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A Review on Multi-Label Learning Algorithms
Min-Ling Zhang, Member, IEEE and Zhi-Hua Zhou, Fellow, IEEE

Abstract—Multi-label learning studies the problem where each example is represented by a single instance while associated with a
set of labels simultaneously. During the past decade, significant amount of progresses have been made toward this emerging
machine learning paradigm. This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label
learning algorithms. Firstly, fundamentals on multi-label learning including formal definition and evaluation metrics are given.
Secondly and primarily, eight representative multi-label learning algorithms are scrutinized under common notations with relevant
analyses and discussions. Thirdly, several related learning settings are briefly summarized. As a conclusion, online resources and
open research problems on multi-label learning are outlined for reference purposes.

Index Terms—Multi-label learning, label correlations, problem transformation, algorithm adaptation

1 INTRODUCTION

TRADITIONAL supervised learning is one of the mostly-
studied machine learning paradigms, where each real-

world object (example) is represented by a single instance
(feature vector) and associated with a single label. Formally,
let X denote the instance space and Y denote the label
space, the task of traditional supervised learning is to learn
a function f :X → Y from the training set {(xi, yi) | 1 ≤
i ≤ m}. Here, xi ∈ X is an instance characterizing the
properties (features) of an object and yi ∈ Y is the corre-
sponding label characterizing its semantics. Therefore, one
fundamental assumption adopted by traditional supervised
learning is that each example belongs to only one concept,
i.e. having unique semantic meaning.

Although traditional supervised learning is prevailing
and successful, there are many learning tasks where the
above simplifying assumption does not fit well, as real-
world objects might be complicated and have multiple
semantic meanings simultaneously. To name a few, in text
categorization, a news document could cover several top-
ics such as sports, London Olympics, ticket sales and torch
relay; In music information retrieval, a piece of symphony
could convey various messages such as piano, classical music,
Mozart and Austria; In automatic video annotation, one
video clip could be related to some scenarios, such as urban
and building, and so on.

To account for the multiple semantic meanings that
one real-world object might have, one direct solution is
to assign a set of proper labels to the object to explicitly
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express its semantics. Following the above consideration,
the paradigm of multi-label learning naturally emerges [95].
In contrast to traditional supervised learning, in multi-label
learning each object is also represented by a single instance
while associated with a set of labels instead of a single label.
The task is to learn a function which can predict the proper
label sets for unseen instances.1

Early researches on multi-label learning mainly focus
on the problem of multi-label text categorization [63],
[75], [97]. During the past decade, multi-label learning
has gradually attracted significant attentions from machine
learning and related communities and has been widely
applied to diverse problems from automatic annotation
for multimedia contents [5], [67], [74], [85], [102] to bioin-
formatics [16], [27], [107], web mining [51], [82], rule
mining [84], [99], information retrieval [35], [114], tag
recommendation [50], [77], etc. Specifically, in recent six
years (2007-2012), there are more than 60 papers with
keyword multi-label (or multilabel) in the title appearing
in major machine learning-related conferences (including
ICML/ECML PKDD/IJCAI/AAAI/KDD/ICDM/NIPS).

This paper serves as a timely review on the emerging
area of multi-label learning, where its state-of-the-art is
presented in three parts.2 In the first part (Section 2), funda-
mentals on multi-label learning including formal definition
(learning framework, key challenge, threshold calibration)
and evaluation metrics (example-based, label-based, theo-
retical results) are given. In the second and primary part

1. In a broad sense, multi-label learning can be regarded as one
possible instantiation of multi-target learning [95], where each object
is associated with multiple target variables (multi-dimensional out-
puts) [3]. Different types of target variables would give rise to different
instantiations of multi-target learning, such as multi-label learning
(binary targets), multi-dimensional classification (categorical/multi-
class targets), multi-output/multivariate regression (numerical tar-
gets), and even learning with combined types of target variables.

2. Note that there have been some nice reviews on multi-label
learning techniques [17], [89], [91]. Compared to earlier attempts in
this regard, we strive to provide an enriched version with the fol-
lowing enhancements: a) In-depth descriptions on more algorithms;
b) Comprehensive introductions on latest progresses; c) Succinct sum-
marizations on related learning settings.
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(Section 3), technical details of up to eight representative
multi-label algorithms are scrutinized under common nota-
tions with necessary analyses and discussions. In the third
part (Section 4), several related learning settings are briefly
summarized. To conclude this review (Section 5), online
resources and possible lines of future researches on multi-
label learning are discussed.

2 THE PARADIGM

2.1 Formal Definition
2.1.1 Learning Framework
Suppose X = R

d (or Z
d) denotes the d-dimensional instance

space, and Y = {y1, y2, . . . , yq} denotes the label space with
q possible class labels. The task of multi-label learning is
to learn a function h:X → 2Y from the multi-label train-
ing set D = {(xi,Yi) | 1 ≤ i ≤ m}. For each multi-label
example (xi,Yi), xi ∈ X is a d-dimensional feature vector
(xi1, xi2, . . . , xid)

� and Yi ⊆ Y is the set of labels associated
with xi.3 For any unseen instance x ∈ X , the multi-label
classifier h(·) predicts h(x) ⊆ Y as the set of proper labels
for x.

To characterize the properties of any multi-label data set,
several useful multi-label indicators can be utilized [72],
[95]. The most natural way to measure the degree of multi-
labeledness is label cardinality: LCard(D) = 1

m
∑m

i=1 |Yi|, i.e.
the average number of labels per example; Accordingly,
label density normalizes label cardinality by the number of
possible labels in the label space: LDen(D) = 1

|Y| ·LCard(D).
Another popular multi-labeledness measure is label diver-
sity: LDiv(D) = |{Y | ∃ x:(x,Y) ∈ D}|, i.e. the number of
distinct label sets appeared in the data set; Similarly, label
diversity can be normalized by the number of examples to
indicate the proportion of distinct label sets: PLDiv(D) =

1
|D| · LDiv(D).

In most cases, the model returned by a multi-label learn-
ing system corresponds to a real-valued function f :X×Y →
R, where f (x, y) can be regarded as the confidence of y ∈ Y
being the proper label of x. Specifically, given a multi-label
example (x,Y), f (·, ·) should yield larger output on the rel-
evant label y′ ∈ Y and smaller output on the irrelevant label
y′′ /∈ Y, i.e. f (x, y′) > f (x, y′′). Note that the multi-label clas-
sifier h(·) can be derived from the real-valued function f (·, ·)
via: h(x) = {y | f (x, y) > t(x), y ∈ Y}, where t:X → R acts as
a thresholding function which dichotomizes the label space
into relevant and irrelevant label sets.

For ease of reference, Table 1 lists major notations
used throughout this review along with their mathematical
meanings.

2.1.2 Key Challenge
It is evident that traditional supervised learning can be
regarded as a degenerated version of multi-label learning

3. In this paper, the term “multi-label learning" is used in equiva-
lent sense as “multi-label classification" since labels assigned to each
instance are considered to be binary. Furthermore, there are alternative
multi-label settings where other than a single instance each example is
represented by a bag of instances [113] or graphs [54], or extra ontology
knowledge might exist on the label space such as hierarchy struc-
ture [2], [100]. To keep the review comprehensive yet well-focused,
examples are assumed to adopt single-instance representation and
possess flat class labels.

if each example is confined to have only one single label.
However, the generality of multi-label learning inevitably
makes the corresponding learning task much more difficult
to solve. Actually, the key challenge of learning from multi-
label data lies in the overwhelming size of output space, i.e.
the number of label sets grows exponentially as the number
of class labels increases. For example, for a label space with
20 class labels (q = 20), the number of possible label sets
would exceed one million (i.e. 220).

To cope with the challenge of exponential-sized output
space, it is essential to facilitate the learning process by
exploiting correlations (or dependency) among labels [95],
[106]. For example, the probability of an image being anno-
tated with label Brazil would be high if we know it has
labels rainforest and soccer; A document is unlikely to be
labeled as entertainment if it is related to politics. Therefore,
effective exploitation of the label correlations information is
deemed to be crucial for the success of multi-label learning
techniques. Existing strategies to label correlations exploita-
tion could among others be roughly categorized into three
families, based on the order of correlations that the learning
techniques have considered [106]:

• First-order strategy: The task of multi-label learning is
tackled in a label-by-label style and thus ignoring co-
existence of the other labels, such as decomposing
the multi-label learning problem into a number of
independent binary classification problems (one per
label) [5], [16], [108]. The prominent merit of first-
order strategy lies in its conceptual simplicity and
high efficiency. On the other hand, the effectiveness
of the resulting approaches might be suboptimal due
to the ignorance of label correlations.

• Second-order strategy: The task of multi-label learning
is tackled by considering pairwise relations between
labels, such as the ranking between relevant label
and irrelevant label [27], [30], [107], or interaction
between any pair of labels [33], [67], [97], [114], etc.
As label correlations are exploited to some extent by
second-order strategy, the resulting approaches can
achieve good generalization performance. However,
there are certain real-world applications where label
correlations go beyond the second-order assumption.

