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Abstract— Stability problems of continuous-time recurrent
neural networks have been extensively studied, and many papers
have been published in the literature. The purpose of this paper
is to provide a comprehensive review of the research on stability
of continuous-time recurrent neural networks, including Hopfield
neural networks, Cohen–Grossberg neural networks, and related
models. Since time delay is inevitable in practice, stability results
of recurrent neural networks with different classes of time delays
are reviewed in detail. For the case of delay-dependent stability,
the results on how to deal with the constant/variable delay in
recurrent neural networks are summarized. The relationship
among stability results in different forms, such as algebraic
inequality forms, M-matrix forms, linear matrix inequality
forms, and Lyapunov diagonal stability forms, is discussed and
compared. Some necessary and sufficient stability conditions for
recurrent neural networks without time delays are also discussed.
Concluding remarks and future directions of stability analysis of
recurrent neural networks are given.

Index Terms— Cohen–Grossberg neural networks, discrete
delay, distributed delays, Hopfield neural networks, linear matrix
inequality (LMI), Lyapunov diagonal stability (LDS), M-matrix,
recurrent neural networks, robust stability, stability.

I. INTRODUCTION

APPROACHES based on recurrent neural networks for
solving optimization problems, which use analog com-

putation implemented on electronic devices to replace numer-
ical computation realized by mathematical algorithms, have
attracted considerable attention (see [102], [105], [131], [220],
[233], [248], [251], [252], [254], [255], and the references
therein). However, due to the existence of many equilib-
rium points of recurrent neural networks, spurious suboptimal
responses are likely to be present [69], [205], [254], [258],
which limit the applications of recurrent neural networks.
Thus, the global asymptotic/exponential stability of a unique
equilibrium point for the concerned recurrent neural networks
is of great importance from a theoretical and application point
of view [23], [55], [69], [103], [204], [205], [281], [282].
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Research on the stability of recurrent neural networks in
the early days was for symmetric recurrent neural networks
with or without delays. References [23], [105], [106], [145],
[200], [254], and [287] looked into the dynamic stability of
symmetrically connected networks and showed their practical
applications to optimization problems. Cohen and Grossberg
[55] presented the analytical results on the global stability of
symmetric recurrent neural networks. A brief review on the
dynamics and stability of symmetrically connected networks
is presented in [199], in which the effects of time delay,
the eigenvalue of the interconnection matrix, and the gain of
the activation function on the local dynamics or stability of
symmetric Hopfield neural networks were discussed in detail.

Both in practice and theory, the symmetric restriction on the
connection matrix of recurrent neural networks is too strong,
while asymmetric connection structures are more general [8],
[206], [281]. For instance, a nonsymmetric interconnection
matrix may originate from slight perturbations in the electronic
implementation of a symmetric matrix. Asymmetries of the
interconnection matrix may also be deliberately introduced
to accomplish special tasks [267] or may be related to the
attempt to consider a more realistic model of some classes
of neural circuits composed of the interconnection of two
different sets of amplifiers (e.g., neural networks for nonlinear
programming [131]). Therefore, the local and global stabili-
ties of asymmetrically connected neural networks have been
widely studied [30], [239], [274]. As pointed out in [69],
the topic on global stability of neural networks was more
significant than that of local stability in applications, such as
signal processing and optimization problems. These important
applications motivated researchers to investigate the dynamical
behaviors of neural networks and global stability conditions
of neural networks [23], [103], [281], [282]. Reference [130]
applied the contraction mapping theory to obtain some suffi-
cient conditions for global stability. Reference [201] general-
ized some results in [103] and [130] using a new Lyapunov
function. Reference [126] proved that diagonal stability of the
interconnection matrix implied the existence and uniqueness
of an equilibrium point and the global stability at the equilib-
rium point. References [65], [69], and [73] pointed out that
the negative semidefiniteness of the interconnection matrix
guaranteed the global stability of the Hopfield networks, which
generalized the results in [103], [126], [130], and [201]. Refer-
ence [63] applied the matrix measure theory to get some suffi-
cient conditions for global and local stability. References [122]
and [123] discussed the stability of a delayed neural network
using Lyapunov function and established a Lyapunov diagonal
stability (LDS) condition on the interconnection matrix. Refer-
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ences [30]–[32], [35], and [172] introduced a direct approach
to address the stability of delayed neural networks, in which
the existence of equilibrium point and its stability were proved
simultaneously without using complicated theory, such as
degree theory and homeomorphism theory. Note that the above
references provided the global stability criteria of recurrent
neural networks using different algebraic methods, which
reflected the different measure scales on the stability property
due to different sufficient conditions. These expressions of
global stability criteria can generally be divided into two
categories: 1) LDS condition and 2) matrix measure stability
condition, which had been sufficiently developed in parallel.
The former condition considered the effects of the positive
and negative signs, that is, excitatory (a > 0) and inhibitory
(a < 0) influences, of the interconnection strengths between
neurons, while the latter only considered the positive sign
effects of the interconnection strengths between neurons,
which made the main differences between these two stability
conditions.

It is well known that symmetrically connected analog neural
networks without delays operating in continuous time will
not oscillate [103]–[106], in which it is assumed that neurons
communicate and respond instantaneously. In electronic neural
networks, time delays will occur due to the finite switching
speed of amplifiers [9], [54], [200], [236], [237]. Designing
a network to operate more quickly will increase the relative
size of the intrinsic delay and can eventually lead to oscillation
[200]. In biological neural networks, it is well known that time
delay can cause a stable system to oscillate [79]. Time delay
has become one of the main sources to lead to instability.
Therefore, the study of effects of time delay on stability and
convergence of neural networks has attracted considerable
attentions in neural network community [9], [21], [25], [54],
[113], [236], [237]. Under certain symmetric connectivity
assumptions, neural networks with time delay will be stable
when the magnitude of time delay does not exceed certain
bounds [13], [200], [290]. For asymmetric neural networks
with delays, sufficient stability conditions independent of or
depending on the magnitude of delays were also established
[50], [81], [256], [300]. These results are mostly based on
linearization analysis and energy and/or Lyapunov function
method. Recently, most of the stability results are for recurrent
neural networks with delays, such as discrete delays, distrib-
uted delays, neutral-type delays, and other types of delays,
and many different analysis methods were proposed. Since
2002 [162], [163], the linear matrix inequality (LMI) method
has been used in the stability analysis of recurrent neural
networks, and then many different LMI-based stability results
have been developed. Up to date, LMI-based stability analysis
of recurrent neural networks is still one of the most commonly
used methods in the neural network community.

More recently, lots of efforts have been made on various
stability analyses of recurrent neural networks [5], [135],
[245], [263], [278], [304], [313], [325]. A detailed survey
and summary of stability results are necessary for under-
standing the development of stability theory of recurrent
neural networks. Although there are some literature surveys
available on the stability of recurrent neural networks [83],

[103], [199], exhaustive/cohesive reviews on stability of recur-
rent neural networks are still lacking, which motivates us
to present a comprehensive review on this specific topic.
Although there are many different types of recurrent neural
networks, including complex-valued neural networks [110],
[285] and fractional-order neural networks [125], this paper
is mainly concerned with the real-valued continuous-time
recurrent neural networks described by ordinary differential
equations in the time domain.

This paper is organized as follows. In Section II, the
research categories of the stability of recurrent neural net-
works are presented, which include the evolution of recur-
rent neural network models, activation functions, connection
weight matrices, main types of Lyapunov functions, and differ-
ent kinds of expression forms of stability results. In Section III,
a brief review on the early methods to the stability analysis
of recurrent neural networks is presented. In Section IV,
LMI-based approach is discussed in detail and some related
proof methods to LMI-based stability results are also analyzed.
In Section V, two classes of Cohen–Grossberg neural networks
are discussed, and some related LMI-based stability criteria
are introduced and compared. In Section VI, the stability
problem of recurrent neural networks with discontinuous acti-
vation functions is presented. The emphasis is placed on
recurrent neural networks without delays. In Section VII,
some necessary and sufficient conditions for the dynamics of
recurrent neural networks without delays are developed. In
Section VIII, stability problems of recurrent neural networks
with multiple equilibrium points are discussed, which is a
useful complement to the neural networks with a unique
equilibrium point. The conclusion and some future directions
are finally given in Section IX, which show some potential
and promising directions to the stability analysis of recurrent
neural networks.

II. SCOPE OF RECURRENT NEURAL NETWORK RESEARCH

A recurrent neural network model is mainly composed
of such components as self-feedback connection weights,
activation functions, interconnection weights, amplification
functions, and delays. To establish efficient stability criteria,
there are usually two ways to be adopted. One way is to effi-
ciently use the information of recurrent neural networks under
different assumptions. Another is to relax the assumptions
in the neural networks using novel mathematical techniques.
Along the above lines, we will give a detailed review on
the stability research of recurrent neural networks in this
section.

A. Evolution of Recurrent Neural Network Models

Since Hopfield and Cohen–Grossberg proposed two types
of recurrent neural network models in the 1980s, modified
models have been frequently proposed by incorporating differ-
ent internal and external factors. Especially, when time delays
are incorporated into the network models, stability research
on delayed neural networks has gained significant progress.
A short review on the evolution of neural network models with
delays is presented in [305]. However, with the development of
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the theory of neural networks, some new variations have taken
place in neural network models. Therefore, in this section,
we will briefly review some basic models of recurrent neural
networks and their recent variants.

Cohen and Grossberg [55] proposed a neural network model
described by

u̇i (t) = di (ui (t))

[
ai(ui (t)) −

n∑
j=1

wi j g j (u j (t))

]
(1)

where ui (t) is the state variable of the i th neuron at time t ,
di (ui (t)) is an amplification function, ai (ui (t)) is a well-
defined function to guarantee the existence of solutions of (1),
g j (u j (t)) is an activation function describing how the j th
neuron reacts to the input u j (t), and wi j = w j i is the
connection weight coefficient of the neurons, i, j = 1, . . . , n.
System (1) includes a number of models from neurobiology,
population biology, and evolution theory [55].

Hopfield [105] proposed the following continuous-time
Hopfield neural network model:

u̇i (t) = −γi ui (t) +
n∑

j=1

wi j g j (u j (t)) + Ui (2)

where Ui represents the external input source introduced from
the outside of the network to the neuron, γi > 0, and
the others are the same as those defined in (1). Obviously,
Hopfield neural network model (2) is only a special case of
(1) in the form of mathematical description (for example, let
di (ui (t)) = 1 and ai (ui (t)) = −γi ui (t)+Ui ), not in the sense
of physical meaning due to the existence of the amplification
function. For more details on (1) and (2) (e.g., stability criteria
and background of these two models), one can see the contents
in Sections III and V.

In (1) and (2), it was assumed that neurons communicated
and responded instantaneously. However, in electronic neural
networks, time delay will be present due to the finite switching
speed of amplifiers, which will be a source of instability.
Moreover, many motion-related phenomena can be represented
and/or modeled by delay-type neural networks, which make
the general neural networks with feedback and delay-type
synapses become more important as well [236]. Time delay
was first considered in Hopfield model in [200], which was
described by the following delayed networks:

u̇i (t) = −ui (t) +
n∑

j=1

wi j g j (u j (t − τ )). (3)

Ye et al. [290] introduced the constant discrete delays
into (1), which is in the following form:

u̇i (t)=−di (ui (t))

[
ai (ui (t))−

N∑
k=0

n∑
j=1

wk
i j g j (u j (t−τk))

]
(4)

where τk ≥ 0 is a bounded constant delay, di (ui (t)) > 0 is a
positive and bounded function, wk

i j is the connection weight
coefficient, 0 = τ0 < τ1 < τ2 < · · · < τN , and other notations
are the same as those in (1), k = 0, . . . , N , i, j = 1, . . . , n.
Obviously, Hopfield neural network model (2) is a special case
of (4).

Note that neural networks similar to (2) are only for the case
of instantaneous transmission of signals. Due to the effect of
signal delay, the following model has been widely considered
as an extension of (2):

u̇i (t) = −γi ui (t)+
n∑

j=1

wi j g j (u j (t))+Ui +
n∑

j=1

w1
i j g j (u j (t−τ ))

(5)

where w1
i j is the connection weight coefficient associated

with delayed term. Meanwhile, no matter in biological neural
networks or practical implementation of neural networks, both
instantaneous transmission and delayed transmission of signal
often occur simultaneously, and produce more complicated
phenomena. Therefore, similar to (4), the recurrent neural
network models involving the instantaneous and delayed state
actions have become the dominant models and have been
widely studied in [143], [152], [166], [177], [243], [244],
and [265].

In many real applications, signals that are transmitted from
one point to another may experience a few network segments,
which can possibly induce successive delays with different
properties due to various network transmission conditions.
Therefore, it is reasonable to combine them together, which
leads to the following model:

u̇i (t) = −γi ui (t) +
n∑

j=1

wi j g j (u j (t)) + Ui

+
n∑

j=1

w1
i j g j

(
u j

(
t −

m∑
k=1

τk

))
. (6)

Some special cases of (6) were studied in [76], [279], and
[316]. For the case of two additive time delay components,
some stability results are presented in [136] and [302]. System
(6) extends the classical single point-to-point delay to the
case of successive single point-to-point delay. This kind of
delay cannot be modeled as a discrete delay, which seems
intermediate between discrete and distributed delays.

The use of discrete time delay in the models of delayed
feedback systems serves as a good approximation in simple
circuits containing a small number of neurons. However,
neural networks usually have a spatial extent due to the
presence of a multitude of parallel pathways with a variety
of axon sizes and lengths. There will be a distribution of
propagation delays. In this case, the signal propagation is
no longer instantaneous and cannot be modeled with discrete
delays. It is desired to model them by introducing continuously
distributed delays [24], [28], [42], [82], [114], [115], [142],
[179], [193], [209], [255], [276], [305]. The extent to which
the values of the state variable in the past affect their present
dynamics is determined by a delay kernel. The case of constant
discrete delay corresponds to a choice of the delay kernel being
a Dirac delta function [29]. Nowadays, there are generally two
types of continuously distributed delays in the neural network
models. One is the finite distributed delay

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j

∫ t

t−τ (t)
g j (u j (s))ds (7)
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where i = 1, . . . , n, and τ (t) is a time-varying delay. Model
(7) and its variants have been studied in [261] and [138]. The
other is infinite distributed delay [112], [210], [269]

u̇i (t) = −ai(ui (t))+
n∑

j=1

wi j

∫ t

−∞
Kij (t − s)g j (u j (s))ds (8)

and

u̇i (t) = −ai (ui (t))+
n∑

j=1

wi j g j

( ∫ t

−∞
Kij (t − s)u j (s)ds

)
(9)

where the delay kernel function Kij (·) : [0,∞) → [0,∞) is
a real-valued nonnegative continuous function. If the delay
kernel function Kij (s) is selected as Kij (s) = δ(t − τi j ),
where δ(s) is the Dirac delta function, then (8) and (9) can
be reduced to the following neural networks with different
multiple discrete delays:

u̇i (t) = −ai (ui (t)) +
n∑

j=1

wi j g j (u j (t − τi j )). (10)

If the delay kernel function Kij (s) takes other forms, delayed
models (2), (5), and (7) can also be recovered from (8).
Therefore, discrete delays and finite distributed delays can be
included in (8) and (9) by choosing suitable kernel functions.

The following recurrent neural networks with a general
continuously distributed delays were proposed and studied in
[27], [36], [34], [29], [165], [178], [268], and [271]:

u̇i (t) = −γi ui (t) +
n∑

j=1

∫ ∞

0
g j (u j (t − s))d Ji j (s)

+
n∑

j=1

∫ ∞

0
g j (u j (t − τi j (t) − s))dKij (s) + Ui (11)

where d Ji j (s) and dKij (s) are Lebesgue–Stieltjes measures
for each i, j = 1, . . . , n. As pointed out in [27] and [29], by
taking different forms of Lebesgue–Stieltjes measures, all the
above models with discrete delays or distributed delays can be
uniformly expressed by (11), and all the proofs of stability for
systems with delays can be unified by (11) as special cases.

