with medium and long-
range radios at the cost of computational complexity. For structured datasets (e.g.,
SensorScope [EPFL 2008], Intel Dataset [Intel Berkeley Research Lab 2004]), precon-
ditioning using the Structured Transpose (ST) has been shown to be more effective than
using BWT [Sadler and Martonosi 2006]. Use of ST shows reasonable improvements
in terms of computational complexity and energy savings compared to basic S-LZW.

In summary, S-LZW and its variants are good compression algorithms for WSNs
with very little or zero spatial and temporal data correlations as they are not designed
to exploit these correlations during compression.

3.2. Data Aggregation

Data aggregation [Rajagopalan and Varshney 2006; Alzaid et al. 2008] is the simplest
in-network processing technique for data and communication compression in WSNs.
In certain WSN applications, it is not necessary or efficient for all sensors to transmit
the data directly to the sink since data generated by sensors in close proximity is often
redundant and spatially correlated. Data aggregation combines or fuses data from
nearby sensors into high-quality summary information that is then transmitted to the
sink, resulting in conservation of energy and bandwidth. The benefits of aggregation are
determined by the distances between the fused data sources relative to that between
the sources and the sink and by the size of the summary data relative to that of the
original data. For maximum benefit, it is desirable that the aggregator is close to
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the sources and that the routing paths from the sources to the sink pass through the
aggregator. This leads to the research problems of determining the optimal aggregation
tree/structure and finding the optimal aggregation function [Ozdemir and Xiao 2009;
Karl and Willig 2005].

A large number of papers [Heinzelman et al. 2002; Younis and Fahmy 2004; Lindsey
et al. 2002; Madden et al. 2002; Nath et al. 2008], including some good reviews
[Rajagopalan and Varshney 2006; Fasolo et al. 2007; Alzaid et al. 2008; Ozdemir and
Xiao 2009], have been published on data aggregation in WSNs. In the following, we
summarize some key works in this area.

Sensor network architectures (SNAs) play a vital role in determining the perfor-
mance of data aggregation protocols. Generally, in flat networks, data aggregation is
accomplished by data-centric routing and a sink-initiated query message. The Sensor
Protocol for Information via Negotiation (SPIN) [Kulik et al. 2002; Krishnamachari
and Heidemann 2004] based on push diffusion is one of the earliest works on data
aggregation, which shows significant energy savings compared to flooding. A secure
version of SPIN is presented in Xiao et al. [2006b]. Global knowledge requirements
and the inability to guarantee data delivery are the main disadvantages of SPIN pro-
tocols. Two-phase pull-diffusion-based directed diffusion (DD) is another key approach
to data aggregation in flat SNAs [Intanagonwiwat et al. 2000]. Use of reliable commu-
nication makes reliable DD [Stann and Heidemann 2003] robust at the cost of higher
energy consumption. Unlike SPIN, it is not necessary to maintain a global network
topology in directed diffusion. However, it is inappropriate for applications, which re-
quire continuous data delivery to the sink.

Excessive communication and computation of flat SNAs can be avoided using hierar-
chical data aggregation [Heinzelman et al. 2000, 2002; Younis and Fahmy 2004]. Gener-
ally, in hierarchical data aggregation (e.g., cluster-based, chain-based, and tree-based),
data fusion occurs at special designated nodes, reducing the number of messages trans-
mitted [Rajagopalan and Varshney 2006]. Low Energy Adaptive Clustering Hierarchy
(LEACH) and Hybrid Energy Efficient Distributed Clustering Approach (HEED) are
the two key cluster-based aggregation techniques [Heinzelman et al. 2000, 2002; Younis
and Fahmy 2004]. LEACH provides improvements in lifetime and accuracy compared to
the direct approach, but it assumes that all sensors are homogeneous in power and ca-
pacity, which might not be valid in WSNs. LEACH-Centralized [Heinzelman et al. 2002]
overcomes this problem and performs better than LEACH. Unlike LEACH, HEED se-
lects cluster heads based on a combination of node residual energy and proximity to its
neighbors. It shows a better network lifetime than LEACH and achieves a geographi-
cally well-distributed set of cluster heads. However, the requirement for multiple power
levels at sensor nodes is a hindrance to widespread adoption. In cluster-based WSNs,
nodes further from a cluster head may require excessive energy in communication.
Chain-based aggregation method, like Power Efficient data GAthering protocol for
Sensor Information Systems (PEGASIS) [Lindsey et al. 2002], solve this problem by
transmitting only to nearest neighbors. PEGASIS is more energy efficient compared to
LEACH but suffers due to global knowledge and homogeneity of nodes requirements.

In tree-based SNAs, data aggregation is performed at intermediate nodes in the tree,
and aggregated data is transmitted to the root node. Tree-based Tiny AGgregation
(TAG) [Madden et al. 2002] uses a generic aggregation service especially designed for
TinyOS based WSNs and monitoring applications. It is energy efficient but suffers due
to periodicity requirements and lack of robustness. Power Efficient Data gathering and
Aggregation Protocol (PEDAP) [Tan and Körpeoǧlu 2003] utilizes tree-based SNAs.
Minimum-spanning-tree-based PEDAP is a very promising approach that uses load
balancing to maximize network lifetime. Even with time complexity of O(n2), the power-
aware version of PEDAP(PA-PEDAP) [Tan and Körpeoǧlu 2003] can significantly
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improve the lifetime of LEACH or PEGASIS. Unfortunately, it relies on centralized
operation and global knowledge. The popular directed diffusion method also exploits
tree-based SNAs. However, aggregating along a tree is highly vulnerable to node and
transmission failures, which are common in WSNs [Madden et al. 2002]. This is because
there is only a single path in the tree from a source to the sink node. In order to over-
come robustness problems in tree-based aggregations, gossip-based techniques [Boyd
et al. 2006; Dimakis et al. 2006] can be used. However these are not energy efficient.
In Nath et al. [2008], the Synopsis Diffusion protocol solves these problems through a
multipath approach. Use of multipath routing makes the relation between aggregation
and the required routing topology loosely coupled, which ultimately makes Synopsis
Diffusion robust and energy efficient. A hybrid approach, the Tributaries and Deltas
(T and D) protocol [Manjhi et al. 2005] tries to resolve the problems of both tree and
multipath structures by combining the best features of both schemes. This algorithm
may suffer due to the high overhead incurred in updating the data gathering structure.

Aggregation techniques (e.g., [Zhu et al. 2008]) which exploit correlation can capture
more information about the source data than their counterparts, but the overheads
involved in acquiring the correlation information is potentially prohibitive. Hence,
most existing aggregation schemes do not exploit correlations and fail to maximize
their compression ratio. The trade-off between these approaches needs to be understood
in order to choose the most effective approach for a given application.

To make aggregation useful in real applications, it is important that data quality
requirements are satisfied and the error introduced by aggregation is below a specified
threshold. Work on QoS-based aggregation protocols seeks to provide some guarantees
on the QoS achieved. The algorithm proposed in Sadagopan and Krishnamachari
[2004] and Ordonez and Krishnamachari [2004] tries to maximize the amount of
information collected at the sinks subject to constraints on energy, latency, and data
flows. In contrast, Application Independent Data Aggregation (AIDA) [He et al. 2004]
performs aggregation adaptively so as to control congestion and achieve end-to-end
reliability. AIDA can reduce end-to-end delay and transmission energy significantly
under heavy traffic conditions compared to a ‘no aggregation’ scheme. However,
the approach may be too complex for resource-constrained sensor nodes. Cappiello
and Schreiber [2009] present an aggregation-based compression technique which
integrates QoS awareness as well as energy awareness. QoS parameters include
accuracy, precision, and timeliness. The initial results are encouraging but are only
limited to linear compression algorithms. A recent paper [Jeong et al. 2010], presents
a lossless aggregation protocol, called Lump, which employs various properties of
packets to not only support QoS but also maximize the Degree of Aggregation (DoA).
Since it is a lossless protocol, the DoA is limited.

Table I1 summarizes the key aggregation protocols. Data aggregation in WSNs sig-
nificantly reduces energy consumption by only transferring a summary of the sensed
values to the sink. As such, the technique sacrifices a lot of information about the
measured values. Hence, the technique is limited to applications which can tolerate
extreme data loss.

3.3. Predictive Coding

Statistical-model-based sensor data predictions or estimations at the sink or base
station are promising ways of compressing data and communications in WSNs. In
predictive coding (PC), the inherent temporal correlation between consecutive readings
at an individual sensor is used to predict future observations at the sink based on the

1Considering the space available, we have excluded the references; please use the references from the
discussion of the schemes. This also applies to other tables of this section.
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Table I. Summary of the Key Aggregation Protocols

Protocol Key Features Advantages Limitations
SPIN Push diffusion, flat

SNAs, sink driven
Reliable and Secure
versions available

Global knowledge needed,
no guarantee on data
delivery

DD/Reliable
DD

Push diffusion, flat/tree
SNAs, sink driven

Medium Scalability
and high Robustness

High aggregation
structural cost

LEACH Cluster-based,
distributed/centralized

Medium aggregation
structural cost, Energy
efficient

Low Scalability and
Robustness

PEGASIS Chain-based,
distributed/centralized

Energy efficient than
LEACH

Very low Scalability, low
Robustness, High overhead

TAG Tree-based, sink driven Energy efficient Low Scalability and
Robustness, High overhead

Gossip-
based

Random/Geographic-
gossip-based

High Robustness Not energy efficient

Synopsis
Diffusion

Multipath-based,
distributed

High Robustness and
Scalability

Redundant paths

AIDA Multipath-based,
distributed

Application
independent, Adaptive

Low Robustness

T and D Tree and
multipath-based, sink
driven

High Robustness and
Medium Scalability

High aggregation
structural cost

statistical model and recent measurements. Depending on the nature of the sensor data,
PC can use parametric modeling or non-parametric modeling. For parametric modeling
it is necessary to know (or learn) the statistical parameters, such as mean and variance
of the sensor data. On the other hand, non-parametric modeling utilizes regression to
represent sensor data, requiring very little prior knowledge about the sensor data. The
majority of existing PC schemes [Deshpande et al. 2004; Chu et al. 2006; Lu et al. 2010;
Tulone and Madden 2006; Xiao et al. 2006a] are based on parametric modeling, where
a predictive model is established for every sensor node during a training phase, and
the parameters of the model are passed to the sink. Thereafter, nodes only transmit
updates to the sink whenever new data arrives or the difference between the model
predicted value and the sensed value exceeds a threshold. Thus, it reduces the number
of communications between source nodes and the sink, providing communication-level
compression. A typical PC technique consists of the followings.

Statistical Model. The statistical model and its prediction accuracy are the heart of
PC [Xiao et al. 2006a]. Key models are mainly autoregression based. Autoregressive
(AR) models [Tulone and Madden 2006] are computationally simple and predict future
observations as a weighted sum of previous measurements. Autoregressive Moving
Average (ARMA) models [Lu et al. 2010] use a similar approach, but the model is more
complex, allowing higher accuracy in some situations, at the cost of greater compu-
tational complexity. Autoregressive Integrated Moving Average models (ARIMA) [Liu
et al. 2005] support modeling nonstationary data as well as stationary data but are
even more computationally complex.

Learning Phase. During the learning phase, the system determines the parameters
of the statistical model, which can be centralized or distributed. In the centralized
case [Deshpande et al. 2004], all sensor nodes send their readings to the sink, or central
node, which determines the parameters of the prediction model and transmits them
back to the nodes. In the distributed case [Lu et al. 2010; Tulone and Madden 2006],
each sensor node calculates their own model parameters and, if necessary, transmits
them to the sink.
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Model Update. This is done at the sink in one of two ways: (i) pull: the sink requests
updates as they are needed [Deshpande et al. 2004]; and (ii) push: the sensor sends
an updates as they are needed or become available [Chu et al. 2006]. In lossless ap-
plications, sensors transmit all prediction errors, or residues. These prediction errors
replace the raw observations and reduce the amount of transmitted data. In lossy
applications, updates are only sent when the prediction error exceeds a predefined
threshold. Clearly, the lossy approach allows for a greater reduction in the number of
communications.