• High-order strategy: The task of multi-label learning is
tackled by considering high-order relations among
labels such as imposing all other labels’ influences
on each label [13], [34], [47], [103], or addressing con-
nections among random subsets of labels [71], [72],
[94], etc. Apparently high-order strategy has stronger
correlation-modeling capabilities than first-order and
second-order strategies, while on the other hand is
computationally more demanding and less scalable.

In Section 3, a number of multi-label learning algorithms
adopting different strategies will be described in detail to
better demonstrate the respective pros and cons of each
strategy.

2.1.3 Threshold Calibration
As mentioned in Subsection 2.1.1, a common practice in
multi-label learning is to return some real-valued func-
tion f (·, ·) as the learned model [95]. In this case, in
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TABLE 1
Summary of Major Mathematical Notations

order to decide the proper label set for unseen instance
x (i.e. h(x)), the real-valued output f (x, y) on each label
should be calibrated against the thresholding function
output t(x).

Generally, threshold calibration can be accomplished
with two strategies, i.e. setting t(·) as constant function or
inducing t(·) from the training examples [44]. For the first
strategy, as f (x, y) takes value in R, one straightforward
choice is to use zero as the calibration constant [5]. Another
popular choice for calibration constant is 0.5 when f (x, y)
represents the posterior probability of y being a proper label
of x [16]. Furthermore, when all the unseen instances in
the test set are available, the calibration constant can be
set to minimize the difference on certain multi-label indica-
tor between the training set and test set, notably the label
cardinality [72].

For the second strategy, a stacking-style procedure would
be used to determine the thresholding function [27], [69],
[107]. One popular choice is to assume a linear model
for t(·), i.e. t(x) = 〈w∗, f∗(x)〉 + b∗ where f∗(x) =
(f (x, y1), . . . , f (x, yq))

T ∈ R
q is a q-dimensional stacking

vector storing the learning system’s real-valued outputs
on each label. Specifically, to work out the q-dimensional

weight vector w∗ and bias b∗, the following linear least
squares problem is solved based on the training set D:

min
{w∗,b∗}

∑m

i=1

(〈w∗, f∗(xi)〉 + b∗ − s(xi)
)2
. (1)

Here, s(xi) = arg mina∈R
(|{yj | yj ∈ Yi, f (xi, yj) ≤ a}| + |{yk |

yk ∈ Ȳi, f (xi, yk) ≥ a}|) represents the target output of
the stacking model which bipartitions Y into relevant and
irrelevant labels for each training example with minimum
misclassifications.

All the above threshold calibration strategies are general-
purpose techniques which could be used as a post-
processing step to any multi-label learning algorithm
returning real-valued function f (·, ·). Accordingly, there also
exist some ad hoc threshold calibration techniques which
are specific to the learning algorithms [30], [94] and will
be introduced as their inherent component in Section 3.
Instead of utilizing the thresholding function t(·), an equiv-
alent mechanism to induce h(·) from f (·, ·) is to specify the
number of relevant labels for each example with t′:X →
{1, 2, . . . , q} such that h(x) = {y | rankf (x, y) ≤ t′(x)} [44],
[82]. Here, rankf (x, y) returns the rank of y when all class
labels in Y are sorted in descending order based on f (x, ·).
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Fig. 1. Summary of major multi-label evaluation metrics.

2.2 Evaluation Metrics
2.2.1 Brief Taxonomy
In traditional supervised learning, generalization perfor-
mance of the learning system is evaluated with conven-
tional metrics such as accuracy, F-measure, area under
the ROC curve (AUC), etc. However, performance eval-
uation in multi-label learning is much complicated than
traditional single-label setting, as each example can be asso-
ciated with multiple labels simultaneously. Therefore, a
number of evaluation metrics specific to multi-label learn-
ing are proposed, which can be generally categorized into
two groups, i.e. example-based metrics [33], [34], [75] and
label-based metrics [94].

Following the notations in Table 1, let S = {(xi,Yi)

| 1 ≤ i ≤ p)} be the test set and h(·) be the learned multi-
label classifier. Example-based metrics work by evaluating
the learning system’s performance on each test exam-
ple separately, and then returning the mean value across
the test set. Different to the above example-based met-
rics, label-based metrics work by evaluating the learning
system’s performance on each class label separately, and
then returning the macro/micro-averaged value across all class
labels.

Note that with respect to h(·), the learning system’s gen-
eralization performance is measured from classification per-
spective. However, for either example-based or label-based
metrics, with respect to the real-valued function f (·, ·)which
is returned by most multi-label learning systems as a com-
mon practice, the generalization performance can also be
measured from ranking perspective. Fig. 1 summarizes the
major multi-label evaluation metrics to be introduced next.

2.2.2 Example-based Metrics
Following the notations in Table 1, six example-based clas-
sification metrics can be defined based on the multi-label
classifier h(·) [33], [34], [75]:

• Subset Accuracy:

subsetacc(h) = 1
p

p∑

i=1

[[h(xi) = Yi]].

The subset accuracy evaluates the fraction of cor-
rectly classified examples, i.e. the predicted label set
is identical to the ground-truth label set. Intuitively,
subset accuracy can be regarded as a multi-label
counterpart of the traditional accuracy metric, and
tends to be overly strict especially when the size of
label space (i.e. q) is large.

• Hamming Loss:

hloss(h) = 1
p

p∑

i=1

1
q
|h(xi)�Yi|.

Here, � stands for the symmetric difference between
two sets. The hamming loss evaluates the fraction
of misclassified instance-label pairs, i.e. a relevant
label is missed or an irrelevant is predicted. Note that
when each example in S is associated with only one
label, hlossS(h) will be 2/q times of the traditional
misclassification rate.

• Accuracyexam, Precisionexam, Recallexam, Fβexam:

Accuracyexam(h) = 1
p

p∑

i=1

|Yi
⋂

h(xi)|
|Yi

⋃
h(xi)| ;

Precisionexam(h) = 1
p

p∑

i=1

|Yi
⋂

h(xi)|
|h(xi)|

Recallexam(h) = 1
p

p∑

i=1

|Yi
⋂

h(xi)|
|Yi| ;

Fβexam(h) = (1+ β2) · Precisionexam(h) · Recallexam(h)
β2 · Precisionexam(h)+ Recallexam(h)

.

Furthermore, Fβexam is an integrated version of
Precisionexam(h) and Recallexam(h) with balancing fac-
tor β > 0. The most common choice is β = 1 which
leads to the harmonic mean of precision and recall.

When the intermediate real-valued function f (·, ·) is
available, four example-based ranking metrics can be
defined as well [75]:
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• One-error:

one-error(f ) = 1
p

p∑

i=1

[[
[
arg maxy∈Y f (xi, y)

]
/∈ Yi]].

The one-error evaluates the fraction of examples
whose top-ranked label is not in the relevant label
set.

• Coverage:

coverage(f ) = 1
p

p∑

i=1

maxy∈Yi rankf (xi, y)− 1.

The coverage evaluates how many steps are needed,
on average, to move down the ranked label list so
as to cover all the relevant labels of the example.

• Ranking Loss:

rloss(f ) = 1
p

p∑

i=1

1
|Yi||Ȳi|

|{(y′, y′′) | f (xi, y′)

≤ f (xi, y′′), (y′, y′′) ∈ Yi × Ȳi)}|.
The ranking loss evaluates the fraction of reversely
ordered label pairs, i.e. an irrelevant label is ranked
higher than a relevant label.

• Average Precision:

avgprec(f ) = 1
p

p∑

i=1

1
|Yi|

∑

y∈Yi

|{y′ | rankf (xi, y′) ≤ rankf (xi, y), y′ ∈ Yi}|
rankf (xi, y)

.

The average precision evaluates the average fraction
of relevant labels ranked higher than a particular
label y ∈ Yi.

For one-error, coverage and ranking loss, the smaller the
metric value the better the system’s performance, with opti-
mal value of 1

p
∑p

i=1 |Yi| − 1 for coverage and 0 for one-error
and ranking loss. For the other example-based multi-label
metrics, the larger the metric value the better the system’s
performance, with optimal value of 1.

2.2.3 Label-based Metrics
For the j-th class label yj, four basic quantities characterizing
the binary classification performance on this label can be
defined based on h(·):

TPj = |{xi | yj ∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ p}|;
FPj = |{xi | yj /∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ p}|
TNj = |{xi | yj /∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ p}|;
FNj = |{xi | yj ∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ p}|.

In other words, TPj, FPj, TNj and FNj represent the number
of true positive, false positive, true negative, and false negative
test examples with respect to yj. According to the above
definitions, TPj + FPj + TNj + FNj = p naturally holds.