By choosing either neuron states (the external states of
neurons) or local field states (the internal states of neurons)
as basic variables, a dynamic recurrent neural network is
usually cast either as a static neural network model or as a
local field neural network model [227], [284]. The recurrent
backpropagating neural networks [102], the brain-state-in-a-
box/domian type neural networks [257], and the optimization-
type neural networks [73], [272] are modeled as an static
neural network model described in the following matrix–vector
form:

u̇(t) = −Au(t) + g(Wu(t) + U) (12)

where u(t) = (u1(t), . . . , un(t))T is the state vector of
neurons, A = diag(a1, . . . , an) > 0 is the self-feedback
positive diagonal matrix, W = (wi j )n×n is the interconnection
matrix, U = (U1, . . . , Un)T , and g(u(t)) = (g1(u1(t)), . . . ,
gn(un(t)))T . On the other hand, the well-known Hopfield
neural networks and the cellular neural networks can be

modeled as a local field neural network model of the following
matrix form:

u̇(t) = −Au(t) + Wg(u(t)) + U. (13)

Network models (1)–(8) and (11) belong to the local field
neural networks, while (9) belongs to the static neural network
model. In the aspect of model description, (11) can be used
to describe a large class of local field neural network models.
Along with the similar routine, it will be meaningful to present
a unified model to describe both static neural networks and
local field neural networks. This work has been done in [303],
which can be described as follows:
u̇(t) = −Au(t) + W0g(W2u(t)) + W1g(W2u(t − τ (t))) (14)

where Wi are some matrices with appropriate dimensions and
τ (t) is a time-varying delay. In the sequel, (14) is extended to
the following model [242], [304]:
u̇(t)=−Au(t)+W0g(W2u(t))+W1g(W2u(t−τ1(t)−τ2(t)))

(15)

which is also a further extension of (6), where τ1(t) > 0
and τ2(t) > 0 denote two delay components in which the
transmission of signals experiences two segments of networks.

There are many different factors considered in the neural
network models, such as stochastic actions [44], reaction–
diffusion actions [15], [164], [217], [230], [232], [238],
[240], [269], [318], [326], high-order interactions [57], [262],
impulse and switching effects [229], and so on. These effects
are all superimposed on the elementary Hopfield neural net-
works or Cohen–Grossberg neural networks, which lead to
many complex neural network models in different applications.
There are many internal or external effects considered in
practical neural networks besides many different types of
delays.

B. Evolution of the Activation Functions

Many early results on the existence, uniqueness, and global
asymptotic/exponential stability of the equilibrium point con-
cern the case that activation functions are continuous, bounded,
and strictly monotonically increasing. However, when recur-
rent neural networks are designed for solving optimization
problems in the presence of constraints (linear, quadratic,
or more general programming problems), unbounded activa-
tion functions modeled by diode-like exponential-type func-
tions are needed to impose the constraints. Because of the
differences between the bounded and unbounded activation
functions, extensions of the results with bounded activa-
tion functions to unbounded cases are not straightforward.
Therefore, many different classes of activation functions are
proposed in the literature. Note that a suitable and more
generalized activation function can greatly improve the per-
formance of neural networks. For example, the property of
activation function is important to the capacity of neural
networks. References [212] and [213] showed that the absolute
capacity of an associative memory model can be remarkably
improved by replacing the usual sigmoid activation function
with a nonmonotonic activation function. Therefore, it is very
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significant to design a new neural network with a more gen-
eralized activation function. In recent years, many researchers
have devoted their attention to attain this goal by proposing
new classes of generalized activation functions. Next, we will
decribe some various types of activation functions used in the
literature.

In the early research of neural networks, different types of
activation functions are used, for example, threshold function
[104], piecewise linear function [1], [151], [292], signum
function [93], hyperbolic tangent function [2], hard-limiter
nonlinearity [197], and so on. In the following, we are mainly
concerned with Lipschitz-continuous activation functions and
their variants.

1) The following sigmoidal activation functions have been
used in [105], [106], [254], [261], and [290]:

gi
′(ζ ) = dgi(ζ )/dζ > 0, lim

ζ→+∞ gi(ζ ) = 1,

lim
ζ→−∞ gi(ζ ) = −1, lim|ζ |→∞ gi

′(ζ ) = 0 (16)

where gi(·) is the activation function of the i th neuron,
i = 1, . . . , n, and n ≥ 1 is the number of neurons. Obviously,
it is differentiable, monotonic, and bounded.

2) The following activation functions have been used in
[137], [265], [272], [301], and [315]:

|gi (ζ ) − gi(ξ)| ≤ δi |ζ − ξ | (17)

no matter whether the activation function is bounded or not.
As pointed out in [265], this type of activation function in (17)
is not necessarily monotonic and smooth.

3) The following activation functions have been employed
in [16], [35], and [166]:

0 <
gi (ζ ) − gi(ξ)

ζ − ξ
≤ δi . (18)

4) The following activation functions have been employed
in [19], [52], [137], and [315]:

0 ≤ gi (ζ ) − gi(ξ)

ζ − ξ
≤ δi . (19)

5) The following activation functions are developed in [43],
[135], [138], [139], [176], [177], [242], [294], and [304]:

δ−
i ≤ gi(ζ ) − gi (ξ)

ζ − ξ
≤ δ+

i . (20)

As pointed out in [138], [139], and [177], δ−
i and δ+

i may
be positive, negative, or zero. Then, those previously used
Lipschitz conditions (16), (18), and (19) are just special cases
of (20). Comparisons among various classes of continuous
activation functions are shown in Table I.

One of the important things associated with activation
functions is the existence and uniqueness of the equilibrium
point of recurrent neural networks. Now, we will give a brief
comment on this problem. For the bounded activation func-
tion |gi(xi )| ≤ M or the quasi-Lipschitz activation function
|gi(xi )| ≤ δ0

i |xi | + σ 0
i (which may be unbounded), where

M > 0, δ0
i ≥ 0, and σ 0

i ≥ 0 are constants, the existence
of the equilibrium point is established mainly on the basis of
the fixed-point theorem [65], [73], [85], [261].

In general, for the case of bounded activation functions
satisfying Lipschitz continuous conditions, the existence of
the solution can be guaranteed by the existence theorem of
ordinary differential equations [65], [73], [85], [182], [201],
[207], [243], [261], [307].

For the unbounded activation function in the general form,
the existence of the equilibrium point is established mainly on
the basis of homeomorphism mapping [28], [73], [180], [307],
[321], Leray–Schauder principle [191], and so on.

Another important thing associated with activation func-
tions is whether the existence, uniqueness, and global asymp-
totic/exponential stability must be simultaneously dealt with
in the stability analysis of recurrent neural networks. This
question is often encountered and there is no consistent
viewpoint on this question in the early days of the stability
theory of neural networks. This problem leads to two classes
of routines in the stability analysis of recurrent neural net-
works: 1) to directly present the global asymptotic/exponential
stability results without the proof of the existence and
uniqueness of the equilibrium point and 2) to give complete
proof of the existence, uniqueness, and the global asymp-
totic/exponential stability. Clearly, this question must be clari-
fied before the stability analysis of recurrent neural networks is
proceeded.

From a mathematical point of view, it is necessary to
establish the existence (and, if applicable, uniqueness) of
equilibrium point(s) to prove stability. However, according to
different requirements on the activation function, one can have
slightly different treatment routine in the stability proof of the
equilibrium point.

For the general case of the bounded activation functions,
we can directly present the proof of the global asymp-
totic/exponential stability as it is well known that the bounded
activation function always guarantees the existence of the equi-
librium point [65], [73], [85], [261]. For the quasi-Lipschitz
case, the existence of equilibrium point is also guaranteed as in
the case of bounded activation functions. Therefore, it suffices
to present the proof of the global asymptotic/exponential
stability of the equilibrium point for recurrent neural networks
with bounded activation functions, and the uniqueness of the
equilibrium point follows directly from the global asymp-
totic/exponential stability [181].

For the case of unbounded activation functions, on the con-
trary, one must provide the proof of the existence, uniqueness,
and global asymptotic/exponential stability of the equilibrium
point for the concerned neural networks simultaneously.

Activation functions listed above belong to the class of
continuous function. For more details on the relationship
of global Lipschitz continuous, partially Lipschitz continu-
ous, and locally Lipschitz continuous, readers can refer to
[22] and [280]. Some discontinuous activation functions also
exist in practical applications. For example, in the classical
Hopfield neural networks with graded response neurons
[105], the standard assumption is that the activations are
employed in the high-gain limit where they closely approx-
imate a discontinuous hard comparator function. Another
important example concerns the class of neural networks
introduced in [131] to solve linear and nonlinear programming
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TABLE I

COMPARISONS OF DIFFERENT TYPES OF ACTIVATION FUNCTIONS

problems, in which the constraint neurons are with a diode-like
input–output activations. To guarantee satisfaction of the
constraints, the diodes are required to possess a very high
slope in the conducting region, i.e., they should approximate
the discontinuous characteristic of an ideal diode. Therefore,
the following activation functions are for the discontinuous
case.

6) Discontinuous activation functions [68], [71], [72], [116],
[173], [175], [183], [184], [216], [263]: Let gi(·) be a con-
tinuous nondecreasing function, and in every compact set
of real space R, each gi(·) has only finite discontinuity
points. Therefore, in any compact set in R, except some
finite points ρk , there exist finite right and left limits gi (ρ

+)
and gi(ρ−) with gi(ρ

+) > gi(ρ−). In general, one assumes
gi (·) to be bounded, i.e., there exists a positive number
G > 0, such that |gi(·)| ≤ G. Stability analysis of neural
networks with discontinuous activation functions has drawn
many researchers’ attention, and many related results have
been published in the literature since the independent pioneer-
ing works of Forti and Nistri [71] and Lu and Chen [183].
Hopfield neural networks with bounded discontinuous acti-
vations were first proposed in [71], in which the existence
of the equilibrium point and stability were discussed, but
the uniqueness of the equilibrium point and its global stabil-
ity were not given. Instead, in [183], the Cohen–Grossberg
neural networks with unbounded discontinuous activations
were proposed, where the global exponential stability and the
existence and uniqueness of the equilibrium point were given.
Delayed neural networks with discontinuous activations were

first proposed in [184]. Similar models were also proposed
in [72]. It can be concluded that [72, Th. 1] is a special
case of [184, Th. 1]. The almost periodic dynamics of net-
works with discontinuous activations was first investigated in
[186], where the integro-differential systems were discussed.
It includes discrete delays and distributed delays as special
cases.

Therefore, activation functions have evolved from bounded
to unbounded cases, from the continuous to discontinuous, and
from the strictly monotonic case to the nonmonotonic case.
All these show the depth of the research on stability theory of
recurrent neural networks.

C. Evolution of Uncertainties in Connection Weight Matrix

For the deterministic and accurate connection weight matrix,
a lot of stability results have been published since the 1980s.
However, in the electronic implementation of recurrent neural
networks, the connection weight matrix can be disturbed or
perturbed by the external environment. Therefore, the robust-
ness of neural networks against such perturbation should be
considered [5], [18].

At present, there are several forms of uncertainties consid-
ered in the literature.

1) Uncertainties with the matched condition: Assume that
the connection matrix is A. Then, uncertainty 	A is described
by

	A = M F(t)N with FT (t)F(t) ≤ I (21)
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TABLE II

DIFFERENT TYPES OF TIME DELAYS

or

	A = M F0(t)N with F0(t) = (I − F(t)J )−1 F(t)

and FT (t)F(t) ≤ I (22)

where M, N, and J are all constant matrices, J T J ≤ I , and I
is an identity matrix with compatible dimension. This kind of
uncertainty is very convenient in the stability analysis based
on the LMI method. Robust stability for neural networks with
matched uncertainty (21) has been widely studied in [121],
[246], and [310]. For the physical meaning of linear-fractional
representation of uncertainty (22), readers can refer to [14],
[59], [61], [322], and [324] for more details.

2) Interval uncertainty: In this case, the connection matrix
A satisfies [168], [198]

A ∈ AI = [A, A] = {[ai j ] : ai j ≤ ai j ≤ ai j }. (23)

If we let A0 = (A + A)/2 and 	A = (A − A)/2, then
uncertainty (23) can be expressed as follows [137], [144],
[187]:
AJ = {

A = A0 + 	A = A0 + MA FA NA | FT
A FA ≤ I

}
(24)

where MA, NA , and FA are well defined according to some
arrangement of elements in A and A. Obviously, interval
uncertainty (23) has been changed into the form of uncertainty
with matched condition (21).

3) Absolute value uncertainties or unmatched uncertainties,
where

	A = (δai j ) ∈ {|δai j | ≤ ai j }. (25)

This kind of uncertainty has been studied in [290], while
LMI-based results have been established in [286] and [288].

Note that for nonlinear neural systems with uncertainties
(23) or (25), most robust stability results have been proposed
based on algebraic inequalities, M-matrix, matrix measure,

and so on in the early days of the theory of recurrent neural
networks. Since 2007, LMI-based robust stability results for
nonlinear neural systems with uncertainties (23) or (25) have
appeared. This tendency implies that many different classes
of robust stability results for uncertain neural systems will be
proposed.

4) Polytopic type uncertainties

A ∈ 
, 
 =
{

A(ξ) =
p∑

k=1

ξk Ak,

p∑
k=1

ξk = 1, ξk ≥ 0

}
(26)

where Ak is a constant matrix with compatible dimension and
ξk is a time-invariant uncertainty. Robust stability for systems
with this type of uncertainty has been studied in [77], [99],
and [97].

Note that the above uncertainties represent the parameter
uncertainties, which are the reflection of the bounded changes
of system parameters. Different types of uncertainties are
equivalent in the sense of bounded perturbation. Meanwhile,
different robust stability results generally require different
mathematical analysis methods due to the different uncertainty
descriptions in neural systems.

D. Evolution of Time Delays

Due to the different transmission channels and media, time
delays are unavoidable in real systems [56], [110], [176],
[228]. In the aspects of describing time delays, there are some
different ways that depend on the approximation capability
and description complexity. For example, the simplest way is
to assume that delays are the same in all the transmission
channels. A further relaxation is to assume that the delay
is the same in each channel, which is different from other
channels.

Discrete delays reflect the centralized effects of delays
on the system, while distributed delays have effects on the
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neural networks at some duration or period with respect to
the discrete point of delays. As for different classes of time
delays, one can refer to Table II.

For the time-varying delay case, the derivative of time delay
is usually limited to be less than one in the early days (i.e.,
slowly time-varying delay). Now, with the applications of
some novel mathematical methods, e.g., the free weight matrix
method or Finsler formula, the derivative of time-varying delay
can be allowed to be greater than one for some time (i.e.,
fast time-varying delay. It cannot be always grater than one.
Otherwise, delay τ (t) might be greater than t). In practice, the
restriction of the derivative of time-varying delay being less
or greater than one is only meaningful in mathematics, which
lies on different analysis methods to be used.

In the previous methods, the time-varying delay τ (t) is often
assumed to belong to the interval 0 ≤ τ (t) ≤ τ (dating back
almost to the end of 2006). The delay interval 0 ≤ τ (t) ≤ τ
has been replaced by 0 ≤ τ ≤ τ (t) ≤ τ since 2007 [94],
[328]. The meaning or reason of this expansion consists of
the fact that the lower bound of time varying delay in a
practical system cannot be zero, and it may vary in a bounded
interval. On the other hand, the upper bound of time delay
to be estimated in a real delayed system can accurately be
approximated if the nonzero lower bound of time delay is used.
It should be noted that the discrete delay is usually required to
be bounded, which has been stated as above. However, in [39]
and [40], the bounded delay was extended to the unbounded
case, i.e., τ (t) ≤ μt , where μ > 0.