One of the most important early works in PC is the BBQ system [Deshpande et al.
2004]. BBQ uses probabilistic modeling techniques to optimize data acquisition for
sensor network queries. The BBQ approach is pull-based, normally employing a
complex centralized learning phase that must be rerun if the data statistics change.
It uses a dynamic Kalman filter to exploit temporal data correlations. Ken [Chu et al.
2006] addresses the ‘SELECT’ problem related to sensor data query in WSNs. It is
a robust approximation technique that uses replicated dynamic probabilistic models
to minimize communication between source nodes and sink. In contrast to BBQ, it is
well suited to anomaly and event-detection applications. Moreover, BBQ exploits only
temporal correlations at individual nodes, whereas Ken exploits spatiotemporal corre-
lations between nodes. BBQ and Ken are geared toward different application domains
and are largely complementary. Unification of these techniques would be a promising
approach to data prediction in WSNs. Both BBQ and Ken require heavyweight
learning phases, which may not work well for nonstationary data. The Probabilistic
Adaptable Query (PAQ) system [Tulone and Madden 2006] provides a method for
approximating the values at sensors in a WSN based on time series forecasting
relying on AR models built at each sensor to predict local measurements. Unlike Ken
or BBQ, PAQ is predicated on using lightweight models that can be learned by the
individual nodes in the network and retrained quickly when faced with nonstationary
distributions. Along with energy efficiency, the method is effective for outlier detection,
adaption to dynamic changes in the data statistics, and tolerance of missing sensor
data.

A key trade-off in PC is the accuracy of the prediction model. Accurate models tend
to provide high prediction accuracy at the cost of requiring more model parameters.
Addition of parameters leads to greater computation complexity in model fitting and
greater transmission cost in sharing the models between the sources and sink. Hence,
flexible models can be less usable in real applications when the data statistics change
frequently. Adaptive Model Selection (AMS) [Le Borgne et al. 2007] takes this trade-
off into account by allowing sensor nodes to autonomously and adaptively select the
best-performing prediction model. The rationale of this AR-based approach is to only
use complex prediction models if they prove to be more efficient both in terms of
computation and communication savings. The results demonstrate the potential of
AMS. However, the racing [Oded and Moore 1997] mechanism, which allows nodes to
discard poorly performing models from the set of candidate models, may be a concern
in real applications.

A central concern of recent works in the area is to introduce in-network data pre-
diction and aggregation into query processing. ADaptive AGgregation Algorithm for
sensor networks with data Prediction (ADAGA-P) [Matos et al. 2010] implements a
linear-regression-based data prediction function within an existing in-network data
aggregation operator. It employs dynamic adjustment of the regression model and
outperforms the previous version, ADAGA [Brayner et al. 2008], in terms of energy
savings. As the sinks are responsible for calculating the model coefficients and send-
ing them back to the sensor nodes, energy efficiency is a concern. Moreover, correct
synchronization between sensor nodes is required.
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Fig. 2. (a) Joint encoding of X and Y using local communication. (b) DSC based on Slepian and Wolf theorem.

PREdictive STOrage (PRESTO) [Li et al. 2009], a model-driven predictive and two-
tier sensor architecture that comprises sensor proxies in a higher tier, each controlling
tens of remote sensors in a lower tier. PRESTO proxies and sensors interact and coop-
erate for acquiring data and processing queries. It relies on an asymmetric prediction
technique, and Seasonal ARIMA [Box et al. 1994]. The PRESTO proxy builds the
model order and parameters in its initialization phase and distributes them to the
responsible sensor nodes. It shows improvements in the energy required for data and
query management and in the query latency. The downside of this approach is that
spatially-correlated sensors update their parameters almost at the same time causing,
high traffic for the entire network. Moreover, it is limited to periodic datasets.

In conclusion, the performance of PC is determined by the effectiveness of the sta-
tistical model in terms of its accuracy, parameter size, update rate, and computational
complexity. The model needs to be robust enough to handle message loss, especially
update message and node failures. Due to the cost of model update and re-training,
PC-based compression performs poorly in dynamic networks and environments where
frequent updates are necessary.

3.4. Distributed Coding

Distributed source coding (DSC) is an extension of source coding and compression
techniques from conventional networks to WSNs. It is asymmetric in nature, as it
transfers the computational burden from source nodes to the sink and exploits spatial
correlation between adjacent sensors readings. DSC is the compression of multiple
correlated sensor outputs where the sensors do not communicate with each other, as
shown in Figure 2. Sensors send their compressed data to a central point, or sink,
for joint decoding [Pradhan et al. 2002; Xiong et al. 2004]. The theoretical foundation
of DSC is based on the Slepian and Wolf [1973] theorem. It shows that the optimal
centralized compression efficiency can be achieved by compressing each sensor’s data
in a distributed manner only using statistical knowledge of the data at the other
sensors, but not the actual value of the sensor data.

Slepian-Wolf ’s foundational work on DSC was only for lossless source coding of dis-
crete sources. For lossy source coding in WSNs, the theory was extended to incorporate
a model of the distortion arising in the encoding processing. Lossy distributed compres-
sion based on the Slepian-Wolf theorem was first considered by Wyner and Ziv [Kaspi
and Berger 1982]. The results show that there is no performance degradation for lossy
compression with side information (information from other sources) only available at
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the decoder (Figure 2(b)) compared to a scheme with side information available at both
the encoder and decoder (Figure 2(a)). Rate-distortion extension of the theory provides
a tool to characterize the communication required to achieve a given distortion in a
network with highly spatially-correlated data [Cristescu et al. 2003].

The published results [Slepian and Wolf 1973; Kaspi and Berger 1982] are solely the-
oretical. Practical DSC schemes for WSNs involve two key operations: gathering and
tracking of correlation knowledge, and code construction [Chou and Petrovic 2003].
Correlation gathering and tracking can be done in a centralized [Chou and Petrovic
2003] or distributed (localized) manner [Yuen et al. 2008]. In the centralized case, an
individual node, such as the sink, is responsible for collecting and tracking all of the
correlations within the network, whereas, in the distributed case, cluster heads are
responsible for gathering and tracking correlation data for a subset of nodes, and a
summary is shared with the sink [Yuen et al. 2008]. Encoding can be done in four
different ways [Marco and Neuhoff 2004]: No-Slepian-Wolf Scheme (NOSW), Sequen-
tial Slepian-Wolf scheme (SEQ), Slepian-Wolf Clustered (CL), and Slepian-Wolf Master
Slave (MS).

A number of constructive encoding schemes have been proposed [Garcia-Frias and
Zhao 2001; Liveris et al. 2002; Pradhan and Ramchandran 2003; Chou and Petrovic
2003; Xiong et al. 2004]. In general, the decoding of a sensor’s message relies on the
successful decoding of messages from other sensors. For example, if sensor A encodes
based on statistical knowledge of the data at sensors B and C, then messages from B
and C must be successfully decoded at the destination before sensor A’s message can
be decoded. Consequently, the loss of a single message may cause decoding failure for
multiple other messages, hence the robustness of the schemes. Channel coding is a way
to protect against message loss and is well supported by Wyner’s realization of the close
connection between DSC and channel coding [Xiong et al. 2004]. Hence, most practical
proposals for DSC integrate channel coding, such as Turbo codes [Garcia-Frias and
Zhao 2001] and LDPCs (Low Density Parity Codes) [Liveris et al. 2002]. Garcia-Frias
and Zhao [2001] exploit punctured Turbo codes for compression of correlated binary
sources. Unfortunately, the lack of a proper theoretical link between Slepian-Wolf and
Turbo code design has, thus far, prevented effective integration of the methods. LDPC
codes seem to be more suited for WSN DSC applications [Liveris et al. 2002]. All LDPC
code design techniques are applicable to DSC and they perform better than any Turbo
coding scheme suggested so far.

Pradhan et al. [1999] present a practical encoding method for distributed compres-
sion in an attempt to achieve the bounds predicted by Slepian and Wolf [1973] and Kaspi
and Berger [1982]. Distributed source coding using syndromes (DISCUS) [Pradhan
et al. 2000, 2002] address the new area of collaborative information communication
and processing. Although promising, the correct choice of correlated side information is
essential to ensuring the performance of the algorithm and is normally not well known
in practice. This limits the feasibility of the approach when applied to real WSNs. Chou
and Petrovic [2003] propose a novel approach to reducing energy consumption in sen-
sor networks using a distributed adaptive signal processing framework and algorithm.
The algorithm employs a sink-based centralized approach for the correlation gathering
and tracking and a modulo-based sequential coding scheme for code construction. This
approach enables sensor nodes to blindly compress their readings with respect to one
another without intersensor communication. Results show significant energy savings
for typical sensor data across a multitude of sensor modalities.

Xiong et al. [2004] presented a sequel to Pradhan et al. [2002], their own work on DSC,
and other relevant research efforts ignited by DISCUS. Through analysis and examples,
they [Slepian and Wolf 1973; Kaspi and Berger 1982] show that Slepian-Wolf source
coding and Wyner-Ziv coding are in fact source-channel coding problems. They also
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suggest cross-layer design and joint design of distributed source codes, channel codes,
and modulation schemes. Paolo et al. [2006] present joint performance analysis of DSC
topologies and packet aggregation (PA) with fragmentation schemes. They consider
the four coding schemes proposed in Marco and Neuhoff [2004] and their integration
with three alternatives aggregation techniques. Expressions for the performance of
DSC and PA are derived in terms of packet-loss probability and the average number of
transmitted bytes along with energy efficiency. The work concludes that DSC topologies
with a master-slave approach and fragmentation of packets exhibit better performance
(e.g., robustness).

The distributed framework in Yuen et al. [2008] jointly optimizes rate allocation
and transmission in the presence of capacity constraints. During the optimization, it
exploits data correlation among the sensor nodes and the effect of location-dependent
contention in the wireless channels. To exploit data correlations within sensor nodes, it
adopts localized Slepian-Wolf coding, an approximated version of Slepian-Wolf coding.
However, the method does not work well in practice as it considers static link capacity
and avoids routing issues. Moreover, as it relies on approximated Slepian-Wolf coding,
it suffers when the neighborhood size is small (not scalable). In recent work, Hong
et al. [2010] present the performance of a DSC-based system (slotted ALOHA) in terms
of throughput, delay, and energy efficiency. They provide a closed-form expression for
average throughput based on approximations of the average traffic load in each time
slot and derive the average delay and energy consumption via Markov Chain analysis.
The results show a possible trade-off between average delay and energy consumption
for different probability assignment schemes and for fixed and adaptive MAC proto-
cols. They also highlight the importance of cross-layered transmission control for the
efficient delivery of DSC messages as a key to the overall success of DSC.

Works on DSC for WSNs directly, or indirectly, inherit from the Slepian-Wolf theorem.
Hence, all proposed DSC algorithms require prior knowledge of the data correlations
at different sensors, which limits the effectiveness of the methods in real WSN appli-
cations. Moreover, lack of robustness and scalability are concern for these proposals.

3.5. Transform-Based Compression

Transform-based compression approaches are very common for image and video sig-
nals. Generally, transform-based approaches support lossy compression. Raw data
are transformed into a set of coefficients of appropriate basis functions, for exam-
ple, wavelet functions, which can be used to reconstruct the signal at the receiver. In
most cases, a reduced number of quantized and nonzero coefficients are sufficient for
recovering an approximation of the original data with low distortion. Entropy coding
is typically applied to the coefficients to further reduce data rate. The Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT) have been used extensively
in image and video compression applications (e.g., DCT is used in JPEG and DWT is
used in JPEG2000).