Based on the above four quantities, most of the binary
classification metrics can be derived accordingly. Let

B(TPj,FPj,TNj,FNj) represent some specific binary classi-
fication metric (B ∈ {Accuracy, Precision, Recall, Fβ}4), the
label-based classification metrics can be obtained in either
of the following modes [94]:

• Macro-averaging:

Bmacro(h) = 1
q

q∑

j=1

B(TPj,FPj,TNj,FNj)

• Micro-averaging:

Bmicro(h) = B

⎛

⎝
q∑

j=1

TPj,

q∑

j=1

FPj,

q∑

j=1

TNj,

q∑

j=1

FNj

⎞

⎠

Conceptually speaking, macro-averaging and micro-
averaging assume “equal weights" for labels and exam-
ples respectively. It is not difficult to show that both
Accuracymacro(h) = Accuracymicro(h) and Accuracymicro(h) +
hloss(h) = 1 hold. Note that the macro/micro-averaged
version (Bmacro/Bmicro) is different to the example-based
version in Subsection 2.2.2.

When the intermediate real-valued function f (·, ·) is
available, one label-based ranking metric, i.e. macro-
averaged AUC, can be derived as:

AUCmacro = 1
q
∑q

j=1 AUCj

= 1
q
∑q

j=1
|{(x′,x′′)|f (x′,yj)≥f (x′′,yj), (x′,x′′)∈Zj×Z̄j}|

|Zj||Z̄j| . (2)

Here, Zj = {xi | yj ∈ Yi, 1 ≤ i ≤ p} (
Z̄j = {xi | yj /∈ Yi,

1 ≤ i ≤ p}) corresponds to the set of test instances with
(without) label yj. The second line of Eq.(2) follows from
the close relation between AUC and the Wilcoxon-Mann-
Whitney statistic [39]. Correspondingly, the micro-averaged
AUC can also be derived as:

AUCmicro = |{(x
′,x′′,y′,y′′)|f (x′,y′)≥f (x′′,y′′), (x′,y′)∈S+, (x′′,y′′)∈S−}|

|S+||S−| .

Here, S+ = {(xi, y) | y ∈ Yi, 1 ≤ i ≤ p} (
S− = {(xi, y) | y /∈

Yi, 1 ≤ i ≤ p}) corresponds to the set of relevant (irrelevant)
instance-label pairs.

For the above label-based multi-label metrics, the larger
the metric value the better the system’s performance, with
optimal value of 1.

2.2.4 Theoretical Results
Based on the metric definitions, it is obvious that existing
multi-label metrics consider the performance from diverse
aspects and are thus of different natures. As shown in
Section 3, most multi-label learning algorithms actually
learn from training examples by explicitly or implicitly
optimizing one specific metric. In light of fair and hon-
est evaluation, performance of the multi-label learning

4. For example, Accuracy(TPj,FPj,TNj, FNj) =
TPj+TNj

TPj+FPj+TNj+FNj
,

Precision(TPj, FPj,TNj, FNj) =
TPj

TPj+FPj
, Recall(TPj, FPj,TNj, FNj) =

TPj
TPj+FNj

, and Fβ(TPj, FPj,TNj,FNj) =
(1+β2)·TPj

(1+β2)·TPj+β2·FNj+FPj
.
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algorithm should therefore be tested on a broad range
of metrics instead of only on the one being optimized.
Specifically, recent theoretical studies show that classifiers
aim at maximizing the subset accuracy would perform
rather poor if evaluated in terms of hamming loss, and vice
versa [22], [23].

As multi-label metrics are usually non-convex and dis-
continuous, in practice most learning algorithms resort to
optimizing (convex) surrogate multi-label metrics [65], [66].
Recently, the consistency of multi-label learning [32] has
been studied, i.e. whether the expected loss of a learned
classifier converges to the Bayes loss as the training set size
increases. Specifically, a necessary and sufficient condition
for consistency of multi-label learning based on surrogate
loss functions is given, which is intuitive and can be infor-
mally stated as that for a fixed distribution over X×2Y , the
set of classifiers yielding optimal surrogate loss must fall
in the set of classifiers yielding optimal original multi-label
loss.

By focusing on ranking loss, it is disclosed that none
pairwise convex surrogate loss defined on label pairs is
consistent with the ranking loss and some recent multi-
label approach [40] is inconsistent even for deterministic
multi-label learning [32].5 Interestingly, in contrast to this
negative result, a complementary positive result on con-
sistent multi-label learning is reported for ranking loss
minimization [21]. By using a reduction to the bipartite
ranking problem [55], simple univariate convex surrogate
loss (exponential or logistic) defined on single labels is
shown to be consistent with the ranking loss with explicit
regret bounds and convergence rates.

3 LEARNING ALGORITHMS

3.1 Simple Categorization
Algorithm development always stands as the core issue
of machine learning researches, with multi-label learning
being no exception. During the past decade, significant
amount of algorithms have been proposed to learning from
multi-label data. Considering that it is infeasible to go
through all existing algorithms within limited space, in this
review we opt for scrutinizing a total of eight representative
multi-label learning algorithms. Here, the representativeness
of those selected algorithms are maintained with respect to
the following criteria: a) Broad spectrum: each algorithm
has unique characteristics covering a variety of algorithmic
design strategies; b) Primitive impact: most algorithms lead
to a number of follow-up or related methods along its line
of research; and c) Favorable influence: each algorithm is
among the highly-cited works in the multi-label learning
field.6

As we try to keep the selection less biased with the above
criteria, one should notice that the eight algorithms to be
detailed by no means exclude the importance of other meth-
ods. Furthermore, for the sake of notational consistency and

5. Here, deterministic multi-label learning corresponds to the easier
learning case where for any instance x ∈ X , there exists a label subset
Y ⊆ Y such that the posteriori probability of observing Y given x is
greater than 0.5, i.e. P(Y | x) > 0.5.

6. According to Google Scholar statistics (by January 2013), each
paper for the eight algorithms has received at least 90 citations, with
more than 200 citations on average.

mathematical rigor, we have chosen to rephrase and present
each algorithm under common notations. In this paper, a
simple categorization of multi-label learning algorithms is
adopted [95]:

Problem transformation methods: This category of algo-
rithms tackle multi-label learning problem by trans-
forming it into other well-established learning scenarios.
Representative algorithms include first-order approaches
Binary Relevance [5] and high-order approach Classifier
Chains [72] which transform the task of multi-label learning
into the task of binary classification, second-order approach
Calibrated Label Ranking [30] which transforms the task of
multi-label learning into the task of label ranking, and high-
order approach Random k-labelsets [94] which transforms
the task of multi-label learning into the task of multi-class
classification.

Algorithm adaptation methods: This category of algorithms
tackle multi-label learning problem by adapting popular
learning techniques to deal with multi-label data directly.
Representative algorithms include first-order approach ML-
kNN [108] adapting lazy learning techniques, first-order
approach ML-DT [16] adapting decision tree techniques,
second-order approach Rank-SVM [27] adapting kernel
techniques, and second-order approach CML [33] adapting
information-theoretic techniques.

Briefly, the key philosophy of problem transformation
methods is to fit data to algorithm, while the key philosophy
of algorithm adaptation methods is to fit algorithm to data.
Fig. 2 summarizes the above-mentioned algorithms to be
detailed in the rest of this section.

3.2 Problem Transformation Methods
3.2.1 Binary Relevance
The basic idea of this algorithm is to decompose the multi-
label learning problem into q independent binary classifi-
cation problems, where each binary classification problem
corresponds to a possible label in the label space [5].

Following the notations in Table 1, for the j-th class
label yj, Binary Relevance firstly constructs a correspond-
ing binary training set by considering the relevance of each
training example to yj:

Dj = {(xi, φ(Yi, yj)) | 1 ≤ i ≤ m} (3)

where φ(Yi, yj) =
{+1, if yj ∈ Yi

−1, otherwise.

After that, some binary learning algorithm B is utilized
to induce a binary classifier gj:X → R, i.e. gj ← B(Dj).
Therefore, for any multi-label training example (xi,Yi),
instance xi will be involved in the learning process of q
binary classifiers. For relevant label yj ∈ Yi, xi is regarded
as one positive instance in inducing gj(·); On the other hand,
for irrelevant label yk ∈ Ȳi, xi is regarded as one neg-
ative instance. The above training strategy is termed as
cross-training in [5].

For unseen instance x, Binary Relevance predicts its
associated label set Y by querying labeling relevance on
each individual binary classifier and then combing relevant
labels:

Y = {yj | gj(x) > 0, 1 ≤ j ≤ q}. (4)
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Fig. 2. Categorization of representative multi-label learning algorithms being reviewed.

Note that when all the binary classifiers yield negative out-
puts, the predicted label set Y would be empty. To avoid
producing empty prediction, the following T-Criterion rule
can be applied:

Y = {yj | gj(x) > 0, 1 ≤ j ≤ q}
⋃
{yj∗ | j∗

= arg max1≤j≤q gj(x)}. (5)

Briefly, when none of the binary classifiers yield positive
predictions, T-Criterion rule complements Eq.(4) by includ-
ing the class label with greatest (least negative) output. In
addition to T-Criterion, some other rules toward label set
prediction based on the outputs of each binary classifier
can be found in [5].