It can be seen from the existing references that only the
deterministic time-delay case was concerned, and the stability
criteria were derived based only on the information of variation
range of the time delay. Actually, the time delay in some NNs
is often existent in a stochastic fashion [294], [295], [317]. It
often occurs in real systems that some values of the delays are
very large but the probabilities of the delays taking such large
values are very small. In this case, if only the variation range
of time delay is employed to derive the stability criteria, the
results may be conservative. Therefore, the challenging issue is
how to derive some criteria for the uncertain stochastic delayed
neural networks, which can exploit the available probability
distribution of the delay and obtain a larger allowable variation
range of the delay.

Recently, a class of neural networks with leakage delays
were studied in [80], [140], and [147]. The leakage delay can
be explained as follows. In general, a nonlinear system can be
stated as follows:

ẋ(t) = −Ax(t) + f (t, x(t), x(t − τ )) (27)

where x(t) is the state vector and f (·, ·, ·) is a class of
nonlinear functions with some restrictive conditions. A is the
constant matrix with appropriate dimensions, and τ > 0 is
the time delay. The first term −Ax(t) on the right-hand side
of (27) corresponds to a stabilizing negative feedback of the
system that acts instantaneously without time. This term is
called forgetting or leakage term [133]. It is known from [79]
that time delays in the stabilizing negative feedback terms will
have a tendency to destabilize a system. When time delay is
incorporated in the leakage term −Ax(t), this class of systems

is called systems with leakage delays

ẋ(t) = −Ax(t − σ) + f (t, x(t), x(t − τ )) (28)

where σ > 0 is a time delay. Obviously, the leakage delay is
not a new kind of delay. However, for the stability analysis
on the system with leakage delay, it cannot be dealt with
using the same routine as the conventional system with
delays.

E. Evolution and Main Types of Lyapunov Approaches

As most of the stability criteria of recurrent neural networks
are derived via the Lyapunov theory, they all have a certain
degree of conservatism. Reducing the conservatism has been
the topic of much research. With the Lyapunov stability
theory, the reduction can be achieved mainly from two phases:
1) choosing the suitable Lyapunov functional and 2) estimat-
ing its derivative. The choice of the Lyapunov functional is
crucial for deriving less conservative criteria. Various types of
Lyapunov functionals and estimation methods on the derivative
of Lyapunov functionals have been constructed to study the
stability of recurrent neural networks. In this section, we will
mainly discuss the evolution and the main types of Lyapunov
approaches and Lyapunov functions used in the analysis of
global stability. For the estimation method of the derivative of
the Lyapunov functional, a brief review can be found in [135]
and [304].

In [105], for the Hopfield neural network (2) under symme-
try assumption on the interconnections, the following contin-
uously differentiable function is used:

VH (u(t)) = −1

2

n∑
i=1

n∑
j=1

yiwi j y j −
n∑

i=1

Ui yi +
n∑

i=1

γi

∫ yi

0
g−1

i (s)ds

(29)

where u(t) = (u1(t), . . . , un(t))T , yi = gi(ui (t)), g−1
i (s) is

the inverse function of gi(s), and wi j = w j i , i, j = 1, . . . , n.
The derivative of (29) along the trajectories of (2) is

dVH (u(t))

dt
= −

n∑
i=1

(
d

dyi
g−1

i (yi )

)(
dyi

dt

)2

. (30)

If g−1
i (s) is a monotonically increasing function, then

(dVH(u(t)))/dt ≤ 0. An alternative proof is presented
in [248].

For the original Cohen–Grossberg network model (1) in
[55], the following continuously differentiable function is
used:

VCG(u(t)) = 1

2

n∑
i=1

n∑
j=1

gi (ui (t))wi j g j (u j (t))

−
n∑

i=1

∫ ui (t)

0
ai (s)

(
d

ds
gi(s)

)
ds (31)

where wi j = w j i , i, j = 1, . . . , n.
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The derivative of (31) along the trajectories of (1) is as
follows:

dVCG(u(t))

dt
= −

n∑
i=1

di (ui (t))

(
d

dui(t)
gi(ui (t))

)

×
⎛
⎝ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

⎞
⎠

2

. (32)

If gi(ui (t)) is a monotonically nondecreasing function and
di (ui (t)) is a nonnegative function, then (dVCG(u(t)))/
dt ≤ 0.

From the stability proof of above two classes of neural
networks, we can find the following facts: 1) the above proof
procedure shows the reason that why the activation function is
usually required to be a monotonically increasing function and
2) both functions VH(u(t)) and VCG(u(t)) are continuously
differentiable functions instead of Lyapunov functions in the
sense of Lyapunov stability theory [132]. The stability proof
of (1) and (2) are based on the LaSalle invariance principle
[55], [132].

In the pioneering work of Cohen and Grossberg and
Hopfield, the global limit property of (1) and (2) was estab-
lished, which means that given any initial conditions, the
solution of (1) [or (2)] will converge to some equilibrium
points of the system. However, the global limit property does
not give a description or even an estimate of the region of
attraction for each equilibrium. In other words, given a set of
initial conditions, one knows that the solution will converge to
some equilibrium points, but does not know exactly to which
one it will converge. In terms of associative memories, one
does not know what initial conditions are needed to retrieve a
particular pattern stored in the networks. On the other hand,
in applications of neural networks to parallel computation,
signal processing, and other problems involving the solutions
of optimization problems, it is required that there is a well-
defined computable solution for all possible initial states. That
is, it is required that the networks have a unique equilibrium
point, which is globally attractive. Earlier applications of
neural networks to optimization problems have suffered from
the existence of a complicated set of equilibrium points [254].
Thus, the global attractivity of a unique equilibrium point for
the system is of great importance for both theoretical and
practical purposes, and has been the major concern of [65],
[69], [103], [201], [274], and [275].

In [69], using the continuous energy functions as those in
(1) and (2), some sufficient conditions were proved guaran-
teeing that a class of neural circuits were globally convergent
toward a unique stable equilibrium at the expense that the
neuron connection matrix must be symmetric and negative
semidefinite. In practice, the condition of symmetry and
negative semidefiniteness of interconnection matrix is rather
restrictive. The research on the global attractivity/stability of
neural networks is mainly concentrated on the construction
of Lyapunov function on the basis of Lyapunov stability
theory. In [23], the following Lyapunov function was first
constructed for purely delayed system (5), i.e., (5) with

wi j = 0 :

V (u(t)) =
n∑

i=1

u2
i (t) +

n∑
i=1

∫ t

t−τ
u2

i (s)ds (33)

and then a sufficient condition ensuring the uniqueness and
global asymptotic stability of the equilibrium point was estab-
lished. Based on the Lyapunov method in [23], the global
stability problem has been widely studied by incorporating
different information of neural networks into the construction
of Lyapunov functions.

In [275], a Lyapunov function is constructed for (4) with
discrete delays

V (u(t)) =
n∑

i=1

⎛
⎝ 1

d̄i
|ui (t)|+

N∑
k=0

n∑
j=1

|wk
i j |δ j

∫ t

t−τk

|u j (s)|ds

⎞
⎠
(34)

where 0 < di ≤ di (ui (t)) ≤ d̄i . For neural networks (9) with
infinite distributed delays, the following Lyapunov function is
constructed in [261]:

V (u(t)) =
n∑

i=1

(
qi |ui (t)| + d̄i qi

n∑
j=1

|wi j |δ j

×
∫ +∞

0
Kij (θ)

∫ t

t−s
|u j (s)|dsdθ

)
(35)

where qi > 0 is a positive number, i = 1, . . . , n.
Based on the above Lyapunov functions, some global sta-

bility results have been derived in the forms of different
algebraic inequalities, in which the absolute value operations
are conducted on the interconnection weight coefficients. To
derive the LMI-based stability results, Lyapunov function in
quadratic forms is generally adopted. In [185], the following
Lyapunov function is constructed for (4) with N = 1:

V (u(t)) = uT (t)Pu(t) +
n∑

i=1

qi

∫ ui (t)

0

gi (s)

di (s)
ds

+
∫ t

t−τ1

gT (u(s))Qg(u(s))ds (36)

where u(t) = (u1, . . . , un)T and g(u(t)) = (g1(u1(t)), . . . ,
gn(un(t)))T , i = 1, . . . , n. In [311], the following
Lyapunov function is constructed for (4) with N = 1:

V (u(t)) =
n∑

i=1

qi

∫ ui (t)

0

s

di (s)
ds +

n∑
i=1

pi

∫ ui (t)

0

gi (s)

di (s)
ds

(37)

where the symbols are defined as in (36), and pi > 0 and
qi > 0 are constants to be determined. In [223], the following
Lyapunov function is constructed for (5):

V (u(t)) = uT (t)Pu(t) + 2
n∑

j=1

q j

∫ u j (t)

0
g j (s)ds

+β

n∑
j=1

p j

∫ t

t−τ
g2

j (u j (s))ds (38)
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where α, β, p j , and q j are all positive numbers, P is a
symmetric positive definite matrix, and j = 1, . . . , n. In [98],
the following Lyapunov function is constructed for (5):

V (u(t)) = uT (t)Pu(t) + 2
n∑

j=1

q j

∫ u j (t)

0
g j (s)ds

+
∫ t

t−τ

[
uT (s)Ru(s)+gT (u(s))Qg(u(s))

]
ds (39)

where R and Q are positive definite symmetric matrices.
For (5) with time-varying delay 0 ≤ τ1 ≤ τ (t) ≤ τ2, the

following Lyapunov function is constructed in [94]:

V (u(t)) = uT (t)Pu(t) + 2
n∑

j=1

q j

∫ u j (t)

0
g j (s)ds

+
∫ t

t−τ (t)

[
uT (s)Ru(s) + gT (u(s))Qg(u(s))

]
ds

+
2∑

i=1

∫ t

t−τi

uT (s)R̄i u(s)ds

+
∫ 0

−τ2

∫ t

t+θ
u̇T (s)Z1u̇(s)dsdθ

+
∫ −τ1

−τ2

∫ t

t+θ
u̇T (s)Z2u̇(s)dsdθ (40)

where R̄i and Zi are positive definite symmetric matrices,
i = 1, 2, and the others are defined as in (39). Similarly, for
(5) with constant time delay, the following function based on
delay decomposition method is proposed in [302]:

V (u(t)) = uT (t)Pu(t) + 2
n∑

j=1

q j

∫ u j (t)

0
g j (s)ds

+
m∑

j=1

∫ −τ j−1

−τ j

[
u(t + s)

g(u(t + s))

]T

ϒ j

[
u(t + s)

g(u(t + s))

]
ds

+
m∑

j=1

(τ j − τ j−1)

∫ −τ j−1

−τ j

∫ t

t+s
u̇T (θ)R j u̇(θ)dθ ds

(41)

where m > 0 is a positive integer, τ j is a scalar satisfying
0 = τ0 < τ1 < · · · < τm = τ , and P, ϒ j , and R j are sym-
metric positive definite matrices with appropriate dimensions.

In general, the equilibrium points reached by (1) and (2)
are locally stable if the continuous functions (29) and (31) are
selected, respectively. To improve the chances of reaching the
global stability, Lyapunov function is required to be positive
according to Lyapunov stability theory. Therefore, the absolute
positive continuous function or energy function is adopted in
the recent literature; see (33)–(41) and their variations.

For recurrent neural networks with different kinds of
actions, such as stochastic perturbations, neutral types, distrib-
uted delays, reaction–diffusion, and so on, the construction of
the Lyapunov–Krasovskii function is similar to the above ones,
besides some special information are incorporated into the
functions. It is the different incorporations of such information
that make the construction of Lyapunov–Krasovskii functions

more flexible and diverse than the classical functions (29)
and (31).

F. Comparisons of Delay-Independent Stability Criteria and
Delay-Dependent Stability Criteria

Generally speaking, there are two concepts concerning the
stability of systems with time delays. The first one is called
the delay-independent stability criteria that do not include any
information about the size of the time delays and the change
rate of time-varying delays [20], [185], [191], [307], [311]. For
the systems with unknown delays, delay-independent stability
criteria will play an important role in solving the stability prob-
lems. The second one is called the delay-dependent stability
criteria, in which the size of the time delays and/or the change
rate of time-varying delays are involved in the stability criteria
[94], [309], [312].

Note that the delay-dependent stability conditions in the
literature are mainly referred to as systems with discrete
delays or finite distributed delays, in which the specific size
of time delays and the change rate of time-varying delays
can be measured or estimated. For the cases, such as infinite
distributed delays and stochastic delays, in which there are
no specific descriptions on the size of time delays and the
change rate of time-varying delays, the concept of delay-
independent/dependent stability criteria will still hold. If the
relevant delay information (such as Kernel function informa-
tion or the expectation value information of stochastic delays)
is involved in the stability criteria, such results are also called
delay dependent. Otherwise, they are delay independent.

Since the information on the size of delay and the change
rate of time-varying delay is used, i.e., holographic delays,
delay-dependent criteria may be less conservative than delay-
independent ones, especially when the size of time delay
is very small. When the size of time delay is large or
unknown, delay-dependent criteria will be unusable, while
delay-independent stability criteria may be useful.

G. Stability Results and Evaluations

At present, there are many different analysis methods to
show the stability property of recurrent neural networks, such
as Lyapunov stability theory [37], [182], [189], [203], [235],
Razumikhin-type theorems [196], [264], nonsmooth analysis
[224], [225], [293], ordinary differential equation theory [38],
[149], [174], [326], LaSalle invariant set theory [55], [239],
nonlinear measure method [226], [260], gradient-like system
theory [66], [74], [258], comparison principle of delay differ-
ential systems [50], [153], and so on.

The expressions of the stability criteria are different due to
different analysis and proof methods, such as M-matrix [16],
[28], [38], [149], [182], [191], [301]; algebraic inequality [20],
[33], [38]–[40], [85], [143], [166], [174], [188], [189], [203],
[229], [299], [306], [326]; matrix norm [273], [290], [315];
additive diagonal stability [7], [109], [156]; LMI [39], [43],
[94], [121], [137]–[139], [162], [177], [185], [294], [309],
[310], [312], [313], [315], [323]; matrix measure [63], [225];
and spectral radius [259], [305].
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Stability criteria in the form of M-matrix, matrix measure,
matrix norm, and spectral radius are only associated with the
absolute value of system parameters, and no freedom or free
variables can be used in the criteria. These stability criteria are
mainly considered in the early days of the stability theory of
recurrent neural networks. In contrast, LDS result involves an
adjustable matrix to establish the relationship among system
parameters. Note that the above forms of stability results
have the advantage of simple expressions and easy to check
except that they may be more conservative than other forms
of stability results.

Algebraic inequality results and LMI results have many
different expressions and may involve many free parameters
to be tuned, which always make the stability results become
rather complex. For example, the exceedingly complex LMI-
based stability results are only useful for numerical purposes,
and the theoretic meaning is deprived. How to find simple
and effective stability criteria is still a challenging research
direction.

Furthermore, we can find that with the increase of additive
terms in recurrent neural networks (e.g., discrete time delay
terms, distributed delay terms, reaction–diffusion terms, and
stochastic delay terms), the stability criterion will become
more and more conservative. This phenomenon can be resorted
to the additive complexity of the system structure. The con-
servativeness of the criteria will be further increased with the
multiplicative complexity of the system structure, and a few
related results have been published.

III. BRIEF REVIEW OF THE ANALYSIS METHODS FOR

EARLY STABILITY RESULTS

Before presenting the main content of this paper, we will
first review some algebraic methods for the stability analysis of
neural networks, such as the methods based on the concept of
LDS matrices, M-matrix or H -matrices [10], and so on. Note
that it is usually difficult to compare many different stability
results even for the same network model due to some different
assumptions required on the networks. Therefore, to present
an outline of the evolution of the stability results of neural
networks, in this section and the sequel, all the stability results
listed below are assumed to hold for the concerned neural
networks under some suitable assumptions if no confusion
occurs.

