
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014 393

A Survey of Mobile Cloud Computing
Application Models

Atta ur Rehman Khan, Mazliza Othman, Sajjad Ahmad Madani, IEEE Member, and
Samee Ullah Khan, IEEE Senior Member

Abstract—Smartphones are now capable of supporting a
wide range of applications, many of which demand an ever
increasing computational power. This poses a challenge because
smartphones are resource-constrained devices with limited com-
putation power, memory, storage, and energy. Fortunately, the
cloud computing technology offers virtually unlimited dynamic
resources for computation, storage, and service provision. There-
fore, researchers envision extending cloud computing services
to mobile devices to overcome the smartphones constraints.
The challenge in doing so is that the traditional smartphone
application models do not support the development of ap-
plications that can incorporate cloud computing features and
requires specialized mobile cloud application models. This article
presents mobile cloud architecture, offloading decision affecting
entities, application models classification, the latest mobile cloud
application models, their critical analysis and future research
directions.

Index Terms—Mobile Cloud Computing, Application Models,
Mobile Cloud Application Models, Cloud Computing, Mobile
Cloud Survey, Mobile Cloud Application Models Survey.

I. INTRODUCTION

CLOUD computing is a coalesce of many computing fields
and has gained much popularity in the recent years.

Cloud computing provides computing, storage, services, and
applications over the Internet. Moreover, cloud computing
facilitates to reduce capital cost, decouple services from the
underlying technology, and provides flexibility in terms of
resource provisioning.

Similarly, smartphones are also gaining enormous popular-
ity due to the support for a wide range of applications, such as
games, image processing, video processing, e-commerce, and
online social network services. As smartphone applications
increase in complexity, so do their demand on computing re-
sources. Unfortunately, the advances in smartphone hardware
and battery life have been slow to respond to the computational
demands of applications evolved over the years. Therefore,
many applications are still unsuitable for smartphones due
to constraints, such as low processing power, limited mem-
ory, unpredictable network connectivity, and limited battery
life [1], [2].

In general, to make the smartphones energy efficient and
computationally capable, major hardware and software level

Manuscript received August 1, 2012; revised January 7, 2013 and March
21, 2013.

A. R. Khan and M. Othman are with the University of Malaya, Kuala
Lumpur, Malaysia (e-mail: attaurrehman@siswa.um.edu.my).

S. A. Madani is with COMSATS Institute of Information Technology,
Abbottabad.

S. U. Khan is with the Department of Electrical and Computer Engineering,
North Dakota State University, Fargo, USA.

Digital Object Identifier 10.1109/SURV.2013.062613.00160

changes are needed, which requires the developers and manu-
facturers to work together [3], [4], [5]. Due to size-constraints,
hardware level changes alone may not enable smartphones
to achieve true unlimited computational power. Therefore,
software-level changes are more effective, where computation
is performed on remote resources with partial support of a
smartphone’s hardware [6].

Computation offloading is a procedure that migrates
resource-intensive computations from a mobile device to the
resource-rich cloud, or server (called nearby infrastructure).
Cloud based computation offloading enhances the applications
performance, reduces battery power consumption, and execute
applications that are unable to execute due to insufficient
smartphone resources. Moreover, cloud offers storage ser-
vices [7] that can be used to overcome the storage constraints
of the smartphones. Currently, many applications exist with
cloud support for multiple domains, such as commerce [8],
healthcare [9], [10], education [11], [12], social networks [13],
gaming [14], file sharing [15], and searching [16], among
others.

We define mobile cloud computing as an integration of
cloud computing technology with mobile devices to make
the mobile devices resource-full in terms of computational
power, memory, storage, energy, and context awareness. Mo-
bile cloud computing is the outcome of interdisciplinary ap-
proaches comprising mobile computing and cloud computing.
Therefore, this transdisciplinary domain is also referred as
mobicloud computing [17].

The term mobile cloud is generally referred to in two
perspectives: (a) infrastructure based, and (b) ad-hoc mobile
cloud. In infrastructure based mobile cloud, the hardware in-
frastructure remains static and provides services to the mobile
users. Alternatively, ad-hoc mobile cloud refers to a group of
mobile devices that acts as a cloud and provides access to
local or Internet based cloud services to other mobile devices.
In this survey, we limit the selection of application models to
the former case namely, the infrastructure based mobile cloud.
Therefore, ad-hoc mobile cloud based systems/application
models [18] and associated issues, such as mobility of cloud
infrastructure and geo-distribution of service nodes [19], [20],
are beyond the scope of this survey.

Although cloud is useful for computing and storage [21],
[22], [23], the traditional computation offloading techniques
cannot be used for the smartphones directly, because these
techniques are generally energy-unaware and bandwidth-
hungry. Moreover, the traditional mobile application models
support the development of applications that can execute only
on mobile devices without computation offloading. However,

1553-877X/14/$31.00 c© 2014 IEEE

394 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

TABLE I
CLOUD AND MOBILE CLOUD COMPUTING COMPARISON

Issues Cloud Computing Mobile Cloud Computing
Device energy × √
Bandwidth utilization cost × √
Network connectivity × √
Mobility × √
Context awareness × √
Location awareness × √
Bandwidth × √
Security

√ √

there are a few applications that utilize cloud resources, but
the usage is limited to only storage and application-specific
services, such as Apple’s Siri (voice based personal assistant)
and iCloud storage service. Therefore, smartphones require an
application model that supports computation offloading and is
optimized for mobile cloud environment in terms of hetero-
geneity, context awareness, application partitioning overhead,
network data cost, bandwidth, and energy consumption.

There are various generic surveys that highlight the im-
portance of mobile cloud computing. In [24], the authors
discuss two mobile cloud application models (Hyrax [25],
cloudlets [2]) and emphasize on the importance of intelligent
access schemes [26]. In [27] and [28], the authors discuss
generic issues of a mobile cloud. In [29], the authors present
basic level comparison of the application models. However,
most of the techniques discussed in [29] are not applicable to
infrastructure based cloud environments or cannot be classified
as application models. Also, the authors did not identify the
issues associated with the application models.

The main contribution of this article is to survey the most
recent mobile cloud application models (work done between
2008-2012) and highlight their strengths, weaknesses and is-
sues that need further attention. We also present the differences
between cloud and mobile cloud computing, mobile cloud
architecture, and the main entities that impact the overall
computation offloading decision. Moreover, we highlight the
parameters that affect mobile cloud application models, and
present classification of application models. Furthermore, we
compare and critically analyze the application models along
their critical outstanding issues, and suggest future research
directions.

The rest of the paper is structured as follows. Section II
presents mobile cloud architecture, computation offloading
workflow, and entities that affect computation offloading pro-
cess. Section III presents the criteria for comparison of mobile
cloud application models. Section IV discusses the mobile
cloud application models and highlights their advantages and
shortcoming. Section V presents comparison of application
models, and mobile cloud applications. Finally, Section VI
concludes with a discussion of critical outstanding issues and
future research directions in this area.

II. MOBILE CLOUD ARCHITECTURE & COMPUTATION
OFFLOADING

The main objective of cloud computing is to facilitate small
businesses in a cost effective fashion to provide access to
technologies that are beyond their reach. By using cloud

computing, small businesses can expand their IT resources
based on service demands and avail equal opportunities of
growth to compete with other businesses within the market.
Alternatively, the primary objective of mobile cloud comput-
ing is to provide enhanced user experiences to mobile users
that may be in terms of computation time, battery life, commu-
nication, services, and mobile device resource enhancement.
Therefore, both of these technologies have different objectives
and challenges. For instance, in mobile cloud computing, the
network connectivity, amount of communication, bandwidth
utilization cost, and mobile device energy are considered to
be the foremost issues, which may not be the case (or least
important) in cloud computing. However, the mobile cloud
application models are based on the standard cloud service
model that includes Infrastructure as a Service (IaaS) [30],
Platform as a Service (PaaS) [31], and Software as a Service
(SaaS) [32], [33]. Therefore, based on the working of the
application models, any of these service layers can be utilized.
Some of the well-known services for mobile cloud computing
include Amazon Elastic Compute Cloud (EC2) [34], Google
App Engine [31], and Microsoft Azure [35].

To the best of our knowledge there is no standard definition
or feature characterization of mobile cloud computing. There-
fore, we present the possible best comparison of cloud and
mobile cloud computing in terms of significance of the issues
listed in Table I.

A. Mobile Cloud Architecture

In the current mobile cloud architecture, mobile devices
can access cloud services in two ways, i.e., through mobile
network (telecom network) or through access points, as shown
in Figure 1.

In the mobile network (telecom network provider) case, the
mobile devices such as cellular/satellite smartphones [36] are
connected to a mobile network through a Base Station (BS)
or via a satellite link. However, if the smartphones are not
equipped with a satellite communication module, then external
satellite communication devices [37] are used. The telecom
networks are further connected to the Internet and provide
Internet connectivity to the users. Therefore, if the users have
mobile network connectivity, the users can access cloud based
services through the Internet.

In the access point case, the mobile users connect to the
access points through Wi-Fi that is further connected to the
Internet service provider to provide Internet connectivity to
the users. Therefore, the mobile cloud users can access cloud
based services without utilizing telecom services, which may

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 395

Fig. 1. Mobile cloud architecture

charge them for data traffic. Moreover, Wi-Fi based connec-
tions provide low latency and consume less energy compared
to 3G connections [14]. Consequently, mobile cloud users
prefer to use Wi-Fi Internet connections whenever accessible.

B. Computation Offloading Decision Making

A mobile cloud application goes through the following steps
before offloading computations to the cloud. Figure 2 presents
the basic workflow of the computation offloading process.
The workflow starts with the execution of an application
followed by checking the user’s offloading permission. If
offloading is enabled, then application checks connectivity to
the cloud resources and notes the available/assigned resources.
The next step involves deciding whether offloading is favor-
able, depending on the users’ desired objective (discussed in
Section IV). If it is favorable, then the computation offloading
is performed. Otherwise, the application performs all compu-
tations locally.

The decision of computation offloading is an extremely
complex process and is affected by different entities, for
instance user, connection, smartphone, application model, ap-
plication (nature) and cloud service. Figure 3 presents different
entities that can affect the computation offloading decision in
multiple ways.

1) User: A user may enable or disable the computation
offloading based on network data cost, cloud service cost,
importance of data privacy and job turnaround time. Moreover,
the decision is also dependent on the users’ desired objective.
For instance, a user may be interested in saving energy,
enhancing application performance or executing an application
that does not have sufficient resources on the smartphone.

2) Connection: Different communication technologies have
their own limitations. For instance, Wi-Fi based connections
provide high bandwidth and shorter delays. Alternatively, 3G
connections provide lower bandwidth and suffer from higher
delays compared to Wi-Fi connections [14]. Therefore, if both
connections are available, then user may prefer to use Wi-Fi
connection. However, Wi-Fi connectivity is not always fea-
sible, particularly in mobile environments. Therefore, 3G/4G
connections that charge for bandwidth usage are used. Hence,
from a connection point of view, the computation offloading
decision can be affected by network bandwidth, delay, and
cost.