Remarks: The pseudo-code of Binary Relevance is sum-
marized in Fig. 3. It is a first-order approach which builds
classifiers for each label separately and offers the natural
opportunity for parallel implementation. The most promi-
nent advantage of Binary Relevance lies in its extremely
straightforward way of handling multi-label data (Steps
1-4), which has been employed as the building block of
many state-of-the-art multi-label learning techniques [20],
[34], [72], [106]. On the other hand, Binary Relevance com-
pletely ignores potential correlations among labels, and the
binary classifier for each label may suffer from the issue

Fig. 3. Pseudo-code of binary relevance.

of class-imbalance when q is large and label density (i.e.
LDen(D)) is low. As shown in Fig. 3, Binary Relevance has
computational complexity of O(q·FB(m, d)) for training and
O(q · F ′B(d)) for testing.7

3.2.2 Classifier Chains
The basic idea of this algorithm is to transform the multi-
label learning problem into a chain of binary classification
problems, where subsequent binary classifiers in the chain
is built upon the predictions of preceding ones [72], [73].

For q possible class labels {y1, y2, . . . , yq}, let
τ :{1, . . . , q} → {1, . . . , q} be a permutation function
which is used to specify an ordering over them, i.e.
yτ(1) � yτ(2) � · · · � yτ(q). For the j-th label yτ(j) (1 ≤ j ≤ q)
in the ordered list, a corresponding binary training set is
constructed by appending each instance with its relevance
to those labels preceding yτ(j):

Dτ(j) = {
(

[xi,prei
τ(j)], φ(Yi, yτ(j))

)
| 1 ≤ i ≤ m} (6)

where prei
τ(j) = (φ(Yi, yτ(1)), . . . , φ(Yi, yτ(j−1)))

�.

Here, [xi,prei
τ(j)] concatenates vectors xi and prei

τ(j), and
prei

τ(j) represents the binary assignment of those labels
preceding yτ(j) on xi (specifically, prei

τ(1) = ∅).8 After that,

7. In this paper, computational complexity is mainly examined with
respect to three factors which are common for all learning algorithms,
i.e.: m (number of training examples), d (dimensionality) and q (number
of possible class labels). Furthermore, for binary (multi-class) learning
algorithm B (M) embedded in problem transformation methods, we
denote its training complexity as FB(m, d) (FM(m, d, q)) and its (per-
instance) testing complexity as F ′B(d) (F ′M(d, q)). All computational
complexity results reported in this paper are the worst-case bounds.

8. In Classifier Chains [72], [73], binary assignment is represented
by 0 and 1. Without loss of generality, binary assignment is represented
by -1 and +1 in this paper for notational consistency.
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Fig. 4. Pseudo-code of classifier chains.

some binary learning algorithm B is utilized to induce a
binary classifier gτ(j):X × {−1,+1}j−1 → R, i.e. gτ(j) ←
B(Dτ(j)). In other words, gτ(j)(·) determines whether yτ(j)
is a relevant label or not.

For unseen instance x, its associated label set Y is pre-
dicted by traversing the classifier chain iteratively. Let
λx
τ(j) ∈ {−1,+1} represent the predicted binary assignment

of yτ(j) on x, which are recursively derived as follows:

λx
τ(1) = sign

[
gτ(1)(x)

]
(7)

λx
τ(j) = sign

[
gτ(j)([x, λx

τ(1), . . . , λ
x
τ(j−1)])

]
(2 ≤ j ≤ q).

Here, sign[ · ] is the signed function. Accordingly, the
predicted label set corresponds to:

Y = {yτ(j) | λx
τ(j) = +1, 1 ≤ j ≤ q}. (8)

It is obvious that for the classifier chain obtained as
above, its effectiveness is largely affected by the ordering
specified by τ . To account for the effect of ordering, an
Ensemble of Classifier Chains can be built with n random per-
mutations over the label space, i.e. τ (1), τ (2), . . . , τ (n). For
each permutation τ (r) (1 ≤ r ≤ n), instead of inducing
one classifier chain by applying τ (r) directly on the orig-
inal training set D, a modified training set D(r) is used by
sampling D without replacement (|D(r)| = 0.67 · |D|) [72] or
with replacement (|D(r)| = |D|) [73].

Remarks: The pseudo-code of Classifier Chains is
summarized in Fig. 4. It is a high-order approach which
considers correlations among labels in a random man-
ner. Compared to Binary Relevance [5], Classifier Chains
has the advantage of exploiting label correlations while
loses the opportunity of parallel implementation due to
its chaining property. During the training phase, Classifier
Chains augments instance space with extra features from
ground-truth labeling (i.e. prei

τ(j) in Eq.(6)). Instead of keep-
ing extra features binary-valued, another possibility is to
set them to the classifier’s probabilistic outputs when the
model returned by B (e.g. Naive Bayes) is capable of
yielding posteriori probability [20], [105]. As shown in
Fig. 4, Classifier Chains has computational complexity of
O(q · FB(m, d + q)) for training and O(q · F ′B(d + q)) for
testing.

3.2.3 Calibrated Label Ranking
The basic idea of this algorithm is to transform the multi-
label learning problem into the label ranking problem, where
ranking among labels is fulfilled by techniques of pairwise
comparison [30].

For q possible class labels {y1, y2, . . . , yq}, a total of
q(q − 1)/2 binary classifiers can be generated by pairwise
comparison, one for each label pair (yj, yk) (1 ≤ j < k ≤ q).

Concretely, for each label pair (yj, yk), pairwise compari-
son firstly constructs a corresponding binary training set by
considering the relative relevance of each training example
to yj and yk:

Djk = {(xi, ψ(Yi, yj, yk)) | φ(Yi, yj) �= φ(Yi, yk),

1 ≤ i ≤ m}, (9)

where ψ(Yi, yj, yk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1, if φ(Yi, yj) = +1 and
φ(Yi, yk) = −1

−1, if φ(Yi, yj) = −1 and
φ(Yi, yk) = +1.

In other words, only instances with distinct relevance to
yj and yk will be included in Djk. After that, some binary
learning algorithm B is utilized to induce a binary classifier
gjk:X → R, i.e. gjk ← B(Djk). Therefore, for any multi-label
training example (xi,Yi), instance xi will be involved in
the learning process of |Yi||Ȳi| binary classifiers. For any
instance x ∈ X , the learning system votes for yj if gjk(x) > 0
and yk otherwise.

For unseen instance x, Calibrated Label Ranking firstly
feeds it to the q(q− 1)/2 trained binary classifiers to obtain
the overall votes on each possible class label:

ζ(x, yj) =
∑j−1

k=1
[[gkj(x) ≤ 0]]

+
∑q

k=j+1
[[gjk(x) > 0]] (1 ≤ j ≤ q). (10)

Based on the above definition, it is not difficult to verify
that

∑q
j=1 ζ(x, yj) = q(q − 1)/2. Here, labels in Y can be

ranked according to their respective votes (ties are broken
arbitrarily).

Thereafter, some thresholding function should be further
specified to bipartition the list of ranked labels into relevant
and irrelevant label set. To achieve this within the pairwise
comparison framework, Calibrated Label Ranking incorpo-
rates a virtual label yV into each multi-label training example
(xi,Yi). Conceptually speaking, the virtual label serves as an
artificial splitting point between xi’s relevant and irrelevant
labels [6]. In other words, yV is considered to be ranked
lower than yj ∈ Yi while ranked higher than yk ∈ Ȳi.

In addition to the original q(q − 1)/2 binary classifiers,
q auxiliary binary classifiers will be induced, one for each
new label pair (yj, yV) (1 ≤ j ≤ q). Similar to Eq.(9), a binary
training set corresponding to (yj, yV) can be constructed as
follows:

DjV = {(xi, ϕ(Yi, yj, yV)) | 1 ≤ i ≤ m} (11)

where ϕ(Yi, yj, yV) =
⎧
⎨

⎩

+1, if yj ∈ Yi

−1, otherwise.

Based on this, the binary learning algorithm B is utilized
to induce a binary classifier corresponding to the virtual
label gjV:X → R, i.e. gjV ← B(DjV). After that, the overall
votes specified in Eq.(10) will be updated with the newly
induced classifiers:

ζ ∗(x, yj) = ζ(x, yj)+ [[gjV(x) > 0]] (1 ≤ j ≤ q). (12)
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Fig. 5. Pseudo-code of calibrated label ranking.