In [11], the following condition was derived to ensure the
global exponential stability of (2) in the case that W = (wi j )
is the lateral feedback matrix with zero diagonal entries (may
be asymmetric) and g j (u j (t)) is continuous and Lipschitzian:

η = λmin(�) − σmax(W ) > 0 (42)

where � = diag(γ1, . . . , γn), W = (wi j )n×n , λmin(�) means
the minimum eigenvalue of �, and σmax(W ) denotes the
maximum singular value of W (i.e., the square root of the
largest eigenvalue of W W T ). In [222], the following global
exponential stability criterion was proposed for (2) [where
g j (u j (t)) is monotonically increasing and Lipschitz contin-
uous] based on the matrix measure, if for any positive definite

diagonal matrix, L = diag(L1, . . . , Ln) > 0 such that

μ(LW − 	−1�L) < 0 (43)

where μ(A) = lims→0+(||I + s A|| − 1)/s, ||A|| =
sup||x ||=1 ||Ax ||, and 	 = diag(δ1, . . . , δn) > 0. In [35], the
following global exponential stability/convergence criterion
was proposed for (2) [where g j (u j (t)) is strictly monoton-
ically increasing and Lipschitz continuous], if there exist
positive definite diagonal matrix L = diag(L1, . . . , Ln) > 0
and positive constant α such that 0 < α < γi , and

L[(� − α I )	−1 − W ] + [(� − α I )	−1 − W ]T L > 0 (44)

where I is an identity matrix with appropriate dimension.
Comparing (43) and (44), one can see that (44) is less
conservative than (43). In [226], the following condition was
derived for the global stability of (2):

δ−1
i γi Li − Liwii >

n∑
j �=i

L j |wi j | (45)

which includes [25, Corollary 2.1] as a special case, where
Li > 0.

In [35], the following global exponential stability/
convergence criterion was also proposed for (2) [where
g j (u j (t)) is strictly monotonically increasing and Lipschitz
continuous], if there exist positive constant ξi > 0 and α > 0
such that α < γi , and any of the following three inequalities
holds:

γ jξ j − δ j

⎛
⎝ξ j w j j +

n∑
i=1,i �= j

ξi |wi j |
⎞
⎠ > αξ j

ξi (γi − δiwii ) −
n∑

j=1, j �=i

ξ j δ j |wi j | > αξ j

ξi (γi −δiwii )− 1

2

n∑
j=1, j �=i

(ξiδi |wi j | + ξ jδ j |w j i |) > αξi (46)

where i, j = 1, . . . , n. Comparing (45) and (46), one can see
that (46) is less conservative than (45). For (2), a set of global
exponential stability criteria similar to (46) was presented in
[30], and some detailed comparisons with those results in [63]
and [287] were provided in [30, Remarks 1–3], respectively.

In [23], the purely delayed Hopfield networks (3) were
studied, and the following criterion was established:

δ||W ||2 < 1 (47)

where δ = max(δi ), i = 1, . . . , n, and || · ||2 denotes the usual
2-norm. In [180], the following result was established for (3):

ρ(�−1|W |	) < 1 (48)

which guarantees the global asymptotic stability of the unique
equilibrium point, where ρ(A) denotes the spectral radius of
a matrix A, and |W | = (|wi j |)n×n .

In [70], for (2) with symmetric connection matrix W = W T ,
a necessary and sufficient condition was derived to guarantee
the absolute stability (ABST) of the equilibrium

max
1≤i≤n

λi (W ) ≤ 0 (49)
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or

−W ∈ P0 matrix (50)

where λi (W ) is the i th eigenvalue of matrix W , P0 is defined
as in [70] [or see (128) in the sequel]. Note that (50) is
also a necessary and sufficient condition to ensure the unique
equilibrium point for (2) with asymmetric connection matrix,
but is not a stability condition in this case. For (2) with normal
connection weight matrix W T W = W W T , a necessary and
sufficient condition was derived to guarantee the ABST in [52]

max
1≤i≤n

Re{λi (W )} ≤ 0 (51)

where Re{λi (W )} is the real part of λi (W ). Obviously, for
different requirements on the connection matrix W in (2),
different stability conditions can be derived, and the result
in [70] has been improved in [52].

In [158], it is shown that quasi-diagonally row-sum and
column-sum dominance of −W can ensure the ABST of
(2). Quasi-diagonal dominance of −W implies that W is an
H -matrix with nonpositive diagonal elements. For (2), a
strictly diagonal dominant condition of −W was derived in
[150], which implied that W is LDS. In [126], the ABST was
guaranteed if the interconnection matrix W was LDS

PW + W T P < 0 (52)

where P was a positive definite diagonal matrix. In [127], the
result (52) in [126] was further improved to become

PW + W T P ≤ 0 (53)

or W was Lyapunov diagonally semistable (LDSS). In [7],
the following additive diagonal stability condition was derived
for (2), i.e., for any positive definite diagonal matrix D1, there
existed a positive definite diagonal matrix D2, such that:

D2(W − D1) + (W − D1)
T D2 < 0. (54)

Condition (54) extended the conditions in [155] and [158]
that the connection weight matrix W was an H -matrix with
nonpositive diagonal elements. Within the class of locally
Lipschitz continuous and monotone nondecreasing activation
functions, some ABST results, such as the diagonal semistabil-
ity result [157] and the quasidiagonal column-sum dominance
result [3], can be developed. It is worth pointing out that
the additive diagonal stability condition introduced in [7] and
[109] is the mildest one among the known sufficient conditions
for ABST of neural networks in the literature.

The above results mainly focused on (2) on the basis of
M-matrix, H -matrix, and LDS concept. For the delayed case
of (2), i.e., networks (5), the existence and uniqueness of
the equilibrium point can be proved in a similar way to the
above methods. However, for the global asymptotic stability
of the unique equilibrium point of (5), the methods based on
H -matrix and LDS concept often lose their superiority, while
the M-matrix method will be still effective (for details, please
refer to [16], [28], [38], [149], [182], [191], [280], and [301]).

Now, we summarize the relationship among LDS concept,
LMI, and M-matrix, which will be helpful for readers to
look insight into different kinds of stability criteria for neural

networks (2). According to LDS definition (52), it is obvious
that LDS is in the LMI form. According to the definition of
M-matrix, the nonsingular M-matrix 	−1� − W is equivalent
to

P(	−1� − W ) + (	−1� − W )T P > 0 (55)

which is [73, Th. 4], where P is a positive definite diagonal
matrix. The other results in [73] also gave a general condi-
tion for global asymptotic stability based on LDS matrices,
which hold for those unbounded activations (possibly) also
possessing saturations and zero-slope segments. Readers can
refer to [73] for more details. Since P	−1� is a positive
definite diagonal matrix, and if (52) holds, (55) is valid. On the
contrary, if PW +W T P < 0 does not hold, (55) may also hold
by choosing suitable gains of activation functions. Therefore,
the results in [226] are less conservative than those in [127]
and [126]. For the case of nonsingular M-matrix 	−1�−|W |,
it is equivalent to the following form:

P(	−1� − |W |) + (	−1� − |W |)T P > 0 (56)

where P is defined as in (55). If W = (wi j )n×n is a positive
matrix, i.e., wi j ≥ 0, then (56) is equivalent to (55). Otherwise,
(56) is not equivalent to (55) in general, and there is no way to
compare (56) and (52). Semidefiniteness of the interconnection
matrix and the removal of the restriction of symmetry of
the interconnection matrix of the neural network models are
all direct consequences of the LDS condition. To get more
information on various different subsets of the set of stable
matrices and show the relationships among the various subsets,
one can refer to [100] and [128]. Both LDS condition and
M-matrix condition have simple expressions and are easy to
verify, and they were popular in the early days of the stability
theory of neural networks.

It should be noted that in the early days of stability research
of Hopfield neural networks, there is a direct approach to
prove the existence of equilibrium and its exponential stability
simultaneously, in which an energy function or Lyapunov
function is not required [30], [74]. To the best of the authors’
knowledge, it is [30] that first adopted such kind of unified
method to prove the stability of Hopfield neural networks.
Now, we give a short review for this direct method.

Forti and Tesi [74] proposed the so-called finite length of
the trajectory by proving the following result. If the activa-
tion function is analytic, bounded, and strictly monotonically
increasing, then any trajectory of (2) has finite length on
[0,∞), i.e.,

∫ ∞
0 ‖u̇(s)‖2ds = limt→∞

∫ t
0 ‖u̇(s)‖2ds < ∞,

where ‖ · ‖2 is the Euclidean norm. Once the length of u(t)
is proved to be finite on [0,∞), a standard mathematical
argument can prove the existence of the limit of u(t) as
t → ∞, i.e., convergence toward an equilibrium point of (2),
and hence ABST of (2). The details are as follows. From
[74, Th. 3], we have limt→∞

∫ t
0 ‖u̇(s)‖2ds < ∞. From

Cauchy criterion on limit existence (necessary part), it follows
that for any ε > 0, there exists T (ε) such that when
s2 > s1 > T (ε), it results

∫ s2
s1

‖u̇(s)‖2ds < ε. Hence,
ε >

∫ s2
s1

‖u̇(s)‖2ds > ‖ ∫ s2
s1

u̇(s)ds‖2 = ‖u(s2) − u(s1)‖2
for s2 > s1 > T (ε). On the basis of Cauchy criterion on
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limit existence (sufficiency part), it follows that there exists
limt→∞ u(t) = u∗ = constant, where u∗ is an equilibrium
point of (2).

On the other hand, in [30], the following lemma was given,
which was used to derive the corresponding stability criterion:
for some norm ‖u(t)‖, if ‖(du(t))/dt‖ ≤ Ee−ηt , then when
t → ∞, u(t) has a limit u∗ and ‖u(t)−u∗‖ ≤ E /ηe−ηt , where
E is a constant. This lemma can be proved briefly as follows.
Since ‖u(t2) − u(t1)‖ ≤ ∫ t2

t1
‖u̇(s)‖ds ≤ E /η(e−ηt2 − e−ηt1).

By the Cauchy convergence principle, u(t) has a limit u∗ and
the lemma holds. It is clear that the idea of finite length of
the trajectory was first proposed and used in [30]. Then, based
on this lemma, and in the case that activation function is con-
tinuously differentiable and strictly monotonically increasing,
several exponential stability conditions were derived for (2)
in [30].

IV. DEVELOPMENT OF PROOF METHODS AND PROOF

SKILLS IN LMI-BASED STABILITY RESULTS

In this section, we will first state the superiority of the LMI
method in the analysis and synthesis of dynamical systems.
Then, we will show the main technical skills used in the
derivation of LMI-based stability result.

Before we begin this section, we will present a simple
introduction to the early analysis methods (e.g., LDS and
M-matrix) and LMI methods. We agree that the early analysis
methods and LMI methods are developed in different contexts,
and they are not the competing methods, and the derived
stability criteria are usually sufficient conditions. Therefore,
these different methods have their own advantages in the
stability analysis of neural networks. The LDS method aims to
establish qualitative conditions and structural conditions on the
interconnection matrix (which, incidentally, are verifiable via
algebraic inequalities only in low-dimensional cases), whereas
the LMI approach, which is a convex optimization based
and therefore numerically efficient generalization of the LDS
approach, aims to establish numerically computable conditions
for stability, given a larger class of LMI type constraints.
Thus, in the aspects of dealing with high-dimensional network
model and amounts of adjustable parameters or freedoms in
the stability conditions, LMI method is a great generalization
to the early analysis methods, especially to the LDS method.
As for the conservativeness of the stability criteria, there is
no general criterion to employ. A common method to test
the conservativeness of the stability condition is the case
study, that is, using a specific neural network model to verify
the stability conditions. Nondiagonal solutions may be more
meaningful than diagonal solutions. In this respect, the LMI
method is more effective than the LDS method.

A. Superiorities and Shortcomings of the LMI-Based Method

In the early days of the stability theory of neural networks,
almost all the stability studies stem from the viewpoint of
building direct relationship among the physical parameters in
neural networks. Therefore, stability criteria based on matrix
measure, matrix norm, and M-matrix were developed.

The physical parameters among neural networks have some
nonlinear redundancies, which can be expressed by some
constrained relationship with free variables. Stability criteria
based on algebraic inequalities, e.g., Young inequality, Holder
inequality, Poincare inequality, and Hardy inequality [92],
have been paid lots of attention in recent years, which have
improved the stability criteria significantly.

Although stability criteria based on the algebraic inequality
method can be less conservative in theory, they are generally
difficult to check due to adjustable parameters involved while
one has no prior information on how to tune these variables.
Since LMI is regarded as a powerful tool to deal with
matrix operations, LMI-based stability criteria have received
attentions from researchers. A good survey of LMI techniques
in stability analysis of delayed systems was presented in [283],
and LMI methods in control applications were reviewed in
[48] and [60]. LMI-based stability results are in matrix forms
relating the physical parameters of neural networks to compact
structure and elegant expressions.

The popularity of the LMI method is mainly due to the
following reasons.

1) The LMI technique can be applied to a convex opti-
mization problem that can be handled efficiently by resorting
to the existing numerical algorithms for solving LMIs [12].
Meanwhile, LMI methods can easily solve the corresponding
synthesis problems in control system design once the LMI-
based stability (or other performance) conditions have been
established, especially when state feedback is employed [283].

2) For neural networks without delay, LDS method bridges
the M-matrix method and LMI method, which is also a
special case of LMI form. For delayed neural networks,
the core condition is either LDS or the M-matrix condi-
tion. However, in the delayed case, both LDS condition and
M-matrix condition lack suitable freedoms to be tuned and
lead to much conservativeness of the stability criteria. In
contrast, the LMI method can easily incorporate the free
variables into stability criteria and decrease the conserva-
tiveness. Correspondingly, many different kinds of stability
results based on matrix inequalities have been proposed. In the
sense of total performance evaluation of the desired results,
LMI-based results are the most effective at present.

3) On the one hand, LMI-based method is most suitable
for the model or system described using state-space equation.
On the other hand, many matrix theory-related methods can
be incorporated into the LMI-based methods. Therefore, like
algebraic inequality methods (which mainly deal with the
scalar space or dot measure, and almost all scalar inequalities
can be used in the algebraic inequality methods), many matrix
inequalities can be used in the LMI-based method, e.g., Finsler
formula [148], Jensen inequality [293], [309], [312], Park
inequality [218], and Moon inequality [211]. Especially, the
LMI-based method directly deals with the 2-D vector space,
which extends the application space of algebraic inequality
methods. Therefore, more inhibitory information on the system
can be contained in LMI-based results than the algebraic
inequality methods.

Every method has its own shortcomings, so does the
LMI-based method. With the applications of many different
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mathematical tools and techniques to the stability analysis of
neural networks, the shortcomings of LMI-based method have
appeared. Now, we list several main disadvantages as follows.

1) The exceedingly complex expression form of the sta-
bility condition becomes the most inefficiency of this
method. The more complex the stability condition is,
the less the physical meaning and theoretical meaning
the stability condition has. In this case, the LMI-based
method will lose its original superiority to the classical
algebraic inequality methods, and will become useful
only for numerical purposes.

2) It will become more difficult to compare the different
conditions among the LMI-based stability results. There-
fore, the efficiency of the proposed conditions can only
be compared by means of specific examples, and not in
an analytical way.

3) The increase of slack variables can significantly increase
the complexity of the computation, and it is necessary
to make some efforts to reduce the redundancy of
some of the slack variables. Therefore, how to develop
new methods to further reduce the conservatism in the
existing stability results while keeping a reasonably
low computational complexity is an important issue to
investigate in the future.

4) The exceedingly complex expression form of the stabil-
ity condition is not easy to study synthesis problems in
neural control system due to the cross terms of many
slack variables. How to find simple and more effective
LMI-based stability criteria is still a challenging topic.

B. Technical Skills Used in LMI-Based Stability Results for
Delayed Neural Networks

Note that LMI-based approaches for the stability analy-
sis of recurrent neural networks with time delay are based
on the Lyapunov–Krasovskii function method. By incorpo-
rating different information of the concerned system into
the construction of Lyapunov–Krasovskii function and using
some technical skills in the proof procedure, several novel
LMI-based stability results have been proposed to reduce the
conservativeness of the stability results (e.g., for the case of
fast time-varying delay, achieving the maximum upper bound
of time delay given the network parameters, etc.). Now, we
shall summarize some technical skills used in the stability
analysis of delayed recurrent neural networks.