Fig. 2. Process of computation offloading

3) Smartphone: The smartphones have achieved great de-
velopment in terms of hardware resources in the past few
years. The latest smartphones are equipped with high per-
formance processors, memory, sensors and storage. For in-
stance, Sony Xperia S [38] comes up with 1.5GHz Dual
Core processor, 1GB RAM, 32GB data storage support, and
1750mAh battery. Similarly, HTC One X [39] has 1.5Ghz
Quad-core processor, 1GB RAM, 32GB data storage support,
and 1800mAh battery. Therefore, it is obvious that users
with high performance smartphones may require mobile cloud
support less frequently, compared to the users that have low

396 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 3. Entities affecting computation offloading

performance smartphones and runs out of resources quickly.
4) Application Model: The mobile cloud application mod-

els differ from each other in terms of design and objectives.
For instance, the objective of computation offloading may
be energy efficiency, application performance or application
execution for devices that do not have sufficient resources.
The application models may also differ in terms of context
awareness, application partitioning, code availability in the
cloud, profilers and overhead. A detailed discussion of these
parameters is provided in Section III.

5) Application: The computation offloading decision also
depends on the nature of the application. For instance, an ap-
plication that requires local hardware resources (GPS, camera,
and sensors) may not be able to execute in the cloud unless the
application is partitioned into components, and local-resource
independent components are moved to the cloud. Similarly, if
the application data is unavailable in the cloud and the input
data size is too large, then smartphone side computation may
be favorable. Alternatively, transferring a large amount of data
may incur higher turnaround time and consume higher energy
in terms of communication, which may offset the benefits of
offloading.

6) Cloud Service: The selection of cloud service is very
crucial for computation offloading. Therefore, if a user re-
quires mobile cloud support for computation offloading, then
it is important that the cloud must have runtime support for the
offloaded application/component. Moreover, the leased cloud
service must be rich in resources in order to gain advantage
of computation offloading. For example, if a smartphone and
a Virtual Machine (VM) [40], [41] (deployed in the cloud)
have the same specifications (computational power, memory),
then the user may not get any improvement in the application
performance. Although the scenario may be beneficial in terms
of energy (depending on data/code size), it is not beneficial
for enhancing application performance. In fact, the application
performance may decrease due to the additional computation
and delay involved in the offloading process.

All of the above mentioned entities have vital importance
in the decision of computation offloading. However, it is the
responsibility of the application models to perform the com-

putation offloading considering the related entities. Therefore,
in this survey we mainly focus application models taking into
account the related entities.

III. CRITERIA FOR COMPARISON OF APPLICATION
MODELS

This section highlights various parameters that play a vital
role in the acceptance of any mobile cloud application model.
Therefore, the mobile cloud application models that address
most of the following parameters are considered to be preemi-
nent. The selected mobile cloud application models presented
in section IV are compared based on the parameters discussed
in following subsections.

A. Context Awareness

Context awareness of an application model refers to its
awareness about the entities and parameters that can affect
the decision of computation offloading. In principal, it is
very important for an application model to be context aware
because static offloading is not always beneficial, and cases
may occur where the performance of the applications degrade
with the computation offloading [42]. The computation of-
floading decision affecting entities and parameters are already
discussed in Section III.

B. Latency

In mobile cloud computing, latency is defined as the time
involved in offloading the computation and getting back the
results from the nearby infrastructure or cloud, sometimes
referred as turnaround time. The latency depends on multiple
factors, such as offloaded code size, data input size, location of
the required data, offloading scheme and granularity, network
bandwidth, execution delay, and resultant data size.

In practice, the latency of an application model may vary
from case to case. For instance, in clone based application
models, if a smartphone and its clone are synchronized on
short time intervals, then synchronization may not be required
before offloading and the latency may be low. Alternatively,
if the synchronization is done after long time intervals or on

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 397

demand, then synchronization will be required before com-
putation offloading so that the execution is done accurately.
However, the runtime synchronization may increase latency.

Moreover, some application models require installations on
the nearby infrastructure, and the installation time may vary
from a few seconds to a few minutes[2], [43]. Also, the
computation platforms are not always in a ready state and
may require seconds to minutes to startup the service [44].
Therefore, the service startup delay makes the application
models unsuitable for real-time applications.

C. Bandwidth Utilization

In the application models, bandwidth utilization refers to
the amount of data/code migrated to offload the computation.
Therefore, if the computation offloading requires a large
amount of data to be transferred on runtime, then higher
latencies may occur. Alternatively, if the data is offloaded to
the cloud in advance to reduce the offloading latency, then
synchronization of the data is required as discussed in the
previous section. However, if the synchronization is done on
short time intervals, then the communication may lead to high
bandwidth usage that is not free in cellular networks. Nev-
ertheless, costly bandwidth is not the only primary concern.
Bandwidth in the wireless networks is limited as compared
to the wired networks, particularly in cellular networks. The
4G technology [45] aids to narrow down the bandwidth gap
between wireless and the wired networks. However, there
still exist many issues related to the access protocols and
the network architecture. Even if the current 4G issues are
ignored, the cellular network bandwidth utilization may never
be free that makes efficient bandwidth utilization an important
concern. Therefore, during the development of the mobile
cloud application models, efforts must be made to optimize
and negotiate a tradeoff between bandwidth utilization and
latency.

D. Generality

The generality of an application model refers to its support
for a range of applications. In practice, there are multiple types
of applications with different resource demands and behavior.
For instance, tasks like scanning files for viruses, indexing files
for quick search, and crawling news website for the latest news
are delay tolerant tasks that do not require user interaction
after initiation. Once the tasks are completed, the results
can be synced back to the smartphones. Alternatively, the
applications used for the image, speech, and video processing
may require quick response from the cloud to smoothen the
interaction between the user and the smartphone application.
Consequently, it is quite challenging for an application model
to support multiple types of applications. However, efforts
must be made to design mobile cloud application models that
can support all types of applications.

E. Privacy

With the advancements in the mobile device technology,
sensors such as GPS have become cheap, and are available

in nearly all the latest smartphones. Many recent applica-
tions [46], [47], [48] require user location to deliver location-
based services. These services are either user-invoked to get
location related information [49], or service-provider invoked
to deliver location-based ads. For instance, many free mobile
applications [50], [51], require GPS access to show location-
based ads against the free services availed by the users.
Therefore, the location information of the users can cause
serious privacy issues, particularly when other user-related
information is already known [52], [53].

Similarly, data privacy is also important and is one of the
main bottlenecks that restrict consumers from adopting mobile
cloud computing. The users’ data stored in the cloud may
include emails, tax reports, personal images, salary and health
reports etc, and may contain sensitive information. Therefore,
the consumers cannot afford any privacy leakage as it may lead
to financial loss and legal issues [54]. The European Union has
passed some laws [55], [56] for the handling of data, according
to which the data storage servers must reside in the countries
that can provide sufficient protection. Moreover, in some cases
the data storage location must be known. However, this is not
always possible in a cloud environment due to the absence
of standards, data privacy, and cloud security [57]. Therefore,
to gain consumers trust in the mobile cloud, the application
models must support application development with privacy
protection and implicit authentication mechanisms [58], [59].

F. Complexity

The applications developed for the mobile cloud platforms
must be able to execute in both online and offline mode.
Moreover, the applications must utilize minimum bandwidth
with considerable delay. Therefore, some models (discussed
in Section IV) partition the applications into manageable and
off-loadable components (sub-partitions) that can move to the
cloud with minimal bandwidth requirement.

The application component offloading can be done in
two ways, i.e., static and dynamic. In static offloading, the
programmers pre-determine the application components that
can be offloaded to the cloud. However, this solution is not
very effective, as many entities may affect the computation
offloading (discussed in Section III). Alternatively, in dynamic
(also called context aware) offloading, the execution location
of the components is not pre-determined, and the offloading
decisions are made intelligently by analyzing contextual in-
formation, such as, smartphone resources, bandwidth, latency,
energy, and cloud resources.

Moreover, some application models use parallelism in the
cloud to reduce execution delay, but depending on the cloud
service, the parallelism may not always be supported [60].
In [61], [62], [63], the authors propose multiple techniques to
achieve Quality of Service (QoS) by reducing latency. The
features, such as application partitioning, dynamic offload-
ing, resource monitoring, contextual information analysis, and
cloud parallelism add to the complexity of the application
models. Therefore, complex mobile cloud application models
may be difficult to implement and may incur high overhead on
the smartphones in terms of computation, memory and energy.

398 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

G. Security

Security is one of the most prominent bottlenecks in the
adoption of cloud computing [64]. Cloud computing endure
a number of security issues, for instance, data access con-
trol [65], data distribution over a distributed infrastructure,
data integrity, service availability, and secure communication.
Also, the mobility adds some additional security issues [66],
[67] that make mobile cloud security more challenging. An-
other security issue that requires concern is the provisioning of
virtually unlimited resources to untrustworthy users [68]. For
example, an adversary may use virtually unlimited resources
against the enterprises, and cause problems for the victims and
the cloud service providers.

In mobile cloud computing, security needs to be analyzed
from two perspectives, i.e., the smartphone and the cloud.
The smartphones must be clean from the malicious codes,
such as viruses, trojan horses, and worms. The malicious
codes are security threats and can change an application’s
behavior, which may cause privacy leakage or data corruption.
Therefore, to keep the smartphones clean from the malicious
codes, security applications [69], [70], [71], must be used
regularly. However, the scanning process of the security ap-
plications is a computation-intensive task that consumes high
energy. Therefore, it is not feasible for the smartphones to
execute security applications for extended periods. In [72],
[73], [74], the authors propose multiple techniques that per-
form computation offloading of (malicious code scanning)
resource-intensive tasks to achieve security and gain energy
efficiency. Alternatively, from the cloud security perspective,
the data stored in the cloud can be lost, altered, denied, or
leaked. Therefore, the data stored in the cloud must have
multiple backups with integrity support to avoid data loss and
undesired modifications. In [74], [75], [76], [77], the authors
propose multiple techniques that focus data integrity issues.
Nevertheless, security is one of the important issues of the
mobile cloud computing and demands serious consideration
during the development and adoption of application models.

H. Programming Abstraction

The cloud platforms support different APIs, data models,
query languages, and cost models. Similarly, the smartphones
run different operating systems that have variable hardware
and software requirements. Therefore, the heterogeneities in
smartphones and cloud platforms make the development of
mobile cloud applications complicated. However, the hetero-
geneities arise due to the lack of standards and sometimes self
created by the vendors to retain the users.

To facilitate the programmers in development of mobile
cloud applications, new tools are required that provide pro-
gramming abstraction and hide the underlying complexities
of the cloud and smartphones. Moreover, the new tools must
enhance the performance of applications, and allow program-
mers to control the behavior and execution location of the
applications [78], [79], [80]. For instance, MapReduce [81]
and Hadoop [82] allow the development of applications with-
out knowing the underlying operational complexity, and make
the coding easier for the programmers. Therefore, during
the development of mobile cloud application models, the

heterogeneity issues must be considered, and effort must
be made to keep the programming abstraction high, so that
the developers can easily adopt new programming tools and
application models.