Furthermore, the overall votes on virtual label can be
computed as:

ζ ∗(x, yV) =
∑q

j=1
[[gjV(x) ≤ 0]]. (13)

Therefore, the predicted label set for unseen instance x
corresponds to:

Y = {yj | ζ ∗(x, yj) > ζ ∗(x, yV), 1 ≤ j ≤ q}. (14)

By comparing Eq.(11) to Eq.(3), it is obvious that the
training set DjV employed by Calibrated Label Ranking
is identical to the training set Dj employed by Binary
Relevance [5]. Therefore, Calibrated Label Ranking can be
regarded as an enriched version of pairwise comparison,
where the routine q(q− 1)/2 binary classifiers are enlarged
with the q binary classifiers of Binary Relevance to facilitate
learning [30].

Remarks: The pseudo-code of Calibrated Label
Ranking is summarized in Fig. 5. It is a second-order
approach which builds classifiers for any pair of class
labels. Compared to previously introduced algorithms [5],
[72] which construct binary classifiers in a one-vs-rest man-
ner, Calibrated Label Ranking constructs binary classifiers
(except those for virtual label) in a one-vs-one manner
and thus has the advantage of mitigating the negative
influence of the class-imbalance issue. On the other hand,
the number of binary classifiers constructed by Calibrated
Label Ranking grows from linear scale to quadratic scale
in terms of the number class labels (i.e. q). Improvements
on Calibrated Label Ranking mostly focus on reducing the
quadratic number of classifiers to be queried in testing
phase by exact pruning [59] or approximate pruning [60],
[61]. By exploiting idiosyncrasy of the underlying binary
learning algorithm B, such as dual representation for
Perceptron [58], the quadratic number of classifiers can be
induced more efficiently in training phase [57]. As shown
in Fig. 5, Calibrated Label Ranking has computational
complexity of O(q2 ·FB(m, d)) for training and O(q2 ·F ′B(d))
for testing.

3.2.4 Random k-Labelsets
The basic idea of this algorithm is to transform the multi-
label learning problem into an ensemble of multi-class
classification problems, where each component learner in
the ensemble targets a random subset of Y upon which a

multi-class classifier is induced by the Label Powerset (LP)
techniques [92], [94].

LP is a straightforward approach to transforming multi-
label learning problem into multi-class (single-label) classi-
fication problem. Let σY :2Y → N be some injective function
mapping from the power set of Y to natural numbers, and
σ−1
Y be the corresponding inverse function. In the training

phase, LP firstly converts the original multi-label training
set D into the following multi-class training set by treating
every distinct label set appearing in D as a new class:

D†
Y = {(xi, σY (Yi)) | 1 ≤ i ≤ m}, (15)

where the set of new classes covered by D†
Y corresponds

to:

�
(
D†

Y
)
= {σY (Yi) | 1 ≤ i ≤ m}. (16)

Obviously,
∣
∣�

(
D†

Y
)∣
∣ ≤ min

(
m, 2|Y|

)
holds here. After that,

some multi-class learning algorithm M is utilized to induce
a multi-class classifier g†

Y :X → �
(
D†

Y
)
, i.e. g†

Y ←M
(
D†

Y
)
.

Therefore, for any multi-label training example (xi,Yi),
instance xi will be re-assigned with the newly mapped
single-label σY (Yi) and then participates in multi-class
classifier induction.

For unseen instance x, LP predicts its associated label set
Y by firstly querying the prediction of multi-class classifier
and then mapping it back to the power set of Y :

Y = σ−1
Y

(
g†
Y (x)

)
. (17)

Unfortunately, LP has two major limitations in terms of
practical feasibility: a) Incompleteness: as shown in Eqs.(16)
and (17), LP is confined to predict label sets appearing in
the training set, i.e. unable to generalize to those outside
{Yi | 1 ≤ i ≤ m}; b) Inefficiency: when Y is large, there might
be too many newly mapped classes in �

(
D†

Y
)
, leading to

overly high complexity in training g†
Y (·) and extremely few

training examples for some newly mapped classes.
To keep LP’s simplicity while overcoming its two major

drawbacks, Random k-Labelsets chooses to combine ensem-
ble learning [24], [112] with LP to learn from multi-label
data. The key strategy is to invoke LP only on random
k-labelsets (size-k subset in Y) to guarantee computational
efficiency, and then ensemble a number of LP classifiers to
achieve predictive completeness.

Let Yk represent the collection of all possible k-labelsets
in Y , where the l-th k-labelset is denoted as Yk(l), i.e. Yk(l) ⊆
Y ,

∣
∣Yk(l)

∣
∣ = k, 1 ≤ l ≤ (q

k

)
. Similar to Eq.(15), a multi-class

training set can be constructed as well by shrinking the
original label space Y into Yk(l):

D†
Yk(l) =

{(
xi , σYk(l)(Yi ∩ Yk(l))

) ∣
∣
∣ 1 ≤ i ≤ m

}
, (18)

where the set of new classes covered by D†
Yk(l)

corresponds
to:

�
(
D†

Yk(l)

)
= {σYk(l)(Yi ∩ Yk(l)) | 1 ≤ i ≤ m}.

After that, the multi-class learning algorithm M is utilized
to induce a multi-class classifier g†

Yk(l)
:X → �

(
D†

Yk(l)

)
, i.e.

g†
Yk(l)
←M

(
D†

Yk(l)

)
.
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Fig. 6. Pseudo-code of random k -labelsets.

To create an ensemble with n component classifiers,
Random k-Labelsets invokes LP on n random k-labelsets
Yk(lr) (1 ≤ r ≤ n) each leading to a multi-class classifier
g†
Yk(lr)

(·). For unseen instance x, the following two quantities
are calculated for each class label:

τ(x, yj) =
∑n

r=1
[[yj ∈ Yk(lr)]] (1 ≤ j ≤ q) (19)

μ(x, yj) =
∑n

r=1

[[
yj ∈ σ−1

Yk(lr)

(
g†
Yk(lr)

(x)
)]]

(1 ≤ j ≤ q).

Here, τ(x, yj) counts the maximum number of votes that yj
can be received from the ensemble, while μ(x, yj) counts the
actual number of votes that yj receives from the ensemble.
Accordingly, the predicted label set corresponds to:

Y = {yj | μ(x, yj)/τ(x, yj) > 0.5, 1 ≤ j ≤ q}. (20)

In other words, when the actual number of votes exceeds
half of the maximum number of votes, yj is regarded to
be relevant. For an ensemble created by n k-labelsets, the
maximum number of votes on each label is nk/q on average.
A rule-of-thumb setting for Random k-Labelsets is k = 3
and n = 2q [92], [94].

Remarks: The pseudo-code of Random k-Labelsets is
summarized in Fig. 6. It is a high-order approach where
the degree of label correlations is controlled by the size
of k-labelsets. In addition to use k-labelset, another way
to improve LP is to prune distinct label set in D appear-
ing less than a pre-specified counting threshold [71].
Although Random k-Labelsets embeds ensemble learn-
ing as its inherent part to amend LP’s major drawbacks,
ensemble learning could be employed as a meta-level
strategy to facilitate multi-label learning by encompass-
ing homogeneous [72], [76] or heterogeneous [74], [83]
component multi-label learners. As shown in Fig. 6,
Random k-Labelsets has computational complexity of O(n ·
FM(m, d, 2k)) for training and O(n · F ′M(d, 2k)) for testing.

3.3 Algorithm Adaptation Methods
3.3.1 Multi-Label k-Nearest Neighbor (ML-kNN)
The basic idea of this algorithm is to adapt k-nearest neighbor
techniques to deal with multi-label data, where maximum
a posteriori (MAP) rule is utilized to make prediction by
reasoning with the labeling information embodied in the
neighbors [108].

For unseen instance x, let N (x) represent the set of its
k nearest neighbors identified in D. Generally, similarity
between instances is measured with the Euclidean distance.
For the j-th class label, ML-kNN chooses to calculate the
following statistics:

Cj =
∑

(x∗,Y∗)∈N (x)
[[yj ∈ Y∗]]. (21)

Namely, Cj records the number of x’s neighbors with label
yj.

Let Hj be the event that x has label yj, and P(Hj | Cj)

represents the posterior probability that Hj holds under the
condition that x has exactly Cj neighbors with label yj.
Correspondingly, P(¬Hj | Cj) represents the posterior prob-
ability that Hj doesn’t hold under the same condition.
According to the MAP rule, the predicted label set is deter-
mined by deciding whether P(Hj | Cj) is greater than
P(¬Hj | Cj) or not:

Y = {yj | P(Hj | Cj)/P(¬Hj | Cj) > 1, 1 ≤ j ≤ q}. (22)

Based on Bayes theorem, we have:

P(Hj | Cj)

P(¬Hj | Cj)
= P(Hj) · P(Cj | Hj)

P(¬Hj) · P(Cj | ¬Hj)
. (23)

Here, P(Hj)
(
P(¬Hj)

)
represents the prior probability that Hj

holds (doesn’t hold). Furthermore, P(Cj | Hj)
(
P(Cj | ¬Hj)

)

represents the likelihood that x has exactly Cj neighbors with
label yj when Hj holds (doesn’t hold). As shown in Eqs.(22)
and (23), it suffices to estimate the prior probabilities as well
as likelihoods for making predictions.