Sensed environmental data, such as temperature, humidity, light, can be modeled
as an image map, and standard image compression methods can be applied to the
map. However, some of the unique characteristics of WSNs—limited computation, dis-
tributed processing, degree of correlation, and faulty readings—make direct implemen-
tation of these approaches inefficient. In the following, we briefly review the algorithms
for in-network linear transform-based compression in WSNs. Interestingly, transform-
based methods have also been used in the training phase of DSC-like algorithms for
the purposes of gathering correlation knowledge [Dang et al. 2007].

Transform-based methods can be viewed as data-dependent and structure-dependent
techniques, as they exploit statistical correlations in the data and the network’s
structure, respectively. Most design techniques for transform-based compression can
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be viewed as either transform driven or routing driven. Transform-driven approaches
[Wagner et al. 2005b, 2006; Ciancio et al. 2006] focus on utilization of a specific trans-
form. Routing and processing strategies are then developed that allow computation of
the transform in the network. These approaches are effective from a data de-correlation
standpoint. However, the routing and processing strategies may not always be efficient
in terms of data transportation cost. For instance, nodes may be required to transmit
their data multiple times [Wagner et al. 2005b, 2006], or transmit multiple copies of
the same coefficients [Ciancio et al. 2006], or may even be required to transmit data
away from the sink [Gastpar et al. 2006; Wagner et al. 2005b, 2006]. These strategies
can outperform raw data gathering for very dense networks but can produce consid-
erable communication overhead for small- to medium-sized networks. Routing-driven
approaches focus on establishing an efficient routing tree (e.g., shortest-path routing
tree) and use transform computations on the routing paths in the tree. These ap-
proaches are typically more efficient, since the transforms are computed as data is
routed to the sink along efficient routing paths. These transforms can be easily inte-
grated within existing routing protocols, allowing such schemes to be easily applied in
WSNs, as demonstrated by the SenZip [Pattem et al. 2009] compression tool.

The Karhunen-Love Transform (KLT) [Gastpar et al. 2006] is commonly used for com-
pression and is a key ingredient of many signal-processing and communication systems.
The Discrete KLT (DKLT) shows potential for WSN data compression, since it achieves
maximum data de-correlation and can be utilized in a distributed fashion [Gastpar
et al. 2006]. However, one of the prerequisites for the DKLT is knowledge of the global
correlation statistics. In addition, it is being non-unidirectional, that is, data sometimes
travels away from the sink, which could be very expensive in terms of communication
cost. Thus, a direct implementation of the KLT is unsuitable for practical WSNs ap-
plications. To address this problem, a unidirectional tree-based KLT(T-KLT) has been
presented [Shen et al. 2009]. The method applies the KLT to data collected at each
node and its descendants. This ‘whitens’, or de-correlates, the data. The coefficients of
the transform are then encoded and forwarded to the parent nodes, which applies the
inverse KLT to recover the original data. To perform the TKLT, each node must know
the second-order statistics of its subtree. This incurs learning costs associated with
discovering and disseminating these statistics.

A number of works [Lee et al. 2007; Wang et al. 2009; Dang et al. 2007] have adopted
the DCT for data compression in WSNs. The JPEG-based method in Lee et al. [2007] ex-
ploits the DCT for energy-efficient communication of images in WSNs. DCT-supported
compressed communication is shown to have better time and energy efficiency than un-
compressed communication. Wang et al. [2009] adopt the DCT and differential coding
to reduce data redundancy. Moreover, Dang et al. [2007] show that the DCT is suitable
for smooth signals, whereas wavelet-based transforms are more suitable for piecewise
constant data. Generally speaking, DCT-based compression methods improve energy
efficiency compared to uncompressed communications at the cost some undesirable
side effects, for example, the complexity of de-correlation at block boundaries, blocking
artifacts, and difficulties in adapting to data source statistics.

Numerous methods have been proposed to exploit wavelets and their variants in
analyzing and compressing sensed data [Wagner et al. 2005b, 2006; Acimovic et al.
2005; Ciancio and Ortega 2004; Ciancio et al. 2006; Ciancio 2006]. The majority of
the earlier wavelet-transform-based works on WSNs (e.g., [Servetto 2003; Ciancio and
Ortega 2005]) are non-unidirectional and assume a regular-grid placement of sensor
nodes. Servetto [2003] used 1D regular-grid wavelet transforms to solve the 2D sensor
broadcast problem. The Lifting Scheme based Wavelet Transform (LSWT) [Ciancio
and Ortega 2005] exploits the regular-grid nature of some WSNs and employs 1D
wavelet decomposition along paths through the 2D measurement field. It minimizes
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internode communication by transmitting partial coefficients in an forward direction
and updates future sensors (e.g., the next sensors in the direction to the sink) until
the full coefficients are computed. However, no means for determining the optimal
path is given. In real WSNs applications, nodes are seldom placed in regular grids.
WSNs with irregularly placed nodes require different algorithms. A version of the
lifting algorithm was proposed for applying the wavelet transform by tracing through
the path of the minimum spanning tree and performing the wavelet filter [Ciancio and
Ortega 2005]. The method implicitly assumes that the path will be long enough to
apply wavelet analysis effectively. Moreover, it is not clear how to choose the best path
for compression, and spatial correlation is not fully explored. The system described
in Ciancio and Ortega [2005] could be extended to use irregular-grid 1D wavelets,
using a method similar to the 1D Haar protocol described in Acimovic et al. [2005].
However, the approach would not be capable of fully capturing the higher-dimensional
spatial dependencies between the measurements. Wagner et al. [2005a] provide an
irregular-grid, fully 2D, distributed wavelet transform for sensor networks based on
piecewise-constant multiscale approximation and multiscale routing structures. This
work was extended in Wagner et al. [2005b] to develop a fully distributed, irregular-grid
wavelet transform and protocol for sensor networks that is capable of piecewise planar
multiscale approximation. The paper presents distributed solutions to implementation
issues, included mesh building, filter coefficient calculation, and transform coefficient
calculation.

The algorithm proposed in Ciancio and Ortega [2004] is one of the first routing-
driven transform-based methods to exploit the wavelet transform to de-correlate WSN
data in a distributed fashion. Using a flexible means of exploiting trade-offs between
processing and communication costs, the method can maximize energy efficiency, as
well as network performance, according to given device specifications. This work con-
siders spatially correlated WSN data, not temporal correlations within intra-sensor
data. Acimovic et al. [2005] provide adaptive and distributed processing algorithms
for large-scale WSNs, where the data-gathering algorithm is selected adaptively based
on the properties of the signal field. They claim that wavelet-based processing is well-
matched to the challenge of compression of deterministic signals, such as piecewise
constant signals, and prediction based on Differential Pulse Code Modulation is op-
timal for random Gaussian data in correlated fields. Results clearly show the energy
efficiency of the distributed de-correlating process as well as en-route in-network trans-
formation and the unidirectionality of the method. Ciancio et al. [2006] consider a
slightly different scenario in which a number of compression schemes are available
at each node and the objective is to select the best possible on the basis of the ex-
pected computation/communication cost trade-off. They addressed scheme assignment
in a two-dimensional field assuming that the routing structure is known by using a
heuristic extension of dynamic programming based on an optimal solution for a one
dimensional network, presented in Ciancio and Ortega [2006]. Their results show that
by optimizing compression algorithm selection, overall energy consumption can be sig-
nificantly reduced compared to the case where data is just quantized and forwarded
to the central node. However, the analysis only considers predefined routing topolo-
gies, which are not always available in real WSNs. Moreover, independent selection of
routing and coding algorithms may not be optimal in all cases.

The key focus of distributed wavelet-based algorithms [Ciancio 2006] is to maximize
the data quality at the sink for a given target energy consumption at the nodes. Un-
like previous works [Wagner et al. 2006; Acimovic et al. 2005; Ciancio et al. 2006],
it considers entropy-based variable-length encoding of DWT coefficients. Along with
other improvements (e.g., 2D instead of 1D), the work considers the possibility of us-
ing compressive sampling to reduce the overall power consumption. Shen and Ortega

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 5, Publication date: November 2013.



Compression in WSNs: A Survey and Comparative Evaluation 5:17

Table II. Summary of the Key Transform-Based Compression Techniques

Technique Key Features Advantages Limitations
KLT Behaves like PCA(Principal

Component Analysis),
DKLT and T-KLT suit
WSNs

T-KLT has
unidirectionality,
hence efficient

Global knowledge
needed, Scalability

DCT Exploits cosine function,
variants DCT-I to DCT-VIII

Multiresolution Blocking artifacts

DWT Exploits wavelets, variants
available (e.g., LSWT, 1D,
2D)

Robustness,
unidirectionality
possible

Scalability

[2008b] present a unidirectional 2D transform for an arbitrary routing tree, allowing
the transform to exploit 2D spatial correlations to a greater extent than earlier path-
wise transforms (e.g., [Ciancio and Ortega 2004; Ciancio et al. 2006]) without incurring
the overhead of more general 2D transforms. The proposed optimization framework ex-
ploits the trade-off between higher local costs for more intricate coding in return for
a lower final transport cost. The results show the potential of the proposed method,
compared to earlier techniques, in terms of transform computation cost and coefficient
transport cost. These improvements are mostly due to unidirectional computation of
the 2D transform and the effectiveness of unidirectional computation in offsetting ex-
cessively high local communication costs, especially in the backward direction. The
main objective of a recent work [Shen and Ortega 2010] is to find a general set of en-
route in-network (or unidirectional) transforms for given routing trees and schedules
in conjunction with a set of conditions for their invertibility. This general set includes a
wide range of existing unidirectional transforms and has also inspired new transform
designs, which perform better than existing transforms in the context of data gath-
ering in WSNs. The proposed unidirectional, Haar-like transform leads to significant
improvements over existing unidirectional transforms.

Quite a few compression frameworks have been proposed using wavelets and their
variants for analyzing and compressing sensed data [Ganesan et al. 2005; Xu et al.
2004; Dang et al. 2007]. DIMENSIONS [Ganesan et al. 2005] was one of the first
frameworks addressing multiresolution data access and spatiotemporal pattern mining
in a sensor network using wavelet compression. Like DIMENSIONS [Ganesan et al.
2005], Wisden [Xu et al. 2004] is a WSN framework for structural monitoring. It
employs a wavelet transform-based compression technique to reduce communication in
real time. Wagner et al. [2005b, 2006] present a distributed wavelet transform and data
harvesting architecture for sensor networks that removes the assumption about the
regularity of the grid. The transform sparsifies piecewise-smooth sensor measurement
fields.

As summarized in Table II, transform-based compression techniques (e.g., wavelet-
based approaches [Wagner et al. 2005b; Ciancio et al. 2006; Shen and Ortega 2008a]
and the distributed KLT [Gastpar et al. 2006]) suffer from lack of scalability. This is due
to the critical sampling requirement, which causes the cost of data gatherings to scale
with the number of sensors and can lead to poor performance in large deployments.

3.6. Compressed Sensing

Three inherent inefficiencies of transform coding motivate the need for alternative com-
pression techniques: First, compressing high-dimensional signal means processing a
large number of samples n. Second, the encoder must compute all transform coefficients
θ (n), even though it will discard all but K(n � K) of them. Finally, the encoder must en-
code the indices of large coefficients. This increases the coding rate, since these indices
change with each signal. In this context, compressed sensing (CS) has been proposed as
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a potential alternative, since the number of samples required (i.e., proposed number of
sensors that need to transmit data), depends on the characteristics (sparseness) of the
signal [Donoho 2006, Candes et al. 2006, Candes and Romberg 2007]. Sparsity arises
in WSN data due to spatiotemporal correlations within the sensor readings. The asym-
metric computational nature of CS also makes it attractive for WSN data compression.
In CS, most computation takes place at the decoder (sink), rather than at the encoder
(sensors), thus sensors with minimal computational performance can efficiently encode
data.

