
54 November/December 2013 Copublished by the IEEE Computer and Reliability Societies 1540-7993/13/$31.00 © 2013 IEEE

INTRUSION DETECTION SYSTEMS

The latest developments in intrusion detection systems, including Honeycyber, Hancock, Arbor, Auto-
Sign, Argos, Hamsa, F-Sign, and a hybrid honeyfarm–based defense system, can be compared on the
basis of their capability to detect novel attacks, signature generation method, suitability for multiple
instances of worms, type of signature generated, attacks and worms covered, false alarm rates, and
relative strengths and weaknesses.

S ecurity is a big issue for all networks in today’s
enterprise environment. Hackers and intruders

have successfully brought down enterprise networks
and Web services. One method to secure network
resources and communication over the Internet is
intrusion detection. Intrusion detection systems (IDSs)
monitor the state of a system or network and recognize
and report any malicious activity or improper behavior.

IDSs can use either anomaly- or signature-based
techniques to detect intrusions. In anomaly-based tech-
niques, any deviation from the system’s normal behavior
profile is recognized and reported. In signature-based
techniques, the signatures or patterns of known attacks
are stored in the database’s signature repository and
compared to incoming packets. When the system finds
a match, it can take actions such as logging, alerting, and
dropping packets.

The problem with signature-based techniques is that
they can’t detect novel attacks whose signatures aren’t
available in the repository (0-day attacks). Novel attacks
are difficult for both proactive and reactive security
approaches to detect. Anomaly-based detection tech-
niques can report about these attacks but have a high
number of false alarms. 0-day discoveries require real-
time attack handling and response, but this isn’t feasible
for manually interfaced systems. Systems need auto-
mated defense mechanisms to prevent such attacks.

Researchers have proposed many automatic attack
detection and signature generation techniques to detect
network intrusion. Automated signature generation
systems can be classified into two broad categories—
signature generation without attack detection and
signature generation with attack detection. Signature
generation without attack detection doesn’t apply any
attack detection mechanisms prior to signature genera-
tion. Honeycomb, Polygraph, Nemean, Earlybird, Han-
cock, Auto-Sign, and F-Sign fall under this category.

Systems with attack detection first detect an attack,
then generate attack signatures. Autograph, PAYL
(Payload-Based Anomaly Detector), PADS (Position-
Aware Distribution Signatures), TaintCheck, Vigilante,
ARBOR (Adaptive Response to Buffer Overflows),
Argos, Hamsa, ShieldGen, Honeycyber, and Eudaemon
fall under this category. (For more information on sig-
nature generation mechanisms, see the sidebar.)

In this article, we present a comparative analysis of
several of these systems based on a review of literature.

Review Methodology
We searched an appropriate set of electronic databases
and other sources to increase the probability of find-
ing highly relevant articles. We performed this review
by identifying primary studies, applying inclusion
and exclusion criteria, and synthesizing the results.

Automatic Attack Signature Generation
Systems: A Review

Sanmeet Kaur and Maninder Singh | Thapar University Patiala, India

www.computer.org/security 55

We compare eight systems on the basis of important
parameters, including 0-day attack detection, signature
generation method, suitability for multiple instances
of worms, types of signatures generated, attacks and
worms detected, false alarm rates, and relative strengths
and weaknesses.

Automated Signature Generation Systems
We analyzed Honeycyber, Hancock, ARBOR, Auto-
Sign, Argos, Hamsa, F-Sign, and a hybrid honeyfarm–
based system. Here, we describe these automated
signature generation systems.

Honeycyber
Mohssen Mohammed and his colleagues designed
Honeycyber, an automated signature generation sys-
tem for 0-day polymorphic worms.1 As Figure 1 shows,
Honeycyber has a double honeynet system. The pack-
ets containing worms go to the first honeynet and make
outbound connections. The internal translator directs
them to the second honeynet. The worms make out-
bound connections from the second honeynet and are
redirected to the first honeynet. Legitimate packets
don’t make outbound connections, so the packets that
make outbound connections are considered malicious.