ML-kNN fulfills the above task via the frequency count-
ing strategy. Firstly, the prior probabilities are estimated
by counting the number training examples associated with
each label:

P(Hj) =
s+∑m

i=1 [[yj ∈ Yi]]
s× 2+m

;
P(¬Hj) = 1− P(Hj) (1 ≤ j ≤ q). (24)

Here, s is a smoothing parameter controlling the effect of
uniform prior on the estimation. Generally, s takes the value
of 1 resulting in Laplace smoothing.

Secondly, the estimation process for likelihoods is some-
what involved. For the j-th class label yj, ML-kNN main-
tains two frequency arrays κj and κ̃j each containing k+1
elements:

κj[r] =
∑m

i=1
[[yj ∈ Yi]] · [[δj(xi) = r]] (0 ≤ r ≤ k) (25)

κ̃j[r] =
∑m

i=1
[[yj /∈ Yi]] · [[δj(xi) = r]] (0 ≤ r ≤ k)

where δj(xi) =
∑

(x∗,Y∗)∈N (xi)
[[yj ∈ Y∗]].

Here, δj(xi) records the number of xi’s neighbors with label
yj. Therefore, κj[r] counts the number of training exam-
ples which have label yj and have exactly r neighbors with
label yj, while κ̃j[r] counts the number of training examples
which don’t have label yj and have exactly r neighbors with
label yj. Afterwards, the likelihoods can be estimated based
on κj and κ̃j:

P(Cj | Hj) = s+κj[Cj]

s×(k+1)+∑k
r=0 κj[r]

(1 ≤ j ≤ q, 0 ≤ Cj ≤ k)

(26)

P(Cj | ¬Hj) = s+κ̃j[Cj]

s×(k+1)+∑k
r=0 κ̃j[r]

(1 ≤ j ≤ q, 0 ≤ Cj ≤ k).

Thereafter, by substituting Eq.(24) (prior probabilities) and
Eq.(26) (likelihoods) into Eq.(23), the predicted label set in
Eq.(22) naturally follows.
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Fig. 7. Pseudo-code of ML-kNN.

Remarks: The pseudo-code of ML-kNN is summarized
in Fig. 7. It is a first-order approach which reasons the rele-
vance of each label separately. ML-kNN has the advantage
of inheriting merits of both lazy learning and Bayesian rea-
soning: a) decision boundary can be adaptively adjusted
due to the varying neighbors identified for each unseen
instance; b) the class-imbalance issue can be largely miti-
gated due to the prior probabilities estimated for each class
label. There are other ways to make use of lazy learn-
ing for handling multi-label data, such as combining kNN
with ranking aggregation [7], [15], identifying kNN in a
label-specific style [41], [101], expanding kNN to cover the
whole training set [14], [49]. Considering that ML-kNN is
ignorant of exploiting label correlations, several extensions
have been proposed to provide patches to ML-kNN along
this direction [13], [104]. As shown in Fig. 7, ML-kNN has
computational complexity of O(m2d+qmk) for training and
O(md+ qk) for testing.

3.3.2 Multi-Label Decision Tree (ML-DT)
The basic idea of this algorithm is to adopt decision tree tech-
niques to deal with multi-label data, where an information
gain criterion based on multi-label entropy is utilized to
build the decision tree recursively [16].

Given any multi-label data set T = {(xi,Yi) | 1 ≤ i ≤ n}
with n examples, the information gain achieved by dividing
T along the l-th feature at splitting value ϑ is:

IG(T , l, ϑ) = MLEnt(T )

−
∑

ρ∈{−,+}
|T ρ |
|T | ·MLEnt(T ρ) (27)

where T − = {(xi,Yi) | xil ≤ ϑ, 1 ≤ i ≤ n},
T + = {(xi,Yi) | xil > ϑ, 1 ≤ i ≤ n}.

Namely, T − (T +) consists of examples with values on the
l-th feature less (greater) than ϑ .9

Starting from the root node (i.e. T = D), ML-DT identi-
fies the feature and the corresponding splitting value which
maximizes the information gain in Eq.(27), and then gener-
ates two child nodes with respect to T − and T +. The above
process is invoked recursively by treating either T − or T +
as the new root node, and terminates until some stopping

9. Without loss of generality, here we assume that features are real-
valued and the data set is bi-partitioned by setting splitting point
along each feature. Similar to Eq.(27), information gain with respect
to discrete-valued features can be defined as well.

criterion C is met (e.g. size of the child node is less than the
pre-specified threshold).

To instantiate ML-DT, the mechanism for computing
multi-label entropy, i.e. MLEnt(·) in Eq.(27), needs to be
specified. A straightforward solution is to treat each subset
Y ⊆ Y as a new class and then resort to the conventional
single-label entropy:

M̂LEnt(T ) = −
∑

Y⊆Y P(Y) · log2(P(Y)), (28)

where P(Y) =
∑n

i=1 [[Yi = Y]]
n

.

However, as the number of new classes grows exponen-
tially with respect to |Y|, many of them might not even
appear in T and thus only have trivial estimated probabil-
ity (i.e. P(Y) = 0). To circumvent this issue, ML-DT assumes
independence among labels and computes the multi-label
entropy in a decomposable way:

MLEnt(T ) =
∑q

j=1
−pj log2 pj − (1− pj) log2(1− pj), (29)

where pj =
∑n

i=1 [[yj ∈ Yi]]
n

.

Here, pj represents the fraction of examples in T with label
yj. Note that Eq.(29) can be regarded as a simplified version
of Eq.(28) under the label independence assumption, and it
holds that MLEnt(T ) ≥ M̂LEnt(T ).

For unseen instance x, it is fed to the learned decision
tree by traversing along the paths until reaching a leaf node
affiliated with a number of training examples T ⊆ D. Then,
the predicted label set corresponds to:

Y = {yj | pj > 0.5, 1 ≤ j ≤ q}. (30)

In other words, if for one leaf node the majority of train-
ing examples falling into it have label yj, any test instance
allocated within the same leaf node will regard yj as its
relevant label.

Remarks: The pseudo-code of ML-DT is summarized in
Fig. 8. It is a first-order approach which assumes label inde-
pendence in calculating multi-label entropy. One promi-
nent advantage of ML-DT lies in its high efficiency in
inducing the decision tree model from multi-label data.
Possible improvements on multi-label decision trees include
employing pruning strategy [16] or ensemble learning tech-
niques [52], [110]. As shown in Fig. 8, ML-DT has compu-
tational complexity of O(mdq) for training and O(mq) for
testing.

3.3.3 Ranking Support Vector Machine (Rank-SVM)
The basic idea of this algorithm is to adapt maximum mar-
gin strategy to deal with multi-label data, where a set of
linear classifiers are optimized to minimize the empirical
ranking loss and enabled to handle nonlinear cases with
kernel tricks [27].

Let the learning system be composed of q linear clas-
sifiers W = {(wj, bj) | 1 ≤ j ≤ q}, where wj ∈ R

d and
bj ∈ R are the weight vector and bias for the j-th class label yj.
Correspondingly, Rank-SVM defines the learning system’s
margin on (xi,Yi) by considering its ranking ability on the
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Fig. 8. Pseudo-code of ML-DT.

example’s relevant and irrelevant labels:

min
(yj,yk)∈Yi×Ȳi

〈wj −wk, xi〉 + bj − bk

‖wj −wk‖ . (31)

Here, 〈u,v〉 returns the inner product u�v. Geometrically
speaking, for each relevant-irrelevant label pair (yj, yk) ∈
Yi × Ȳi, their discrimination boundary corresponds to the
hyperplane 〈wj − wk, x〉 + bj − bk = 0. Therefore, Eq.(31)
considers the signed L2-distance of xi to hyperplanes of
every relevant-irrelevant label pair, and then returns the
minimum as the margin on (xi,Yi). Therefore, the learn-
ing system’s margin on the whole training set D naturally
follows:

min
(xi,Yi)∈D

min
(yj,yk)∈Yi×Ȳi

〈wj −wk, xi〉 + bj − bk

‖wj −wk‖ . (32)

When the learning system is capable of properly ranking
every relevant-irrelevant label pair for each training exam-
ple, Eq.(32) will return positive margin. In this ideal case,
we can rescale the linear classifiers to ensure: a) ∀ 1 ≤
i ≤ m and (yj, yk) ∈ Yi × Ȳi, 〈wj − wk, xi〉 + bj − bk ≥ 1;
b) ∃ i∗ ∈ {1, . . . ,m} and (yj∗ , yk∗) ∈ Yi∗×Ȳi∗ , 〈wj∗−wk∗ , xi∗ 〉+
bj∗ − bk∗ = 1. Thereafter, the problem of maximizing the
margin in Eq.(32) can be expressed as:

max
W

min
(xi,Yi)∈D

min
(yj,yk)∈Yi×Ȳi

1
‖wj−wk‖2 (33)

subject to: 〈wj −wk, xi〉 + bj − bk ≥ 1

(1 ≤ i ≤ m, (yj, yk) ∈ Yi × Ȳi).