The CS field (also known as compressive sampling) field has existed for at least
four decades, but recently (about 2004) researchers’ interest in the field has exploded
due to several important results obtained by Donoho [2005, 2006] and Candes et al.
[2006]. CS is a novel sensing/sampling paradigm that goes against the traditional
understanding of data acquisition. These works on CS milestone showed that if a
signal has a sparse representation in one basis, then it can be recovered from a small
number of projections onto a second basis, which is incoherent with the first one. A
prerequisite for CS is a tractable recovery procedure that can provide exact recovery
of a signal of length n and sparsity K. In other words, a signal can be written as a sum
of K basis functions from some known basis, where n � K. CS is promising for many
applications, especially in sensing signals that have a sparse representation in some
basis. Rather than sampling a K-sparse signal n times, only M = O(Klogn) incoherent
measurements are sufficient. Moreover, at the encoder, no manipulation is required
for the M measurements except, possibly, some quantization. For more advanced and
detailed information on CS theory, readers are referred to Candès and Wakin [2008],
Haupt et al. [2008], and Balouchestani et al. [2011] and references therein.

CS exhibits similar benefits to DSC, including a simple encoding process, avoidance
of internode data exchange, and decoupling of compression from routing. In addition,
CS has two further advantages: graceful degradation in the event of abnormal sen-
sor readings and data reconstruction insensitive to packet loss. In CS, all messages
received at the sink are equally important. On the other hand, in DSC, received data
is predefined as main or side information. Losing main information causes serious er-
rors at the decoder. These merits make CS a promising solution to the data-gathering
problem in large-scale WSNs [Luo et al. 2009]. Research on CS for WSNs is at an early
stage. Even though the number of publications in this area is limited, they are quite
diverse in terms of the issues studied (e.g., routing, performance). In the following, we
briefly summarize the existing works.

CS research for WSNs can be categorized according to the correlations that they
exploit: (i) temporal, (ii) spatial, or (iii) spatiotemporal. Most early proposals for CS
in WSNs exploit temporal (intra-signal) structures only. They only exploit temporal
correlations within multiplesensor readings at a single sensor and do not exploit spatial
(inter-signal) correlations amongst nearby sensors. Early CS works on multisensor
scenarios consider only standard CS for the joint measurements at single time instances
(e.g., [Bajwa et al. 2007]). These schemes ignore intra-signal or temporal correlations.
In contrast, spatiotemporal approaches [Vuran et al. 2004; Duarte et al. 2005] exploit
the spatial correlation structures within different nearby sensors and the temporal
correlation structure of each sensor’s time variant readings.

Bajwa et al. [2006] introduced and analyzed the concept of Compressive Wireless
Sensing (CWS) for energy-efficient estimation at the sink of sensor data that is com-
pressible in some basis. Their analysis was based on a function, which depends on
the number of sensor nodes and the associated power-distortion-latency trade-offs.
Even though CWS is not optimal, it is universal in the sense that it provides us with
consistent field estimation, even if little or no prior knowledge of the sensed data is
available. Universality comes at the cost of optimality in terms of a less favorable
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power-distortion-latency trade-off, which is a direct consequence of not having suffi-
cient prior knowledge of the sensed data. CWS uses phase synchronization between
the nodes instead of in-network communications and processing. The approach can
decrease the latency of data gathering in a single-hop network by delivering linear
projections of sensor readings through synchronized amplitude modulated analogue
transmissions. However, difficulties in synchronization make it less practical for large-
scale sensor networks.

Haupt et al. [2008] describe how CS techniques can be utilized to reconstruct sparse
or compressible networked data in a variety of practical settings, such as general multi-
hop networks and WSNs. The central focus of the work is management of resources
during the encoding process, which is important as well as challenging. The work
presents a procedure based on random gossiping for general multihop networks to
exploit CS in storage and retrieval of networked data from multiple points instead
of a single sink or fusion centre (FC). A two-step procedure is used to calculate the
projections and deliver them to every subset of nodes in the network using gossip
techniques or clustering and aggregation. It employs an analogue mechanism similar
to the one used in CWS to transmit sensor readings to the FC. This encoding oriented
work mainly exploits temporal relationships in calculating projections, not spatial or
spatiotemporal.

The key objectives of Compressive Data Gathering (CDG) [Luo et al. 2009] are to
compress sensor readings to reduce global data traffic and to distribute energy con-
sumption evenly so as to prolong network lifetime in large-scale WSNs. As in DSC,
the decoder exploits the data correlation pattern in this pioneering work. Moreover,
compression and routing are decoupled and therefore can be separately optimized. The
paper also includes an analysis of the capacity of CDG in WSNs, which shows that
CDG can achieve a capacity gain of n

M (n � M) over baseline transmission. CDG is
well suited to large-scale WSNs but suffers in small-scale WSNs where signal sparsity
may not be sufficient. CDG works well in networks with stable routing structures, as
frequent node failure or dynamic route changes lead to high control overheads that
potentially cancel out the gain obtained from compression.

A key focus of CS theoretical developments is to minimize the number of measure-
ments (sampling compression), rather than to minimize the cost of each measurement.
To make CS an efficient compression technique for WSNs, an explicit trade-off be-
tween measurement cost and reconstruction quality is necessary. Lee et al. [2009]
proposed an energy-efficient CS algorithms for WSNs using spatially-localized sparse
projections. In order to keep the transmission cost for each measurement low, the
method gathers measurements from clusters of adjacent sensors and utilizes localized
projection within each cluster. Joint reconstruction provides better performance than
independent reconstruction, since it can exploit measurements from multiple clus-
ters. The proposed approach outperforms standard CS techniques for sensor networks.
The key to the success of the approach is optimal clustering, which is not a trivial
problem.

Event detection is a key application of WSNs. For large-scale WSNs, events are
relatively sparse compared to the number of sources. Considering this, Meng et al.
[2009] propose a CS method for sparse event detection in WSNs. They show that the
number of active (awake) sensors can be greatly reduced. In fact, the number of sensors
can be similar to the number of sparse events, which is typically much less than the
total number of sources. For signal reconstruction, they consider a fully probabilistic
Bayesian framework, which helps in significantly reducing the sampling rate while
still guaranteeing a high detection probability. Moreover, use of a marginal likelihood
maximization algorithm and a heuristic algorithm for the Bayesian framework leads
to higher detection probability than traditional linear programming.
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Baron et al. [2009] extended the theory and practice of CS to multi-signal, distributed
settings. The paper presents a new theory for Distributed Compressive Sensing (DCS)
that facilitates new distributed coding algorithms for multi-signal ensembles. These
new compression algorithms rely on a new concept—the joint sparsity of a signal
ensemble—and exploit spatiotemporal correlation structures. The work characterizes
the fundamental performance limits of DCS for jointly sparse signal ensembles in
the noiseless measurement case, for three different modes of CS (i.e., single-signal,
joint, and distributed). To demonstrate the potential of the compression framework,
detailed examples of three models for jointly sparse signals were presented, and prac-
tical algorithms for joint recovery of multiple signals from incoherent projections were
developed. For two of the three models, the performance predictions match the results
obtained from practical algorithms.

Luo et al. [2010] investigate the benefit of CS in data collection of WSNs. The paper
compares a non-CS method (aggregation) with a simple CS algorithm called plain-CS
and concludes that in terms of throughput, plain-CS is outperformed by non-CS. The
key finding of the work is that applying CS naively may not bring any improvement,
and hybrid-CS can achieve significant improvements in throughput as compared with
non-CS. Selection of non-CS and CS points within the hybrid-CS scheme is critical in
getting the benefit of CS. In a very recent work, Caione et al. [2012] showed that DCS
suffers compared to a mixed protocol in large-scale WSNs under real technological
constrains. They claimed that CS can be a powerful tool for energy saving in WSN if
network size and compression are both taken into consideration in network design.

Thus far, the problems of identifying sparsity requirements, finding the proper basis
for random projection calculations, and ensuring local communication have limited the
usefulness of CS and DCS in WSNs. In addition, the high decoding complexity could
be a problem for real-time time applications in large-scale WSNs.

4. COMPARATIVE STUDY

This section provides a comparison of the performance of each category of compression
algorithm described in the previous section. Due to the very limited use of text-based
compression in WSNs, it is excluded from the study. Clearly, the proposals within each
category are diverse in nature and implementation, making it difficult to come up
with a generic and common performance study. However, to take a holistic view of
these diverse proposals, it is important to make the comparative study as generic as
possible.

This section is structured as follows. First, the assumptions on which the evaluation
is based are described. Second, the performance metrics are introduced. Third, expres-
sions for the metrics are derived for each category, and finally, the performance of the
approaches is compared with the aid of numerical analysis.

4.1. Assumptions

Herein, we assume a centralized optimal scheduler, which schedules communication in
the network. Thus, there are no collisions. WSN topology can play an important role in
determining energy efficiency. Naturally, topology varies according to the application.
Considering the diversity of WSN applications, it is very difficult to consider all pos-
sible topologies and their corresponding performance. In this work, we use a common
WSN topology, shown in Figure 3, as a basis and performance metrics as generic as
possible so that they apply to all the possible topologies with little or no change. The
dependence of the metrics on topology will be discussed in the corresponding section.
As shown in Figure 3, each sensor node corresponds to a vertex in the graph G with
radius R. Two vertices are connected if and only if their corresponding sensor nodes
can communicate directly. Parent nodes can act as aggregation points or transform
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Fig. 3. WSN scenario used for the comparative study.

calculators. The number of nodes n, node degree d (i.e., the average number of child
nodes or number of nodes in a cluster for cluster-based topology), average hop count to
the sink H, and network depth D (i.e., maximum number of hops to the sink) are the pa-
rameters of the network. Within the considered network, we assume that node density
is sufficiently high so that there is significant spatial correlation between data collected
at neighboring nodes. We also assume that the node-level sampling rate is high enough
to maintain intra-signal temporal correlation. Since the network is highly connected,
node degree d can be expressed in terms of the number of nodes n [Eschenauer and
Gligor 2002].

d = n
n − 1

(ln(n) − ln(− ln(Pc))), (1)

where Pc is the probability that the network or graph is connected (Pc is close to 1 for
highly connected networks). Based on this, the depth of the network D can be expressed
as D = ln(n)

ln(d) . These calculations assume a uniform WSN structure, which might not be
always true in real life. In real WSNs, d and D might vary within a range.

4.2. Performance Metrics

The following performance metrics are used in the performance analysis.

Compression Ratio (CR). The data compression ratio is the ratio of the uncompressed
data size, in bits, br to the compressed size bc, also in bits, and is given by

CR = br

bc
. (2)

The percentage reduction in data size due to compression is given by (1− 1
CR )×100%.

In case of temporal correlation-based compression (e.g., PC, CS), CR is a node-level
parameter, whereas in the case of spatial correlation-based techniques (e.g., DSC, DCS)
it can be subnetwork (e.g., cluster) or network-level parameter.

Sampling Ratio (SR). The sampling ratio is the ratio of the number of samples
collected when compression is not used, sr, to the number of samples collected when
compression is used, sc, and is given by

SR = sr

sc
. (3)
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Fig. 4. A typical energy consumption mapping in a WSN.

The percentage reduction in samples is given by (1− 1
SR )×100%. For most compression

algorithms, SR = 1. However, CS/DCS allows SR > 1.

Computational Complexity (CC). Typically, the CC of an algorithm depends on the
time and memory space it utilizes. For simplicity, and due to the dominancy of time
concerns in assessing the CC of WSNs [Li et al. 2010], we define CC as the computa-
tional time complexity. For most MSC platforms (e.g., MSP430 [Polastre et al. 2005]),
computational time complexity is directly proportional to the number of clock cycles
Nop taken to perform the computing task.

Energy Efficiency. Figure 4 shows the various components of energy consumption in
WSN nodes [Kamyabpour and Hoang 2010]. In summary, the energy consumption of a
node can be expressed as

Etotal = Esam + Ecomp + Esw + Ecomm, (4)

where Esam is the sampling energy, Ecomp is the computational energy, Esw is the energy
of switching states, and Ecomm is the communication energy.