This system can also detect polymorphic worms,
which vary their payloads on every infection attempt.
Signature generation is based on the longest com-
mon substring method applied on multiple invariant
substrings. Honeycyber can automatically detect new
worms and isolate attack traffic from innocuous traf-
fic. It generates both Snort-2 and Bro-based3 signatures
and can generate signatures to match most polymor-
phic worm instances with low false positives and low
false negatives.

Mohammed and his colleagues extended this archi-
tecture using principal component analysis to deter-
mine the most significant substrings shared between
polymorphic worm instances for use as signatures.4

Hancock
Kent Griffin and his colleagues proposed Hancock, a
system that automatically generates string signatures
for malware detection.5 Hancock was the first auto-
matic string signature–generation system developed
in Symantec Research Labs to automatically generate
high-quality string signatures with minimal false posi-
tives and maximal malware coverage.

Each of Hancock’s string signatures is a contiguous
byte sequence that can match many variants of a mal-
ware family. The probability that a Hancock-generated
string signature appears in any goodware program is
very low. Each Hancock-generated string signature
identifies as many malware programs as possible using

Related Work
in Signature Generation Mechanisms

R ashid Waraich reviewed 12 automated signature generation mecha-
nisms—Nemean, Dynamic Taint Analysis, Honeycomb, IBM-94,

Autograph, Paid, PADS (Position-Aware Distribution Signatures), PAYL
(Payload-Based Anomaly Detector), Polygraph, StonyBrook, Dalhousie,
and PISA—based on parameters such as system location, input, signature
output format, worm detection mechanism, number of attack instances
required as input, use of honeypot technology, usefulness against poly-
morphism, and quality of generated signature.1

In 2006, the European Network of Affine Honeypots project reviewed
15 signature generation systems—Honeycomb, Polygraph, Earlybird,
Nemean, Autograph, PADS, PAYL, COVERS, DIRA, DOME, Minos, Paid,
TaintCheck, Vigilante, and HoneyStat—comparing parameters such as at-
tack detection mechanism, detected attack types, attack detection input,
type of attack detection system, expected attack detection delay, signature
type, applicability to polymorphic attack payload, expected signature
generation delay, performance, attack detection, signature quality, and
collaboration among sensors.2

However, no work in recent literature presents a survey of current at-
tack detection and signature generation systems.

References
1. R. Waraich, Automated Attack Signature Generation: A Survey, tech.

report, Swiss Federal Inst. Technology, Computer Engineering and Net-
works Laboratory, 2005.

2. D1.2: Attack Detection and Signature Generation, tech. report, Research
Infrastructures Action, NoAH Project, May 2006; www.fp6-noah.org/
publications/deliverables/D1.2.pdf.

Figure 1. Honeycyber architecture.1 Honeycyber’s double honeynet system
(with internal translators and a signature generator) is capable of generating
Snort- and Bro-based intrusion detection system (IDS) signatures.

Honeynet 2

IDS
Gate

translator

Internet

Local
network

Signature
generator

Worm

Honeynet 1

Internal
translator 1

Internal
translator 2

56 IEEE Security & Privacy November/December 2013

INTRUSION DETECTION SYSTEMS

three types of heuristics to test a candidate signature’s
false positive rate—probability, disassembly, and diver-
sity based. Probability- and disassembly-based heuris-
tics filter candidate signatures extracted from malware
files, and diversity-based heuristics select good signa-
tures from among these candidates.

Hancock recursively unpacks malware files using
Symantec’s unpacking engine and rejects files that can’t
be unpacked. It examines every 48-byte code sequence
in unpacked malware files and finds candidate signa-
tures using probability- and disassembly-based heuris-
tics. It then filters out byte sequences whose estimated
occurrence probability in goodware programs is above
a certain threshold (according to a precomputed good-
ware model). These byte sequences can be a part of
standard library functions like I/O or graphics func-
tions, which can be used by both goodware and mal-
ware authors. Hancock disassembles a set of malware
files using IDA Pro.

Hancock then applies selection rules, based on the
diversity principle, to the candidate signatures that
passed the initial filtering step. Per the diversity princi-
ple, if the malware samples containing a candidate signa-
ture are similar to one another, the system will generate
fewer false positives. Finally, Hancock generates string
signatures consisting of multiple disjoint byte sequences
rather than only one contiguous byte sequence.