Free Weight Matrix Method: This method was first proposed
in [99] and [277], which was used to improve the delay-
dependent stability of systems with a time-varying delay.
One feature of the method is that it employs neither a
model transformation nor bounding techniques for cross terms.
Especially, it is a very powerful method to deal with the
case of fast time-varying delay, i.e., τ̇ (t) ≥ 1. Before the
emergence of free weight matrix method, almost all the LMI-
based stability results can only deal with the case of slowly
time-varying delay, i.e., τ̇ (t) < 1. The assumption that τ̇ (t) <
1 stems from the need to bound the growth variations in
the delay factor as a time function. It may be considered
restrictive, but in some applications, it is considered realistic

and holds for a wide class of retarded functional differential
equations.

The essence of the free weight matrix method is to add
some free variables/matrices to an identity, which will improve
the effectiveness of the stability results by involving some
adjustable variables. For example, the following identity holds
according to Newton–Leibniz formula:

u(t) − u(t − τ (t)) −
∫ t

t−τ (t)
u̇(s)ds = 0 (57)

or we have the following identity for a nonlinear system:
u̇(t) + �u(t) − Wg(u(t)) − W1g(u(t − τ (t))) = 0 (58)

where u(t), �, W, W1, and g(u(t)) are with compatible dimen-
sions. Multiplying on both sides of (57) and (58) by some
suitable vectors with compatible dimensions, respectively, for
example, left-multiplying uT (t)Q or −uT (t)Q on both sides
of (57) or left-multiplying uT (t)Q + gT (u(t))P or uT (t)Q −
gT (u(t))P on both sides of (58), the equations still hold. That
is to say, element 0 on the right-hand side is substituted by
some implicit relationships among the system parameters and
redundant variables Q and P . In this case, we call Q and
P the free weight matrices. Therefore, by the free weight
matrix method, we can utilize sufficiently the combination of
elements involved in the identity to deal with the complexity
induced from the crossover terms.

In short, the contribution of the free weight matrix method
is that by involving more freedoms (or equivalently using
more relations of the systems), the conservativeness of stability
criteria will be decreased significantly in the sense of total
performance of evaluation. Certainly, it is also a decrease of
conservativeness in the sense that the restriction of change rate
of time-varying delay is relaxed from τ̇ (t) < 1 to τ̇ (t) < μ,
where μ may be any constant.

Matrix Decomposition Method: This method is mainly
used to deal with the stability problem for recurrent neural
networks without delay. For example, for the case of Hopfield
and Cohen–Grossberg neural networks without delay, these
kinds of matrix decomposition methods have been used in
[107], [108], and [239]. In [107], the connection matrix W
is decomposed into the summation of n matrices Wi , where
the i th column is composed by the i th column of W , and
other columns are all zeros. Similarly, in [108], the connection
matrix W is decomposed into the summation of n matrices Wi ,
where the i th row is composed by the i th row of W , and other
rows are all zeros. In general, the method used in [107] and
[108] improves the stability result based on LDS, while it is
more conservative than the stability results based on LMI. For
the Cohen–Grossberg neural networks, the connection matrix
W is decomposed into the product of a symmetric matrix and
a positive definite diagonal matrix, i.e., W = DS, where D
is a positive definite diagonal matrix and S is a symmetric
matrix [239]. In general, DS �= SD.

Delay-Matrix Decomposition Method: Since LMI is a very
powerful method for analyzing the stability of many classes
of neural networks with different delays, it is natural to build
some LMI-based stability criteria for neural networks with
different multiple delays τi j (t). For the case of τ (t) and
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τ j (t), many LMI-based stability results have been established.
For the case of τi j (t), delay-matrix decomposition method is
proposed to deal with the term x j (t−τi j (t)) or g j (x(t−τi j (t)))
[308]–[312]. For neural networks with continuously distributed
delay

∫ ∞
0 Kij (s)ds, the delay-matrix decomposition method

is still valid [269]. The expression form of stability results
based on the delay-matrix decomposition method is a natural
generalization of the form of those stability results for the
case of τ (t) and τ j (t). Delay-matrix decomposition method
is a general method to analyze the system with τi j (t). It is
the contribution of delay-matrix decomposition method that
unifies many LMI-based stability results for neural networks
with different kinds of delays into one framework. Note that in
[52], a matrix decomposition method, which is different from
that employed in [308]–[312], is proposed for a class of purely
delayed neural networks. The delay matrix B is decomposed
into two parts: 1) excitatory and 2) inhibitory parts, i.e., B =
B+ − B−, where B+ = (b+

i j ), B− = (b−
i j ), b+

i j = max{bi j , 0}
signifies the excitatory weights, and b−

i j = max{−bi j , 0} sig-
nifies the inhibitory weights. Obviously, elements of B+ and
B− are both nonnegative. Then, a symmetric transformation
is used to embed the networks, which are constructed by
the interconnected matrices B+ and B−, into an augmented
cooperative dynamical system. Using the monotone dynamical
system theory, such a system has a significant order-preserving
or monotone property that is useful in the analysis of the
purely delayed neural networks. For more details, one can refer
to [52].

It is worth pointing out that the delay-matrix decomposition
method proposed in [308]–[312] mainly focused on systems
with multiple discrete delays τi j or multiple continuously
distributed delay

∫ ∞
0 Kij (s)ds to build LMI-based stability

criteria. The method proposed in [52] aims to decompose
the delay connection matrix into two positive matrices to
use the monotone dynamical system theory to establish the
corresponding stability results.

Delay Decomposition/Partition Approach: Time delay is
one of the most important parameters in delayed neural
networks. Since interconnection weight matrices have been
sufficiently explored in the development of neural network
stability theory, especially with the occurrence of the free
weight matrix method, it seems that the stability criteria have
reached the point where a little space is left in connection
weights that can be used to further decrease the conservative-
ness of stability results. In this case, delay-dependent stability
criteria may have more space for improvement than that of
delay-independent stability criteria, because the information
of time delay is not sufficiently explored yet. In the previous
stability analysis methods, time delay τ (t) is simply regarded
as an isolated or discrete value, which implicitly implies that
τ (t) belongs to the single interval [0, τM ] and only the upper
bound information τM is utilized, where τ (t) ≤ τM , and
τM > 0 is a constant. However, according to the sampling
theory or the approximation theory, if the single interval
[0, τM ] is divided into m > 0 subintervals (for example,
[0, 1/mτM ], [1/mτM , 2/mτM ], . . ., [m − 1/mτM , τM ]) and the
subinterval size or the sampling frequency in the interval

[0, τM ] is suitable (it may be fixed or variable, for example,
the size equals to 1

m τM ), then more information in the interval
[0, τM ] can be used and more free variables can be involved
similar to the case of free weight matrix method. This is
the principle of delay decomposition approach. Based on
this method, some new delay-dependent stability criteria have
been obtained to further decrease the conservativeness of the
stability results [84], [89], [90], [214], [215], [221], [231],
[241], [297], [302]. Note that how to achieve the maximum
upper bound of time delay is always an important aspect in
judging the conservativeness of the stability criteria. The larger
the maximum value of time delay, the less conservative of the
stability results. It is in this sense that delay decomposition
approach reduces the conservativeness of the stability criteria.

The essence of the delay decomposition approach is to
enlarge/augment the state space and involve many adjustable
variables, which has larger augmented state space or more sys-
tem dimensions than that of the original system. A challenging
topic existing in the delay decomposition approach is how to
determine the number of subintervals and the subinterval size
to achieve the optimal upper bound value of time delay. At
present, by combining the delay decomposition approach with
the augmented Lyapunov–Krasovskii functions [96], [134],
[135], [297], some new stability results for delayed neural
networks have been published, and the conservativeness of the
stability results is decreased at the expense of more unknown
parameters or matrices involved.

Descriptor System Method: This is a universal transforma-
tion method that can transform a normal differential system
into a descriptor-like system and use the analysis approach
of descriptor system to study the normal differential system.
Therefore, the dimensions of the original differential system
are enlarged from n to 2n [75], [88], [167], [289]. With the
augment of the dimensions, the number of adjustable matrices
in the construction of Lyapunov functional will be increased.
It is the essence of the descriptor system method that by
increasing the state space and correspondingly the number
of tuning matrices to decrease the conservativeness of the
stability results.

Splitting Interval Matrix Method: This method is devoted to
the robust stability analysis of neural networks with interval
uncertainty, i.e., the uncertain connection matrix A ∈ [A, A],
where A = (ai j )n×n and A = (ai j )n×n . Similar to delay
decomposition approach, the interval A ∈ [A, A] is divided
by Ã = A − A/m or ãi j = ai j − ai j /m, where m is a positive
integer greater than or equal to two, or the splitting interval
may be unequal. Then, based on the LMI method, a large set
of matrix inequalities need to be checked simultaneously. This
splitting interval matrix method was proposed in [247].

V. STABILITY PROBLEMS FOR TWO CLASSES OF

COHEN–GROSSBERG NEURAL NETWORKS

For models similar to Cohen–Grossberg neural networks
(4), we will discuss the stability problems based on the
following different assumptions.

Assumption 5.1 [189], [290], [309], [311]: The amplifi-
cation function di (ζ ) is continuous and there exist constants
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di and di such that

0 < di ≤ di(ζ ) ≤ di

for ∀ ζ ∈ �, i = 1, . . . , n.
Assumption 5.2 [6], [20], [28], [38]: The function ai (ui (t))

is continuous and there exists constant γi > 0 such that

ai (ζ ) − ai (ξ)

ζ − ξ
≥ γi

for ∀ ζ, ξ ∈ � with ζ �= ξ , i = 1, . . . , n.
Assumption 5.3 [307], [315], [319], [326]: The activation

function gi (·) is globally Lipschitz continuous, i.e., there exists
a positive constant δi such that

|gi (ζ ) − gi(ξ)| ≤ δi |ζ − ξ |
for ∀ ζ, ξ ∈ �, where | · | denotes the absolute value,
i = 1, . . . , n.

Assumption 5.4 [6], [181], [189], [269], [311]: The activa-
tion function gi (·) is globally Lipschitz continuous, i.e., there
exists a positive constant δi such that

0 ≤ gi (ζ ) − gi (ξ)

ζ − ξ
≤ δi

for ∀ ζ, ξ ∈ � with ζ �= ξ , i = 1, . . . , n.
Assumption 5.5 [169], [182], [185], [191], [269]: The

amplification function di (ζ ) is continuous with di (0) = 0,
di (ζ ) > 0 for all ζ > 0, and∫ ε

0

1

di (s)
ds = +∞

for all i = 1, . . . , n, where ε > 0 is a constant.
Note that the differences between Assumptions 5.3 and 5.4

can be found in [270]. The differences between Assump-
tions 5.1 and 5.5 indicate the fact that the function in
Assumption 5.1 is strictly positive, while the function in
Assumption 5.5 is nonnegative. Moreover, if the amplification
function di (ζ ) equals to a positive constant C0 > 0, then it
satisfies Assumption 5.1 and does not satisfy Assumption 5.5
due to

∫ ε
0 1/di (s)ds = 1/C0ε < +∞. Hence, Assumptions 5.1

and 5.5 are different and cannot include each other.
Based on the above assumptions, we now show the relation-

ship between the original Cohen–Grossberg neural networks
(1) and the delayed Cohen–Grossberg neural networks (4).

The differences between (1) and (4) are as follows.

1) The amplification functions are different. Assumption
5.5 is required in (1), while Assumption 5.1 is required
in (4).

2) Due to the different assumptions on amplification func-
tions in (1) and (4), the Hopfield model (2) is only a
special case of (4) with constant amplification functions,
while (1) does not include Hopfield model (2).

3) The state curves of Cohen–Grossberg [55] neural net-
works with Assumption 5.5 are all nonnegative under
positive initial conditions, while the state curves of
Cohen–Grossberg neural networks with Assumption 5.1
may be positive, negative, or their mixture under any
forms of initial conditions [290].

4) The requirements for the function ai (ui (t)) in (1) and
(4) are different. Function ai (ui (t)) is monotonically
increasing and required to be radially unbounded in (4),
while in (1), it may vary according to the different choice
of positivity conditions.

5) The connection coefficients in (1) are all positive, while
the connection coefficients in (4) can be any sign.

6) Model (1) often represents biological systems, which
reflects the survival and perdition of species. In contrast,
(4) stems from engineering applications, and in a similar
manner to Hopfield neural network model, they can be
used in fields, such as optimization, decision making and
learning [91], [208], [252], [253], and signal processing
[327].

The similarities between (1) and (4) are as follows: 1) the
model structure in mathematical description is the same and
2) the symmetry requirements of the interconnection matrices
are the same in the early days of neural network stability
theory. However, the symmetry of interconnection matrices is
not required in this research.

Due to such a huge amounts of related literature published,
it is not easy to list all the references. To outline clearly the
research progress of the stability theory of neural networks,
we mainly discuss two classes of neural network models,
i.e., the original Cohen–Grossberg neural network model (1)
and the Cohen–Grossberg type neural network model (4).
Based on these two primitive models, we will pinpoint some
main achievements obtained in a few relevant papers, whereas
several other results are presented as corollaries or minor
improvements.

The next subsections are organized as follows. Section V-A
will focus on the stability of the original Cohen–Grossberg
neural network model (1), and some improvements sur-
rounding this model will be discussed appropriately. Sections
V-B–V-D will concentrate on the Cohen–Grossberg type
neural network model (4) and review the progress in different
aspects.

A. Stability of Cohen–Grossberg Neural Networks With
Nonnegative Equilibrium Points

In this section, we will focus on five papers to describe the
progress of the Cohen–Grossberg neural networks (1). Some
related references are used to complement the progress of
stability at different levels.

The main contribution of [55] is to discover the essence of
symmetry on the effects of dynamics of complex systems,
and to establish the stability criterion for (1). Since then,
many different stability results have been proposed for (1) with
Assumption 5.5 and its variants.

For Cohen–Grossberg neural networks (1), Ruan [239] pro-
posed the following sufficient global stability condition based
on LaSalle’s invariance principle: if the connection matrix W
is decomposed into the product of a symmetric matrix and a
positive definite diagonal matrix:

W = DS (59)

where D is a positive definite diagonal matrix and S is a
symmetric matrix, then every bounded trajectory approaches
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one of the possibly large number of equilibrium points as
t → ∞. In general, DS �= SD, and therefore, the stability
condition in [239] relaxed the condition in [55].

The following Lotka–Volterra model of competing species:

u̇i (t) = Gi ui

(
1 −

n∑
k=1

Hikuk(t)

)
(60)

that is a special case of Cohen–Grossberg neural networks
(1) has been studied in [67], where ui (t) is the population
of the i th species, Hik ≤ 0 for i �= k are the negative
interaction parameters between different species, and Gi > 0
are constants. Using the Lojasiewicz inequality method,
Forti [67] extends the results in [55] as far as the convergence
is concerned for (60). Especially, for the case of isolated equi-
librium points, Cohen and Grossberg [55] presented the ABST
property for (60) via LaSalle’s invariance principle, in which
all the trajectories converge to isolated equilibrium points,
while the main result in [67] is to prove the convergence of
the isolated equilibrium point for (60).

In the aspects of time delay and symmetric connection
weights, [169], [183], [185], [191], [311], and [312] improved
the conditions in [55], and the stability of nonnegative/positive
equilibrium points for corresponding Cohen–Grossberg neural
networks with delays has been studied.

For the reaction–diffusion Cohen–Grossberg neural net-
works described by

∂ui (t)

∂ t
=

m∑
k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)
− di (ui (t, x))

×
[

ai(ui (t, x)) −
n∑

j=1

wi j g j (u j (t, x))

]
(61)

where Dik = Dik(t, x, u) ≥ 0 denotes the diffusion operator in
the transmission of axonal signal, the results in [169] required
W = (wi j ) to be LDSS or LDS (which was also called
Lyapunov–Volterra quasi-stable or Lyapunov–Volterra stable
in [169], respectively)

−PW − (PW )T ≥ 0 (or > 0) (62)

for some positive definite diagonal matrix P , then the non-
negative equilibrium point of (61) is (locally) asymptotically
stable.