The energy cost of sampling is not always insignificant, especially when using power-
hungry sensors [MicroDAQ 2010]. Consequently, Esam is highly dependent on the WSN
application. In all cases, it is proportional to the total sampling time, which is directly
proportional to the number of samples taken. Thus, when applying compression, Esam
scales with SR − 1.

The energy associated with computation, Ecomp, is directly proportional to the amount
of time that the MCU is on. For modern MCUs which supporting sleep modes, the
amount of time that the MCU is on is dependent on the number of clock cycles Nop
required for the task. The total energy overhead due to the encoding and decoding
process is given by Ecoding.

The switching energy Esw is expended when the radio or MCU switches between
states (e.g., sleep, idle, listen/Rx, Tx). Switching energy for the MCU is not significant.
On the other hand, the cost of switching the radio [Jurdak et al. 2010] is not negligible.
The use of data compression itself does not typically reduce the number of times that
the radio must be activated and deactivated, since the compressed source data must
still be routed across the network. However, sampling compression reduces the number
of radio activations and deactivations by a factor of (SR − 1).

The energy cost of communication Ecomm is the most important constituent of Etotal.
It is directly proportional to the on time of the radio, both for transmission and
reception. It is also depends on the distance between sender and receiver nodes. For
a fixed network and for the purposes of the analysis herein, we can note that the en-
ergy consumption of communication when using compression Ecomm scales according to
(CR − 1).
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Fig. 5. (a) Rate-energy-distortion relationship. (b) Rate-distortion relationship.

Overall, the energy saving Esaving achieved by using compression can be expressed
as

Esaving ≈
(

1 − 1
SR

)
(Esamp + Esw) − Ecoding +

(
1 − 1

CR

)
Ecomm, (5)

where Ecoding is the energy required for encoding or processing the compression.
In most deployments, the (1 − 1

CR )Ecomm term dominates energy savings [Pottie and
Kaiser 2000; Barr and Asanović 2006]. For most compression algorithms (e.g., aggre-
gation, DSC, PC, transform-based), except for CS/DCS (SR = 1), Equation (5) can be
simplified to

Esaving ≈
(

1 − 1
CR

)
Ecomm − Ecoding. (6)

Distortion. In lossy compression techniques, distortion measures the difference be-
tween the original and reconstructed data. In most cases, distortion is defined as the
expected value of the square of the difference between the original and reconstructed
signal (i.e., the mean squared error). Figure 5(a) shows the relationship between rate
(bits/sample, which is ∝ 1

CR ), energy consumption, and distortion in compressed and
uncompressed situations, and Figure 5(b) shows the rate-distortion relationship. These
figures clearly show that the greater the compression, the higher the distortion. Typi-
cally, bounded distortion is desirable in most lossy compression schemes, which makes
the R-E-D relationship an optimization problem.

Latency. In WSNs, latency is the average delay incurred in delivering a message from
a source to the sink node. Without compression, the main contributor to overall delay
is the communication delay Tcomm of sending the raw information. Typically, for a fixed
channel capacity or bandwidth, the latency of communication is directly proportional
to the amount of data to be transferred. Hence, when using compression, the latency of
the communication is inversely proportional to the compression ratio. However, extra
processing delays are incurred both at the encoder Tencoding and decoder Tdecoding. Thus,
the overall latency T when using data compression can be approximated as

T ≈ Tencoding +
(

1 − 1
CR

)
× Tcomm + Tdecoding. (7)

For a given MCU, Tencoding and Tdecoding are directly proportional to the number of
clock cycles Nop needed for the encoding and decoding tasks, respectively, including
processing and memory access. When using data compression, these additional pro-
cessing delays are offset by the resulting reductions in the communication time.
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4.3. Performance Metrics for Each Category

For all the calculations, we assume a data set of ns spatially or temporally-correlated
samples, where k is the number of bits per sample in the non-compressed case.

4.3.1. Aggregation.

Compression Ratio. In aggregation, CR is same as the degree of aggregation (DoA),
which is defined as the ratio of the number of bits present in all the samples aggregated
and the number of bits in the aggregation output. If Hl is the header’s bit length of a
packet and Eb is the extra bit cost of aggregation, then the CR or DoA is

CRAg = ns(k + Hl)
k + Hl + Eb

. (8)

For node-level (temporal) aggregation, ns is equal to the number of samples generated
within the aggregation period, but for spatially distributed signals, ns depends on the
node degree d of the concerned aggregator.

Computational Complexity. Finding an optimal aggregation tree in WSNs and cal-
culating the aggregation function over the collected data at the aggregation points are
mainly responsible for the CC of aggregation. For a given and deterministic (as most
WSN applications deployments use) aggregation tree, CC depends on the aggrega-
tion functions (e.g., max, sum, average, variance). For instance, CC for data aggregation
based on distributive functions (e.g., max, min) is of the order �(D + dmax(G)), where
dmax is the maximum node degree of the graph G [Li et al. 2010]. So the overall Nop in
a deterministic aggregation structure is directly proportional to D and d. In the case
of dynamic WSNs, the CC of aggregation is dominated by the aggregation structure
formation.

Energy Efficiency. Using CR (Equation (8)) and CC in Equation (6), we can determine
the approximate energy saving as follows.

EAgsaving ≈
(

1 − k + Hl + Eb

ns(k + Hl)

)
Ecomm − Ecoding(D, d). (9)

Distortion. Typically aggregation is a lossless compression technique, hence it should
be distortionless. As shown in Equation (8), distortion has no direct impact on data
aggregation’s CR. Distortion may appear due to missing sensor readings (node failure,
link failure) or quantization error.

Latency. The delay incurred in the entire data aggregation process is equal to the
delay of gathering data from the source that is farthest from the sink. In data gathering,
the delay at each hop of the aggregation tree includes transmission delay, contention
delay, and aggregation delay. Transmission delays are typically small compared to
the delay involved in aggregation. So for the collision-free WSN topology, the main
contributor to latency is the aggregation delay comprised of the processing time for
aggregation at each node and the time that an aggregation node has to wait for data
from downstream nodes to reach it. Thus, the overall latency of aggregation is directly
proportional to R (hop count is proportional to R) and d. For centralized aggregation
scheduling, the latency bound can be approximated as 23R + dmax + 18 [Huang et al.
2007] and for the distributed aggregation schedule, as 16R+ dmax − 14 [Xu et al. 2009].

4.3.2. Predictive Coding.

Compression Ratio. If the prediction error r(k) is within the range |r(k)| ≤ therr,
then for a lossy scheme, there will be no real communication between the source
and sink. However for a lossless scheme, the source nodes will transmit the encoded
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r(k) values or the real values to update the model at the sink/sinks. In general, r(k)
is assumed to follow a normal distribution with zero mean N(0, σ ), where σ is the
standard deviation. Based on this, the r(k) that is within the range [−therr, therr] is
f (therr, σ ) = er f ( therr

σ
√

2
) [Polastre et al. 2007]. Exploiting f (therr, σ ) in Equation (2) we

define CRpc for both lossless and lossy PC as

CRpclossless = k

k
(
1 − erf

(
therr

σ
√

2

))
+ erf

(
therr

σ
√

2

)
(k′)

(10)

CRpclossy = 1

1 − erf
(

therr

σ
√

2

) , (11)

where k′ is the number of bits per sample transmitted in compression mode and depends
on the encoding scheme.

Computational Complexity. In PC, learning and prediction are the main compu-
tationally complex operations. CC in PC mainly depends on the order of the sta-
tistical model and number of samples. As the order of an AR/ARMA/ARIMA model
increases, the number of unknowns as well as the number of equations increases.
Hence, the complexity of executing a model parameter estimation process is bounded
by O(m3nls), where m is the order of the model (which is p for AR(p), max(p, q + 1)
for ARMA(p, q), and max(p, q + 1) for ARIMA(p, d, q)), and nls the length of the data
record [Deng et al. 1997] or learning samples, which is directly proportional to n. After
estimating the model parameters, forecasting requires p, p + q, and p + q multiplica-
tions and p, p + q and p + d + q additions to calculate the next prediction value for
AR(p)/ARMA(p, q)/ARIMA(p, d, q) respectively, where q is the order of MA and d is
the differencing times value for ARIMA [Lu et al. 2010; Le Borgne et al. 2007; Liu et al.
2005].

Energy Efficiency. For the given WSN topology, using CR (Equation (11)) and CC
in Equation (6), we can approximate the possible energy saving (upper bound as no
learning cost is considered), hence the energy efficiency of lossy PC (ARMA based), in
the considered WSN by the following equation.

EPCsaving ≈ erf
(

therr

σ
√

2

)
Ecomm − Ecoding(p, q). (12)

Similarly, we can derive EPCsaving for the lossless PC.

Distortion. In lossy PC, certain distortion is allowed to have better savings in energy
consumption. As the residue or distortion r(k) in general is assumed to follow a normal
distribution with zero mean N(0, σ ), where σ is the standard deviation, the probability
that it will be bounded within the range [−therr, therr] is erf( therr

σ
√

2
) [Polastre et al. 2007]. As

shown in Equation (11), distortion has direct impact on CR, hence on energy efficiency
(Equation (12)), so a trade-off between distortion and energy efficiency is necessary.

Latency. In PC (lossy), at the sink, predicted values can be generated almost instantly
(only the time required for m sum and product operations, which is negligible for the
sink). If r(k) ≤ therr then latency will be tp, the predefined waiting time at the sink to
check whether is there a real sensor value update from any source node or not. In the
lossless case, it is tp + CCupdt, where CCupdt is the model update or learning processing
time. The value tp depends on the longest source to sink path delay.
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4.3.3. Distributed Source Coding.

Compression Ratio. If Y1, . . . , Yns are ns binary sequences/samples of length k corre-
lated such that the Hamming distance between two consecutive sequences is at most
t. Since DSC can be viewed as source-channel coding method where a (nc, k) linear
channel code (nc is the code-word, k is the data-word) C can correct up to M ≥ t errors
per nc bit block. DSC uses a total of nc + (ns −1)(nc −k) bits to encode the ns samples and
is sufficient for perfect reconstruction of all of them at the sink [Gehrig and Dragotti
2005]. Hence, the CR for DSC based on Slepian-Wolf scheme can be expressed as

CRdsclossless = ncns

k + (ns − 1)(nc − k)
. (13)

Considering the rate-distortion function based on Wyner and Ziv [Kaspi and Berger
1982], for Gaussian sources [Scaglione and Servetto 2002] R(Ds) = 1

2log( σ 2

Ds
) and

CRdsclossy can be expressed as

CRdsclossy = H(Yi)
1
2log σ 2

Ds

, (14)

where H(Yi) is the entropy of the samples.

Computational Complexity. Correlation knowledge gathering and tracking is com-
putationally very expensive, especially for dynamic WSNs where correlation structures
may change very frequently. As for PC, the complexity of centralized correlation learn-
ing based on linear prediction is O(m3nls). Source nodes are only responsible for rate
allocation, in general this is not a computationally expensive operation. For instance,
for a Modulo-code, and a syndrome code, the CC of encoders or source nodes are O(1)
and O(nc) respectively, whereas the CC of the decoders are O(log2nc) and O(n2

c k) respec-
tively, where nc is the length of the codeword. As the decoder involves a binary-matrix
multiplication, complexity is high [Annamalai et al. 2008; Chou and Petrovic 2003].

Energy Efficiency. Like PC, using CR (Equations (13) or (14)) and CC in Equation (6),
we can approximate the energy saving (upper bound as no learning cost is considered)
for lossy DSC (syndrome code based) as

EDSCsaving ≈
(

1 −
1
2log σ 2

D

H(Yi)

)
Ecomm − Ecoding(nc). (15)

Similarly, we can derive EDSCsaving for lossless DSC.