To minimize the false positive rate, Hancock esti-
mates the occurrence probability of arbitrary byte
sequences in goodware programs using a fixed-order
5-gram Markov chain, a set of library code identification
techniques, and diversity-based heuristics to find the
similarities of the contexts in which a signature is used
in various malware files. Combining these techniques,

Hancock can automatically generate string signatures
with a false positive rate below 0.1 percent.5

ARBOR
Zhenkai Liang and R. Sekar created ARBOR, a system
that automates buffer overflow attack signatures.6 This
approach is based on the program behavior model. The
authors argued that most existing buffer overflow detec-
tion techniques lead to repeated restarts of the victim
application, interrupting service availability. ARBOR
filters out attacks before they compromise the server’s
integrity, thereby allowing the server to continue to run
without interruption. This significantly increases the
availability of servers subjected to repeated attacks.

Figure 2 shows ARBOR’s architecture. It’s imple-
mented using inline and offline components. Inline
components are responsible for input filtering and log-
ging whereas offline components perform tasks such as
detection, analysis, and signature generation. The inline
components hook into the execution environment of
the protected process using library interception. The
input filter intercepts all of the protected process’s input
actions. The inputs returned by these actions are then
compared to the list of signatures currently deployed in
the filter.

The system discards inputs matching any of these
signatures and returns an error code to the protected
process. If the input is associated with a TCP connec-
tion, the input filter breaks the connection to preserve
the TCP protocol’s semantics. The behavior model is
a central component of ARBOR, used to make auto-
matic filtering decisions based on knowledge gathered
from the program itself rather than doing this encod-
ing manually. Using library interception, ARBOR
learns a protected process’s behavior model. The logger
records inputs for offline analysis. The offline compo-
nents include a detector and an analyzer. The detector
is responsible for attack detection; it promptly notifies
the analyzer, which begins the attack signature genera-
tion process. The generated signature is then deployed
in the input filter. This enables the system to drop future
attacks before they compromise the protected process’s
integrity or availability.

ARBOR predicts attacks at the point of network
input, resulting in reliable recovery. It also generates
a generalized vulnerability-oriented signature from a
single attack instance; this signature can be deployed at
other sites to block attacks exploiting the same vulner-
ability. The system doesn’t have any false positives but
does have issues with false negatives, including attacks
delivered through multiple packets, concurrent serv-
ers, message field overflows, denial-of-service attacks
aimed at evading character distribution signatures, and
addressing limitations.

Figure 2. ARBOR architecture.6 ARBOR contains inline components for input
filtering and logging, whereas offline components are responsible for detection,
analysis, and signature generation of buffer overflow attacks.

Library interceptor

Process Detector

Alert

Analyzer

Behavior model

Input
filter

Logger

Program
input

Inline components O�ine components

Model and inputs

New signatures

www.computer.org/security 57

Auto-Sign
Auto-Sign, designed by Gil Tahan and his colleagues,
extracts unique signatures of malware executables to
be used by high-speed malware-filtering devices based
on deep packet inspection, and operates in real time.7 It
enables analysis at the binary level and doesn’t require
a semantic interpretation of code, making this technol-
ogy generic—unaffected by CPU or platform changes.

Large executables comprise substantial amounts
of code replicated across various instances of both
benign and malware executables. To minimize the risk
of false positive classification of benign executables as
malware, Auto-Sign discards signature candidates that
contain such replicated chunks of code. The authors
claimed that this can control the number of false posi-
tives more effectively than increasing signature length.
Auto-Sign focuses on various requirements pertaining
to the signatures to be generated, such as low probabil-
ity of the candidate signature appearing in the benign
file, short length of the signature to cope with vari-
ous IDS devices’ storage limitations, and compliance
with limitations of high-speed deep packet inspection
devices to detect attacks in real time. These require-
ments should be well-defined to enable fully auto-
matic generation.