I. Scalability

Scalability is one of the most important features of cloud
computing. Therefore, the mobile cloud application models
must support the development of applications that can scale
in the cloud to meet unpredictable user demands. Moreover,
the application models must enhance the supported features
to incorporate new types of applications in a timely manner.
Nevertheless, the mobile cloud application models must also
be scalable in terms of adoption. For instance, an application
model that requires nearby computational infrastructure and
demands heavy software installations is less scalable com-
pared to the application model that is based on the cloud
platform having no hardware setup requirement. However, the
scalability is not only dependent on the application model,
and to some extent depends on the cloud platform. For
instance, in Amazon EC2 [34] users can control almost the
entire software stack. This feature restricts Amazon’s ability
to provide automatic scalability as the replication control
becomes highly application dependent. Alternatively, Google
AppEngine [31] focuses on the traditional web applications
with stateless computation and stateful data storage that
makes the applications impressively scalable. Therefore, the
aforementioned scalability issues must be considered during
the development or adoption of the mobile cloud application
models.

J. Execution resource

The mobile cloud applications execute in two ways [2],
[83]. In the first case, the applications execute on the nearby
infrastructure that acts as a (virtual) cloud, for instance,
personal computers, laptops, and servers. In the second case,
the applications execute in a real cloud, for instance, Amazon
EC2 [34], Google App Engine [31], and Microsoft Live
Mesh [84]. Therefore, the mobile cloud application models
may support execution of the applications on either nearby
infrastructure, cloud or both.

Execution resource significantly affects the scalability and
availability of the application models. For instance, the avail-
ability of a nearby infrastructure is an unrealistic assumption,
particularly when the user is on the move. Therefore, the
assumption may be valid only for home and office envi-
ronments, where the personal computers or nearby servers
are available. However, some application models may require
heavy software installations on the infrastructure to support
computational offloading. In principal, the personal computers
do not promise virtually unlimited resources like real cloud
platforms. Moreover, keeping the personal computers always
in the ready state, just for the sake of computation offloading
is not an energy efficient solution. Therefore, to make the
application models scalable and capable of utilizing virtually
unlimited resources with guaranteed availability; shifting the
task of computation from the nearby infrastructure to the real
cloud platforms is an appealing choice. Nevertheless, cloud

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 399

computing is more energy efficient and the researchers have
proposed different energy efficient techniques [85], [86], [87],
[88] that can get maximum output from the cloud based
servers.

K. Platform

A platform is the underlying software technology of the
smartphones on which the application models are based.
Smartphones manufactured by different manufacturers can be
grouped together based on the operating systems that run
on the devices. The renowned smartphone operating systems
are Android [89], iOS [90], Symbian [91], Mobile operating
system [92] and BlackBerry OS [93].

• Android is an open source operating system powered by
Google, and its kernel is based on Linux. Android OS
supports Java based application.

• iOS is a proprietary OS of Apple and is based on MAC
OS X. iOS applications are mainly developed in objective
C.

• Symbian is an open source OS powered by Nokia, while
its applications are developed in Java and C++.

• Mobile OS is a proprietary of Microsoft and support ap-
plications developed on .Net framework. Nokia has also
announced that its newly manufactured smartphones will
be running Windows Phone 7 powered by Microsoft [94].

• BlackBerry OS is a proprietary of Research in Motion
(RIM) and its applications are mainly developed in Java.

Most of the application models discussed in Section IV sup-
ports a single platform due to the heterogeneity of the under-
lying technologies, and the variety of supported programming
languages. For example, Apple iOS does not support Java-
based applications, and its applications are purely coded in
Objective C. Moreover, some mobile operating systems are
not designed for computational offloading, for instance, the
Google Android application model has more support for
computational offloading compared to Apple iOS.

IV. APPLICATION MODELS FOR MOBILE CLOUD
COMPUTING

The mobile cloud application models are designed to
achieve a particular objective, such as executing applications
that have insufficient resources for local execution, enhancing
applications performance (in terms of computation time),
or achieving energy efficiency on mobile devices. In some
scenarios, a single application model may achieve multiple
objectives. On the contrary, achieving one objective may
affect others. For example, if the primary objective of an
application model is to achieve energy efficiency, then certain
cases may occur in which performance is sacrificed. There-
fore, the application models must be adopted considering the
objective(s) and their affect on the counterparts. From the
design perspective, the models that support multiple objectives
are considered to be preeminent due to support for wide
range of applications and scenarios. Based on the objective(s)
of the surveyed application models, we classify the mobile
cloud application models into four categories that are listed as
follows.

A. Performance Based Application Models

The primary objective of performance based application
models is to enhance the performance of mobile device appli-
cations by utilizing cloud resources. Therefore, the resource
intensive computations are offloaded to the high speed cloud
where the computation is performed in less time compared
to the mobile device. Consequently, applications execute on
mobile devices with enhanced performance (in terms of com-
putation time) by utilizing cloud resources.

1) CloneCloud: CloneCloud [95] is based on augmented
execution technique that offloads parts of application execution
to the nearby infrastructure or cloud. CloneCloud does not
require programmer support for the conversion of applications
(for cloud environment), and offloads parts of the unmodified
application execution from the mobile device to the smart-
phone clone (in the cloud). The synchronization of the smart-
phone and its clone is very important for consistent execution.
Therefore, when augmentation is required, the smartphone
application process enters a sleep state and transfers the
process state to the clone. The VM creates a new process state
and overlays the received information, followed by execution
of the clone. On completion of the execution, the process state
of the clones’ application is sent to the smartphone, where the
process state is reintegrated into the smartphones’ application
and the application comes out of a sleep state.

CloneCloud supports five types of augmented execu-
tions [83]: (a) primary functionality outsourcing that offloads
all resource intensive applications to the cloud, whereas the
user interface and light weight processing are left on the
smartphone, (b) background augmentation that handles system
functionalities that do not require frequent user interactions
are moved to the cloud while the results are synced with
the smartphone on completion, (c) mainline augmentation
that facilitates in debugging application issues, such as data
leakage, fault tolerance and memory leakage, (d) hardware
augmentation that deals with the performance enhancement
of the clone by tweaking VM settings, and (e) augmented
throughput multiplicity that deals with the parallel execution
of the clones and scheduling decisions to gain application
performance.

In CloneCloud, the process of application partitioning is
fully dynamic. Therefore, an application is analyzed and a
static flow control graph is generated that makes a partitioned
graph and facilitates in the application partitioning. When
an application executes, the threads migrate from the mobile
device to the cloud at auto selected points. However, the se-
lection of migrate-able points from where threads can migrate
to the cloud is a challenging task as it can affect the overall
performance gain of the applications. An example of program
partitioning and thread migration is shown in Figure 4.

The selection of migrate-able points is done with the help
of a partitioning component that uses static analyzer, dynamic
profiler and mathematical optimizer/optimization solver. The
static analyzer is responsible for the analysis of potential
migration points (partition choices) and associated constraints,
such as mobile device hardware access, native state sharing
and cyclic migration. The dynamic profiler is responsible
for the collection of cost metrics data that facilitates in the

400 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 4. Program partitioning and thread migration [95]

development of cost models, used for offloading decision
making. The cost metrics data can be collected by running
the executable repeatedly on both sides (smartphone, cloud)
with different input settings. Lastly, the mathematical opti-
mizer/optimization solver is responsible for optimum selection
of migration points using cost models. Figure 5 shows high
level architecture of the CloneCloud.

The main components of the CloneCloud are node manager,
migrator, database, profiler (dynamic profiler) and partition an-
alyzer. The migrator is responsible for suspending, packaging,
resuming, and merging the thread states on both sides. The
node manager performs provisioning, image synchronization,
and handles communication between the migrated threads.
Lastly, the database is responsible for record keeping of
application partitions. Chun et al. tested CloneCloud prototype
for three tasks, i.e., virus scan, image search and behavior
profiling [95]. The results show that CloneCloud based appli-
cations gained 21.2% performance improvement in terms of
execution time.

The advantage of this model is that when a smartphone
is lost or destroyed, the clone can be used as a backup for
the recovery of data and applications. Moreover, CloneCloud
augments execution of the smartphone applications on the
cloud by performing a code analysis for application par-
titioning, taking into consideration the offloading cost and
constraints. CloneCloud also supports fine-grained thread-level
migration that is more beneficial compared to the traditional
suspend-migrate-resume mechanisms [96]. Considering the
shortcomings, the model is only capable of migrating at points
in the execution where no native heap state is collected.
Moreover, CloneCloud requires the development of cost model
for every application under different partitions, where each
partition is executed separately on the mobile device and the
cloud. Therefore, the execution of partitions on mobile device

for the development of cost model may consume extra energy.
Furthermore, to fit all of the proposed augmentation types,
basic and fine-grained synchronization is required between
the smartphone and the clone that may be resource intensive
in terms of bandwidth utilization and energy consumption.
Nevertheless, the authors assume that the cloud environment is
secure that is not always the case. In CloneCloud, the privacy
of data and piracy of applications is of high concern from the
clones’ perspective. For example, if an adversary gets a clone
of the smartphone from the cloud, then the clone can be easily
installed on the same model of the smartphone. Therefore, the
adversary may use the clones’ data and installed applications
that may lead to data privacy and application piracy issues.

2) Zhang et al. Model: Zhang et al. [97] propose a model
that is based on elastic applications technique, where a single
elastic application is partitioned into multiple components
called weblets. A weblet can be defined as an independent
functional unit of an application that can compute, store, and
communicate while keeping its execution location transparent.
The offloading decision of the weblets depends on factors such
as CPU load, memory, network conditions, user preferences
and battery level. Moreover, the weblets can be platform-
independent or platform-dependent, based on the program-
ming technology used. The topology of the elastic applications
falls into multiple types of patterns, called elasticity patterns.
Weblets support three types of elasticity patterns, i.e., replica-
tion, splitter and aggregation as shown in Figure 6.

The replication pattern supports two types of replications.
In the first type, multiple replicas of a weblet execute in the
cloud to complete a single task. This type of replication is
very useful in reducing execution time and latency, particularly
for applications that can be divided into similar tasks, for
instance, scanning files and processing a set of images. The
second type of replication is useful for situations where

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 401

Fig. 5. CloneCloud architecture [95]

Fig. 6. Elasticity patterns [97]

applications cannot be divided into similar tasks. Therefore,
multiple replicas of a weblet execute in the cloud, and the
one that completes its execution first returns the result to
the smartphone. Consequently, to some extent it reduces the
latency and provides fault tolerance.

The splitter pattern executes different implementations of a
weblet on a shared resource. The splitter pattern increases the
extensibility of the applications by adding new implementa-
tions to a shared resource without changing the application
structure. Moreover, splitter pattern is useful in enhancing
user experience as it congregates multiple services on a single
device. For instance, different weblet implementations can get
user data from different social networks and provide a unified
interface to the user for accessing multiple social network
services.

The aggregator pattern runs multiple weblets in the cloud
that monitor user web accounts and services, such as emails
and instant messages. Therefore, whenever some account
activity occurs, the weblets relay the aggregated information
to the device using weblet push. In some cases, the splitter and
aggregator patterns may work together, where splitter pushes
the request to the weblet and the aggregator pushes the data
to the device.

