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A current focus of intense research in pattern classification is the combination of several classifier sys-
tems, which can be built following either the same or different models and/or datasets building
approaches. These systems perform information fusion of classification decisions at different levels over-
coming limitations of traditional approaches based on single classifiers. This paper presents an up-to-
date survey on multiple classifier system (MCS) from the point of view of Hybrid Intelligent Systems.
The article discusses major issues, such as diversity and decision fusion methods, providing a vision of
the spectrum of applications that are currently being developed.
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1. Introduction

Hybrid Intelligent Systems offer many alternatives for unortho-
dox handling of realistic increasingly complex problems, involving
ambiguity, uncertainty and high-dimensionality of data. They al-
low to use both a priori knowledge and raw data to compose inno-
vative solutions. Therefore, there is growing attention to this
multidisciplinary research field in the computer engineering re-
search community. Hybridization appears in many domains of hu-
man activity. It has an immediate natural inspiration in the human
biological systems, such as the Central Nervous System, which is a
de facto hybrid composition of many diverse computational units,
as discussed since the early days of computer science, e.g., by
von Neumann [1] or Newell [2]. Hybrid approaches seek to exploit
the strengths of the individual components, obtaining enhanced
performance by their combination. The famous ‘‘no free lunch’’ the-
orem [3] stated by Wolpert may be extrapolated to the point of
saying that there is no single computational view that solves all
problems. Fig. 1 is a rough representation of the computational do-
mains covered by the Hybrid Intelligent System approach. Some of
them deal with the uncertainty and ambiguity in the data by prob-
abilistic or fuzzy representations and feature extraction. Others
deal with optimization problems appearing in many facets of the
intelligent system design and problem solving, either following a
nature inspired or a stochastic process approach. Finally, classifiers
implementing the intelligent decision process are also subject to
hybridization by various forms of combination. In this paper, we
focus in this specific domain, which is in an extraordinary efferves-
cence nowadays, under the heading of Multi-Classifier Systems
(MCS). Referring to classification problems, Wolpert’s theorem
has an specific lecture: there is not a single classifier modeling ap-
proach which is optimal for all pattern recognition tasks, since
each has its own domain of competence. For a given classification
task, we expect the MCS to exploit the strengths of the individual
classifier models at our disposal to produce the high quality com-
pound recognition system overcoming the performance of individ-
ual classifiers. Summarizing:

� Hybrid Intelligent Systems (HIS) are free combinations of compu-
tational intelligence techniques to solve a given problem, cover-
ing al computational phases from data normalization up to final
decision making. Specifically, they mix heterogeneous funda-
mental views blending them into one effective working system.
� Information Fusion covers the ways to combine information

sources in a view providing new properties that may allow to
solve better or more efficiently the proposed problem. Informa-
tion sources can be the result of additional computational
processes.
� Multi-Classifier Systems (MCS) focus on the combination of

classifiers form heterogenous or homogeneous modeling back-
grounds to give the final decision. MCS are therefore a subcate-
gory of HIS.
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Fig. 1. Domains of hybrid intelligent systems.
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Historical perspective. The concept of MCS was first presented by
Chow [4], who gave conditions for optimality of the joint decision1