Auto-Sign has two phases, namely, setup and sig-
nature generation. In the setup phase, two data struc-
tures—common function library (CFL) and common
threat library (CTL)—are created. In the signature gen-
eration phase, signatures are generated, trimmed, and
ranked, and the final signature is chosen on the basis of
entropy, with a 3-gram representation. This method’s
main benefit is that it enables analysis at the binary level
and thus doesn’t require a semantic interpretation of
code into function blocks. Auto-Sign needs to follow a
more exhaustive and systematic methodology for build-
ing CFL repositories when generating signatures for
high-throughput network security appliances.

Argos
Georgios Portokalidis and his colleagues’ Argos is an
emulator for fingerprinting 0-day attacks.8 Argos is
a containment environment that can handle worms
as well as human-launched attacks. Argos is built on
a fast x86 emulator that tracks network data through-
out execution to identify invalid jump targets, function
addresses, and instructions.

Figure 3 depicts Argos’s architecture. Incoming traf-
fic is logged in a trace database and fed to the unmodi-
fied application running on the emulator (Figure 3, step
1). In the emulator, a dynamic taint analysis detects
when vulnerabilities are exploited to alter an applica-
tion’s control flow (step 2).

Argos considers data originating from an unsafe

source in the network and data copied to memory as
tainted. The new location is also considered tainted
whenever it’s used. Argos traces physical addresses
rather than virtual addresses, hence reducing memory-
mapping problems. When it detects a violation, it
sounds an alarm that leads to a signature generation
phase. To aid signature generation, Argos first dumps
all tainted blocks and some additional information to
file, with markers specifying the address that triggered
the violation, the memory area it was pointing to, and
so forth. To obtain additional information about the
application, such as process identifier, executable name,
open files, sockets, and so forth, the system injects its
own shellcode to perform forensics (step 3). Argos was
the first system to employ the means of attack (shell-
code) for defensive purposes.

Argos then uses the dump of the memory blocks
and the additional information obtained by system’s
shellcode to correlate with the network traces in the
trace database (step 4). It submits the signature to a
subsystem called SweetBait, which correlates signa-
tures from different sites and refines signatures based
on similarity (step 5). The final step is the automated
use of the refined signature. Snort is attached to Sweet-
Bait to provide traffic signatures (step 6). Argos has
used the Aho-Corasick pattern-matching algorithm to
match network signatures.

The European Network of Affine Honeypots’ test-
bed project recently used Argos as its virtual machine
emulator.9

Hamsa
Zhichun Li and his colleagues proposed Hamsa, a net-
work-based automated signature generation system for
polymorphic worms.10 Hamsa is fast, noise tolerant,

Figure 3. Argos architecture.8 Argos is based on an x86 emulator that uses
dynamic taint analysis on network traces and memory dumps to generate
attack signatures.

Applications

Guest OS (Windows, Linux, etc.)

3

Extended dynamic
taint analysis

Argos emulator2

1

54

Memory dump
(tainted data)Network

trace

Correlation Signature
“0100111001100111”

Refined signature
“0100111”

Sweetbait 6

Network data

Forensics

58 IEEE Security & Privacy November/December 2013

INTRUSION DETECTION SYSTEMS

and attack resilient, analyzing polymorphic worms’
invariant content.

Hamsa’s architecture is similar to Autograph and
Polygraph (see Figure 4). It sniffs traffic from networks,
assembles packets to flows, and classifies flows based on
protocols such as TCP, User Datagram Protocol, Inter-
net Control Message Protocol, and port numbers. Then,
for each protocol and port pair, Hamsa filters out the
known worm samples and separates the flows into a sus-
picious pool or normal traffic using a worm flow classi-
fier. Based on a normal traffic selection policy, some part
of the normal traffic reservoir is selected to be the nor-
mal traffic pool. The signature generator then generates
signatures using the suspicious and normal traffic pool.
Hamsa focuses on content-based signatures because
they treat the worms as strings of bytes and don’t rely
on protocol or server information.

Hamsa-generated signatures can be deployed eas-
ily in Snort or Bro IDSs. Hamsa significantly outper-
forms Polygraph in terms of efficiency, accuracy, and
attack resilience.