The elastic applications have three main components, i.e.,
user interface, weblet(s) and manifest. The User Interface (UI)
is used for interaction with the applications. The weblet is an
independent functional unit of an application and executes on
the device or cloud. Lastly, the manifest is a static XML file
that contains information about the application requirements
and constraints, such as processing power, storage, network

402 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 7. Zhang et al. model architecture [97]

connection, execution time and execution location. The main
architecture of Zhang et al. model is illustrated in Figure 7.

On the smartphone side, Device Elasticity Manager (DEM)
is the main component that is responsible for application
configuration (at launch time and on run-time) and weblet
migration. The application configuration includes information
about weblet replication, execution location, communication
path (3G, WiFi), processor utilization, battery state, and the
required hardware (sensors). Alternatively, Cloud Elasticity
Service (CES) is one of the main components that resides on
the cloud side and consists of four sub-components, (1) a cloud
manager that is responsible for provisioning and monitoring
of resources on the cloud that are provided to the weblets,
(2) an application manager that launches and maintains the
weblets on the cloud platform, (3) a cloud sensing that
collects information about weblets resource consumption and
provides that information to the cloud manager, and (4) a
Cloud Fabric Interface (CFI), which is a service provided to
the elastic applications/smartphones. Moreover, CFI facilitates
the migration of weblets between the smartphones and the
cloud. Also, the cloud side contains a node manager that
is responsible for monitoring the overall cloud node (server)
resources.

Among the advantages of Zhang et al. model is a wide range
of elasticity patterns to optimize the execution of applications
according to the users’ desired objectives. Consequently, the
offloading decisions of the weblets are based on a cost model
that accounts for various parameters, such as energy consump-
tion, application performance and data privacy. Considering
the pitfalls, the proposed prototype uses a simple weblet
launch scheduling that does not truly reflect the effectiveness
of the proposed cost model. The sharing of data and states
between the weblets that execute on distributed locations are
prone to security issues. Therefore, Zhang et al. [98] critically
analyzed elastic applications for various security threats, such
as authentication, trustworthiness (of the weblet containers),
authorization, communication, and auditing. Nevertheless, the
proposed model [97] is also affected by data sharing delays
(smartphone-weblet, weblet-weblet) for which data replication

solutions may be required. However, the data replication may
give rise to data synchronization and integrity issues.

B. Energy Based Application Models

Energy based application models are designed to reduce
energy consumption of mobile device applications by uti-
lizing cloud resources. This is achieved by reducing the
computational overhead of applications through computation
offloading. Consequently, the resource intensive computational
tasks are performed in the cloud and applications consume less
energy on mobile devices.

1) µ Cloud: The µCloud [99] model focuses on the com-
position of applications from heterogeneous components to
support flexibility, reusability, and configurability. Therefore,
to achieve composition of applications from heterogeneous
components, the application components are presented in the
form of a graph, where each component may execute on a
smartphone, cloud, or both (called hybrid components). The
hybrid components may have multiple implementations and
requires a middleware, such as WebOS [100], for execution.
Moreover, the components are easily identifiable, and loosely
bounded with input/output parameters, private memory and
configuration information. In µCloud, the applications are
presented as directed graphs, where the nodes represent com-
ponents and the edges represent control flow between the com-
ponents. Therefore, when an application graph executes, each
component injects its output into the subsequent components.
Figure 8 presents the application partitioning and execution
model of the µCloud.

As shown in Figure 8, first an application is partitioned
into small sub partitions (PA and PB), where each partition
has components with homogeneous resource requirements.
Further, the partitions are divided into fragments (A1, B1,
B2) that are executed by the orchestrator in a many-to-many
relationship. The architecture of an orchestrator is shown in
Figure 9.

The orchestrator consists of three main elements, (1) a Con-
ductor that executes components according to the application

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 403

Fig. 8. Execution Model of μCloud [99]

Fig. 9. Orchestrator architecture [99]

graph and passes the execution flow to other components, (2)
a data engine that assists in optimizing the dataflow between
the components, and (3) a Performance Monitoring Agent
(PMA) that is responsible for monitoring the performance of
an application.

The positive point of µCloud is that it supports self-
contained application components that are decoupled from
each other. µCloud requires skilled programmers for the
development of the application components that are later used
by the layman users for the development of applications. Con-
sequently, the decoupled application components are reusable
and provide flexibility in terms of application modeling. The
negative point of the model is that it requires high program-
ming efforts for the development of components. Moreover,
in µCloud a single application partition can only execute on
one orchestrator at a time. Nevertheless, no mechanism is
proposed for securing the data that is exchanged between
the components, making the model vulnerable to security and
privacy threats.

C. Constraint Based Application Models

Constraint based application models are designed to execute
applications in resource constrained environment (such as
smartphones) by using cloud resources. For instance, con-
sider a mobile device that has insufficient local resources
(unavailable or overloaded) for execution of an application. In
these models, the light weight application components execute
on mobile device while the resource intensive components
execute in the cloud. Consequently, these models enable
high resource-demanding applications to execute on resource
constrained devices.

1) Satyanarayanan et al. Model: In [2], Satyanarayanan et
al. propose a model that is based on augmented execution
technique. The model uses a concept of virtual machine that
runs on trusted and resource-rich computer, or a cluster of
computers named cloudlet. Moreover, the mobile devices act
like a thin client, and offload resource-intensive tasks to the
cloudlet. The article presents two approaches for the compu-
tation offloading, i.e., VM migration and VM synthesis [101].
The VM migration approach suspends the VM execution and
saves the processor, disk and memory states. Next, the VM
migrates to the cloudlet and resumes execution from the
saved point. The feasibility of VM migration is supported
by SoulPad [102], Collective [103], Internet Suspend/Resume
(ISR) system [104], [105], and Xen live migration [106].
Alternatively, VM synthesis derives a small VM overlay from
the mobile device and moves the overlay to the cloudlet. The
VM overlay applies on the base VM and the execution resumes
from the saved point, as shown in Figure 10.

The latency issue is very crucial in mobile cloud appli-
cation models [107]. Therefore, the proposed model offloads
the computation to the nearby infrastructure instead of dis-
tant clouds to avoid delays incurred by wide-area networks.
Moreover, the mobile devices rely on low-latency, one-hop
cloudlet that is accessible via a Wi-Fi connection. Also, the
model supports parallelism that can be achieved by using the
technique mentioned in [108].

The main advantage of Satyanarayanan et al. model is
that the VM based approach is less fragile compared to the
process migration and software virtualization [109]. This
approach is also less restrictive in terms of language-based
virtualization, where systems are bound to support specific
programming languages. Consequently, if the cloudlet is a
cluster, then VM parallelism can be achieved by using multiple
cores [108]. Among the pitfalls of the model is that the VM
synthesis process requires sixty to ninety seconds that makes
the technique unsuitable for real-time tasks [2]. Moreover,
the overlay extraction and compression that are performed on
the smartphone requires computation and consumes battery
power. Furthermore, if the smartphone VM overlay is from
an old version base VM, then the overlay may not find a
compatible cloudlet. Therefore, update patches are required
for the old operating systems to make the overlays compatible
with all cloudlets. Although the patches may resolve the

404 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 10. VM Synthesis [2]

compatibility issue, the patches increase the size of the overlay.
Alternatively, new replacement overlays may be required using
update patches. The model also requires trust establishment
schemes such as [110] and [111] to keep the users secure
from malicious VMs. Lastly, the cloudlets are not available
everywhere that makes the proposed model less scalable.

2) Giurgiu et al. Model: Giurgiu et al. [43] propose a
model that focuses on partial offloading of the applications to
the cloud/server. The proposed model is based on distributed
layers technique in which functional layers are distributed
between the smartphone and the server to optimize latency,
data transfer delay, and cost. The model uses R-OSGi [112]
and AlfredO [113] frameworks for the management and de-
ployment of applications. R-OSGi is an enhanced version of
OSGi [114] that supports multiple VMs residing on distributed
servers, whereas the primary objective of OSGi is to assist
with the decomposition and coupling of applications into
modules, called bundles. Alternatively, AlfredO facilitates
the distribution of bundles of multiple layers (presentation,
logic and data) between the smartphone and the server. The
presentation layer resides on the smartphone while the logic
layer is distributed between the server and the smartphone.
Moreover, the data layer is fully deployed on the server to
minimize the data access delay. The architecture of AlfredO
is represented in Figure 11.

The AlfredO system consists of AlfredOClient, AlfredO-
Core, and a renderer. The AlfredOClient fetches application
bundles and services while the AlfredOCore is responsible
for optimal deployment of bundles by using application par-
titioning algorithms such as All-step and K-step. In all-step
algorithm, partitions are computed offline on the basis of
phone hardware resources and network conditions. Conversely,
in K-step algorithm the partitions are computed on run-time
when a phone connects the server and specifies the hardware
resources. Lastly, the renderer generates UI according to the
application description that is received from the AlfredOCore.

In Giurgiu et al.’s model, the usage of applications is
very unique. First, a connection is established to the server
by R-OSGi with or without the involvement of SLP [115],

Fig. 11. AlfredO architecture

depending on whether the address is known or unknown. Then,
AlfredOCore computes the optimal deployment of the bundles,
and returns the application description and list of services
to the AlfredOClient. Finally, the renderer generates a user
interface according to the received application descriptor, and
AlfredOClient fetches the required services. In this model, if
a client wants to use a service that can run on the client,

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 405

then the server transfers the application bundle to the client
as illustrated in Figure 11 (Bundle A - S1). However, if the
service is bound to run on the server, then a client creates
a local proxy to the server to use the service, as shown in
Figure 11 (Bundle B proxy - S2 S3).

The main advantage of Giurgiu et al. model is that it sup-
ports heterogeneous client side environments and distributes
functional layers between the smartphone and the server to
optimize latency. However, as the user interface and service
logic are tightly coupled, the modularization at the service
logic level may involve changes in the user interface. Another
shortcoming of Giurgiu et al. model is that the decision of
the application component (bundle) distribution is server de-
pendent that is not favorable in terms of server scalability and
smartphone dynamic resource requirements. Consequently, a
decision about component distribution that seems favorable at
first, may turn unfavorable due to network conditions or smart-
phone resource availability. Therefore, timely reassessment of
the (distributed) components is required, which may add to
the overhead of the server and the smartphone. Moreover, due
to the dependence on R-OSGI, higher delays are expected
in proxy settings and component installation. Furthermore,
the proposed model requires modifications in the application
source code and increases burden on programmers.