Suppose we have sufficient training examples such that
for each label pair (yj, yk) (j �= k), there exists (x,Y) ∈ D
satisfying (yj, yk) ∈ Y × Ȳ. Thus, the objective in Eq.(33)
becomes equivalent to maxW min1≤j<k≤q

1
‖wj−wk‖2 and the

optimization problem can be re-written as:

min
W

max
1≤j<k≤q

‖wj −wk‖2 (34)

subject to: 〈wj −wk, xi〉 + bj − bk ≥ 1

(1 ≤ i ≤ m, (yj, yk) ∈ Yi × Ȳi).

To overcome the difficulty brought by the max operator,
Rank-SVM chooses to simplify Eq.(34) by approximating

the max operator with the sum operator:

min
W

∑q
j=1 ‖wj‖2 (35)

subject to: 〈wj −wk, xi〉 + bj − bk ≥ 1

(1 ≤ i ≤ m, (yj, yk) ∈ Yi × Ȳi).

To accommodate real-world scenarios where constraints
in Eq.(35) can not be fully satisfied, slack variables can be
incorporated into Eq.(35):

min{W, �}
∑q

j=1
‖wj‖2 + C

∑m

i=1

1
|Yi||Ȳi|

∑

(yj,yk)∈Yi×Ȳi

ξijk (36)

subject to: 〈wj −wk, xi〉 + bj − bk ≥ 1− ξijk

ξijk ≥ 0 (1 ≤ i ≤ m, (yj, yk) ∈ Yi × Ȳi).

Here, � = {ξijk | 1 ≤ i ≤ m, (yj, yk) ∈ Yi × Ȳi} is the set of
slack variables. The objective in Eq.(36) consists of two parts
balanced by the trade-off parameter C. Specifically, the first
part corresponds to the margin of the learning system, while
the second parts corresponds to the surrogate ranking loss of
the learning system implemented in hinge form. Note that
surrogate ranking loss can be implemented in other ways
such as the exponential form for neural network’s global
error function [107].

Note that Eq.(36) is a standard quadratic programming
(QP) problem with convex objective and linear constraints,
which can be tackled with any off-the-shelf QP solver.
Furthermore, to endow Rank-SVM with nonlinear classifi-
cation ability, one popular way is to solve Eq.(36) in its dual
form via kernel trick. More details on the dual formulation
can be found in [26].

As discussed in Subsection 2.1.3, Rank-SVM employs
the stacking-style procedure to set the thresholding func-
tion t(·), i.e. t(x) = 〈w∗, f∗(x)〉 + b∗ with f∗(x) =
(f (x, y1), . . . , f (x, yq))

T and f (x, yj) = 〈wj, x〉+ bj. For unseen
instance x, the predicted label set corresponds to:

Y = {yj | 〈wj, x〉 + bj > 〈w∗, f∗(x)〉 + b∗, 1 ≤ j ≤ q}. (37)

Remarks: The pseudo-code of Rank-SVM is summa-
rized in Fig. 9. It is a second-order approach which defines
the margin over hyperplanes for relevant-irrelevant label
pairs. Rank-SVM benefits from kernels to handle non-
linear classification problems, and further variants can
be achieved. Firstly, as shown in [37], the empirical
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Fig. 9. Pseudo-code of rank-SVM.

ranking loss considered in Eq.(36) can be replaced with
other loss structures such as hamming loss, which can
be cast as a general form of structured output classifica-
tion [86], [87]. Secondly, the thresholding strategy can be
accomplished with techniques other than stacking-style
procedure [48]. Thirdly, to avoid the problem of ker-
nel selection, multiple kernel learning techniques can be
employed to learn from multi-label data [8], [46], [81]. As
shown in Fig. 9, let FQP(a, b) represent the time complex-
ity for a QP solver to solve Eq.(36) with a variables and
b constraints, Rank-SVM has computational complexity of
O(FQP(dq + mq2,mq2) + q2(q + m)) for training and O(dq)
for testing.

3.3.4 Collective Multi-Label Classifier (CML)
The basic idea of this algorithm is to adapt maximum entropy
principle to deal with multi-label data, where correlations
among labels are encoded as constraints that the resulting
distribution must satisfy [33].

For any multi-label example (x,Y), let (x,y) be the corre-
sponding random variables representation using binary label
vector y = (y1, y2, . . . , yq)

� ∈ {−1,+1}q, whose j-th compo-
nent indicates whether Y contains the j-th label (yj = +1)
or not (yj = −1). Statistically speaking, the task of multi-
label learning is equivalent to learn a joint probability
distribution p(x,y).

Let Hp(x,y) represent the information entropy of (x,y)
given their distribution p(·, ·). The principle of maximum
entropy [45] assumes that the distribution best modeling the
current state of knowledge is the one maximizing Hp(x,y)
subject to a collection K of given facts:

max
p

Hp(x,y) (38)

subject to: Ep[fk(x,y)] = Fk (k ∈ K).

Generally, the fact is expressed as constraint on the
expectation of some function over (x,y), i.e. by imposing
Ep[fk(x,y)] = Fk. Here, Ep[ · ] is the expectation operator
with respect to p(·, ·), while Fk corresponds to the expected
value estimated from training set, e.g. 1

m
∑
(x,y)∈D fk(x,y).

Together with the normalization constraint on p(·, ·) (i.e.
Ep[1] = 1), the constrained optimization problem of Eq.(38)
can be carried out with standard Lagrange Multiplier tech-
niques. Accordingly, the optimal solution is shown to fall
within the Gibbs distribution family [1]:

p(y | x) = 1
Z�(x)

exp
(∑

k∈K λk · fk(x,y)
)
. (39)

Here, � = {λk | k ∈ K} is the set of parameters to be deter-
mined, and Z�(x) is the partition function serving as the nor-
malization factor, i.e. Z�(x) =∑

y exp
(∑

k∈K λk · fk(x,y)
)
.

By assuming Gaussian prior (i.e. λk ∼ N (0, ε2)), param-
eters in � can be found by maximizing the following

log-posterior probability function:

l(� | D) = log
(∏

(x,y)∈D p(y | x)
)

−
∑

k∈K
λ2

k

2ε2

=
∑

(x,y)∈D
(∑

k∈K λk · fk(x,y)− log Z�(x)
)

−
∑

k∈K
λ2

k

2ε2 . (40)

Note that Eq.(40) is a convex function over �,
whose global maximum (though not in closed-form)
can be found by any off-the-shelf unconstrained opti-
mization method such as BFGS [9]. Generally, gradi-
ents of l(� | D) are needed by most numerical
methods:
∂l(� | D)
∂λk

=
∑

(x,y)∈D

(

fk(x,y)−
∑

y
fk(x,y)p(y | x)

)

−λk

ε2 (k ∈ K). (41)

For CML, the set of constraints consists of two parts
K = K1

⋃
K2. Concretely, K1 = {(l, j) | 1 ≤ l ≤ d, 1 ≤ j ≤ q}

specifies a total of d ·q constraints with fk(x,y) = xl ·[[yj = 1]]
(k = (l, j) ∈ K1). In addition, K2 = {(j1, j2, b1, b2) | 1 ≤ j1 <
j2 ≤ q, b1, b2 ∈ {−1,+1}} specifies a total of 4·(q

2

)
constraints

with fk(x,y) = [[yj1 = b1]]·[[yj2 = b2]] (k = (j1, j2, b1, b2) ∈ K2).
Actually, constraints in K can be specified in other ways
yielding variants of CML [33], [114].

For unseen instance x, the predicted label set corre-
sponds to:

Y = arg max
y

p(y | x). (42)

Note that exact inference with arg max is only tractable for
small label space. Otherwise, pruning strategies need to be
applied to significantly reduce the search space of arg max,
e.g. only considering label sets appearing in the training
set [33].

Remarks: The pseudo-code of CML is summarized in
Fig. 10. It is a second-order approach where correlations
between every label pair are considered via constraints
in K2. The second-order correlation studied by CML is
more general than that of Rank-SVM [27] as the latter only
considers relevant-irrelevant label pairs. As a conditional
random field (CRF) model, CML is interested in using the
conditional probability distribution p(y | x) in Eq.(39) for
classification. Interestingly, p(y | x) can be factored in vari-
ous ways such as p(y | x) =∏q

j=1 p(yj | x, y1, . . . , yj−1)where
each term in the product can be modeled by one classifier
in the classifier chain [20], [72], or p(y | x) = ∏q

j=1 p(yj |
x,paj) where each term in the product can be modeled
by node yj and its parents paj in a directed graph [36],
[105], [106], and efficient algorithms exist when the directed
graph corresponds to multi-dimensional Bayesian network
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Fig. 10. Pseudo-code of CML.