F-Sign
Asaf Shabtai and his colleagues proposed F-Sign, an
automatic and function-based signature generation sys-
tems for malware files.11 F-Sign is designed to generate
simple byte-string signatures that network-based IDSs
can use to filter malware in real time. F-Sign employs
an exhaustive and structured technique. It first extracts
the malware’s unique code from other segments of com-
mon and usually benign code, such as shared libraries,
then generates signatures from malware such as worms,
spyware, Trojan horses, and viruses. A human expert
or an automated detection tool classifies the suspected
files as benign or malicious.

F-Sign is a payload-based automated signature gen-
eration technique, capable of generating sensitive and
specific signatures for malware of any size and type
while minimizing false positives by analyzing the mal-
ware at the functional level and taking into account
large common-code segments. It first creates a CFL that
contains a representation of functions from standard
libraries used by higher-level languages. After this, the
signatures are generated for the entire malware corpus.
Figure 5 shows the CFL creation and signature genera-
tion process.

The CFL can either be created by extracting func-
tions using IDA Pro file disassembly or by extracting
functions using a specialized state machine. The signa-
ture generation process for a malware file begins with
identifying the internal functions, then each function is
compared to the database of existing functions stored as
CFL. Functions found in the CFL are marked as com-
mon. The remaining functions are candidates for gener-
ating a unique malware signature. The best candidate is
chosen by entropy based on the length of candidate in
bytes and frequency of appearances of a specific byte in
the candidate function. The candidate with the highest
entropy is selected as signature.

eDare—an early detection, alert, and response
framework that provides malware-filtering services to
network service providers, Internet service providers,
and large enterprises—used F-Sign as its automatic
signature generation module. Signatures generated
by F-Sign comprise simple byte-strings, which can be
used by high-speed, network-based malware-filtering
devices. The false positive rate is calculated by counting
signatures detected in the benign control group files.
This system has low false positives for longer signature
candidates and larger CFLs. F-Sign has been evaluated
in conjunction with DefensePro, an IDS.

Figure 4. Hamsa architecture.10 Network tap and protocol classifiers sniff and
classify packets based on the port and protocol before separating the traffic
into suspicious and normal flow pools. The signature generator then generates a
content-based signature compatible with Snort and Bro.

Suspicious
tra�c pool

Normal
tra�c pool

Known
worm
filter

Network
tap

Protocol
classifier

TCP
25

TCP
53

TCP
80

. . . TCP
137

UDP
1434

Worm
flow

classifier

Hamsa
signature
generator

Signatures

Real time

Policy driven

Normal
tra�c

reservoir

Figure 5. F-Sign architecture.11 The function extractor helps in common
function library creation, and the signature generator is responsible for
generating signatures.

Common
function

filter

Signature
selector

Signatures Common
function
library

Signature
generator

Unique
functions Functions

FunctionsCandidates

Function
matching

Function
extractor

Malware
file

Legitimate
files

www.computer.org/security 59

Honeyfarm-Based Defense
against Internet Worms
Pragya Jain and Anjali Sardana proposed a hybrid
approach that integrates anomaly and signature detec-
tion with honeypots.12 This system makes use of all the
approaches’ advantages. Figure 6 shows this system’s
architecture. Signature-based detection is the first-level
filter to detect known worm attacks. At the second
level, an anomaly detector finds deviations from nor-
mal behavior. At the last level, honeypots are deployed
to help detect 0-day attacks. The controller is respon-
sible for traffic redirection among various honeypots
deployed in the honeyfarm. In this approach, the lon-
gest common subsequence algorithm is used to gener-
ate signatures.

The detection rate of the hybrid honeyfarm–based
approach is 81 percent, with a false alarm rate of 4
percent. The detection rate is remarkable compared
to signature-based (32 percent), anomaly-based (34
percent), signature- and anomaly-based (61 per-
cent), signature- and honeypot-based (46 percent),
and anomaly- and honeypot-based (52 percent) tech-
niques. There is an overall increase of 32.78 percent in
the detection rate and a reduction of 33.3 percent in the
false alarm rate compared to signature- and anomaly-
based approaches.

Comparative Analysis
Table 1 compares several aspects of these systems,
including whether the system detects novel attacks
prior to signature generation, the signature generation
method, suitability for multiple instances of worms,
type of signature generated, attacks and worms covered,
false alarms rates, and relative strengths and weaknesses.
Our findings are based on facts reported by authors of
corresponding systems.