Note that, despite the symmetry restriction on the matrix W
being removed, the results in [169] will not always hold for
any symmetric matrix W . If and only if symmetric matrix W
is stable, e.g., Hurwitz stable, then the results in [169] hold.
Obviously, the main results in [55] and [169] are different
sufficient conditions to guarantee the (local) asymptotic sta-
bility for (1) due to the effects of additive reaction–diffusion
terms.

In the case that the activation function satisfies a quasi-
Lipschitz condition |gi(s)| ≤ δi |s| + qi instead of global
Lipschitz Assumption 5.3 and ai (s)sgn(s) ≥ γi |s| − βi , [191]
considered the following networks with bounded delays τi j (t)

and positive initial state conditions:

u̇i (t) = −di (ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j g j (u j (t − τi j (t)))

]
, i, j = 1, . . . , n.

(63)

If the following matrix:

� − (|W | + |W1|)	 (64)

is a nonsingular M-matrix, then (63) has a unique equilibrium
point, which is globally asymptotically stable, where |W | =
(|wi j |), |W1| = (|w1

i j |), � = diag(γ1, . . . , γn), and 	 =
diag(δ1, . . . , δn), i, j = 1, . . . , n.

For (63), [311] required

2Liγi −
n∑

j=1

(Liwi j δ j + L j w j iδi )

−
n∑

j=1

(
Liw

1
i j δ j + L j w

1
j iδi

)
> 0 (65)

where Li > 0, i = 1, . . . , n, or the following matrix:
2� − (|W | + |W1|)	 − 	(|W | + |W1|)T (66)

be a nonsingular M-matrix, which guarantees the uniqueness
of the equilibrium point of (63). Obviously, the existence
condition (65) in [311] improved (64) in [191]. However,
global asymptotic stability condition in [311] is the same as
that in [191].

System (63) with τi j (t) = τ has been studied in [185]. If
�	−1 − W − W1 is LDS, or equivalently, the following LMI
holds:

P(�	−1 − W − W1) + (�	−1 − W − W1)
T P > 0 (67)

where P is a positive definite diagonal matrix, then there
exists a unique nonnegative equilibrium point of (63) with
τi j (t) = τ . If there exist a positive definite diagonal matrix
P and a positive definite symmetric matrix Q such that the
following LMI holds:[

2P�	−1− PW − (PW )T − Q − PW1

−(PW1)
T Q

]
> 0 (68)

then the unique nonnegative equilibrium point of (63) with
τi j (t) = τ is globally asymptotically stable. If the unique
equilibrium point is positive, then (68) can ensure the global
exponential stability of (63) with τi j (t) = τ .

Using Schur complement lemma [12], (68) is equivalent to
the following form:
2P�	−1 − PW − (PW )T − Q − PW1 Q−1(PW1)

T > 0.

(69)

Comparing the uniqueness condition (67) and the global
asymptotic stability condition (69), we can see that the unique-
ness and global asymptotic stability conditions are generally
different and are not equivalent. As far as the existence
condition of the equilibrium point is concerned, (67) is less
conservative than (69).
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For the following Cohen–Grossberg neural networks with
finite distributed delays:

u̇i (t) = −di(ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
N∑

k=1

n∑
j=1

wk
i j g j (u j (t − τkj (t)))

−
r∑

l=1

n∑
j=1

bl
i j

∫ t

t−dl

g j (u j (s))ds

]
. (70)

Zhang et al. [312] established the following global asymptotic
stability condition:

−2P� 	−1+ PW + (PW )T +
N∑

i=1

(PWi Q−1
i W T

i P + Qi )

+
r∑

l=1

(dlYl + di P BlY
−1
l BT

l P) < 0 (71)

where P, Qi , and Yl are positive definite diagonal matrices,
W = (wi j ), Wk = (wk

i j ), and Bl = (bl
i j ). Obviously, (71) in

[312] extends (68) in [185].
From the above results, we can see that the core condition

is (62) for neural networks without delay. With the addition
of delayed terms, the core condition is expanded from (67)
to (71). Therefore, different results are derived for different
network models, which become more complex under similar
LMI form. It is in the LMI form that (71) unifies many
LMI-based stability results in the literature.

In the following three subsections, we will discuss the
Cohen–Grossberg neural networks with mixed equilibrium
point, i.e., the amplification function di(ui (t)) satisfies
Assumption 5.1.

B. Stability of Cohen–Grossberg Neural Networks via
M-Matrix Methods or Algebraic Inequality Methods

In this section, we will focus on 10 papers to describe the
progress on stability analysis of the Cohen–Grossberg neural
networks (4). Some related references are used to complement
the progress of stability analysis at different levels.

Assume that matrix

W e =
(

N∑
k=1

wk
i j

)

is symmetric and the activation function g j (·) is sigmoidal
and bounded. System (4) is globally stable if the following
condition holds [290]:

N∑
k=1

(τkβ‖W k‖) < 1 (72)

where β ≤ d δ, d = max{di }, δ = max{δi }, W k = (wk
i j ),

and ‖ · ‖ denotes the Euclidean norm. Since the publication of
[290] in 1995, research on the dynamics of Cohen–Grossberg
neural networks with Assumption 5.1 has become the main
topic in the neural networks community [182], [274], [275].

Therefore, a lot of different stability results on the equilibrium
point of Cohen–Grossberg neural network model (4) and its
variants have been established.

Under Assumptions 5.2 and 5.3, Lu and Chen [182] studied
the global stability of (4) with N = 0, and the boundedness of
activation functions and positive lower bound of amplification
functions were not required. If the following matrix:

�	−1 − W (73)

is LDS [182, Th. 1], i.e., there exists a positive definite
diagonal matrix P = diag(p1, . . . , pn) such that

P(�	−1 − W ) + (�	−1 − W )T P > 0 (74)

then (4) with N = 0 has a unique equilibrium point. More
importantly, the relationship between M-matrix and LDS
has been discussed in [182] and [101]. Specifically, for (4)
(N = 0) with positive interconnection coefficients, the asymp-
totic stability criteria based on M-matrix and LDS concept
are equivalent. It is the M-matrix that builds a bridge between
the algebraic inequality and the LMI method. However, for
Cohen–Grossberg neural networks (4) (N = 1) with delays,
the asymptotic stability criteria based on M-matrix and LMI
approach are not equivalent any more. Generally speaking,
the results based on M-matrix can have a unified expression,
while LMI-based results often have various expressions for
Cohen–Grossberg neural networks (4) with different kinds
of delays. That is why so many different LMI-based sta-
bility results have been proposed in the literature. If the
positive lower bound of the amplification function is given
and

∫ ∞
0 ρ/di (ρ)dρ = ∞, then it is proved in [182] that

(73) or (74) also guarantees the global exponential stability
of (4) with N = 0. In contrast, the exponential stability
results in [274] require that the amplification function in
Cohen–Grossberg neural networks (4) with N = 0 to be lower
and upper bounded.

Under Assumptions 5.2 and 5.3 and the positive lower
boundedness of the amplification function, the following
system:

u̇i (t) = −di (ui (t))

[
ai (ui (t)) −

n∑
j=1

w1
i j g j (u j (t − τi j (t)))

]

(75)

has been studied in [307]. It has been proved that if the
following condition holds:

det(� − W1 K ) �= 0 (76)

for diagonal matrix K satisfying −	 ≤ K ≤ 	, then (75)
has a unique equilibrium point. Furthermore, if the following
matrix:

�	−1 − |W1| (77)

is a nonsingular M-matrix, then the equilibrium point of (75)
is globally exponentially stable. Obviously, from (77), we can
deduce (76).

Under Assumptions 5.1–5.3, the result in [28] requires

M0 = D� −
N∑

k=0

|Wk |	D (78)
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be an M-matrix, which guarantees the global asymptotic
stability of Cohen–Grossberg neural networks (4), where
D = diag(d1, . . . , dn), D = diag(d1, . . . , dn), and |Wk | =
(|wk

i j |)n×n .
Note that the analysis method in [28] can also be applied

to the following networks:

u̇i (t) = −di (ui (t))

[
ai(ui (t)) −

N∑
k=0

n∑
j=1

wi j g j (u j (t − τ k
i j ))

]

(79)

u̇i (t) = −di (ui (t))

[
ai(ui (t)) −

n∑
j=1

wi j

×
∫ t

−∞
Kij (t − s)g j (u j (s))ds

]
(80)

u̇i (t) = −di (ui (t))

[
ai(ui (t)) −

n∑
j=1

wi j g j

×
(∫ t

−∞
Kij (t − s)u j (s)ds

) ]
(81)

where the delay kernel Kij (s) satisfies
∫ ∞

0 Kij (s)ds = 1
and other suitable conditions. The above three models include
the models in (8)–(10) as special cases. The unifying global
asymptotic stability criterion for models in (80) and (81)
requires

M ′
0 = D� − |W |	D (82)

and

M ′′
0 = � − |W |	 (83)

be a nonsingular M-matrices, where |W | = (|wi j |)n×n . Obvi-
ously, the stability result in the form of M-matrix in [28]
can give a unified expression for Cohen–Grossberg neural
networks with many different types of delays, and it is also
easy to check.

Under Assumptions 5.1–5.3 and the boundedness of the
activation function, for the following Cohen–Grossberg neural
networks:

u̇i (t) = −di(ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j g j (u j (t − τi j ))

]
(84)

[181] requires the matrix M1 = (m1
i j )n×n to be a nonsingular

M-matrix. Then, the equilibrium point is unique and globally
exponentially stable, where m1

ii = γi − wiiδi − |w1
i j |δi and

m1
i j = −(|wi j | + |w1

i j |)δ j for i �= j . In addition, the main
result in [181] is equivalent to requiring the following matrix
to be a nonsingular M-matrix:

M1 = � − W∗	 − |W1|	 (85)

or the following algebraic inequalities to hold:

M ′
1 =ζiγi − ζiwii δi −

n∑
j=1, j �=i

ζ j |w j i |δi −
n∑

j=1

ζ j |w1
j i |δi >0

(86)

M ′′
1 =ζiγi −ζiwiiδi −

n∑
j=1, j �=i

ζ j |wi j |δ j −
n∑

j=1

ζ j |w1
i j |δ j >0

(87)

M ′′′
1 =ζiγi − ζiwiiδi −

∑n
j=1, j �=i(ζ j |w j i |δi + ζi |wi j |δ j )

2

−
∑n

j=1(ζ j |w1
j i |δi + ζi |w1

i j |δ j )

2
> 0 (88)

for positive constant ζi > 0, where W∗ = (w∗
i j ),w

∗
i j =

|wi j | if i �= j, w∗
i j = wi j if i = j , and |W1| = (|w1

i j |)n×n .
We should note that (86)–(88) are equivalent to μ1(ζ M1)< 0

(strictly diagonally column dominant), μ∞(M1ζ ) < 0 (strictly
diagonally row dominant), and μ2(ζ M1) < 0, respectively,
where ζ = diag(ζ1, ζ2, . . . , ζn) is a positive definite diagonal
matrix, and for a matrix M = (mij )n×n , these three matrix
measures are defined by μ1(M) = maxi (mii + ∑

j �=i m j i),
μ∞(M) = maxi (mii + ∑

j �=i mi j ), and μ2(M) = λmax{(M +
MT )/2}, and λmax(·) denotes the maximal eigenvalue of a
symmetric square matrix. Therefore, the main results in [181]
improved the results in [4], [274], and [261].

For the following Cohen–Grossberg neural networks with
reaction–diffusion term:

∂ui (t, x)

∂ t
=

m∑
k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)
− di (ui (t, x))

×
[

ai(ui (t, x)) −
n∑

j=1

wi j g j (u j (t, x))

−
n∑

j=1

w1
i j f j (u j (t − τi j (t), x))

]
(89)

global exponential stability problem has been discussed in
[326] under Neumann boundary condition, where x =
(x1, x2, . . . , xm)T ∈ 
 ⊂ �m , 
 is a bounded compact set
with smooth boundary ∂
 and measure mes(
) > 0 in space
�m , ui (t, x) is the state of the i th unit at time t and in space x ,
and Dik = Dik (t, x, u) ≥ 0 denotes the transmission diffusion
operator along the i th neuron. Under Assumptions 5.1–5.3,
and the condition that the bounded activation functions are
globally Lipschitz with positive constants δi and δ0

i , i.e.,
|gi(ζ ) − gi (ξ)| ≤ δi |ζ − ξ | and | fi (ζ ) − fi (ξ)| ≤ δ0

i |ζ − ξ |
for ζ, ξ ∈ �, [326, Corollary 3.2] established the following
global exponential stability condition:

M3 = diγi −
n∑

j=1

d j |w j i |δi −
n∑

i=1

d j |w1
j i |δ0

i > 0. (90)

Obviously, if

M ′
3 = D� − |W |D	 − |W1|D	0 (91)

is a nonsingular M-matrix, (90) is naturally satisfied, where
D = diag(d1, . . . , dn), D = diag(d1, . . . , dn), and 	0 =
diag(δ0

1, . . . , δ0
n).
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For stochastic Hopfield neural networks (89) with constant
delays

dui(t, x) =
m∑

k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
[

ai (ui (t, x)) −
n∑

j=1

wi j g j (u j (t, x))

−
n∑

j=1

w1
i j f j (u j (t − τi j , x))

]
dt

+
n∑

j=1

σi j (u j (t, x))dω j (t) (92)

the global exponential stability problem has been discussed in
[250], where ω(t) = (ω1(t), . . . , ωn(t))T is an n-dimensional
Brownian motion defined on a complete probability space
(
,F , P) with a natural filtration {Ft }t≥0 generated by
{ω(s), 0 ≤ s ≤ t}, where 
 represents the canonical space
generated by {ωi (t)} and F denotes the associated σ -algebra
generated by {ω(t)} with probability measure P.

For the deterministic case of (92), (91) with di = di = 1
has been derived in [250] to guarantee the global exponential
stability of the unique equilibrium point. For (92), in the case
of σi j (u∗

j ) = 0 and σi j (·) being Lipschitz continuous with
Lipschitz constant Li j , the following nonsingular M-matrix
conditions have been derived:

M4 = � − |W |	 − W1	
0 − C (93)

M ′
4 = � − |W |	 − W1	

0 − C̃ (94)

which guarantee the almost sure exponential stability and
mean-value exponential stability, respectively, where

C = diag(c1, . . . , cn)

ci = −γi +
n∑

j=1

wi j δ j +
n∑

j=1

w1
i j δ

0
j +

n∑
j=1

L2
i j ≥ 0

C̃ = diag(c̃1, . . . , c̃n)

c̃i = 0.5
n∑

j=1

L2
i j + K1

⎛
⎝ n∑

j=1

L2
i j

⎞
⎠

1/2

≥ 0

and K1 > 0 is a constant.
Obviously, M-matrix (93) or (94) unifies many existing results
as special cases, for example, the results in [38], [181], [260],
and [326].

For the reaction–diffusion Hopfield neural networks (89)
with continuously distributed delays

∂ui (t)

∂ t
=

m∑
k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)

−
[

ai (ui (t, x)) −
n∑

j=1

wi j g j (u j (t, x))

−
n∑

j=1

w1
i j

∫ t

−∞
Kij (t − s)g j (u j (s, x))ds

]
(95)

the global exponential stability problem has been studied in
[318] and [249]. The following M-matrices have been derived
to ensure the global exponential stability of (95) in [318] and
[249]:

M ′′′
0 = � − |W |	 − |W1|	 (96)

M ′′′′
0 = � − W+	 − |W1|	 (97)

where W+ = (w+
i j ), w+

ii = max{0, wii }, and w+
i j = |wi j | for

i �= j .
For the following systems with distributed delays:

u̇i (t) = −
[

ai (ui (t)) −
n∑

j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j f j (u j (t − τi j (t)))

−
n∑

j=1

w2
i j

∫ ∞

0
Kij (s)h j (u j (t − s))ds

]
(98)

and
∫ ∞

0
eλs Ki j (s)ds = ki j (λ) > 0 (99)

where 0 ≤ (hi (ζ ) − hi (ξ))/(ζ − ξ) ≤ δ1
i and ki j (0) = 1, the

following conditions are established in [149]:
[
λI − � + |W |	 + eλτ |W1|	0 + (ρ(λ) ⊗ |W2|	1)

]
ζ < 0

(100)

and

� − |W |	 − |W1|	0 − |W2|	1 (101)

is a nonsingular M-matrix, which guarantee the global expo-
nential stability of the unique equilibrium point for (98), where
λ > 0 is a positive number, I is an identity matrix with
appropriate dimension, 0 ≤ τi j (t) ≤ τ , A ⊗ B = (ai j bi j )n×n ,
ζ = (ζ1, . . . , ζn)T > 0, ζi > 0, W2 = (w2

i j )n×n ,	1 =
diag(δ1

1, . . . , δ
1
n), and ρ(λ) = (ki j (λ))n×n .