Distortion. In lossy DSC, bounded distortion is allowed to have better compression,
hence better energy efficiency. This comes at the cost of increased complexity. This
complexity occurs in finding the rate needed to encode Yi under the constraint that
the average distortion between Yi and Y ′

i is E[d(Yi, Y ′
i )] ≤ D, assuming the necessary

side information is available only at the decoder. As shown in Equation (14), distortion
and CRdsclossy are closely related. In some cases a trade-off between these two might be
necessary.

Latency. If correlation knowledge gathering and tracking maintains an up-to-date
correlation, then the latency of DSC-based compression depends on the encoding time
and the longest source-to-sink path delay and on the computation delay, which is very
much similar to the other compression approaches. Decoding in DSC-based compres-
sion approaches contributes more to latency compared to its counterparts (e.g., PC,
aggregation), as most DSC decoders have a sequential decoding requirement. This la-
tency is very sensitive to the packet losses. Packet drop increases the latency and can
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even cause decoding failure. Maximum latency is bounded by the communication and
computation and processing delay of the furthest node from the sink plus the time for
successful reception of all messages Y1, Y2, . . . , Yn−1 from nodes S1, S2, . . . , Sn−1, which
are closer to the sink than Sn.

4.3.4. Transform-Based Coding. Due to its performance, we derive metrics for the lifting
scheme wavelet transform (LSWT) [Daubechies and Sweldens 1998].

Compression Ratio. In this category CR greatly depends on the level of DWT: the
higher the transform level L, the more sensors have low-energy (detailed) data that
can be coded using less bits and the better the CR, but at the cost of increased internode
communication. For simplicity, we consider a 1-level transform, and after the transform,
the dataset ns is replaced by nd coefficients (high-pass filter output) and nsv updated
source value (low pass filter’s output). In lossless compression, these updated datasets
are passed through lossless entropy coding, whereas for lossy coding, the contents of
the new datasets have to be quantized before entropy coding. Let bd and bsv be the
average bit contents of the coefficients (ns) and the remaining updated data set (nsv),
respectively. Exploiting these values we can define the CR as

CRDWT = nsk
bdnd + bsnsv

, (16)

where nd +nsv = ns and k ≥ (bd +bs)/2. Inclusion of thresholding (i.e., coefficients lower
than a certain threshold will be discarded) increases CR but at the cost of increased
distortion. Unidirectional- and partial-calculation-based DWT require more transform
levels compared to their counterparts.

Computational Complexity. Transform-based compression operates on sampled raw
sensor data. Generally, it consists of three steps: LSWT, scalar quantization, and source
coding (DSC). Its computation complexity can be expressed as

CCDWT (ns, L) = CCLSWT + CCquan + CCDSC . (17)

Computation of the scalar quantization matrix is nontrivial, but it can be reduced to
O(n) [Liu and Cheng 2006]. Source coding complexity based on DSC is O(n), and finally
the computation complexity of LSWT is O(n), where n is the number of samples and,
for the critically sampled case, it is equal to the number of source nodes. So, the overall
CCDWT is bounded by O(n).

Energy Efficiency. Using CR (Equation (16)), and CC in Equation (6), we can deter-
mine the approximate energy saving of DWT-based compression as follows.

EDWTsaving ≈
(

nsk − bdnd − bsnsv

nsk

)
Ecomm − 3Ecoding(n). (18)

Distortion. Transform-based lossy compression methods can achieve much higher
compression at the cost of signal distortion. Signal distortion induced by the
transformed-based lossy data compression is due to quantization and thresholding
operations. Depending on the quantizer bit number, signal distortion caused by the
LSWT-based lossy data compression typically occurs in the frequency bands corre-
sponding to weak signal components. By selecting different quantizer bit numbers or
threshold values, users have the flexibility to decide whether they want to have highly-
compressed data with a certain level of signal distortions or higher-quality data with
less compression. So, a trade-off between distortion and compression ratio or energy
consumption is needed.
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Latency. In transform-coding-based compression, along with the common communi-
cation and processing latencies, the latency introduced by the encoder in calculating
the transform coefficients, averages (low frequency values), and quantized values is
significant. It includes processing and local communication latencies. L has an impact
on latency, the greater L, the more calculations are needed, hence more delay. The addi-
tional requirement of the partial calculation process compared to complete calculation
causes little extra latency. The overall latency of DWT is bounded by encoding latency,
as both decoding and communication latencies are less than encoding.

4.3.5. Compressed Sensing.

Compression Ratio. In CS/DCS, a temporally- or spatially-correlated signal of length
ns with a K-sparse representation only M = O(Klogns) incoherently measured samples
are needed to recover the signal with high probability, where K 	 ns. In CS/DCS, this
sampling or sensing level compression plays the key role in compression, which can be
expressed as

SRcs = ns

M
, (19)

where M ≈ KClog(ns) for dense RP and C is a some small constant, and for sparse RP
M ≈ logns. In particular, as suggested by the “four-to-one” practical rule introduced in
Candès and Wakin [2008], M = 4K is generally sufficient for dense RP.

Computational Complexity. In CS/DCS, each source node only needs to compute its
incoherent projections (M measurements) of the signal it observes, and no manipu-
lations are required for the M measurements, except possibly for some quantization.
CS/DCS exploits a random projection (RP) method [Bingham and Mannila 2001; Duarte
et al. 2006; Haupt et al. 2008; Wang et al. 2007] to compute incoherent projections.
CS is applicable to temporally-correlated signals where the computational complex-
ity is reduced from O(ns) to O(M). For spatially-correlated signals, DCS is needed,
where specifically sparse RP(SRP) calculation requires pre-processing communication
amongst the nodes, which is the main contributor to the overall complexity of DCS. In
DCS, SRP-based projections calculation requires an average of O( n

K ) packets transmis-
sion per sensor; hence the average computation cost per sensor is O( n

K ), whereas the
decoding cost of CS/DCS is bounded by O(n3). For SRP, n

K can be approximated by log(n).
CS/DCS requires only O(Klog(n)) RPs to obtain an approximation error comparable to
the best k-term approximation.

Energy Efficiency. Using SR (Equation (19)) and CC in Eq. (5) and replacing CR
by SR (as CR directly proportional to SR), we can determine the approximate energy
saving of CS and DCS based compression as follows.

ECSsaving ≈
(

ns − M
ns

)
(Esamp + Esw + Ecomm) − Ecoding(M) (20)

EDCSsaving ≈
(

ns − M
ns

)
(Esamp + Esw + Ecomm) − nEcoding(M). (21)

Distortion. By definition, CS and DCS are lossy compression techniques, hence they
support a certain amount of distortion in reconstruction. The robustness of CS/DCS to
quantization and noise [Candès et al. 2006; Haupt and Nowak 2006] helps in keeping
distortion bounded to real-world settings. At a higher overall cost, DRPs can provide
better distortion or approximation error compared to SRPs. In SRPs, distortion is di-
rectly proportional to sparsity, hence the distortion at the decoder depends only on
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the number of coefficients collected, and not on which sensors are queried. There-
fore, distributed DRPs enable efficient and robust approximation with refinable distor-
tion [Wang et al. 2007]. Moreover, DCS is automatically robust to packet loss in WSNs;
any loss of measurements leads to a graceful degradation in the approximation error
or distortion, hence the reconstruction quality.

Latency. In CS/DCS, decoding is computationally more (time) complex O(n3
s ) (for

critical sapling for spatial case ns ≈ n) than encoding O(logn) (SRP) or O(n) (DRP).
Hence, decoding latency is higher than encoding latency. On the other hand, as decoding
is done at the sink, which is computationally more powerful than the source nodes, this
reduces decoding as well as overall latency.

4.4. Evaluation

The objective of the evaluation is to study the performance of each compression tech-
nique using synthetic as well as real datasets in terms of energy saving and latency.

WSN Scenario. For the evaluation, we consider a clustered WSN topology where n
sensors (nch clusterheads and nsn sensor nodes) nodes are deployed randomly over a
planar region A. Both sensors and cluster-heads have sensing capabilities, and their
sensing range is rs, a sensor can communicate with a cluster head if it is within the
communication range rt of the cluster head. For simplicity, we assume rt = rs, which
might be little different in real life [Bai et al. 2010], but its impact on our evaluation
is little. Let the average number of sensors connected to a single cluster head or node
degree be d. As there are nch cluster heads and nsn sensor nodes scattered over region
A, d is given by [Sevgi and Kocyigit 2008]

d = nsn

nch

(
1 − exp−

(
nchπr2

t

A

))
. (22)

Nodes within each cluster are spatially correlated, and each cluster performs its
compression separately and independently of all other clusters except for aggregation.
We assume every cluster has the same rate. For separate and independent compression
within each cluster and centralized collision free scheduling, cluster-level performance
is sufficient to provide relative performance measurements for the various compres-
sions schemes (except aggregation). For aggregation, cluster-level dependency requires
all clusters to be considered for calculating latency.

Metrics. Energy efficiency and latency are the two main performance parameters for
compression algorithms in WSNs. To evaluate energy savings (energy efficiency) we
exploit CR/SR as well as CC. In calculating Ecoding, we disregard the decoding cost, as
the high-end sink has sufficient resources.

Parameters Used for Evaluation. A list of parameters used and their corresponding
values is given in Table III. Each sensor node’s (TelosB) [Polastre et al. 2005] ADC
(Analogue to Digital Convertor) output is 12 bits. To accommodate this sample size and
for simplicity, we bound the data payload k to 16 bits. Again for simplicity in DSC we
consider the codeword (nc) length is 15 bits and the data payload kdsc length is 11 bits,
and this 11 bits is sufficient to represent temperature-like sensor readings with high
accuracy. Similarly for representing the coefficients or differences in DWT coding, we
consider that 8 bits is sufficient. In calculating the sampling and switching energy,
along with the information in Polastre et al. [2005], we have exploited the information
in Sensirion [2010] and Jurdak et al. [2010].

Methodology. First, for every value of n, we calculate d (cluster members in a cluster)
using Equation (22) and use this to calculate CR/SR for each technique. Then we
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Table III. Parameters Used for Evaluation

Parameters Value Parameters Value
Node Type TelosB(8MHz) Network Size (n) 10–1000
Deployment Area(A) 500 ∗ 500m2 Communication Range(rt) 50–75m
Node degree(d) Equation (22) Hop counts(H) H ≈ ( ln(n)

ln(d) )
ADC output 12 bits Data Payload(k) 2–2d bytes
Header Length(Hl) 7 bytes Extra Bits(Eb) 8 bits
Entropy(H(Yi)) 15 bits Codeword(nc) 15 bits
Dataword(kdsc) 11 bits Syndrome(nc − kdsc) 4 bits
Coefficients(nd) d − 1 Updated Sample(nsv) 1
Coefficients(bd) 8 bits Updated Sample (bsv) 16 bits
Saprsity (K) n/d Required Measurements(M) 3K
Sensor Type SHT11 Data Type Temperature(◦C)
Sampling Energy(Esamp) 300 μJ Switching Energy(Esw) 20.01 μJ
Standard Deviation(σ ) ±.5 Distortion (Ds) .0001–.045
Error Threshold(therr) ±.5 Tx data rate(R) 250 kbps

find the Ecoding and Ecomm using information from Table III in the their respective
equations. Finally, using these along with CR/SR and information from the Table III
in each technique’s Esaving equation, we calculate the respective savings. In calculating
latencies, first we find H ≈ ( ln(n)

ln(d) ), and then, using unit distance for each hop, we find
the communication delay for each category. Finally, adding the corresponding encoding
delay, we get the final latency.