N o single technique can detect all type of worms
and attacks. The results we provide in this article

are based solely on each of these tools’ characteristics
as described in literature. This method is a limitation
of our study, and future work will involve a consistent
and independent evaluation across all tools. Such an
approach would make the results more comparable
across the systems.

References
1. M.M.Z.E. Mohammed, H.A. Chan, and N. Ventura,

“Honeycyber: Automated Signature Generation for
Zero-Day Polymorphic Worms,” Proc. IEEE Military
Communications Conference (MILCOM 08), IEEE,
2008, pp. 1–6.

2. M. Roesch, “Snort—Lightweight Intrusion Detection for

Networks,” Proc. 13th Conf. Systems Administration, Use-
nix, 1999, pp. 229–238.

3. V. Paxson, “Bro: A System for Detecting Network Intrud-
ers in Real-Time,” Computer Networks, vol. 31, nos. 23–24,
1999, pp. 2435–2463.

4. M.M.Z.E. Mohammed et al., “Detection of Zero-Day
Polymorphic Worms Using Principal Component Analy-
sis,” Proc. 6th Int’l Conf. Networking and Services, IEEE CS,
2010, pp. 277–281.

5. K. Griffin et al., “Automatic Generation of String Signa-
tures for Malware Detection,” Proc. 12th Int’l Symp. Recent
Advances in Intrusion Detection, Springer-Verlag, 2009, pp.
101–120.

6. Z. Liang and R. Sekar, “Automatic Generation of Buffer
Overflow Attack Signatures: An Approach Based on Pro-
gram Behavior Models,” Proc. 21st Ann. Computer Security
Applications Conf., IEEE CS, 2005, pp. 215–224.

7. G. Tahan et al., “Auto-Sign: An Automatic Signature Gen-
erator for High-Speed Malware Filtering Devices,” J. Com-
puter Virology, vol. 6, no. 2, 2010, pp. 91–103.

8. G. Portokalidis, A. Slowinska, and H. Bos, “Argos: An
Emulator for Fingerprinting Zero-Day Attack,” Proc. Int’l
Conf. ACM SIGOPS EUROSYS, ACM, 2006, pp. 15–28.

9. J. Kohlrausch, “Experiences with the NoAH Honeynet
Testbed to Detect New Internet Worms,” Proc. 5th Int’l
Conf. IT Security Incident Management and IT Forensics,
IEEE CS, 2009, pp. 13–26.

10. Z. Li et al., “Hamsa: Fast Signature Generation for Zero-
Day Polymorphic Worms with Provable Attack Resil-
ience,” Proc. IEEE Symp. Security and Privacy (S&P 06),
IEEE CS, 2006, pp. 32–47.

11. A. Shabtai, E. Menahem, and Y. Elovici, “F-Sign:
Automatic, Function-Based Signature Generation for

Figure 6. Architecture of the hybrid honeyfarm–based approach.12 Signature-
based detection is the first-level filter to detect known worm attacks. At the
second level, an anomaly detector finds deviations from normal behavior. At the
last level, honeypots are deployed to help detect 0-day attacks.

Network tra�c

(Correlate the attacks from di�erent networks)

Redirection

For known
worm attacks

Anomalous
event

Signature baseC
o
n
t
r
o
l
l
e
r

Anomaly base

Database Client
honeypot

OS
Linux/Windows

Cisco
router

DNS
server

Honeyfarm

60 IEEE Security & Privacy November/December 2013

INTRUSION DETECTION SYSTEMS

Malware,” IEEE Trans. Systems, Man, and Cybernetics—
Part C: Applications and Reviews, vol. 41, no. 4, 2011, pp.
494–508.

12. P. Jain and A. Sardana, “Defending against Internet Worms
Using Honeyfarm,” Proc. CUBE Int’l Information Technol-
ogy Conference (CUBE 12), 2012, ACM, pp. 795–800.