3) eXCloud: eXCloud (Extensible Cloud) [116] supports
VM instance level computation offloading to the cloud. eX-
Cloud uses Stack-On-Demand (SOD) on top of VM systems to
migrate the top stack frames or segments of the frames to the
cloud. The code and heap data is left on the smartphone that
is transferred later on demand. Moreover, eXCloud uses SOD
Execution Engine (SODEE) layer between the applications
and underlying components. SODEE layer is transparent to
the applications, and no modifications are required in the
application executables or JVM. Therefore, eXCloud migrate
the tasks to the cloud when smartphone load exceeds certain
level or the tasks are unable to execute on the smartphone
due to insufficient resources. eXCloud also supports locality
driven migration, where the computation is moved near to
the data source to minimize data access delay. Figure 12
illustrates the main architecture of eXCloud. The main compo-
nents of eXCloud are class pre-processor, migration manager,
object preprocessor, communication manager and resource
manager. The class preprocessor is responsible for adding state
capturing and restoring code to the Java applications’ byte
code before it is loaded to the JVM. The migration manager
serves the migration requests, while the object pre-processor
handles the synchronization of objects among execution sites.
The worker manager is responsible for the creation and
management of worker processes. To offload a task to the
cloud, an instance of the worker process is created in the cloud
to receive and execute the offloaded task. Worker processes
can be created in advance and set to wait in a standby
mode to reduce execution delay. Next, the communication
manager manages the communication between the cloud node
and the smartphone. On the smartphone side, the resource
manager is responsible for the provisioning of resources to
the applications. Therefore, when resources are insufficient
or unavailable, the resource manager requests the migration
manager to perform migration of the task to the cloud where

required resources are available. Consequently, the migration
manager performs the task migration and waits for the result.
On completion of the task, the result is returned to the
smartphone and the application continues its normal execution.

Considering the advantages of eXCloud, it transfers only the
top stack frames, unlike the traditional process migration tech-
niques in which full state migrations are performed. eXCloud
does not have any specific runtime requirements and works
with standard JVM and Java libraries. Moreover, eXCloud
provides multi-level task mobility, and provides lightweight
partial state migration among cloud nodes and smartphones.
Among the shortcomings of eXCloud is that it is not context
aware and computation offloading is done based on local re-
source availability. Therefore, eXCloud offloads computation
to the cloud whenever smartphone resources are insufficient or
overloaded without considering energy and performance gain
that can be achieved by offloading. Moreover, eXCloud does
not take into account the availability of required resources (in
the cloud), such as processing power and memory. Further-
more, for large input size, the eXCloud based applications
may incur high computational time in the cloud environment
due to on-demand data sharing between the smartphone and
the cloud.

D. Multi-objective Application Models

The purpose of these models is to achieve multiple objec-
tives mainly performance and energy efficiency at the same
time with a fair tradeoff between required objectives. These
models are considered more affective as they support multiple
objectives unlike the performance and energy based models
(discussed in A and B) that are designed to achieve a singular
objective and may sacrifice energy efficiency or performance,
respectively.

1) MAUI: MAUI [14] provides fine-grained application
code offloading with minimum programmer intervention. The
main focus of this model is to minimize energy consumption
of mobile devices, which is the foremost challenge of the
mobile industry. Therefore, MAUI offloads all the resource-
intensive methods to the nearby infrastructure or cloud, pro-
vided the offloading is beneficial in terms of energy.

MAUI uses a profiler (optimization engine) that analyzes
energy consumption involved in the local and remote execu-
tion of the code. Moreover, MAUI profiles offload methods
and use history-based approach to predict the execution time
of a particular code. Therefore, if the remote execution is
beneficial in terms of energy, then the code is offloaded to the
nearby infrastructure. In MAUI, the application partitioning is
dynamic and the offloading is done on the basis of methods
instead of complete application modules to minimize the
offloading delay. However, MAUI creates two versions of
smartphone application, for local and remote execution using
Microsoft .NET Common Language Runtime (CLR) [117].
The architecture of MAUI is shown in Figure 13.

In MAUI, the mobile device consists of three main com-
ponents, i.e., solver interface, profiler and client proxy. The
solver interface provides interaction with the solver (decision
engine) and facilitates the offloading decision making. The
profiler collects information regarding the application energy

406 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 12. eXCloud architecure

Fig. 13. MAUI architecture [14]

consumption and data transfer requirements. The client proxy
deals with the method offloading and data transfer. Similarly,
the server side consists of profiler, server proxy, solver and
controller. However, the working of a profiler and server
proxy is similar to the smartphone. The solver is the main
decision engine of the MAUI that holds the call graph of the
applications and the scheduled methods. Lastly, the controller
is responsible for the authentication and resource allocation
for incoming requests.

Considering the advantages, MAUI provides a programming
environment where independent methods can be marked for
remote execution. It uses dynamic partitioning of the ap-
plications to reduce burden on the programmers. Moreover,
MAUI does not only focus on memory constrains of the smart-
phone but also considers the energy consumption involved in
the offloading procedure. Furthermore, MAUI supports fine-
grained method level offloading that can offload even single
methods instead of offloading the whole software blocks.

However, single method offloading is less beneficial compared
to combined methods (multiple methods) offloading. Another
weakness of MAUI is that if the programmer forgets to mark
methods (for remote execution), MAUI will not be able to
offload those methods. Also, MAUI saves information about
the offloaded methods (for future decisions) and uses online
profiling to create an energy consumption model. When new
offloading requests are received, MAUI uses history data to
predict the execution time of the task. However, the execution
time of the task is input size dependant that is not considered
by the MAUI. Therefore, the predictions of MAUI might be
wrong, resulting in wrong offloading decisions. Nevertheless,
the MAUI profilers consume processing power, memory and
energy, which is an overhead on the smartphones.

2) ThinkAir: ThinkAir [44] supports method-level offload-
ing to a smartphone clone executing in the cloud. It is designed
to achieve the desired QoS by executing multiple clones
of the smartphone in parallel [60]. ThinkAir requires minor

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 407

modifications in the source code of the applications. Therefore,
it is the duty of the programmers to identify all resource-
intensive methods that can be offloaded to the cloud for remote
execution. When a remoteable (offloadable) method is called,
ThinkAir starts the profilers to monitor the remoteable method
and store the information for future offloading decisions.
Moreover, the execution controller makes a decision about the
execution location of the method that is based on the execution
time, energy consumption, and previous execution history kept
by the profilers.

For remote execution, ThinkAir sends the smartphone side
calling object to the application server in the cloud, and waits
for the result. If the connection to the cloud is disrupted, then
ThinkAir falls back to local execution while attempting to
reconnect asynchronously. Alternatively, if the method fails to
execute in the cloud, then the exception is propagated back to
the smartphone so that the local control flow of an application
is not disturbed. Figure 14 illustrates the main architecture of
the ThinkAir framework.

On the smartphone side, ThinkAir consist of an execu-
tion controller, a client handler, and profilers. The execution
controller is responsible for the identification of remotable
methods that are marked by the programmer. Moreover, the
execution controller makes the offloading decisions and com-
municates with the server. The client handler is responsible
for the execution of the communication protocols and man-
agement of the connection between the client and the cloud.
The profilers are the most important part of the framework
because the offloading decision is based on the accuracy of
these profilers. Currently, ThinkAir supports three profilers
that coordinate with the energy model. The device profiler
monitors the energy consumption of the device hardware
resources, such as processor, antennas, display screen etc.
The program profiler monitors the program parameters, for
instance, execution time, acquired memory, thread CPU time,
number of instructions and method calls. Lastly, the network
profiler monitors network related parameters, for instance,
bandwidth, connectivity and delay.

On the server side, ThinkAir consist of a server handler,
application server, and dynamic object input stream. The
server handler is responsible for receiving computational
requests and reporting the results back to the clients. It is
also responsible for providing additional resources to support
parallelism. The application server is responsible for the
management of offloaded code. Besides, it is light-weight
and facilities the process of replication. Lastly, the dynamic
object input stream handles the exceptions generated during
the execution of the offloaded code.

The main advantage of ThinkAir is that it takes into
account the energy consumption when making the offloading
decisions, and supports on-demand resource allocation and
parallelism to reduce execution delays. The model offloading
decisions are based on the profilers, and uses energy model
to estimate energy consumption. ThinkAir’s energy model is
inspired by PowerTutor [118] that accounts all parameters
of the supported profilers. Nevertheless, it does not require
separate application servers for the distribution of the ap-
plications. Considering the shortcomings, ThinkAir does not
support unmodified applications and requires programmers

support for the demarcation of offloadable methods. Therefore,
if any offloadable methods are left unmarked, then ThinkAir
will not be able to offload those methods, which may affect
the performance of the applications. Nevertheless, the profiling
process of the model incurs an overhead on the smartphone
because it consumes computation power, memory and energy.

3) Cuckoo: Cuckoo [119] is based on partial offloading
of the applications to the cloud/nearby infrastructure, and is
designed with the objective to make the programming easy
for the developers by integrating the existing development
tools that are familiar to the developers. Moreover, Cuckoo
is designed for Android platform [89] and supports both local
and remote method implementations. Figure 15 illustrates the
Cuckoo application development process and model architec-
ture.

For Cuckoo application development, a developer creates a
project and writes the source code. Next, by using the existing
activity/service model of Android [120], computation intensive
(services) and interactive parts (activities) of the application
are separated. The separation is done with the help of an inter-
face definition language called AIDL [121]. Further, the build
system creates an interface and remote service that contains a
dummy implementation done by the Cuckoo Remote Service
Deriver (CRSD). Moreover, a stub/proxy is generated by the
Cuckoo Service Rewriter (CSR) for each AIDL interface so
that a method can be invoked locally or remotely on the basis
of information provided by the Cuckoo Resource Manager.
Implementation is done as both local and remote service. The
local and remote interface implementation may seem identical,
but behaves differently, as the algorithms and libraries may
vary according to the location of the service execution. Later,
the developer codes the local service implementation and
overwrites the remote service implementation by using CSR.
Finally, the build system compiles the code and provides an
installable .apk file to the users.

The Cuckoo based applications can offload their compu-
tation to any Java Virtual Machine (JVM) residing on the
nearby infrastructure or cloud. Therefore, it is the smart-
phones’ application responsibility to install the service(s) on
the server. Once the service is installed, the address of the
server is passed to the resource manager running on the
smartphone in the form of two dimension barcode [122] or
resource description file. Finally, the address registrar registers
the address and the remote resource becomes usable for the
smartphone applications.

The main advantage of Cuckoo is that it supports partial
offloading of the applications to the cloud and uses well
known tools for application development. Considering the
shortcomings, Cuckoo does not support asynchronous call-
backs and state transferring from remote resources. Moreover,
no states are saved while transferring from local to remote
execution or vice versa for which Representational State-
Transfer (REST) [123] may be required. Another shortcoming
of Cuckoo is that it requires programmers support for the
modification of applications. Furthermore, it lacks security
features to restrict users from installing malfunctioned codes
on the server and control illegal access to the resources.
Nevertheless, the offloading decisions of Cuckoo are static
and context unaware.

408 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 14. ThinkAir framework architecture [44]

Fig. 15. Cuckoo architecture and application development process

V. MODELS COMPARISSON AND APPLICATION EXAMPLES

From the analysis presented in Section IV, it is evident that
none of the application models have considered all parameters
highlighted in Section III. All models except [97] have ignored
the security and privacy issues of the applications’ data, and
smartphones’ clone that resides in the cloud for augmented
execution. Moreover, none of the application models have fo-
cused the application piracy control in the cloud environment.

A. Application Models Comparison

Table II presents the comparison of application models
(discussed in Section IV) according to criteria mentioned in
Section III.

Table III presents a comparison of nearby infrastructure
and public cloud platform according to criteria mentioned in
Section III.