Figures 6, 7, and 8 present the results for the energy savings, learning cost, and
latencies for each category of compression algorithm. Figure 6 shows results for the
two different values (50 m and 75 m) of rt. Ideally, the TelosB mote can communicate
up to 100 m, but in noisy and obstacled environments range can be quite low. So, we
produced the results based on ranges from 50–75 m. The savings are presented in
terms of percentage of the communication cost of noncompressed mode with respect to
n the number of nodes in the network or network size. As the energy savings within a
bounded distortion Ds greatly depend on the respective CR and/or SR, so their trends
in the graph almost follow the nature of the corresponding CR/SR, as computational
cost is negligible compared to communication [Raghunathan et al. 2002]. As shown in
Figure 6, at lower values of n, most of the schemes—especially aggregation, DSClossless,
DCS, and transform-based coding—suffer greatly, and DCS suffers the most. For in-
stance, for DCS up to n = 50, there are no savings, rather a small loss occurs (we
rounded the loss to zero savings). This is because a lower value of n means lower node
density and very low or no spatial correlation and no sparsity (for DCS) to be exploited,
hence there is no scope for compression and energy saving. This clearly shows that
these schemes, especially DCS, transform-based coding, and DSClossless, are not scal-
able in sparsely dense WSNs. As n increases, it increases node density and the spatial
correlation amongst the nearby nodes. This ultimately increases the corresponding CR
and the energy savings. But slowly and after n = 600, these become steady as d and H,
the two key parameters of CR are almost steady (hence keep the size of cluster almost
fixed but increases the number of clusters). H is kept constant at 4 in the network
under consideration. As our CR is related to a cluster or node, hence fixed size clusters
after n = 600 produce steady results. Higher node density or cluster size can cause
radio interference amongst the nodes, off setting the benefit of compression, so a trade-
off between these can be useful. On the other hand, for DSC and PC, there is no direct
relations between n and CR (as shown in Equations (10), (11), (13), and (16) except
for indirect relations in calculating Ecomm through H. In the case of PC, as it exploits
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Fig. 6. Network Size (n) vs. energy saving for various compressions: (a) rt = 50 m; (b) rt = 75 m.

Fig. 7. Network size (n) vs. learning cost in pre-
dictive coding and DSC.

Fig. 8. Network size (n) vs. latencies in compres-
sion approaches.

temporal correlation within intra-node signals, there is no direct link to node density
and spatial correlation. This is why energy savings for PC are invariant to n and, for
DSC, increase slowly as n increases. As shown in Figures 6(a) and 6(b), the impact of
communication range rt on energy saving is not clearly visible except for aggregation.
This is because in the aggregation scheme, node degree or child nodes are important,
whereas in other schemes, spatially-correlated nodes are important. For a fixed area,
increased rt may include more nodes into the cluster but this does not necessarily mean
that they will be correlated.

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 5, Publication date: November 2013.



5:32 M. A. Razzaque et al.

As shown in Figure 6, aggregation and DSClossy outperform the others. In aggre-
gation, each cluster head forwards only one packet instead of d full packets (noncom-
pressed) or d − 1 packets with reduced payloads (e.g., DWT, DSC, PC), and employs
a simple encoding scheme. This why it has higher CR and greater energy savings.
However, aggregation is unable to provide individual sensor readings. In this analysis,
we have excluded the cost of determining the optimal aggregation tree (e.g., obtaining
the Minimum Steiner Tree is an NP-Complete problem [Akkaya et al. 2008]) assuming
that the WSN is static. In dynamic WSN, it could offset the benefits of aggregation.
On the other hand, DSClossy gains this savings at the cost of distortion. Increasing D
increases CR, as the bit contents of the signal are reduced drastically based on Equa-
tion (1), hence the energy saving. For instance, if Ds increases from .025 to .25, energy
saving increases from 95.38% to 98.68%. PC- (both lossless and lossy), DCS-, and DWT-
based compression suffers compared to the others. Increased therr allows PC (lossless)
to encode correlated signals with less bits, increasing the CR and energy savings. In the
lossy case, as therr increases, more samples are discarded, which increases CR more and
yields greater energy savings. For example, in lossy PC, therr increases from .25 to .5,
results in energy savings increasing from 16.7% to 31.4%. Higher values of therr allow
greater energy savings but at the cost of increased distortion. The prohibitive learning
cost of PC/DSC (Figure 7), which linearly increases with n as well as exponentially with
the order m = max(p, q) of the prediction model could limit the use of PC and DSC in
WSNs, especially in dynamic networks where frequent learning or updates might be
needed. In DWT, CR depends on H, which increases slowly with n. Moreover, computa-
tionally DWT is more expensive, as it includes transformation and quantization as well
as DSC. Threshold-based DWT can improve this saving by discarding the transform
coefficients, which are lower than the threshold. In SRP-based DCS (spatial), if the
cluster size d < 4 (WSNs with n < 50) and M becomes close to d, then there are some
energy losses (20%, not shown in the graph) instead of savings. This is due to local
communication cost. On the other hand, as soon as d > 4 (WSNs with n > 50), the
cost of local communications is compensated by savings due to less measurements M.
If we consider spatiotemporal DCS, then better savings are possible due to temporal
decorrelations. It can produce savings even when d < 4 (WSNs with n < 50), but this
is at the cost additional latency. Unlike DSC and PC, transform-based and CS/DCS
compression do not require learning or global correlation knowledge except for the
purpose of local communication (included in the calculations). Hence these schemes do
not suffer in dynamic WSNs. Nevertheless, the very high decoding complexity O(n3)
of CS/DCS is a hindrance to the use of CS/DCS in large-scale WSNs. Use of special
hardware support, such as DSP (Digital Signal Processor) [Texas Instruments 1994],
can mitigate this somewhat.

Figure 8 shows the latencies (excluding decoding and retransmissions) for different
compression approaches with respect to n on millisecond (ms) scales. As lossless and
lossy versions of PC and DSC display similar latencies, we present them as generic
cases. As shown in Figure 8, latency increases slowly with n (upto 500) as H and
d increases slowly with n. Increased H and d requires more communications and
processing, hence the latency after n = 500 sharply increases. As shown Figure 8, the
trend is that as the node density increases, latencies also increase and become almost
steady after n = 600. This is because d and H, the two key parameters of CR, are
almost steady (hence keep the cluster size almost fixed but increasing the number of
clusters). H is constant at 4, hence fixed size clusters after n = 600 are producing
steady results. We have disregarded the decoding delays for all the schemes. However,
in large-scale WSNs, this could be very significant for CS/DCS due to the high decoding
time complexity. Also in DSC, the impact is higher for longer codewords nc, as it follows
O(n2

c k).
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Fig. 9. Dataset one: (a) Network used in dataset one. (b) Snapshot of correlation between nodes 5, 6, 11,
and 15.

Fig. 10. Dataset two: (a) Network used in dataset two. (b) Snapshot of correlation between nodes 8 and 9.

As shown in Figure 8, latency-wise, all the compression techniques except DSC show
similar performances. This is because the communication latency, the main contributor
to overall latency, is similar for all techniques. The variations shown in the figure are
mainly due to their differing computational time complexities. In the case of aggrega-
tion, latency is due to each hop as every aggregation point or cluster head must wait for
its child node. In transform coding and DCS, higher latencies are due to their higher
computational complexities and local communication. Even though PC shows better
performance compared to aggregation, transform coding, and DCS, it suffers compared
to DSC as it has higher computational complexity. In DSC the main contributing factors
are reduction in bit content and simple encoding.

Numerical Analysis. In this section, we apply the compression schemes to three real-
life sensor datasets and perform numerical analysis. Dataset one is generated from our
own lab WSNs deployment, the second and third are from the Intel Lab Data [Intel
Berkeley Research Lab 2004] and the Sensorscope PDG deployment [EPFL 2008]. To
ensure diversity in the datasets, we have included datasets for indoor (first two) and
outside environment monitoring (third). Figures 9, 10, and 11 present the network
scenarios and snapshots of these datasets. The WSN for dataset one consisted of 20
source nodes (TelosB) and one sink. For simplicity, a constant hop distance of 3 m was
used. The environmental temperature was sampled by every node every five minutes.
The deployment operated for a month. The total number of samples gathered was
8,640 per node and 172,800 for the whole network. In dataset two, data was collected
from 54 sensors deployed in the Intel Berkeley Research lab between February 28, and
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Fig. 11. Dataset three: (a) Scenario used in dataset three. (b) Snapshot of correlation between nodes 9 and
18.

April 5, 2004 [Intel Berkeley Research Lab 2004]. Mica2Dot [Mica2Dot 2004] sensors
with weather boards collected time-stamped topology information, along with humid-
ity, temperature, light, and voltage values once every 31 seconds. In the span of 38 days,
around 2.3 million readings were collected from these sensors. In dataset three, envi-
ronmental data were collected from Patrouille des Glaciers (PDG), Switzerland between
April 16–20, 2008. Shockfish TinyNode [TinyNode 2008] based ten weather stations
collected weather-related data (ambient temperature, wind-speed) every 2 mins, and
each node collected on average 3,000 samples within the five-day period. As shown in
Figures 9, 10, and 11, sensor readings in datasets one and two (excluding few outliers)
are very strongly spatially- and temporally-correlated, but not in dataset three. This is
expected, as indoor environments are generally controlled and show stationary statis-
tics, but outdoor environments like PDG, Switzerland do not. This is why all of the
compression schemes discussed earlier are suitable for datasets one and two but most
are not suitable for dataset three, since the data lacks correlation, making compression
less effective and introducing higher distortion in reconstruction [EPFL 2008]. So, we
focus on the first two sets for the analysis. However, dataset three provides a clear
indication that sensor readings collected in dynamic environments may not always be
compressible with bounded distortion.

For the learning phase of DSC and PC, we exploit two days/week (one in a weekday
and one in a weekend) data, which means for the dataset one, we need eight days of
readings (40,320 samples) and for dataset two, we need 12 days of readings (726,315
samples, approximately). Analysis of the datasets gives an overall network-wide spatial
correlation coefficient of 0.915 and a data sparsity of K/n ≈ 0.065 (based on SRP) for
dataset one and 0.95 (approximately) and 0.033 for dataset two.

The performance, which can be obtained by applying the algorithms discussed in
Sections 3.2–3.6, was predicted by means of the equations described in Sections 4.3–4.7.
The performance metrics were calculated based on node characterization information
[Polastre et al. 2005; Goh and Venkat 2006; Mica2Dot 2004; Sensirion 2010]. The
parameters used are listed in Table IV. The results approximated for each algorithm
category are given in Table V.

In these (static) deployments, all compression schemes achieve handsome energy
savings over uncompressed operations. As shown in Table V (subscript 1 for dataset
one and 2 for dataset two), these approximated results very much follow the results in
Figures 6 and 8, except for DCS. Unlike Figure 6, here DCS shows energy savings as
the model considered spatiotemporal correlation rather than only spatial. Aggregation
and DSClossy show the most energy savings. Due to the inclusion of learning cost, the
energy saving (both the lossy and lossless) of DSC and PC suffers somewhat compared
to Figure 6. On top of learning cost, the smaller cluster size (d + 1, lower decorrelation
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Table IV. Parameters Used for the Numerical Analysis

Dataset Parameters Value Parameters Value
One n 20 nls 40,320
One Maximum d 2 Maximum H 5
One One clk cycle cost .675 nJ Transmit-cost(1 bit) 260 nJ
One Receive-cost(1bit) 270 nJ Nop-16bit Math 219
One Nop-16bit Matrix 945 Nop-Floating Point 786
Two n 54 nls 726,315
Two Maximum d 4 Maximum H 6
Two One clk cycle cost 3 nJ Transmit-cost(1 bit) 2,100 nJ
Two Receive-cost(1bit) 781 nJ Nop-16 bit Math 266
Two Nop-16bit Matrix 1,488 Nop-Floating Point 1,654

Table V. Performances of the Numerical Analysis

Approach CR1 Esaving1(%) Latency1(ms) CR2 Esaving2(%) Latency2

Aggregation 3.4 70.3 10.21 4.5 77.1 81.6
PClossless 1.99 19.5 5.59 1.99 19.5 44.18
PClossy 2.83 34.2 5.59 2.83 34.2 44.18
DSClossless 1.95 18.5 4.9 2.23 24.8 38.73
DSClossy 37.6 66.94 4.9 37.6 66.94 38.73
Transform-based 2.17 54 5.952 2.49 59.1 47.1
DCS 1.34 23.53 5.85 1.69 37.12 46.22

scope) reduces energy savings, especially for DSClossless, and PClossless. As expected,
due to the waiting time in each aggregation hop, it shows highest latency, and the
others show increased latency compared to Figure 8. This is due to the increased hop
counts (H) and hop distance (3 m instead of 1 m). Dataset two performs better than
data set one in terms of CR, hence in Esaving for aggregation, transform coding, DCS
and DSClossless but suffers in latency as it exploits a radio with lower data rate and
MCU, which requires more of clock cycles (approximated) and has more hop counts
(H) compared to set one. Improvement in energy saving comes due to little higher
correlation and node degree d. On the other hand, both show the same results in terms
of energy saving for PC and DSClossy, as we have considered the same sensor data with
same therr and Ds.