Sanmeet Kaur is an assistant professor in the School of
Mathematics and Computer Applications at Thapar
University Patiala, Punjab, India, where she’s also
pursuing a PhD in intrusion detection. Her research
interests include network security, software testing,
and software engineering. Kaur received an ME in

software engineering from Thapar University Patiala.
Contact her at sanmeet.bhatia@thapar.edu.

Maninder Singh is an associate professor in and head of
the Computer Science and Engineering Department
at Thapar University. His research interests include
network security and grid computing, and he is a
torchbearer for the open source community. Singh
received a PhD in network security from Thapar Uni-
versity. Contact him at msingh@thapar.edu.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

Table 1. Comparative Analysis of the Systems under Study.

System 0-day attack detection Signature generation
method

Suitability for multiple
instances of worms

Type of signatures
generated

Attacks and worms covered False alarm rate Strengths Weaknesses

Honeycyber Yes Colored set size for
string matching

Suitable for
polymorphic worms

Bro- and Snort-
based signatures

Polymorphic worms Low false positive (FP) rate Double honeynet to detect
polymorphic worms

Overhead is more; double honeynet
takes more processing time

Hancock Partial—can do so
if signature covers
many sample files in
a malware family

Uses probability-,
disassembly-, and diversity-
based string signatures with
contiguous byte sequence

Partial—can detect little
variation in code; not
suitable for high degree
of polymorphism

Single-component
and multicomponent
signatures for
antiviruses

Malware detection Sufficiently low FPs
(below 0.1 percent)

Provides scalable goodware
modeling technique; generates
multicomponent signatures,
which are more efficient than
single-component signatures;
low FP rates below 0.1 percent

Less coverage; not suitable for
highly polymorphic malware

ARBOR Yes, restricted to buffer
overflow attacks

Address space randomization Suitable for
polymorphic worms

Buffer overflow–
related signatures

Ten real-world vulnerabilities
including WU-FTPD,
Apache SSL, ntpd, IRCd,
Samba, and passlogd

No FPs; false negatives (FNs)
possible with fragmented
attacks, concurrent servers,
and message field overflows

Effective for real-world buffer
overflow attacks; ensures high
availability of servers; low runtime
overheads; can work with COTS
without access to source code;
lesser attack samples required for
high-quality signature generation

Generates FN alarms in fragmented
attack packets, concurrent servers,
DoS attacks aimed at evading
character distribution signatures,
and message field overflows;
stand-alone system doesn’t
communicate with other systems

Auto-Sign No By ranking the candidate
signature based on entropy,
probability, and distance

No Signatures compatible
with NIDS/NIPS
operating as malware-
filtering devices

Malware executables
including worm emails,
virus, Trojans, email
flooder, denial-of-service
(DoS) attack, exploits,
worms, and P2P attacks

Low FP rates Detects attacks from larger
malware executable; reduces false
positives by eliminating benign
traffic signature candidates’
platform-independent analysis
as it works at binary level

Doesn’t address the issue of
generating composite signatures

Argos Yes Dynamic taint analysis,
longest common
substring, and critical
exploit string detection

Suitable for
polymorphic worms

Snort-based signatures Scalper, sadmind/IIS,
Welchia, Poxdar, Sasser,
Gaobot.ali, Zotob, Blaster,
Mytob-CF, Dopbot-A

No false alarms No FPs; cost effective Doesn’t generate self-certifying alerts

Hamsa Yes Content-based token
extraction

Suitable for
polymorphic worms

Snort- and Bro-
based signatures

Code Red II, Apache-Knacker,
ATPhttpd, CLET, Tapion

Low and bounded
FPs and FNs

Faster than previous token-based
techniques like Polygraph

F-Sign No Entropy-based selection
after creating common
function library (CFL)

Suitable for partially
obfuscated malware
having invariant
codes but not for fully
obfuscated malware

Compatible with
eDare (early detection,
alert, and response)
framework

Malware detection Low FP rates, provided CFL
size is large (below 0.4 percent
with 1,675 Mbytes CFL)

Suitable for high-speed malware-
filtering devices; able to tackle
allergy attacks against automated
signature generation

Not suitable for fully obfuscated
or polymorphic code

Hybrid honeyfarm–
based approach

Yes Longest common
subsequence along with
protocol-based packet header
anomaly detection technique

No Local signature
detection and
generation engine

Metasploit-generated
attack patterns

Four percent false alarm rate High detection rate; hybrid
approach includes advantages
of anomaly- and signature-
based techniques

High initial setup time; false
alarm rate is substantial

www.computer.org/security 61

Table 1. Comparative Analysis of the Systems under Study.