TABLE 2
Summary of Representative Multi-Label Learning Algorithms Being Reviewed

with restricted topology [4], [18], [98]. Directed graphs are
also found to be useful for modeling multiple fault diagno-
sis where yj indicates the good/failing condition of one
of the device’s components [3], [19]. On the other hand,
there have been some multi-label generative models which
aim to model the joint probability distribution p(x,y) [63],
[80], [97]. As shown in Fig. 10, let FUNC(a,m) represent
the time complexity for an unconstrained optimization
method to solve Eq.(40) with a variables, CML has com-
putational complexity of O(FUNC(dq + q2,m)) for training
and O((dq+ q2) · 2q) for testing.

3.4 Summary
Table 2 summarizes properties of the eight multi-label
learning algorithms investigated in Subsections 3.2 and 3.3,

including their basic idea, label correlations, computational
complexity, tested domains, and optimized (surrogate) met-
ric. As shown in Table 2, (surrogate) hamming loss and
ranking loss are among the most popular metrics to be opti-
mized and theoretical analyses on them [21]–[23], [32] have
been discussed in Subsection 2.2.4. Furthermore, note that
the subset accuracy optimized by Random k-Labelsets is only
measured with respect to the k-labelset instead of the whole
label space.

Domains reported in Table 2 correspond to data types
on which the corresponding algorithm is shown to work
well in the original literature. However, all those repre-
sentative multi-label learning algorithms are general-purpose
and can be applied to various data types. Nevertheless,
the computational complexity of each learning algorithm
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TABLE 3
Online Resources for Multi-Label Learning

for

does play a key factor on its suitability for different
scales of data. Here, the data scalability can be stud-
ied in terms of three main aspects including the num-
ber of training examples (i.e. m), the dimensionality
(i.e. d), and the number of possible class labels (i.e. q).
Furthermore, algorithms which append class labels as extra
features to instance space [20], [72], [106] might not ben-
efit too much from this strategy when instance dimen-
sionality is much larger than the number of class labels
(i.e. d� q).

As arguably the mostly-studied supervised learning
framework, several algorithms in Table 2 employ binary
classification as the intermediate step to learn from multi-
label data [5], [30], [72]. An initial and general attempt
towards binary classification transformation comes from
the famous AdaBoost.MH algorithm [75], where each multi-
label training example (xi,Yi) is converted into q binary
examples {([xi, yj

]
, φ(Yi, yj)) | 1 ≤ j ≤ q}. It can be

regarded as a high-order approach where labels in Y are
treated as appending feature to X and would be related to
each other via the shared instance x, as far as the binary
learning algorithm B is capable of capturing dependencies
among features. Other ways towards binary classifica-
tion transformation can be fulfilled with techniques such
as stacked aggregation [34], [64], [88] or Error-Correcting
Output Codes (ECOC) [28], [111].

In addition, first-order algorithm adaptation methods
can not be simply regarded as Binary Relevance [5] com-
bined with specific binary learners. For example, ML-
kNN [108] is more than Binary Relevance combined
with kNN as Bayesian inference is employed to reason
with neighboring information, and ML-DT [16] is more
than Binary Relevance combined with decision tree as a
single decision tree instead of q decision trees is built

to accommodate all class labels (based on multi-label
entropy).

4 RELATED LEARNING SETTINGS

There are several learning settings related to multi-label
learning which are worth some discussion, such as
multi-instance learning [25], ordinal classification [29],
multi-task learning [10], and data streams classification [31].

Multi-instance learning [25] studies the problem where
each example is described by a bag of instances while asso-
ciated with a single (binary) label. A bag is regarded to
be positive iff at least one of its constituent instances is
positive. In contrast to multi-label learning which models
the object’s ambiguities (complicated semantics) in out-
put (label) space, multi-instance learning can be viewed
as modeling the object’s ambiguities in input (instance)
space [113]. There are some initial attempt towards exploit-
ing multi-instance representation for learning from multi-
label data [109].

Ordinal classification [29] studies the problem where
a natural ordering exists among all the class labels. In
multi-label learning, we can accordingly assume an order-
ing of relevance on each class label to generalize the crisp
membership (yj ∈ {−1,+1}) into the graded membership
(yj ∈ {m1,m2, . . . ,mk} where m1 < m2 < · · · < mk).
Therefore, graded multi-label learning accommodates the
case where we can only provide vague (ordinal) instead
of definite judgement on the label relevance. Existing work
shows that graded multi-label learning can be solved by
transforming it into a set of ordinal classification prob-
lems (one for each class label), or a set of standard
multi-label learning problems (one for each membership
level) [12].
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Multi-task learning [10] studies the problem where
multiple tasks are trained in parallel such that training
information of related tasks are used as an inductive bias to
help improve the generalization performance of other tasks.
Nonetheless, there are some essential differences between
multi-task learning and multi-label learning to be noticed.
Firstly, in multi-label learning all the examples share the
same feature space, while in multi-task learning the tasks
can be in the same feature space or different feature spaces.
Secondly, in multi-label learning the goal is to predict the
label subset associated with an object, while the purpose of
multi-task learning is to have multiple tasks to be learned
well simultaneously, and it does not concern on which task
subset should be associated with an object (if we take a
label as a task) since it generally assumes that every object
is involved by all tasks. Thirdly, in multi-label learning it is
not rare (yet demanding) to deal with large label space [90],
while in multi-task learning it is not reasonable to con-
sider a large number of tasks. Nevertheless, techniques for
multi-task learning might be used to benefit multi-label
learning [56].

Data streams classification [31] studies the problem
where real-world objects are generated online and pro-
cessed in a real-time manner. Nowadays, streaming data
with multi-label nature widely exist in real-world scenar-
ios such as instant news, emails, microblogs, etc [70]. As a
usual challenge for streaming data analysis, the key fac-
tor for effectively classifying multi-label data streams is
how to deal with the concept drift problem. Existing works
model concept drift by updating the classifiers significantly
whenever a new batch of examples arrive [68], taking the
fading assumption that the influence of past data grad-
ually declines as time evolves [53], [78], or maintaining
a change detector alerting whenever a concept drift is
detected [70].

5 CONCLUSION

In this paper, the state-of-the-art of multi-label learning
is reviewed in terms of paradigm formalization, learn-
ing algorithms and related learning settings. In particular,
instead of trying to go through all the learning tech-
niques within confined space, which would lead to only
abridged introductions, we choose to elaborate the algo-
rithmic details of eight representative multi-label learn-
ing algorithms with references to other related works.
Some online resources for multi-label learning are sum-
marized in Table 3, including academic activities (tutorial,
workshops, special issue), publicly-available software and
data sets.

As discussed in Section 2.1.2, although the idea of
exploiting label correlations have been employed by var-
ious multi-label learning techniques, there has not been
any formal characterization on the underlying concept or
any principled mechanism on the appropriate usage of
label correlations. Recent researches indicate that correla-
tions among labels might be asymmetric, i.e. the influence
of one label to the other one is not necessarily be the same
in the inverse direction [42], or local, i.e. different instances
share different label correlations with few correlations being
globally applicable [43]. Nevertheless, full understanding

on label correlations, especially for scenarios with large
output space, would remain as the holy grail for multi-label
learning.

As reviewed in Section 3, multi-label learning algo-
rithms are introduced by focusing on their algorith-
mic properties. One natural complement to this review
would be conducting thorough experimental studies to
get insights on the pros and cons of different multi-label
learning algorithms. A recent attempt towards extensive
experimental comparison can be found in [62] where
12 multi-label learning algorithms are compared with
respect to 16 evaluation metrics. Interestingly while not
surprisingly, the best-performing algorithm for both clas-
sification and ranking metrics turns out to be the one
based on ensemble learning techniques (i.e. random forest
of predictive decision trees [52]). Nevertheless, empiri-
cal comparison across a broad range or within a focused
type (e.g. [79]) are worthwhile topic to be further
explored.
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S. Matwin, D. Mladenič, and A. Skowron, Eds. Berlin, Germany:
Springer, 2007, pp. 605–612.

[100] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel,
“Decision trees for hierarchical multi-label classification,” Mach.
Learn., vol. 73, no. 2, pp. 185–214, 2008.

[101] H. Wang, C. Ding, and H. Huang, “Multi-label classifica-
tion: Inconsistency and class balanced k-nearest neighbor,” in
Proc. 24th AAAI Conf. Artif. Intell., Atlanta, GA, USA, 2010,
pp. 1264–1266.

[102] M. Wang, X. Zhou, and T.-S. Chua, “Automatic image annota-
tion via local multi-label classification,” in Proc. 7th ACM Int.
Conf. Image Video Retrieval, Niagara Falls, ON, Canada, 2008,
pp. 17–26.
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