B. Mobile Cloud Computing Application Examples

Mobile devices can benefit from mobile cloud computing
in multiple perspectives as discussed in section IV. Therefore,
mobile cloud computing can facilitate multiple domains. For
the proof of concept, researchers have implemented many
applications using different application models (listed in Ta-
ble II). Here, we present few more mobile cloud computing
application examples to show how this technology can prove
beneficial for various domains.

• Mathematical Tools: Complex mathematical calcula-
tions [132], such as multiplication of a very large matrix
require large computations and consume considerable
amount of energy. Therefore, mobile devices can offload
such computations to cloud that may help to gain energy
efficiency and enhanced performance due to high com-
putational power of the cloud. This type of applications
can be developed using MAUI [14], ThinkAir [44],
µCloud [99], eXCloud [116], and Cuckoo [119] model.

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 409

TABLE II
COMPARISON OF THE APPLICATION MODELS

Model Ca La Bu Ge Pr Co Se Pa Sc Er Pt Ta Mc
CloneCloud [95] M L/ H/ M H M L H L H L NI/ CL DalvikVM (An-

droid)
Virus scan/ image
search

P

Zhang et al. Model [97] M M L H M L H H H CL .NET (C �) Image processing P
μCloud [99] L L L L L H L H L CL Android Face recognition E
Satyanarayanan et al.
Model [2]

L H M/ H L L M L M L NI VirtualBox
(VMM for
Linux)

Applications [124],
[125], [126], [127],
[128]

C

Giurgiu et al. Model [43] L L L M M M L H M NI OSGI (Java) Sweet Home
3D [129]

C

eXCloud [116] L M/ H M M M H L H H NI/ CL iOS (JamVM) Mathematical Calcu-
lations [130], [131]

C

MAUI [14] H L L H L L L H L NI/ CL Microsoft .Net Face recognition,
games

MO

ThinkAir [44] H L L H L H L L M CL NDK (Java) N-queens
problem [131]

MO

Cuckoo [119] L M L H L M L L H NI/ CL Android Object/face recogni-
tion

MO

Ca: Context Awareness
La: Latency
Bu: Bandwidth Utilization
Ge: Generality
Pr: Privacy
Co: Complexity
Se: Security

Pa: Programming Abstraction
Sc: Scalability
Er: Execution Resource
Pt: Platform
Ta: Tested/ Proposed Application
Mc: Model Category

CL: Cloud
NI: Nearby Infrastructure
H: High, M: Medium, L: Low
P: Performance Based
E: Energy Based
C: Constraint Based
MO: Multi-Objective Based

TABLE III
COMPARISON OF NEARBY INFRASTRUCTURE AND CLOUD PLATFORM

Nearby Infrastructure (Virtual Cloud) Real Cloud
Programming Abstraction Neutral Neutral
Scalability Low High
Security Favorable Favorable/ Unfavorable
Bandwidth Utilization Neutral Neutral
Latency Favorable Unfavorable
Complexity Neutral Neutral
Generality Neutral Neutral
Privacy Favorable Unfavorable
Context awareness Neutral Neutral

• File Search: The latest smartphones have storage capacity
of up to 80 gigabytes. Therefore, smartphones can store
large amount of files due to which search functions
may take up to few minutes. However, by using mobile
cloud computing the search functions can execute on
the smartphone clone (in the cloud) that may result as
enhanced performance and energy efficiency (assuming
that the smartphone and smartphone clone in the cloud
are pre-synchronized) [83]. This type of applications
can be developed using Satyanarayanan et al. [2], and
CloneCloud [95] Model.

• Imaging Tools: Image processing tasks demand large
computations and the operations may take up to a few
minutes for completion, for instance, when rendering a
3D image from a source file [133]. Therefore, the imaging
tools can offload heavy computational operation to the
cloud and benefit from enhanced performance and energy
efficiency depending on the available resources (network,
cloud) and runtime conditions. Such applications can be
developed using MAUI [14], ThinkAir [44], µCloud [99],
eXCloud [116], and Cuckoo [119] model.

• Games: Gaming applications usually require heavy com-
putation (on large datasets) and quick response time
for user interaction. Therefore, computation offloading

is not recommended as it may reduce the game per-
formance. For instance, First Person Shooting (FPS)
games [134] are not suitable for computation offloading.
However, some games require large computation using
small datasets that enable quick computation offload-
ing and lead to energy efficiency, for instance, chess
game [14]. This type of games can be developed using
MAUI [14], ThinkAir [44], µCloud [99], eXCloud [116],
and Cuckoo [119] model.

• Download Applications: Downloading files at low data
rate consumes high energy compared to high data rate.
Therefore, it is beneficial in terms of energy to down-
load files in the cloud and then transfer files to the
mobile device with high speed. For instance, mobile
cloud BitTorrent application [135] can download file parts
from multiple peers in the cloud, and then transfer the
download file to mobile device at high speed to reduce
energy consumption. Such applications can be developed
using Zhang et al’s model [97].

• Antivirus Applications: Considering the increasing threat
from viruses and malwares, antivirus applications are
becoming vital part of smartphones. However, scan-
ning a smartphone for viruses requires computation that
consume high amount of energy. Using mobile cloud

410 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

computing, the smartphone clone can be scanned in the
cloud to save energy (assuming that the smartphone and
smartphone clone in the cloud are pre-synchronized) [44].
This type of applications can be developed using Satya-
narayanan et al. [2], and CloneCloud [95] Model.

• Security: The software and hardware level enhancements
of smartphones enable them to execute wide range of
applications. However, installing large number of ap-
plications may increase the threat from malwares that
can jeopardize users’ personal information stored on the
smartphone. Using mobile cloud computing, the mobile
device applications can execute their services in the
cloud that may reduce the threat from attackers. Con-
sequently, the mobile devices execute more trusted and
less complex applications with enhanced security and
energy efficiency. The aforementioned security aspects
is the focus of the MobiCloud framework [136] along
many other important issues, such as trust management
and secure routing.

There can be hundreds of similar applications that can take
advantage of mobile cloud computing. However, the objective
of using mobile cloud computing (such as energy efficiency,
performance enhancement, and application execution) must be
known before adopting any application model. For example,
the chess game can offload computation to the cloud at
runtime to save energy. Alternatively, for file search, energy
efficiency is only achieved when the smartphone clone is
already available in the cloud and synchronized with the
smartphone. Therefore, application models must be chosen
wisely to achieve the desired objective(s).

Nevertheless, mobile cloud applications require variable
amount of communication for computation offloading that
depends on the nature of application and models’ working
(as discussed in Section IV). It is a fact that mobile cloud ap-
plications will increase the overall Internet traffic and threaten
the revenue of mobile network operators in the upcoming
years [137]. However, mobile cloud applications open new
ways of effective communication that can help to reduce
data communication between the mobile devices and network
operators. Consider the aforementioned torrent example in
which required file is downloaded in the cloud and then
transferred to mobile device with high speed. Consequently,
the mobile network communication channel is utilized affec-
tively and for limited time. Similarly, efficient communications
of cellular radios are great contributors of energy efficiency
on mobile devices. Therefore, mobile cloud applications can
also help to reduce energy consumption by using aggregation
and compression techniques in the cloud to achieve energy
efficiency on mobile devices [138]. Nevertheless, mobile cloud
applications may help to secure communication [136] and
facilitate routing [139] by using cloud technology.

VI. CONCLUSION

A number of the application models discussed in Section IV
impose intensive coding on the programmers. In order to
ease the burden on the programmers, new programming tools
are required that provide programming abstraction and hide
the underlying complexities of the cloud and mobile devices.

The developed applications usually support one execution
platform, thus, limiting the offloading of the elements (appli-
cations, components, clones) to other platforms. The mobile
cloud execution platforms need to be standardized to ease
computation offloading to the mobile cloud platforms. Also,
new energy consumption models are required to facilitate
accurate decision making by considering the main entities
involved in the offloading process.

The mobile cloud application models that are based on aug-
mented execution of the smartphone clone in the cloud require
synchronization of the smartphone and the clone. Therefore,
new synchronization policies are required that can perform
timely synchronization, taking into account accuracy, execu-
tion delay, and bandwidth utilization. Moreover, a smartphone
clone contains its user’s data and licensed applications that
are vulnerable to security attacks and piracy issues. A security
mechanism is required to secure the clones from illegal access
and protect the smartphone users from the malicious VMs
executing in the cloud. Nevertheless, if a smartphone clone
falls into the wrong hands, then the adversary may install
the clone on a smartphone of the same model and access
the licensed applications illegally. To handle this issue, a new
mobile cloud application piracy control framework is required.

Some European Union data management laws and cloud
computing principals are contrary to each other. Moreover,
the provision of virtually unlimited resources to untrustworthy
users may cause problems for the victims (enterprises, users)
and the service providers. Therefore, new policies are required
that can confine mobile user access to optimum resources, or
timely identify and revoke access of the untrustworthy users.
Consequently, there is a need to standardize the mobile cloud
computing platforms and refine the data management laws
accordingly, so that the mobile cloud computing can flourish
and mobile users can truly benefit from the cloud computing
technology.

REFERENCES

[1] N. Vallina-Rodriguez and J. Crowcroft, “Energy management tech-
niques in modern mobile handsets,” IEEE Commun. Surveys & Tuto-
rials, vol. 99, pp. 1–20, 2012.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[3] C. Mascolo, “The power of mobile computing in a social era,” IEEE
Internet Computing, vol. 14, no. 6, pp. 76–79, 2010.

[4] E. Barba, B. MacIntyre, and E. D. Mynatt, “Here we are! where are
we? locating mixed reality in the age of the smartphone,” Proc. IEEE,
vol. 100, no. 4, pp. 929–936, 2012.

[5] A. Wright, “Get smart,” Commun. ACM, vol. 52, no. 1, pp. 15–16,
2009.

[6] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen,
and H. Bal, “eyedentify: Multimedia cyber foraging from a smart-
phone,” in Multimedia, 2009. ISM’09. 11th IEEE International Sym-
posium on. IEEE, 2009, pp. 392–399.

[7] Amazon simple storage service. Accessed December 8th, 2011.
[Online]. Available: http://aws.amazon.com/s3/

[8] X. Yang, T. Pan, and J. Shen, “On 3g mobile e-commerce platform
based on cloud computing,” in Ubi-media Computing (U-Media), 2010
3rd IEEE International Conference on. IEEE, 2010, pp. 198–201.

[9] C. Doukas, T. Pliakas, and I. Maglogiannis, “Mobile healthcare in-
formation management utilizing cloud computing and android os,” in
Engineering in Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE. IEEE, 2010, pp. 1037–1040.

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 411

[10] W.-T. Tang, C.-M. Hu, and C.-Y. Hsu, “A mobile phone based home-
care management system on the cloud,” in Biomedical Engineering
and Informatics (BMEI), 2010 3rd International Conference on, vol. 6.
IEEE, 2010, pp. 2442–2445.

[11] R. Ferzli and I. Khalife, “Mobile cloud computing educational tool
for image/video processing algorithms,” in Digital Signal Process-
ing Workshop and IEEE Signal Processing Education Workshop
(DSP/SPE), 2011 IEEE. IEEE, 2011, pp. 529–533.