of independent binary classifiers with appropriately defined weights.
In 1979 Dasarathy and Sheela combined a linear classifier and one k-
NN classifier [6], suggesting to identify the region of the feature
space where the classifiers disagree. The k-NN classifier gives the an-
swer of the MCS for the objects coming from the conflictive region
and by the linear one for the remaining objects. Such strategy signif-
icantly decreases the exploitation cost of whole classifier system.
This was the first work introducing a classifier selection concept,
however the same idea was developed independently in 1981 by
Rastrigin and Erenstein [7] performing first a feature space partition-
ing and, second, assigning to each partition region an individual clas-
sifier that achieves the best classification accuracy over it. Other
early relevant works formulated conclusions regarding MCS ’s classi-
fication quality, such as [8] who considered a neural network ensem-
ble, [9] with majority voting applied to handwriting recognition,
Turner in 1996 [10] showed that averaging outputs of an infinite
number of unbiased and independent classifiers can lead to the same
response as the optimal Bayes classifier, Ho [11] underlined that a
decision combination function must receive useful representation
of each classifier’s decision. Specifically, they considered several
method based on decision ranks, such as Borda count. Finally, the
landmark works devoted introducing bagging [12] and boosting
[13,14] which are able to produce strong classifiers [15], in the (Prob-
ably Approximately Correct) theory [16] sense, on the basis of the
weak one. Nowadays MCS, are highlighted by review articles as a
hot topic and promising trend in pattern recognition [17–21]. These
reviews include the books by Kuncheva [22], Rokach [23], Seni and
Edler [24], and Baruque and Corchado [25]. Even leading-edge gen-
eral machine learning handbooks such as [26–28] include extensive
presentations of MCS concepts and architectures. The popularity of
this approach is confirmed by the growing trend in the number of
publications shown in Fig. 2. The figure reproduces the evolution
of the number of references retrieved by the application of specific
keywords related to MCS since 1990. The experiment was repeated
1 We can retrace decision combination long way back in history. Perhaps the first
worthy reference is the Greek democracy (meaning government of the people) ruling
that full citizens have an equal say in any decision that affects their life. Greeks
believed in the community wisdom, meaning that the rule of the majority will
produce the optimal joint decision. In 1785 Condorcet formulated the Jury Theorem
about the misclassification probability of a group of independent voters [5]],
providing the first result measuring the quality of classifier committee.
on three well known academic search sites. The growth in the num-
ber of publications has an exponential trend. The last entry of the
Fig. 2. Evolution of the number of publications per year ranges retrieved from the
keywords specified in the plot legend. Each plot corresponds to searching site: the
top to Google Scholar; the center to the Web of Knowledge, the bottom to Scopus.
The first entry of the plots is for publications prior to 1990. The last entry is only for
the last 2 years.
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plots corresponds to the last 2 years, and some of the keywords give
as many references as in the previous 5 years.

Advantages. Dietterich [29] summarized the benefits of MCS: (a)
allowing to filter out hypothesis that, though accurate, might be
incorrect due to a small training set, (b) combining classifiers
trained starting from different initial conditions could overcome
the local optima problem, and (c) the true function may be impos-
sible to be modeled by any single hypothesis, but combinations of
hypotheses may expand the space of representable functions.
Rephrasing it, there is widespread acknowledgment of the follow-
ing advantages of MCS:

� MCS behave well in the two extreme cases of data availability:
when we have very scarce data samples for learning, and when
we have a huge amount of them at our disposal. In the scarcity
case, MCS can exploit bootstrapping methods, such as bagging
or boosting. Intuitive reasoning justifies that the worst classifier
would be out of the selection by this method [30], e.g., by indi-
vidual classifier output averaging [31]. In the event of availabil-
ity of a huge amount of learning data samples, MCS allow to
train classifiers on dataset’s partitions and merge their decision
using appropriate combination rule [20].
� Combined classifier can outperform the best individual classi-

fier [32]. Under some conditions (e.g., majority voting by a
group of independent classifiers) this improvement has been
proven analytically [10].
� Many machine learning algorithms are de facto heuristic search

algorithms. For example the popular decision tree induction
method C4.5 [33] uses a greedy search approach, choosing the
search direction according to an heuristic attribute evaluation
function. Such an approach does not assure an optimal solution.
Thus, the combined algorithm, which could start its work from
different initial points of the search space, is equivalent to a
multi-start local random search which increases the probability
of finding an optimal model.
� MCS can easily be implemented in efficient computing environ-

ments such as parallel and multithreaded computer architec-
tures [34]. Another attractive area of implementation
solutions is distributed computing systems (i.e.: P2P, Grid or
Cloud computing) [35,36], especially when a database is parti-
tioned for privacy reasons [37] so that partial solutions must
be computed on each partition and only the final decision is
available as the combination of the networked decision.
� Wolpert stated that each classifier has its specific competence

domain [3], where they overcome other competing algorithms,
thus it is not possible to design a single classifier which outper-
forms another ones for each classification tasks. MCS try to
select always the local optimal model from the available pool
of trained classifiers.
Fig. 3. Overview of multi
System structure. The general structure of MCS is depicted in
Fig. 3 following a classical pattern recognition [38] application
structure. The most informative or discriminant features describ-
ing the objects are input to the classifier ensemble, formed by a
set of complementary and diverse classifiers. An appropriate fusion
method combines the individual classifier outputs optimally to
provide the system decision. According to Ho [39], two main
MCS design approaches can be distinguished. On one hand, the
so-called coverage optimization approach tries to cover the space
of possible models by the generation of a set of mutually comple-
mentary classifiers whose combination provides optimal accuracy.
On the other hand, the so-called decision optimization approach
concentrates on designing and training an appropriate decision
combination function over a set of individual classifier given in ad-
vance [40].The main issues in MCS design are:

� System topology: How to interconnect individual classifiers.
� Ensemble design: How to drive the generation and selection of a

pool of valuable classifiers.
� Fuser design: How to build a decision combination function

(fuser) which can exploit the strengths of the selected classifiers
and combine them optimally.

2. System topology

Fig. 4 illustrates the two canonical topologies employed in MCS
design. The overwhelming majority of MCS reported in the litera-
ture is structured in a parallel topology [22]. In this architecture,
each classifier is feed the same input data, so that the final decision
of the combined classifier output is made on the basis of the out-
puts of the individual classifiers obtained independently. Alterna-
tively, in the serial (or conditional) topology, individual classifiers
are applied in sequence, implying some kind of ranking or ordering
over them. When the primary classifier cannot be trusted to clas-
sify a given object, e.g., because of the low support/confidence in
its result, then the data is feed to a secondary classifier [41,42],
and so on, adding classifiers in sequence. This topology is adequate
when the cost of classifier exploitation is important, so that the pri-
mary classifier is the computationally cheapest one, and secondary
classifiers have higher exploitation cost [43]. This model can be ap-
plied to classifiers with the so-called reject option as well [44]. In
[45] the first classifier in the pipeline gives an estimation of the
certainty of the classification, so that uncertain data samples are
sent to a second classifier, specialized in difficult instances. We no-
tice the similarity of such approach to the ordered set of rules [46]
or decision list [47], when we consider each rule as the classifier.

A very special case of sequential topology is the Adaboost intro-
duced by Freund and Schapire in 1995 [48], widely applied in data
ple classifier system.



Fig. 4. The canonical topologies of MCSs: parallel (top) and serial (bottom).
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mining problems [49]. The goal of boosting is to enhance the accu-
racy of any given learning algorithm, even weak learning algo-
rithms with an accuracy slightly better than chance. Shapire [50]
showed that weak learners can be boosted into a strong learning
algorithm by sequentially focusing on the subset of the training
data that is hardest to classify. The algorithms performs training
of the weak learner multiple times, each time presenting it with
an updated distribution over the training examples. The distribu-
tion is altered so that hard parts of the feature space have higher
probability, i.e. trying to achieve a hard margin distribution. The
decisions generated by the weak learners are combined into a final
single decision. The novelty of Adaboost lies in the adaptability of
the successive distributions to the results of the previous weak
learners, thus the name AdaptiveBoost. In the words of Kivinen
et al. [51], AdaBoost finds a new distribution that is closest to the
old one but taking into consideration the restriction that the new
distribution must be orthogonal to the mistake vector of the cur-
rent weak learner.

3. Ensemble design

Viewing MCS as a case of robust software [52–55], diversity
arises as the guiding measure of the design process. Classifier
ensemble design aims to include mutually complementary individ-
ual classifiers which are characterized by high diversity and accu-
racy [56]. The emphasis from the Hybrid Intelligent System point
of view is in building MCS from components following different
kinds of modeling and learning approaches, expecting an increase
in diversity and a decrease in classifier output correlation [57].
Unfortunately, the problem of how to measure classifier diversity
is still an open research topic. Brown et al. [58] notice that we
can ensure diversity using implicit or explicit approaches. Implicit
approaches include techniques of independent generation of indi-
vidual classifiers, often based on random techniques, while explicit
approaches focus on the optimization of a diversity metric over a
given ensemble line-up. In this second kind of approaches, individ-
ual classifier training is performed conditional to the previous clas-
sifiers with the aim of exploiting the strengths of valuable
members of classifier pool. This section discusses some diversity
measures, and the procedures followed to ensure diversity in the
ensemble.

3.1. Diversity measures

For regression problems, the variance of the outputs of ensem-
ble members is a convenient diversity measure, because it was
proved that the error of a compound model based on a weighted
averaging of individual model outputs can be reduced according
to increasing diversity [56,59]. Brown et al. [60] showed a func-
tional relation between diversity and individual regressor accu-
racy, allowing to control the bias-variance tradeoff systematically.