System 0-day attack detection Signature generation
method

Suitability for multiple
instances of worms

Type of signatures
generated

Attacks and worms covered False alarm rate Strengths Weaknesses

Honeycyber Yes Colored set size for
string matching

Suitable for
polymorphic worms

Bro- and Snort-
based signatures

Polymorphic worms Low false positive (FP) rate Double honeynet to detect
polymorphic worms

Overhead is more; double honeynet
takes more processing time

Hancock Partial—can do so
if signature covers
many sample files in
a malware family

Uses probability-,
disassembly-, and diversity-
based string signatures with
contiguous byte sequence

Partial—can detect little
variation in code; not
suitable for high degree
of polymorphism

Single-component
and multicomponent
signatures for
antiviruses

Malware detection Sufficiently low FPs
(below 0.1 percent)

Provides scalable goodware
modeling technique; generates
multicomponent signatures,
which are more efficient than
single-component signatures;
low FP rates below 0.1 percent

Less coverage; not suitable for
highly polymorphic malware

ARBOR Yes, restricted to buffer
overflow attacks

Address space randomization Suitable for
polymorphic worms

Buffer overflow–
related signatures

Ten real-world vulnerabilities
including WU-FTPD,
Apache SSL, ntpd, IRCd,
Samba, and passlogd

No FPs; false negatives (FNs)
possible with fragmented
attacks, concurrent servers,
and message field overflows

Effective for real-world buffer
overflow attacks; ensures high
availability of servers; low runtime
overheads; can work with COTS
without access to source code;
lesser attack samples required for
high-quality signature generation

Generates FN alarms in fragmented
attack packets, concurrent servers,
DoS attacks aimed at evading
character distribution signatures,
and message field overflows;
stand-alone system doesn’t
communicate with other systems

Auto-Sign No By ranking the candidate
signature based on entropy,
probability, and distance

No Signatures compatible
with NIDS/NIPS
operating as malware-
filtering devices

Malware executables
including worm emails,
virus, Trojans, email
flooder, denial-of-service
(DoS) attack, exploits,
worms, and P2P attacks

Low FP rates Detects attacks from larger
malware executable; reduces false
positives by eliminating benign
traffic signature candidates’
platform-independent analysis
as it works at binary level

Doesn’t address the issue of
generating composite signatures

Argos Yes Dynamic taint analysis,
longest common
substring, and critical
exploit string detection

Suitable for
polymorphic worms

Snort-based signatures Scalper, sadmind/IIS,
Welchia, Poxdar, Sasser,
Gaobot.ali, Zotob, Blaster,
Mytob-CF, Dopbot-A

No false alarms No FPs; cost effective Doesn’t generate self-certifying alerts

Hamsa Yes Content-based token
extraction

Suitable for
polymorphic worms

Snort- and Bro-
based signatures

Code Red II, Apache-Knacker,
ATPhttpd, CLET, Tapion

Low and bounded
FPs and FNs

Faster than previous token-based
techniques like Polygraph

F-Sign No Entropy-based selection
after creating common
function library (CFL)

Suitable for partially
obfuscated malware
having invariant
codes but not for fully
obfuscated malware

Compatible with
eDare (early detection,
alert, and response)
framework

Malware detection Low FP rates, provided CFL
size is large (below 0.4 percent
with 1,675 Mbytes CFL)

Suitable for high-speed malware-
filtering devices; able to tackle
allergy attacks against automated
signature generation

Not suitable for fully obfuscated
or polymorphic code

Hybrid honeyfarm–
based approach

Yes Longest common
subsequence along with
protocol-based packet header
anomaly detection technique

No Local signature
detection and
generation engine

Metasploit-generated
attack patterns

Four percent false alarm rate High detection rate; hybrid
approach includes advantages
of anomaly- and signature-
based techniques

High initial setup time; false
alarm rate is substantial

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