[12] W. Zhao, Y. Sun, and L. Dai, “Improving computer basis teaching
through mobile communication and cloud computing technology,” in
Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on, vol. 1. IEEE, 2010, pp. V1–452.

[13] Facebook. Accessed November 26th, 2011. [Online]. Available:
http://facebook.com

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. 8th international conference on Mobile systems,
applications, and services. ACM, 2010, pp. 49–62.

[15] Flickr. Accessed December 26th, 2011. [Online]. Available: http:
//flickr.com

[16] V. S. Pendyala and J. Holliday, “Performing intelligent mobile searches
in the cloud using semantic technologies,” in Granular Computing
(GrC), 2010 IEEE International Conference on. IEEE, 2010, pp.
381–386.

[17] D. Huang, “Mobile cloud computing,” IEEE COMSOC Multime-
dia Communications Technical Committee (MMTC) E-Letter, vol. 6,
no. 10, pp. 27–31, 2011.

[18] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider
for mobile devices,” in Proc. 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond. ACM, 2010,
p. 6.

[19] T. Xing, D. Huang, S. Ata, and D. Medhi, “Mobicloud: A geo-
distributed mobile cloud computing platform,” in Network and Service
Management (CNSM), 2012 8th International Conference on. IEEE,
2012, pp. 164–168.

[20] T. Xing, H. Liang, D. Huang, and L. X. Cai, “Geographic-based service
request scheduling model for mobile cloud computing,” in Trust,
Security and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on. IEEE, 2012, pp. 1446–
1453.

[21] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable secure
cloud data storage services,” IEEE Network, vol. 24, no. 4, pp. 19–24,
2010.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[23] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale
data management approaches in cloud environments,” IEEE Commun.
Surveys & Tutorials, vol. 13, no. 3, pp. 311–336, 2011.

[24] X. Fan, J. Cao, and H. Mao, “A survey of mobile cloud computing,”
ZTE Communications, vol. 9, no. 1, pp. 4–8, 2011.

[25] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce,” DTIC Document, Tech. Rep., 2009.

[26] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access
schemes for mobile cloud computing,” in Mobile Data Management
(MDM), 2010 Eleventh International Conference on. IEEE, 2010, pp.
387–392.

[27] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2011.

[28] L. Guan, X. Ke, M. Song, and J. Song, “A survey of research on mobile
cloud computing,” in Computer and Information Science (ICIS), 2011
IEEE/ACIS 10th International Conference on. IEEE, 2011, pp. 387–
392.

[29] D. Kovachev, Y. Cao, and R. Klamma, “Mobile cloud computing: a
comparison of application models,” arXiv preprint arXiv:1107.4940,
2011.

[30] Rackspace cloud. Accessed April 10th, 2012. [Online]. Available:
http://www.rackspace.com/

[31] Google app engine. Accessed November 15th, 2011. [Online].
Available: http://appengine.google.com

[32] Google apps for business. Accessed April 10th, 2012. [Online].
Available: http://www.google.com/enterprise/apps/business/

[33] Salesforce. Accessed April 10th, 2012. [Online]. Available: http:
//www.salesforce.com/cloudcomputing/

[34] Amazon elastic compute cloud (ec2),. Accessed December 10th, 2011.
[Online]. Available: http://www.amazon.com/ec2/

[35] Microsoft azure. Accessed April 10th, 2012. [Online]. Available:
http://www.windowsazure.com

[36] Integrated cellular satellite solution. Accessed November
26th, 2012. [Online]. Available: https://www.wireless.
att.com/businesscenter/business-programs/government/solutions/
integrated-cellular-satellite-solution.jsp

[37] Spot connect. Accessed November 27th, 2012. [Online]. Available:
http://www.findmespot.com/en/index.php?cid=116

[38] Sony xperia s. Accessed May 15th, 2012. [Online]. Available:
http://www.gsmarena.com/sony xperia s-4369.php

[39] Htc one x. Accessed May 15th, 2012. [Online]. Available:
http://www.gsmarena.com/htc one x-4320.php

[40] Vmware. Accessed April 10th, 2012. [Online]. Available: http:
//www.vmware.com/

[41] Virtualbox. Accessed April 10th, 2012. [Online]. Available: http:
//www.virtualbox.org/

[42] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, 2010.

[43] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the
cloud: enabling mobile phones as interfaces to cloud applications,” in
Middleware 2009. Springer, 2009, pp. 83–102.

[44] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Unleashing
the power of mobile cloud computing using thinkair,” arXiv preprint
arXiv:1105.3232, 2011.

[45] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas,
“Lte-advanced: next-generation wireless broadband technology [invited
paper],” Wireless Communications, IEEE, vol. 17, no. 3, pp. 10–22,
2010.

[46] Glympse. Accessed November 26th, 2011. [Online]. Available:
https://market.android.com/details?id=com.glympse.android.glympse

[47] Locale. Accessed November 26th, 2011. [Online]. Available: https:
//market.android.com/details?id=com.twofortyfouram.locale

[48] Foursquare. Accessed November 26th, 2011. [Online]. Available:
https://market.android.com/details?id=com.joelapenna.foursquared

[49] Google maps for android. Accessed November 26th, 2011. [Online].
Available: https://market.android.com/details?id=com.google.android.
apps.maps

[50] Tape-a-talk voice recorder. Accessed November 26th, 2011. [On-
line]. Available: https://market.android.com/details?id=name.markus.
droesser.tapeatalk

[51] Sqllite. Accessed November 26th, 2011. [Online]. Available: https:
//market.android.com/details?id=com.xuecs.sqlitemanager

[52] A. N. Khan, M. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards se-
cure mobile cloud computing: a survey,” Future Generation Computer
Systems, 2012.

[53] S. Wang and X. S. Wang, “In-device spatial cloaking for mobile user
privacy assisted by the cloud,” in Mobile Data Management (MDM),
2010 Eleventh International Conference on. IEEE, 2010, pp. 381–386.

[54] P. Murray, “Enterprise grade cloud computing,” in Proc. Third Work-
shop on Dependable Distributed Data Management. ACM, 2009, pp.
1–1.

[55] Council of july 2002: Directive 2002/58/ec concerning the processing
of personal data and the protection of privacy in the electronic
communications sector. European Parliament. Accessed November
20th, 2011. [Online]. Available: http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:32002L0058:EN:NOT

[56] Council of oct. 1995: Directive 95/46/ec on the protection of
individuals with regard to the processing of personal data and on
the free movement of such data. European Parliament. Accessed
November 20th, 2011. [Online]. Available: http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT

[57] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of
cloud computing,” in Grid Computing Environments Workshop, 2008.
GCE’08. IEEE, 2008, pp. 1–10.

[58] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication
for mobile devices,” in Proc. 4th USENIX conference on Hot topics in
security. USENIX Association, 2009, pp. 9–9.

[59] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in Information Security. Springer,
2011, pp. 99–113.

[60] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.

[61] D. Vali, S. Paskalis, L. Merakos, and A. Kaloxylos, “A survey of
internet QoS signaling,” IEEE Commun. Surveys & Tutorials, vol. 6,
no. 4, pp. 32–43, 2004.

412 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

[62] Y. Bai and M. R. Ito, “QoS control for video and audio communication
in conventional and active networks: approaches and comparison,”
IEEE Commun. Surveys & Tutorials, vol. 6, no. 1, pp. 42–49, 2004.

[63] L. Hanzo and R. Tafazolli, “A survey of QoS routing solutions for
mobile ad hoc networks,” IEEE Commun. Surveys & Tutorials, vol. 9,
no. 2 2nd Quarter, pp. 50–70, 2007.

[64] Z. Zhou and D. Huang, “Efficient and secure data storage operations
for mobile cloud computing,” in Network and Service Management
(CNSM), 2012 8th International Conference on. IEEE, 2012, pp.
37–45.

[65] Y. Zhu, H. Hu, G.-J. Ahn, D. Huang, and S. Wang, “Towards temporal
access control in cloud computing,” in INFOCOM, 2012 Proc. IEEE.
IEEE, 2012, pp. 2576–2580.

[66] M. Lima, A. Dos Santos, and G. Pujolle, “A survey of survivability in
mobile ad hoc networks,” IEEE Commun. Surveys & Tutorials, vol. 11,
no. 1, pp. 66–77, 2009.

[67] D. Djenouri, L. Khelladi, and N. Badache, “A survey of security issues
in mobile ad hoc networks,” IEEE Commun. Surveys & Tutorials,
vol. 7, no. 4, 2005.

[68] The future of cloud computing. opportunities for european cloud
computing beyond 2010. Expert Group Report. Accessed November
10th, 2011. [Online]. Available: http://cordis.europa.eu/fp7/ict/ssai/
docs/cloud-report-final.pdf

[69] Avg antivirus and internet security. Accessed November 25th, 2011.
[Online]. Available: http://www.avg.com

[70] Kaspersky lab. Accessed November 25th, 2011. [Online]. Available:
http://www.kaspersky.com

[71] Esat antivirus software. Accessed November 25th, 2011. [Online].
Available: http://www.eset.com

[72] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian,
“Virtualized in-cloud security services for mobile devices,” in Proc.
First Workshop on Virtualization in Mobile Computing. ACM, 2008,
pp. 31–35.

[73] J. Ogness, “Dazuko: An open solution to facilitate on-access scanning,”
Virus Bulletin, 2003.

[74] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient
access to outsourced data,” in Proc. 2009 ACM workshop on Cloud
computing security. ACM, 2009, pp. 55–66.

[75] W. Itani, A. Kayssi, and A. Chehab, “Energy-efficient incremental
integrity for securing storage in mobile cloud computing,” in Energy
Aware Computing (ICEAC), 2010 International Conference on. IEEE,
2010, pp. 1–2.

[76] A. S. Tanenbaum and M. Van Steen, Distributed systems. Prentice
Hall, 2002, vol. 2.

[77] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
Android: versatile protection for smartphones,” in Proc. 26th Annual
Computer Security Applications Conference. ACM, 2010, pp. 347–
356.

[78] P. Makris, D. Skoutas, and C. Skianis, “A survey on context-aware
mobile and wireless networking: On networking and computing envi-
ronments’ integration,” IEEE Commun. Surveys & Tutorials, vol. 15,
pp. 362–386, 2012.

[79] S. U. Khan, “A multi-objective programming approach for resource
allocation in data centers,” in International conference on parallel and
distributed processing techniques and applications (PDPTA), 2009, pp.
152–158.

[80] S. U. Khan, “A goal programming approach for the joint optimization
of energy consumption and response time in computational grids,” in
Performance Computing and Communications Conference (IPCCC),
2009 IEEE 28th International. IEEE, 2009, pp. 410–417.

[81] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[82] A. Bialecki, M. Cafarella, D. Cutting, and O. OMALLEY, “Hadoop:
a framework for running applications on large clusters built of com-
modity hardware,” Wiki at http://lucene. apache. org/hadoop, vol. 11,
2005.

[83] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution,” in Proc. 12th conference on Hot topics
in operating systems. USENIX Association, 2009, pp. 8–8.