For classification problems such theoretical results have not
been proved yet, however many diversity measures have been pro-
posed till now. On the one hand, it is intuitive that increasing
diversity should lead to the better accuracy of the combined sys-
tem, but there is no formal proof of this dependency [61], as con-
firmed by the wide range of experimental results presented, e.g.,
in [62]. In [53] authors decomposed the error of the classification
by majority voting into individual accuracy, good and bad diversi-
ties. The good diversity has positive impact on ensemble error
reduction, whereas the bad diversity has the opposite effect. Shark-
ley et al. [55] proposed a hierarchy of four levels of diversity
according to the answer of the majority rule, coincident failures,
and possibility of at least one correct answer of ensemble mem-
bers. Brown et al. [58] argue that this hierarchy is not appropriate
when the ensemble diversity varies between feature subspaces.
They formulated the following taxonomy of diversity measures:

� Pairwise measures averaging a measure between each classifier
pair in an ensemble, such as Q-statistic [58], kappa-statistics
[63], disagreement [64] and double-fault measure [61,65].
� Non-pairwise diversity measures comparing outputs of a given

classifier and the entire ensemble, such as Kohavi–Wolpert var-
iance [66], a measure of inter-rater (inter-classifier) reliability
[67], the entropy measure [68], the measure of difficulty [8],
generalized diversity [52], and coincident failure diversity [69].

The analysis of several diversity measures [70] relating them to
the concept of classifiers’ margin, showed their limitations and the
source of confusing empirical results. They relate the classifier selec-
tion to a NP-complete matrix cover problem, implying that ensem-
ble design in fact a quite difficult combinatorial problem. Diversity
measures usually employ the most valuable sub-ensemble in
ensemble pruning processes [71]. To deal with the high computa-
tional complexity of ensemble pruning, several hybrid approaches
have been proposed such as heuristic techniques [72,73], evolution-
ary algorithms [74,75], reinforcement learning [76], and competi-
tive cross-validation techniques [77]. For classification tasks, the
cost of acquiring feature values (which could be interpreted as the
price for examination or time required to collect the data for deci-
sion making) can be critical. Some authors take it into consideration
during the component classifier selection step [78,79].
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3.2. Ensuring diversity

According to [22,38] we can enforce the diversity of a classifier
pool by the manipulation of either individual classifier inputs, out-
puts, or models.

3.2.1. Diversifying input data
This diversification strategy assumes that classifiers trained on

different (disjoint) input subspaces become complementary. Three
general strategies are identified:

1. Using different data partitions.
2. Using different sets of features.
3. Taking into consideration the local specialization of individual

classifiers.

Data partitions They may be compelled by several reasons, such
as data privacy, or the need to learn over distributed data chunks
stored in different databases [80–82]. Regarding data privacy, we
should notice that using distributed data may come up against le-
gal or commercial constraints which do not allow sharing raw
datasets and merging them into a common repository [37]. To en-
sure privacy we can train individual classifiers on each database
independently and merge their outputs using hybrid classifier
principles [83]. The distributed data paradigm is strongly con-
nected with the big data analysis problem [84]. A huge database
may impede to deliver trained classifiers under specified time con-
straints, imposing to resort to sampling techniques to obtain man-
ageable dataset partitions. A well known approach is cross-
validated committee which requires to minimize overlapping of
dataset partitions [56]. Providing individualized train datasets for
each classifier is convenient in the case of shortage of learning
examples. Most popular techniques, such as bagging [12] or boost-
ing [14,19,64,85], have their origin in bootstrapping [13]. These
methods try to ascertain if a set of weak classifier may produce a
strong one. Bagging applies sampling with replacement to obtain
independent training datasets for each individual classifier. Boost-
ing modifies the input data distribution perceived by each classifier
from the results of classifiers trained before, focusing on difficult
samples, making the final decision by a weighted voting rule.