For the following neural networks with finite distributed
delays:

∂ui (t)

∂ t
=

m∑
k=1

∂

∂xk

(
Dik

∂ui (t, x)

∂xk

)
−

[
ai(ui (t, x))

−
n∑

j=1

w1
i j f j

(∫ T

0
Kij (s)u j (t − s, x)ds

) ]
(102)

where T > 0 is a positive constant, it can also use the same
method as those in (95) to analyze the stability of (102), and
the asymptotic stability criteria can be expressed as (97) [192].
Therefore, it is the same method to deal with the continuous
distributed delays in (95) and (102).
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For the neutral-type Cohen–Grossberg neural networks with
constant delays

u̇i (t) +
n∑

j=1

ei j u̇ j (t − τ j )

= −di(ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j g j (u j (t − τ j ))

]
(103)

the global asymptotic stability problem has been discussed in
[45], where E = (ei j ) is a constant matrix and denotes the
coefficients of the time derivative of the delayed states. When
ai (ui (t)) and a−1

i (ui (t)) are continuous, differentiable, and
0 < γi ≤ ai ′(ui (t)) ≤ γ 0

i < ∞, the following conditions are
presented:

0 ≤ ‖E‖ < 1

δM pw(1+‖E‖)+δMrw(1+‖E‖)+qw<min1≤i≤n{diγi } (104)

which guarantee the global asymptotic stability of (103), where
δM = max{δi }, pw = max{di }‖W‖, qw = max{diγ

0
i }‖E‖,

and rw = max{di }‖W1‖. When E = 0 in (103), (104) can be
reduced to the following form:

δM (‖W‖ + ‖W1‖) max
i

{di } ≤ min
i

{diγi }. (105)

Furthermore, if di = di = 1, then, (105) can be reduced to
the following form:

δM (‖W‖ + ‖W1‖) ≤ min
i

{γi}. (106)

From the above results, we can see that the core condition
is (73) for neural networks without delay, or similarly (77) for
purely delayed neural networks. With the increasing complex-
ity of networks, the core condition is expanded from (73) or
(77) to (101). Note that the M-matrix-based stability results
for different networks have the same or similar structures.

C. Stability of Cohen–Grossberg Neural Networks via
Matrix Inequality Methods or Mixed Methods

In this section, we will focus on four papers to describe
the stability analysis of Cohen–Grossberg neural networks (4).
Some related references are used to complement the progress
at different levels.

In this section, the activation function is assumed to satisfy
Assumption 5.4 if there is no other declaration.

For the following Cohen–Grossberg neural networks:

u̇i (t) = −di(ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j f j (u j (t − τ ))

]
(107)

which is a special case of (84), the global exponential stability
has been studied in [315], and the following matrix inequality-
based and matrix norm-based stability criteria have been

established:
2P�	−1− PW −(PW )T −Q− PW1 Q−1W T

1 P >0 (108)

and

δM (‖W‖ + ‖W1‖) < γm (109)

where P and Q are positive definite diagonal matrices, γm =
min{γi }, and δM = max{δi }, i = 1, . . . , n. Condition (108) is
just (69) [185]. It is easy to see that (108) includes (62) and
LDS conditions (73) or (74) as special cases. Now, we will
show that (109) can be recovered from (108). Without loss of
generality, we consider the case ‖W1‖ �= 0. We choose P = I
and Q = ‖W1‖I > 0, then (108) becomes

2�	−1−W −W T −‖W1‖I − 1

‖W1‖W1W T
1 >0. (110)

If (110) holds, then for any vector x(t) �= 0, we have

x T
(

2�	−1−W−W T−‖W1‖I − 1

‖W1‖W1W T
1

)
x(t)>0. (111)

Inequality (111) holds if the following condition holds:
x T

(
2γmδ−1

M − 2‖W‖ − 2‖W1‖
)

x(t) > 0. (112)

Obviously, (112) implies (109). Similarly, we can show that
(109) also includes the results in [6] and [119].

For the following Cohen–Grossberg neural networks with
continuously distributed delays:

u̇i (t) = −di (ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t))

−
n∑

j=1

w1
i j g j (u j (t − τ (t))) −

n∑
j=1

w2
i j

×
∫ t

−∞
K j (t − s)g j (u j (s))ds

]
(113)

the LMI-based global exponential stability problem has been
studied in [139], where,∫ ∞

0
K j (s)ds = 1,

∫ ∞

0
sK j (s)e

2λsds = π j (λ) < ∞, λ > 0.

(114)

System (113) can be written in a compact matrix–vector form

u̇(t) = −D(u(t))
[

A(u(t)) − Wg(u(t)) − W1g(u(t − τ (t)))

− W2

∫ t

−∞
K (t − s)g(u(s))ds

]
. (115)

Obviously, the distributed delay in (114) [139] is different from
that in (7). Therefore, the analysis method in [139] cannot be
applied to the neural networks with distributed delay (7). The
LMI-based global asymptotic stability results in [139] have no
restrictions on the change rate of time-varying delays.

For the following Cohen–Grossberg neural networks with
continuously distributed delays:

u̇i (t) = −di (ui (t))

[
ai (ui (t)) −

n∑
j=1

wi j g j (u j (t)) −
n∑

j=1

w1
i j

×
∫ t

−∞
Kij (t − s)g j (u j (s))ds

]
(116)
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[41, Th. 5.2] requires the following matrix inequality:
2P�	−1− PW −W TP −(P Q−1W1)∞−(P QW1)1>0 (117)

to guarantee the equilibrium point of (116) to be globally
asymptotically stable. Furthermore, if the following condition
holds: ∫ ∞

0
Kij (s)e

δ0sds < ∞ (118)

where δ0 > 0 is a constant, then the equilibrium point of (116)
is globally exponentially stable if (117) holds.

For (116), it can be transformed into the following vector–
matrix form [269]:
u̇(t) = −D(u(t))

[
A(u(t)) − Wg(u(t))

−
n∑

i=1

Ei

∫ t

−∞
K̄i (t − s)g(u(s))ds

]
(119)

where K̄i (s) = diag[Ki1(s), Ki2(s), . . . , Kin(s)], and Ei is
an n × n matrix, whose i th row is composed of the i th
row of matrix W1, and other rows are all zeros. Obviously,
(119) is different from (115) due to the difference of kernel
functions. For (119), some LMI-based stability criteria have
been proposed, which improved the results in [269].

Note that, with the use of Moon inequality [211], Finsler
inequality, the well-known Newton–Leibnitz formula, and the
free-weight matrix method, a large number of different classes
of LMI-based stability results have been established in [94]
and [320].

For the Cohen–Grossberg neural networks (63) and the
Cohen–Grossberg neural networks with finite distributed
delays (70), LMI-based stability results have been established
in [311] and [312], respectively, in which a similar delay-
matrix-decomposition method is proposed to derive the main
results.

From the above results, we can see that the core condition
of stability criterion for neural networks with delay is (67)
in Section V-A, from which one can derive (108) and (117),
respectively. Under different assumptions on the network mod-
els, one may have the same stability results in the mathematical
description. However, the physical meanings which they reflect
are different in essence.

D. Topics on Robust Stability of Recurrent Neural Networks

In the design and hardware implementation of neural net-
works, a common problem is that accurate parameters in
neural networks are difficult to guarantee. To design neural
networks, vital data, such as the neuron firing rates, the
synaptic interconnection weights, and the signal transmission
delays, usually need to be measured, acquired, and processed
by means of statistical estimation, which definitely leads to
estimation errors. Moreover, parameter fluctuation in neural
network implementation on very large-scale integration chips
is also unavoidable. In practice, it is possible to explore
the range of the above-mentioned vital data as well as the
bounds of circuit parameters by engineering experience even
from incomplete information. This fact implies that good

neural networks should have certain robustness, which paves
the way for introducing the theory of interval matrices and
interval dynamics to investigate the global stability of interval
neural networks. As pointed out in [19], robust stability is
very important in the consideration of dynamics of neural
networks with or without delays. There are many related
results on robust stability [170], [246], [291]. In [170], global
robust stability of delayed interval Hopfield neural networks
was investigated with respect to the bounded and strictly
increasing activation functions. Several M-matrix conditions
to ensure the robust stability were given for delayed interval
Hopfield neural networks. In [246], a global robust stability
criterion was presented for Hopfield-type network parameters
with delays and interval parameters uncertainties, which was
in the hybrid form of the matrix inequality and the matrix
norm of connection matrices. Ye et al. [291] viewed the
uncertain parameters as perturbations and gave some testable
results for robust stability of continuous-time Hopfield neural
networks without time delays. Cao et al. [19] viewed the
interval uncertain parameters as the matched uncertainty and
gave some testable LMI-based robust results.

For the LMI-based robust stability results of recurrent neural
networks, the difficulty is how to tackle different classes
of uncertainties. For the cases of matched uncertainties and
interval uncertainties, many LMI-based robust stability results
have been published [18], [19], [38], [44], [121], [137],
[144], [187], [246], [273], [310], [311]. However, for recurrent
neural networks with other forms of uncertainties, LMI-based
robust stability results are few [286], [288]. It is important to
establish the LMI-based robust stability results for recurrent
neural networks with different classes of uncertainties because
one can attempt to use the advantages of LMI technique to
establish new stability theory for recurrent neural networks
with uncertainties, which is in parallel to the scalar methods,
such as M-matrix and algebraic inequality methods.

Since the proof method of the robust stability for systems
with interval uncertainties and matched uncertainties is similar
to the case of system without uncertainties, the review on the
robust stability results of recurrent neural networks is omitted.

VI. STABILITY ANALYSIS OF NEURAL NETWORKS WITH

DISCONTINUOUS ACTIVATION FUNCTIONS

Although this paper mainly focuses on the stability of
continuous-time recurrent neural networks, we will also spend
a small space on discontinuous recurrent neural networks that
have been intensively studied in the literature.

When dealing with dynamical systems possessing high-
slope nonlinear elements, it is often advantageous to model
them with a system of differential equations with discontinu-
ous right-hand side, rather than studying the case where the
slope is high but of finite value [71], [72]. The main advantage
of analyzing the ideal discontinuous case is that such analysis
is usually able to give a clear picture of the salient features
of motion, such as the presence of sliding modes, i.e., the
possibility that trajectories be confined for some time intervals
to discontinuity surfaces.

The existing literature reports a few other investigations on
discontinuous neural networks, which pertain to a different
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application context, or to different neural architectures. A sig-
nificant case is that of Hopfield neural networks where neurons
are modeled by a hard discontinuous comparator function
[146]. Different from the discontinuous activation function
addressed in [71] (see discontinuous activation function in
Section II-B of this paper), the analysis in [146] was valid
for symmetric neural networks, which possessed multiple
equilibrium points located in saturation regions, i.e., networks
useful to implement content addressable memories. References
[49] and [78] introduced a special neural-like architecture for
solving linear programming problems, in which the archi-
tecture is substantially different from the additive neural
networks. Moreover, the networks in [49] are designed as
gradient systems of a suitable energy function, while it is
known that additive neural networks of the Hopfield type
are gradient systems only under the restrictive assumption of
symmetric interconnection matrix [73], [103]. To study the
class of discontinuous neural networks, the concepts from the
theory of differential equations with discontinuous right-hand
side as introduced by Filippov are usually used [68], [86],
[111], [184].

In [71], discontinuous Hopfield networks (2) were studied.
The established conditions on global convergence could be
applicable to general nonsymmetric interconnection matrices,
and they generalized the previous results to the discontinuous
case for neural networks possessing smooth neuron activations.
Specifically, if the following simple condition established in
[71] is satisfied:

−W is a P-matrix (120)

then discontinuous Hopfield networks (2) have a unique equi-
librium point and a unique corresponding output equilibrium
point, where a matrix A is said to be a P-matrix if and only
if all the principal minors of A are positive.

More importantly, the concept of global convergence of
the output equilibrium point was proposed in [71]. Usually,
in the standard case considered in the literature where the
neuron activation functions are continuous and monotone, it
is easy to see that global attractivity of an equilibrium point
also implies global attractivity of the output equilibrium point.
Unfortunately, this property is no longer valid for the class
of discontinuous activation functions, since for discontinuous
neuron activations, convergence of the state does not imply
convergence of the output. Therefore, for discontinuous acti-
vation functions, it is needed to address separately both global
convergence of the state variables and the output variables. In
[71], the following condition was derived [71, Th. 2]:

−W is Lyapunov diagonally stable (121)

which guarantees that discontinuous networks (2) have a
unique equilibrium point and a unique corresponding output
equilibrium point, respectively, which are globally attractive.

Under (121), [71, Th. 2] holds for all neural network inputs
Ui in (2). To show that for almost all inputs it is possible
to establish the standard property of global attractivity, Forti
and Nistri [71] first established the existence and uniqueness
condition, global convergence condition in finite time for the
equilibrium point, and the corresponding output equilibrium

point of discontinuous networks (2). The concept of global
convergence in finite time was then extended to the discontin-
uous neural networks with delay (5) in [72], in which the
boundedness of the activation function required in [71] is
also removed. Theorem 1 in [72] could be restated simply
as follows. If wii < 0 and:

M(W ) − |W1| is an M-matrix (122)

then discontinuous system (5) had a unique equilibrium point
and a unique corresponding output equilibrium point, and
the unique equilibrium point is globally exponentially stable,
where M(W ) = (M(wi j )) and M(wi j ) = |wi j | if i = j ,
otherwise M(wi j ) = −|wi j | if i �= j , i, j = 1, . . . , n.

Now, let us compare (121) and (122). When the delay is
sufficiently small, the interconnection matrix in discontinuous
system (5) is given by W + W1. Condition (121) implies that
−(W + W1) is LDS. Therefore, conditions on the neuron
interconnections in [72, Th. 1] are more restrictive than those
in [71]. It is known, however, that for large classes of matri-
ces, such as those involved in modeling cooperative neural
networks, the concepts of M-matrices and LDS matrices
coincide [72]. On the other hand, the class of unbounded
neuron activations considered in [72] and [73] is larger than
that in [71], which leads to different analysis methods from
that of bounded activation functions. Therefore, it yields more
restrictive results in [72] than that in [71].

After the pioneering work in [71], [72], and [183], the
topics on discontinuous neural networks have been paid much
attention, and many related results are established [64], [117],
[175], [216]. Among these works, there are mainly four
research teams in the study on the discontinuous neural
networks [68], [95], [173], [183], [184], [186], [111], [171],
[86], [116], [141]. Readers can refer to the references cited
therein, and the details are omitted here.

From the above results, we can see that there are mainly
two kinds of core conditions: 1) the LDS form 121 and 2) the
M-matrix form 122. Based on these two core conditions,
many stability results can be derived for more complex neural
network models.

VII. SOME NECESSARY AND SUFFICIENT CONDITIONS

FOR RECURRENT NEURAL NETWORKS

Nowadays, almost all the stability results for recurrent
neural networks are sufficient conditions. However, there also
exist some necessary and sufficient conditions for some special
classes of recurrent neural networks with/without delays.