[84] Microsoft live mesh. Accessed November 15th, 2011. [Online].
Available: http://www.mesh.com

[85] J. Kolodziej, S. U. Khan, and F. Xhafa, “Genetic algorithms for energy-
aware scheduling in computational grids,” in P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), 2011 International Conference on.
IEEE, 2011, pp. 17–24.

[86] S. U. Khan and I. Ahmad, “A cooperative game theoretical technique
for joint optimization of energy consumption and response time in

computational grids,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 3,
pp. 346–360, 2009.

[87] D. Kliazovich, P. Bouvry, and S. U. Khan, “Dens: data center energy-
efficient network-aware scheduling,” in Green Computing and Com-
munications (GreenCom), 2010 IEEE/ACM Int’l Conference on &
Int’l Conference on Cyber, Physical and Social Computing (CPSCom).
IEEE, 2010, pp. 69–75.

[88] S. U. Khan and C. Ardil, “Energy efficient resource allocation in
distributed computing systems,” in International conference on dis-
tributed, high-performance and grid computing. Citeseer, 2009, pp.
667–673.

[89] Android. Accessed November 21st, 2011. [Online]. Available:
http://www.android.com

[90] Apple ios5. Accessed November 21st, 2011. [Online]. Available:
http://www.apple.com/ios

[91] Nokia symbian. Accessed November 21st, 2011. [Online]. Available:
http://symbian.nokia.com

[92] Windows mobile. Accessed November 21st, 2011. [Online]. Available:
http://www.microsoft.com/download/en/windowsMobile.aspx

[93] Blackberry 7 os. Accessed November 21st, 2011. [Online]. Available:
http://www.rim.com/products/blackberry os7.shtml

[94] Nokia strategy 2011. Accessed November 22nd, 2011. [Online].
Available: http://conversations.nokia.com/nokia-strategy-2011

[95] B.-G. Chun, S. Ihm, P. Maniatis, and M. Naik, “Clonecloud: boosting
mobile device applications through cloud clone execution,” arXiv
preprint arXiv:1009.3088, 2010.

[96] M. Satyanarayanan, M. A. Kozuch, C. J. Helfrich, and D. R. OHallaron,
“Towards seamless mobility on pervasive hardware,” Pervasive and
Mobile Computing, vol. 1, no. 2, pp. 157–189, 2005.

[97] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs, “Towards an
elastic application model for augmenting computing capabilities of
mobile platforms,” in Mobile wireless middleware, operating systems,
and applications. Springer, 2010, pp. 161–174.

[98] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong,
“Securing elastic applications on mobile devices for cloud computing,”
in Proc. 2009 ACM workshop on Cloud computing security. ACM,
2009, pp. 127–134.

[99] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and B. S.
Lee, “μcloud: towards a new paradigm of rich mobile applications,”
Procedia Computer Science, vol. 5, pp. 618–624, 2011.

[100] Hewlett packard, hp webos 2.0. Accessed December 2nd, 2011. [On-
line]. Available: http://www.palm.com/us/products/software/webos2

[101] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayanan, “Tran-
sient customization of mobile computing infrastructure,” in Proc. First
Workshop on Virtualization in Mobile Computing. ACM, 2008, pp.
37–41.

[102] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath, “Rein-
carnating pcs with portable soulpads,” in Proc. 3rd international
conference on Mobile systems, applications, and services. ACM,
2005, pp. 65–78.

[103] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum, “Optimizing the migration of virtual computers,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 377–390, 2002.

[104] M. Kozuch and M. Satyanarayanan, “Internet suspend/resume,” in
Mobile Computing Systems and Applications, 2002. Proc. Fourth IEEE
Workshop on. IEEE, 2002, pp. 40–46.

[105] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, D. R. O’Hallaron,
A. Surie, A. Wolbach, J. Harkes, A. Perrig, D. J. Farber et al.,
“Pervasive personal computing in an internet suspend/resume system,”
IEEE Internet Computing, vol. 11, no. 2, pp. 16–25, 2007.

[106] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[107] H. A. Lagar-Cavilla, N. Tolia, E. De Lara, M. Satyanarayanan, and
D. OHallaron, “Interactive resource-intensive applications made easy,”
in Middleware 2007. Springer, 2007, pp. 143–163.

[108] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in Proc. 4th ACM
European conference on Computer systems. ACM, 2009, pp. 1–12.

[109] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of zap: A system for migrating computing environments,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 361–376,
2002.

[110] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang, “Trustworthy and personalized computing on public kiosks,”

KHAN et al.: A SURVEY OF MOBILE CLOUD COMPUTING APPLICATION MODELS 413

in Proc. 6th international conference on Mobile systems, applications,
and services. ACM, 2008, pp. 199–210.

[111] A. Surie, A. Perrig, M. Satyanarayanan, and D. J. Farber, “Rapid
trust establishment for pervasive personal computing,” IEEE Pervasive
Computing, vol. 6, no. 4, pp. 24–30, 2007.

[112] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: distributed appli-
cations through software modularization,” in Proc. ACM/IFIP/USENIX
2007 International Conference on Middleware. Springer-Verlag New
York, Inc., 2007, pp. 1–20.

[113] J. S. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: an archi-
tecture for flexible interaction with electronic devices,” in Proc.
9th ACM/IFIP/USENIX International Conference on Middleware.
Springer-Verlag New York, Inc., 2008, pp. 22–41.

[114] O. Alliance, “Osgi service platform, core specification, release 4,
version 4.1,” OSGi Specification, 2007.

[115] J. Veizades and C. E. Perkins, “Service location protocol,” 1997.
[116] R. K. Ma, K. T. Lam, and C.-L. Wang, “excloud: Transparent runtime

support for scaling mobile applications in cloud,” in Cloud and Service
Computing (CSC), 2011 International Conference on. IEEE, 2011,
pp. 103–110.

[117] J. Richter, CLR via C#. Microsoft Press, 2010.
[118] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,

and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc.
eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2010, pp. 105–114.

[119] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a compu-
tation offloading framework for smartphones,” in Mobile Computing,
Applications, and Services. Springer, 2012, pp. 59–79.

[120] Android application fundamentals. Accessed December 3rd,
2011. [Online]. Available: http://developer.android.com/guide/topics/
fundamentals.html

[121] Android interface definition language (aidl). Accessed December
3rd, 2011. [Online]. Available: http://developer.android.com/guide/
developing/tools/aidl.html

[122] Denso wave qr. Accessed December 3rd, 2011. [Online]. Available:
http://www.denso-wave.com/qrcode/index-e.html

[123] R. T. Fielding and R. N. Taylor, “Principled design of the modern
web architecture,” ACM Transactions on Internet Technology (TOIT),
vol. 2, no. 2, pp. 115–150, 2002.

[124] Abiword. Accessed December 1st, 2012. [Online]. Available:
http://www.abisource.com

[125] Gimp. Accessed December 1st, 2012. [Online]. Available: http:
//www.gimp.org

[126] Gnumeric. Accessed December 1st, 2012. [Online]. Available:
http://freecode.com/projects/gnumeric

[127] Kpresenter. Accessed December 5th, 2012. [Online]. Available:
http://www.kde.org/applications/office/kpresenter

[128] L. Huston, R. Sukthankar, D. Hoiem, and J. Zhang, “Snapfind: Brute
force interactive image retrieval,” in Image and Graphics, 2004.
Proceedings. Third International Conference on. IEEE, 2004, pp.
154–159.

[129] Sweet home 3d. Accessed December 5th, 2012. [Online]. Available:
http://www.sweethome3d.com

[130] Travelling salesman problem. Accessed January 1st, 2013. [Online].
Available: http://www.tsp.gatech.edu

[131] N-queens problem. Accessed January 1st, 2013. [Online]. Available:
http://www.math.utah.edu/∼alfeld/queens/queens.html

[132] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies,” in Cloud Computing. Springer, 2010,
pp. 20–38.

[133] U. Kremer, J. Hicks, and J. Rehg, “A compilation framework for power
and energy management on mobile computers,” in Languages and
Compilers for Parallel Computing. Springer, 2003, pp. 115–131.

[134] Need for speed shift. Accessed May 15th, 2012. [Online].
Available: https://play.google.com/store/apps/details?id=com.eamobile.
nfsshift na wf

[135] I. Kelényi and J. K. Nurminen, “Cloudtorrent-energy-efficient bittorrent
content sharing for mobile devices via cloud services,” in Consumer
Communications and Networking Conference (CCNC), 2010 7th IEEE.
IEEE, 2010, pp. 1–2.

[136] D. Huang, X. Zhang, M. Kang, and J. Luo, “Mobicloud: building
secure cloud framework for mobile computing and communication,”

in Service Oriented System Engineering (SOSE), 2010 Fifth IEEE
International Symposium on. IEEE, 2010, pp. 27–34.

[137] W. Holden, “Mobile operator business models- challenges, opportuni-
ties & adaptive strategies 2011-2016,” Juniper Research, Tech. Rep.,
2011.

[138] Stratus. Accessed November 28th, 2012. [Online]. Available:
http://research.microsoft.com/en-us/projects/stratus/

[139] Y. Qin, D. Huang, and X. Zhang, “Vehicloud: Cloud computing
facilitating routing in vehicular networks,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012 IEEE
11th International Conference on. IEEE, 2012, pp. 1438–1445.

Atta ur Rehman Khan is the C.E.O of DeeByte
software solutions and a faculty member at COM-
SATS Institute of Information Technology (CIIT),
Pakistan. He received his BS (Hons) and MS degree
in computer science from CIIT in 2007 and 2010,
respectively. Currently, he is pursuing his PhD from
University of Malaya under the BrightSparks schol-
arship. His area of interest includes mobile cloud
computing, sensor networks, VANETs and security.

Mazliza Othman is a senior lecturer at the Faculty
of Computer Science and IT, University of Malaya.
She received a BSc in Computer Science from
Universiti Kebangsaan Malaysia, and a MSc and
PhD degree from the University of London. She is
the author of ’Principles of Mobile Computing and
Communications’ (Auerbach Publications, 2007).
Her main interest is in pervasive computing and self-
organizing network.

Sajjad Ahmad Madani is associate professor
at COMSATS Insitute of Information Technology
(CIIT), Abbottabad, Pakistan. He joined CIIT in
August 2008 as Assistant Professor. Previous to
that, he was working with the institute of computer
technology (Vienna, Austria) from 2005 to 2008 as
guest researcher where he did his PhD research.
He received his MS degree in Computer Sciences
from Lahore University of Management Sciences
(LUMS). He received his BSc degree from UET Pe-
shawar and was awarded gold medal for outstanding

performance. His areas of interest include low power wireless sensor networks
and application of industrial informatics to electrical energy networks. He has
published more than 35 papers in international conferences and journals.

Samee U. Khan received a B.S. degree from Ghu-
lam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Pakistan, and a Ph.D. from
the University of Texas, Arlington, TX, USA. Cur-
rently, he is Assistant Professor of Electrical and
Computer Engineering at the North Dakota State
University, Fargo, ND, USA. Prof. Khan’s research
interests include cloud and big-data computing, so-
cial networking, and reliability. His work has ap-
peared in over 200 publications. He is a Fellow of
the Institution of Engineering and Technology (IET,

formally IEE), and a Fellow of the British Computer Society (BCS).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