Based on Sections 3 and 4, we present a summary of the compression techniques
(except text-based because of its limited use in WSNs) in Table VI. We consider charac-
teristics, such as compression and correlation type, complexity (computational), relia-
bility, robustness, scalability, QoS, and security, in summarizing them. The complexity,
robustness, and scalability are rated as low, medium, and high. As each of the tech-
niques has number of variants, scale of complexity, robustness and scalability can vary.
It is clear from the table that most of these compression techniques suffer in scalability
and robustness. Moreover, few address QoS, security, or reliability.

5. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

Although the compression techniques presented herein addresses many issues in WSNs
compression, there are still some open research challenges. In particular, research is
needed in the area of integrating of QoS, reliability, and security with compression. In
addition, most previous work views compression from the signal processing perspective
only. Hence, research on data compression from the networking protocol perspective in
WSNs is limited. Therefore we also briefly consider this viewpoint, examining cross-
layer opportunities in particular.
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Table VI. Summary of the Key Compression Techniques in WSNs

Transform
Char. Aggregation PC DSC Coding CS/DCS
Compression DC and CC DC and CC DC and CC DC and CC SC, DC and CC
Correlation spatial (not

always)
Temporal Mainly

Spatial
Spatio-
temporal

Spatio-
temporal

Complexity High
(structural)

Medium
(learning)

Medium
(learning)

Medium High (decoder)

QoS/QoI Addressed Not yet Not yet Not yet Not yet
Reliability Possible and

addressed
Not yet Possible

and
addressed

Not yet Possible and
addressed

Robustness Low-high High Low-
Medium

Medium High

Scalability Low-high Low-
Medium

Low-
Medium

Low Medium

Security Addressed Not yet Not yet Not yet Inherent
Applications Limited to

where
aggregation
functions
applies

Suffers in
dynamic
applications

Suffers in
dynamic
applications

Good in
dynamic and
static
environments

Good in
dynamic and
static
environments

Improved Compression. Data sampling and switching of node state, especially in
radio, are regular phenomenon in WSN implementations and are not typically inex-
pensive in terms of energy. For instance, a sampling operation costs (for TelosB) at least
0.3 mJ for temperature (equal to the transmission cost of 1,153 bits) [Polastre et al.
2005; Sensirion 2010], and 0.36 mJ for soil moisture (equal to the transmission cost of
1385 bits) [MicroDAQ 2010]. Unfortunately, existing compression approaches (except
CS/DCS) do not consider these two issues, hence their costs. Works on CS/DCS [Baron
et al. 2009; Vuran et al. 2004; Duarte et al. 2005] already show that sampling level
compression is possible, but is yet to be explicitly explored in WSNs. Typically in WSNs,
a sensing operation wakes up the MCU and MCU wakes up the radio [Jurdak et al.
2010]. In PC, if the estimated values are within the error threshold, then there will be
no radio transmission. In this situation, switching the radio to the on state immediately
after the MCU is a waste of energy. Reactive instead of proactive switching of the radio
will reduce the number of switching operations and reduce their energy cost.

The majority of existing compression approaches assume reliable communications,
but in reality, WSNs communications are seldom reliable. Moreover, compression
schemes often neglect the energy-expense arising from computation of imputation mod-
els, that is, evaluation of polynomials, comparisons, and so on, which are usually float-
ing point operations and are therefore relatively costly on tiny sensor hardware [Blaβ
et al. 2008]. Greater consideration of the effects of unreliable communications on com-
pression is necessary to improve performance.

Existing PC or DSC algorithms use either a centralized or distributed learning
phase. In a network, centralized learning is good for nodes closer to sink, while a
distributed approach is better for more distant nodes. Hybrid learning may be a good
research direction for predictive coding and DSC. Even a combination of reactive and
proactive learning could be useful. Due to decoding complexity, CS/DCS suffers in real-
time applications in large scale WSNs. Investigating decoding complexity reduction,
especially for CS/DCS, could be a fruitful future research direction.

QoS-Awareness. Compression algorithms and frameworks should integrate QoS-
awareness so that WSN applications can achieve their objectives. Few papers on data
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aggregation have considered this issue. To our knowledge, no work explicitly considers
QoS in PC, DSC, DCS, and transform-based compression schemes or frameworks. In-
tegration of QoS-awareness in compression schemes or framework could be a potential
future direction.

Reliability. There is a clear dependency between reliability and compression, which
should be better understood and exploited. Given the limited number of publications
on the topic [Iyer et al. 2008; Marco and Neuhoff 2004], there is clearly significant
scope for future work in this area.

Scalability. Most of existing compression approaches (e.g., PC, DSC, transform cod-
ing) perform poorly in scalability experiments. For instance, DCS suffers in small-scale
WSNs due to lack of sparsity and in large-scale WSNs due to high decoding complexity.
This issue needs further attention from the researchers.

Security. Security is not considered in most compression schemes, except data aggre-
gation. It is worth noting that the random projections used in CS and DCS inherently
provide encryption functionality [Abdulghani and Rodriguez-Villegas 2010]. The ran-
domized measurements themselves look a lot like noise, which is meaningless to an
observer who does not know the seed. This inherent encryption in CS and DCS schemes
is a real bonus. However, further research is needed in this area.

Cross-Layer Design. Generally, data compression is implemented as an application-
layer protocol. However, in some circumstances, application-level implementation of
compression is suboptimal. Some compression algorithms reduce the amount of data
collected (e.g., CS). To take full advantage of this, nodes should stay off when sensing is
not taking place. However, this has an impact on network connectivity, since the radio
will be off as well. Optimal operation requires cross-layer or multilayer coordination
between application-layer compression and MAC-layer scheduling. The dependency
of compression on routing is obvious [Shen and Ortega 2010; Scaglione and Servetto
2002]. Furthermore, incorporation of resource awareness in compression schemes, for
example, dependency on remaining energy, requires coordination between application
layer compression and the physical layer.

Very little work has been done in cross-layer-based compression [Oldewurtel et al.
2008; Wang et al. 2009]. Exploration of this aspect of compression in WSNs is necessary.

6. CONCLUSIONS AND FUTURE WORK

Development of effective compression algorithms is key to improved utilization of the
limited resources of WSNs (energy, bandwidth, computational power). A large number
of proposals have addressed this problem. The proposals are diverse and involve various
compression approaches. In this work, we have made an effort to put these works into
perspective and to present a holistic view of the field. In doing this, we have provided
a comprehensive overview of existing approaches, reviewed the current state of the
art, and presented a logical classification. Previous works are categorized as involving
either aggregation, text-based compression, distributed source coding, transform-based
compression, compressive sensing, or predictive coding. Each category has a number
of variants, which are presented accordingly. We have analyzed these approaches on
the basis of the key performance metrics, that is, compression ratio, computational
complexity, energy efficiency, distortion, and latency. Analytical results show that lossy
versions of these approaches provide better compression ratios. Hence they achieve
higher energy savings than the corresponding lossless versions at the cost of distortion
in the reconstructed signals.

Aggregation is the most commonly exploited and easily deployable compression tech-
nique. It has a number of variants depending on network topology, such as tree based,
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chain-based, cluster-based. However, it has limited applications as it is unable to pro-
duce original sensor data at sink. Finding appropriate aggregation points is an opti-
mization problem. In the case of unreliable communication, the aggregation point wait
time could be prohibitive. Predictive coding is very useful in reducing the amount of
data communication but requires learning of data statistics, which can be very expen-
sive in dynamic environments, as the complexity of learning is bounded by O(m3n). Ob-
taining the correlation knowledge required by DSC can be as expensive as learning in
predictive coding. Lossy DSC can provide very high compression ratios, as well as high
energy efficiency, but suffers in dynamic environments and networks. In terms of com-
pression ratio and energy saving, transform-based compression and CS show reason-
able performance compared to their counterparts, as these methods do not require any
learning of correlation statistics. Hence they are effective in dynamic environments and
networks. Transform-based approaches are particularly useful for multimedia commu-
nications (e.g., video, images), as specialized compression algorithms are available for
this type of traffic. Many CS/DCS approaches operate on analogue signals. The compu-
tational complexity arising from use of floating point data as well as matrix calculations
could be significant. Moreover, the decoding complexity of CS/DCS can lead to signifi-
cant delay in large-scale networks. Hence the approach may face scalability problems.

Although the presented approaches and frameworks address many issues associated
with data compression in WSNs, some research questions remain relatively unex-
plored, such as support for and integration of QoS, scalability, reliability, and security.
There is significant scope for future work in these areas. Realizing the importance of
QoS in WSNs, our future endeavors will focus on developing a compression framework,
which integrates QoS-awareness for WSNs. Data compression is common in WSNs,
hence integration of QoS awareness will ultimately contribute in developing a QoS-
aware data gathering framework for WSNs. The diverse applications of WSNs demand
support for a diverse set of QoS requirements. A single compression technique will not
be optimal for all applications. Along with QoS awareness, a secondary objective will be
to determine the best possible compression technique for a particular application tak-
ing into account the limited available resources. We also have the intention to explore
the possibilities of cross-layer design of compression approaches in WSNs.
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BARR, K. C. AND ASANOVIĆ, K. 2006. Energy-aware lossless data compression. ACM Trans. Comput. Syst. 24,
3, 250–291.

BINGHAM, E. AND MANNILA, H. 2001. Random projection in dimensionality reduction: Applications to image
and text data. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 245–250.

BLAβ, E.-O., HORNEBER, J., AND ZITTERBART, M. 2008. Analyzing data prediction in wireless sensor networks.
In Proceedings of the 67th IEEE Vehicular Technology Conference. IEEE.

BOX, G. E. P., JENKINS, G. M., AND REINSEL, G. C. 1994. Time Series Analysis: Forecasting and Control 3rd Ed.
Prentice-Hall.

BOYD, S., GHOSH, A., PRABHAKAR, B., AND SHAH, D. 2006. Randomized gossip algorithms. IEEE Trans. Inform.
Theory 52, 6, 2508–2530.

BRAYNER, A., LOPES, A., MEIRA, D., VASCONCELOS, R., AND MENEZES, R. 2008. An adaptive in-network aggregation
operator for query processing in wireless sensor networks. J. Syst. Softw. 81, 3, 328–342.

BROWN, S. AND SREENAN, C. J. 2007. A study on data aggregation and reliability in managing wireless sensor
networks. In Proceedings of the IEEE International Conference on Mobile Ad Hoc and Sensor Systems.

BURROWS, M., WHEELER, D., AND WHEELER, D. J. 1994. A block-sorting lossless data compression algorithm.
Tech. rep., Digital SRC Research Report.

CAIONE, C., BRUNELLI, D., AND BENINI, L. 2012. Distributed compressive sampling for lifetime optimization in
dense wireless sensor networks. IEEE Trans. Indust. Inf. 8, 1, 30–40.
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