Note that sufficient asymptotic/exponential stability criteria
in the existing literature are all established on the basis of
strict inequalities (i.e., > 0 or < 0). It is natural to ask: what
will happen if the strict inequalities are replaced by nonstrict
inequalities (i.e., ≥ 0 or ≤ 0)? For the case of necessary and
sufficient conditions, we must consider the case of the nonstrict
inequalities. For the following neural networks:

u̇i (t) = −γi ui (t)+
n∑

j=1

wi j g j (u j (t)) +
n∑

j=1

w1
i j f j (u j (t−τi j )).

(123)
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Chen [26] established a global convergence condition. If

M j = −γ j + α j

(
w j j +

n∑
i=1,i �= j

|wi j |
)+

+ β j

n∑
i=1

|w1
i j | ≤ 0

(124)

then there is a unique equilibrium point u∗ such that each solu-
tion of (123) satisfies limt→∞ u(t) = u∗, where gi(ui (t)) =
tanh(αi ui (t)), fi (ui (t)) = tanh(βi ui (t)), αi > 0, βi > 0, and
a+ = max(a, 0), i, j = 1, . . . , n. From (124), we can see
that the result in [26] further relaxes the restrictive condition
on the stability/convergence, which is close to the necessary
condition of stability/convergence.

For the following purely delayed Hopfield neural networks:

u̇(t) = −�u(t) + W1 f (u(t − τ )) (125)

[52, Th. 3] presented the following necessary and sufficient
condition:(

σ I −
[

� 0
0 �

]
+ eστ

[
W+

1 W−
1

W−
1 W+

1

] [
	 0
0 	

])
η ≤ 0 (126)

which guarantees the (125) to be componentwise exponential
convergence, where η = [αT

c , βT
c ]T , and αc > 0 and βc > 0

are two constant vectors with appropriate dimensions, σ > 0
is a scalar, I is an identity matrix with appropriate dimension,
W+

1 = ((w1
i j )

+), W−
1 = ((w1

i j )
−), and (w1

i j )
+ = max{w1

i j , 0}
are the excitatory weights, and (w1

i j )
− = max{−w1

i j , 0} are
the inhibitory weights. Obviously, the elements in W+

1 and
W−

1 are all nonnegative.
For the following Hopfield neural networks, the ABST was

studied in [51], [53], [70], and [159]:

u̇i (t) = −γi ui (t) +
n∑

j=1

wi j g j (u j (t)) + Ui (127)

where gi(ui (t))) is a class of sigmoid functions that consist
of smooth, strictly monotonic, and increasing functions, which
are saturated as ui (t) → ±∞ (e.g., tanh(ui (t))). Note that
ABST [70] of a neural network means that there is a glob-
ally asymptotically stable equilibrium point for every neuron
activation function belonging to the defined class of some
functions and for every constant input vector. In [70], for
the nonsymmetric case of connection matrix W in (127), a
necessary and sufficient condition

−W ∈ P0 (128)

is presented to guarantee the uniqueness of the equilibrium
point for any bounded activation function class, where P0
denotes the class of square matrices A defined by one of the
following equivalent properties [70]: 1) all principal minors of
A are nonnegative; 2) every real eigenvalue of A as well as of
each principal submatrix of A is nonnegative; and 3) det(K +
A) �= 0 for every diagonal matrix K = diag(K1, . . . , Kn)
with K > 0, i = 1, . . . , n. That is to say, the negative
semidefiniteness of matrix W is a necessary and sufficient
condition to guarantee the uniqueness of the equilibrium point
for (127) with asymmetric connection matrix. However, (128)
is not in general sufficient for the ABST of (127) with

asymmetric connection matrix. On the contrary, for (127) with
symmetric connection matrix, it has been shown that (128),
or the negative semidefiniteness of matrix W , is a necessary
and sufficient condition to guarantee the ABST of the unique
equilibrium point. This is consistent with the result in [159].
The ABST result was also extended to the absolute exponential
stability (AEST) in [160] and [161].

In [127], a conjecture was raised: the necessary and suffi-
cient condition for ABST of the neural networks (127) is that
its connection matrix W belongs to the class of matrices such
that all eigenvalues of matrix (W − D1)D2 have negative real
parts for arbitrary positive diagonal matrices D1 and D2. This
condition was proven to be a necessary and sufficient condition
for ABST of the neural networks (127) with two neurons
[154]. The necessity of such a condition for ABST was proven
in [127], and the result in [127] included many existing suffi-
cient conditions for ABST as special cases. However, whether
or not such a condition is sufficient for ABST of general
neural networks remains unknown in the case of more than two
neurons. Within the class of partially Lipschitz continuous and
monotonically nondecreasing activation functions (this class of
activation function includes the sigmoidal function as a special
case), a novel AEST result was given in [156], i.e., for any
positive definite diagonal matrix D1, there exists a positive
definite diagonal matrix D2 such that D2(W − D1) + (W −
D1)

T D2 < 0. This condition extended the stability condition
in [155] that requires the connection weight matrix W to be
an H -matrix with nonpositive diagonal elements.

In [53], for (127) with W T W = W W T, i.e., W is a normal
matrix, the following necessary and sufficient condition was
established. If

max
i

Re λi (W ) ≤ 0 (129)

or

max
i

λi

(
W + W T

2

)
≤ 0 (130)

then the normal neural network (127) is absolutely stable,
where λi (B) represents the i th eigenvalue of matrix B .
Re{λi (B)} represents the real part of eigenvalue λi (B). Since a
symmetric matrix is normal, then, for a symmetric neural net-
work, the negative semidefiniteness result in [70] is obviously
a special case of the result in [53].

In [51], (127) was further discussed. By removing the
assumption of normal matrix on W , a matrix decomposition
W = W s + W ss was used, where W s = (W + W T )/2 and
W ss = (W − W T )/2 were the symmetric and the skew-
symmetric parts of W , respectively. Then, based on the matrix
eigenvalue method and a solvable Lie algebra condition, a new
necessary and sufficient condition was presented to guarantee
the ABST of the concerned Hopfield neural networks. Specifi-
cally, suppose that {W s, W ss} generated a solvable Lie algebra.
If and only if the following conditions hold [51]:

max
i

Re λi (W ) ≤ 0 (131)

or the symmetric part W s of the weight matrix W is negative
semidefinite, then (127) is absolutely stable, which included
the results in [53], [70], and [159].
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For (127) with Assumption 5.4, the following necessary and
sufficient condition was derived in [107] and [124]:

−� + W	 is nonsingular or det(−� + W	) �= 0 (132)

which ensures that (127) has a unique equilibrium point.
For the Hopfield neural networks with delays

u̇i (t) = −γi ui (t) +
n∑

j=1

w1
i j g j (u j (t − τi j )) (133)

global attractivity is studied in [194], and the following
necessary and sufficient condition was obtained:

det(−� + W1) �= 0, and � − |W1| is a P0-matrix (134)

where P0-matrix is defined in (128), gi(0) = 0, gi(ui (t))
saturates at ±1 for any ui (t) ∈ �, gi ′(ui (t)) is continuous
such that gi ′(ui (t)) > 0 for any ui (t) ∈ �, gi ′(0) = 1,
and 0 < ḡi(ui (t)) < mb for any mb > 0, ḡi(ui (t)) =
max{gi(ui (t)),−gi (−ui (t))}, i = 1, . . . , n, and max{τi j } =
τM ≥ 0. Comparing the result (134) in [194] with those results
(76) and (77) in [307], we can see that the conditions in [194]
improve the results in [307] for (133). Note that (133) is a
special case of (75) studied in [307].

From the above results, we can see that P0 matrix form
(128) and matrix eigenvalue form (129) or (130) are the
two main core conditions for the stability criteria. For more
complex neural network models, there are a few necessary and
sufficient conditions to be obtained yet.

VIII. MULTISTABILITY OF RECURRENT NEURAL

NETWORKS AND ITS COMPARISONS WITH

GLOBAL STABILITY

Preceding sections are about the global stability of the
unique equilibrium point of continuous-time recurrent neural
networks. Multistability problems also require further inves-
tigation. For example, when recurrent neural networks are
applied to pattern recognition, image processing, associative
memories, and pattern formation, it is desired that the network
has several equilibria, of which each represents an individual
pattern [55], [62], [129]. In addition, in some neuromorphic
analog circuits, multistable dynamics even play an essential
role, as revealed in [58] and [87]. Therefore, the study of
the coexistence and stability of multiple equilibrium points, in
particular, the basins of attraction, is of great interest in both
theory and applications [17], [31], [46], [47], [190], [195],
[266], [298], [314]. A tutorial on the applications of neural
networks to associative memories and pattern formation can
refer to [118], [120], [296], and [234]. Theoretical research on
convergence and multistability of recurrent neural networks
can refer to [103] and [83]. In this section, we will mainly
focus on the recent theoretic results of multiple equilibrium
points of recurrent neural networks.

Chen and Amari [31] pointed out that the one-neuron neural
network model has three equilibrium points; two of them
are locally stable, and one is unstable. For the n-neuron
neural networks, by decomposing phase space Rn into 3n

subsets, Zeng and Wang [298] investigated the multiperiodicity
of delayed cellular neural networks, and showed that the

n-neuron networks can have 2n stable periodic orbits located
in 2n subsets of Rn . The multistability of Cohen–Grossberg
neural networks with a general class of piecewise activation
functions was also discussed in [17]. It was shown in [17],
[47], and [298] that under some conditions, the n-neuron net-
works could have 2n locally exponentially stable equilibrium
points located in 2n saturation regions. Cheng et al. [46]
indicated that there could be 3n equilibrium points for the n-
neuron neural networks. However, they only placed emphasis
on 2n equilibrium points that were stable in a class of subsets
with positive invariance, and never mentioned the stability
nor the dynamical behaviors of the rest of possible 3n–2n

equilibrium points. It was [266] that first studied the dynamics
in the remaining 3n−2n subsets of Rn , and the attraction basins
of all stable equilibrium points.

All the above methods to stability analysis of multiple
equilibria are based on the decomposition of phase space.
Then, in each invariant attractive subset of stable equilibrium
point, the neural network is reduced to the linear case, in which
the stability property of the equilibrium point is executed. The
main difficulty lies in how to efficiently decompose the phase
space Rn on the basis of different types of activation functions
and to determine the accurate size of attractive basin of each
equilibrium point.

The differences of stability analysis between recurrent
neural networks with unique equilibrium point and recurrent
neural networks with multiple equilibrium points can be
summarized as follows.

1) The region of initial states of the unique solution of
recurrent neural networks is the whole state space, while
the initial region of the multiple solutions of recurrent
neural networks belongs to different subspace. This is
the main difference that leads to global stability and local
stability, respectively.

2) The types of activation functions play different roles
in analyzing the stability of unique equilibrium point
and multiple equilibrium points. For a large class of
activation functions, one can prove the existence and
uniqueness, and the global stability of the equilibrium
point. In contrast, if the specific form of the activation
function is not given in the analysis of recurrent neural
networks with multiple equilibrium points, the subspace
decomposition cannot be proceeded. Thus, the local sta-
bility analysis of the multiple equilibrium points cannot
be conducted by the subspace decomposition method.

3) There are many methods to analyze the global stability
of recurrent neural networks with unique equilibrium
point, for example, the contraction method, Lyapunov
method, differential equation method, comparison prin-
ciple method, and so on. However, for recurrent neural
networks with multiple equilibrium points, one of the
most used methods in the literature is the linearized
method at the local equilibrium point, which, conse-
quently, is only concerned with the local stability. This
is also the main reason why there are so fewer stability
results for recurrent neural networks with multiple equi-
librium points than that for recurrent neural networks
with unique equilibrium point. However, the results on
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the estimation of the domain of the attraction of multiple
equilibria are more than the corresponding local stability
results.

4) In applications, recurrent neural networks with unique
equilibrium point are mainly used to solve optimization
problems. In contrast, recurrent neural networks with
multiple equilibrium points can be applied to many
different fields, such as associative memories, pattern
recognition, pattern formation, signal processing, and so
on [202].

IX. SOME FUTURE DIRECTIONS AND CONCLUSION

In this paper, some topics on the stability of recurrent neural
networks have been discussed in detail. The coverage includes
most aspects of stability research on recurrent neural networks.
The fruitful results in the fields of stability of recurrent neural
networks have greatly promoted the development of the neural
network theory.

For future directions of the stability study on recurrent
neural networks, we now give some prospective suggestions.

1) Continue to apply and find some useful mathematical
methods to decrease the conservativeness of the stability
results, especially to further reduce the conservatism in the
existing stability results while keeping a reasonably low com-
putational complexity. This topic is sometimes related to the
development of other disciplines, such as applied mathematics,
computational mathematics, and mechanics.

2) How to establish necessary and sufficient stability condi-
tions for delayed recurrent neural networks with more neurons
is still an open problem. For the case of constant time delay,
a necessary and sufficient stability result has been proposed
only for recurrent neural networks with two neurons. More-
over, how to obtain the approximate necessary and sufficient
stability conditions is also meaningful in the development of
neural network theory.

3) In addition to the global stability property, how to
establish the stability criteria for multiple equilibrium points of
recurrent neural networks still needs more efforts. In general,
global stability property is related to optimization problems,
while the multiple stability is related to associative memories.
In the applications of image recognition, data classification,
and information processing, multiple stability may play an
important role. The details include the size of domains of the
attraction and the precise boundary of domain of attraction.

4) How to balance the computational complexity and the
efficiency of stability results needs to be investigated. At
present, the conservativeness of stability results are reduced at
the expense of complex expressions of stability results, which
involves too many parameters to be determined. How to reduce
the redundancy of some of the slack variables in LMI-based
stability conditions needs to be further investigated.

5) For the original Cohen–Grossberg neural networks, in
which the equilibrium points are all positive or nonnegative,
only a few stability results are established. These classes of
neural networks have important role in biological systems
or competition–cooperation systems. Comparing with the sta-
bility study of Hopfield neural networks, no matter in the

width or the depth of stability research, the works for the
original Cohen–Grossberg neural networks are not sufficient.
For Cohen–Grossberg neural networks with nonnegative equi-
librium point, how to study the stability properties in the case
of reaction–diffusion, stochastic environment, impulse action,
and other cases are all to be investigated with depth.

6) Considering the complexity of the internal and external
factors of neural networks, some new features must be incor-
porated into the existing network models, for example, the
internal elasticity connections and spike effects, the external
stochastic fields, switching, impulse, and so on. These factors
may have direct effects on neural networks, which are espe-
cially challenging for the study of stability problems.

7) The stability property of recurrent neural net-
works concerned in this paper focuses on the isolated
Cohen–Grossberg-type recurrent neural networks with regular
topology structure, for example, Hopfield neural networks
and cellular neural networks. For other types of recurrent
neural networks with different topology structure, for exam-
ple, symmetrically/asymmetrically ring networks and random
symmetric/asymmetric networks, the stability results are few.
Especially, when these same or different classes of networks
are composed of a large-scale complex neural networks,
stability problem of synchronization and consensus should
be deeply investigated in different cases, such as linkage
failure, pinning control, clustering, and so on. Moreover,
complex-valued and fractional-order neural networks, which
are regarded as extensions of the real-valued neural networks
and integer-order neural networks, have also been investigated
in recent years. In these directions, there will be many chal-
lenging topics to be further studied.

X. CONCLUSION

In summary, stability studies for recurrent neural networks
with or without time delays have achieved a great deal in the
last three decades. However, there are still many new problems
to be solved. All these future developments will accompany
the development of mathematical theory, especially applied
mathematics and computational mathematics. Keeping
in mind, different forms of stability criteria have their
own feasible ranges, and one cannot expect that only a few
stability results can tackle all the stability problems existing in
recurrent neural networks. Every class of stability results, for
example, in the forms of algebraic inequality, LDS, M-matrix,
and LMI, has their own advantages, which has considered
different tradeoffs between computational complexity and
efficiency of stability results. No one form of stability result
is absolutely superior to other forms of stability results, and
it only reflects different aspects of concerned recurrent neural
networks. Therefore, it is the different expression forms of
stability results that promote the development of the stability
theory of recurrent neural networks.
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