Data features May be selected to ensure diversity training of a
pool of classifiers. The Random Subspace [86,87] was employed
for several types of the individual classifiers such as decision tree
(Random Forest) [88], linear classifiers [89], or minimal distance
classifier [90,91]. It is worth pointing out the interesting proposi-
tions dedicated one-class classifier presented by Nanni [92] or an
hierarchical method of ensemble forming, based on feature space
splitting and then assigning two-class classifiers (i.e. Support Vec-
tor Machines) locally presented in [93,94]. Attribute Bagging [95] is
a wrapper method that establishes the appropriate size of a feature
subset, and then creates random projections of a given training set
by random selection of feature subsets. The classifier ensemble are
train on the basis of the obtained set.

Local specialization It is assumed for classifier selection, select-
ing the best single classifier from a pool of classifiers trained over
each partition of the feature space. It gives the MCS answer for all
objects included in the partition [7]. Some proposals assume clas-
sifier local specialization, providing only locally optimal solutions
[38,96–98,72], while others divide the feature space, selecting (or
training) a classifier for each partition. Static and dynamic ap-
proaches are distinguished:

� Static classifier selection [99]: the relation between region of
competence and assigned classifier is fixed. Kuncheva’s Cluster-
ing and Selection algorithm [100] partitions the feature space
by a clustering algorithm, and selects the best individual classi-
fier for each cluster according to its local accuracy. Adaptive
Splitting and Selection algorithm in [101] partitions the feature
space and assigns classifiers to each partition into one inte-
grated process. The main advantage of AdaSS is that the training
algorithm considers an area contour to determine the classifier
content and, conversely, that the region shapes adapt to the
competencies of the classifiers. Additionally, the majority vot-
ing or more sophisticated rules are proposed as combination
method of area classifiers [102]. Lee et al. [103] used the fuzzy
entropy measure to partition the feature space and select the
relevant features with good separability for each of them.
� Dynamic classifier selection: the competencies of the individual

classifiers are calculated during classification operation [104–
107]. There are several interesting proposals which extend this
concept, e.g., by using preselected committee of the individual
classifier and making the final decision on the basis of a voting
rule [108]. In [109,110] authors propose dynamic ensemble
selection based on the original competence measure using clas-
sification of so-called random reference classifier.

Both static [111–113] and dynamic [114–116] classifier special-
ization are widely used for data stream classification.

3.2.2. Diversifying outputs
MCS diversity can be enforced by the manipulation of the indi-

vidual classifier outputs, so that an individual classifier is designed
to classify only some classes in the problem.

The combination method should restore the whole class label
set, e.g., a multi-class classification problem can be decomposed
into a set of binary classification problems [117,118]. The most
popular propositions of two-class classifier combinations are:
OAO (one-against-one) and OAA (one-against-all)[119], where at
least one predictor relates to each class. The model that a given ob-
ject belongs to a chosen class is tested against the alternative of the
feature vector belonging to any other class. In the OAA method, a
classifier is trained to separate a chosen class from the remaining
ones. OAA returns class with maximum support. In more general
approaches, the combination of individual outputs is made by find-
ing the closest class, in some sense, to the code given by the out-
puts of the individual classifiers. ECOC (Error Correcting Output
Codes) model was proposed by Dieterich and Bakiri [118], who as-
sumed that a set of classifiers produces sequence of bits which is
related to code-words during training. The ECOC points at the class
with the smallest Hamming distance to its codeword. Passerini
et al. showed advantages of this method over traditional ones for
the ensemble of support vector machines [120].

Recently several interesting propositions on how to combine
the binary classifiers were proposed. Wu et al. [121] used pairwise
coupling, Friedman employed Max-Win rule [122], Hüllermeier
proposed the adaptive weighted voting procedure [123]. A com-
prehensive recent survey of binary classifier ensembles is [124].
It worth mentioning the one-class classification model which is
the special case of binary classifier trained in the absence of coun-
terexamples. Its main goal is to model normality in order to detect
anomaly or outliers from the target class [125]. To combine such
classifiers the typical methods developed for binary ones are used
[126] but it is worth mention the work by Wilk and Wozniak
where authors restored multi-class classification task using a pool
of one-class classifiers and the fuzzy inference system [127]. The
combination methods dedicated the one-class classifiers still await
a proper attention [128].

3.2.3. Diversifying models
Ensembles with individual classifiers based on different classifi-

cation models take advantage of the different biases of each classi-
fier model [3]. However, the combination rule should be carefully
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chosen. We can combine the class labels but in the case of contin-
uous outputs we have to normalize them, e.g., using fuzzy ap-
proach [127]. We could use the different versions of the same
model as well, because many machine learning algorithms do not
guarantee to find the optimal classifier. Combining the results of
various initializations may give good results. Alternatively, a pool
of classifiers can be produced by noise injection. Regarding neural
networks [129] it is easy to train pools of networks where each of
them is trained starting from randomly chosen initial weights.
Regarding decisions tree we can choose randomly the test for a gi-
ven node among the possible tests according to the value of a split-
ting criterion.
4. Fuser design

Some works consider the answers from a given Oracle as the
reference combination model [130]. The Oracle is an abstract com-
bination model, built such that if at least one of the individual clas-
sifiers provides the correct answer, then the MCS committee
outputs the correct class too. Some researches used the Oracle in
comparative experiments to provide a performance upper bound
for classifier committee [10] or information fusion methods
[131]. A simple example shows the risks of the Oracle model: as-
sume we have two classifiers for a binary class problem, a random
one and the other that always returns the opposite decision; hence
the Oracle will always return the correct answer. As a consequence
the Oracle model does not fit in the Bayesian paradigm. Raudys
[132] noticed that Oracle is a kind of quality measure of a given
individual classifier pool. Let us systematize methods of classifier
fusion, which on the one hand could use class labels or support
function, on the other hand combination rules could be given or
be the results of training. The taxonomy of decision fusion strate-
gies is depicted in Fig. 5.

4.1. Class label fusion

Early algorithms performing fusion of classifier responses
[9,10,61] only implemented majority voting schemes in three main
versions [22]:
Fig. 5. A taxonomy of fusing strategies for the combination of MCS individual
decisions.
� unanimous voting, so that the answer requires that all classifi-
ers agree,
� simple majority, so that the answer is given if majority is

greater than half the pool of classifiers,
� majority voting, taking the answer with the highest number of

votes.

The expected error of majority voting (for independent classifi-
ers with the same quality) was estimated in 1794 according to Ber-
noulli’s equation, proven as the Condorcet Jury Theorem [5]. Later
works focused on the analytically derived classification perfor-
mance of combined classifiers hold only when strong conditions
are met [8] so that they are not useful from practical point of view.
Alternative voting methods weight differently the decisions com-
ing from different committee members [22,133]. The typical archi-
tecture of combined classifier based on class labels is presented in
the left diagram of Fig. 6. In [134] authors distinguished the types
of weighted voting according to the classifier, both to the classifier
and the class, and, finally, to features values, the classifier and the
class. Anyway, no one of these models can improve over the Oracle.
To achieve that we need additional information, such as the feature
values [132,135,136] as depicted in the right diagram of Fig. 6.

4.2. Support function fusion

Support function fusion system architecture is depicted in
Fig. 7. Support functions provide a score for the decision taken
by an individual classifier. The value of a support function is the
estimated likelihood of a class, computed either as a neural net-
work output, a posteriori probability, or fuzzy membership func-
tion. First to be mentioned, the Borda count [11] computes an
score for each class on the basis of its ranking by each individual
classifier. The most popular form of support function is the a pos-
teriori probability [26], produced by the probabilistic models
embodied by the classifiers [137–139]. There are many works fol-
lowing this approach, such as the optimal projective fuser of [140],
the combination of neural networks outputs according to their
accuracy [141], and Naïve Bayes as the MCS combination method
[142].

Some analytical properties and experimental evaluations of
aggregating methods were presented in [10,31,143,144]. The
aggregating methods use simple operators such as supremum or
the mean value. They do not involve learning. However, they have
little practical applicability because of the hard conditions imposed
by them [145]. The main aggregating advantage is that it counter-
acts over-fitting of individual classifiers. According to [134], the
following types of weighted aggregation can be identified depend-
ing on: (a) only the classifier id, (b) the classifier and the feature
vector, (c) on the classifier and the class, and (d) on the classifier,
the class, and the feature vector. For two-class recognition prob-
lems only the last two types of aggregation allow to produce com-
pound classifier which may improve the Oracle. For many-class
problems, it is possible to improve the Oracle [131] using any of
these aggregation methods. Finally, another salient approach is
the mixture of experts [146,147] which combines classifier outputs
using so-called input dependent gating function. Tresp and Tanig-
uchi [148] proposed a linear function for this fuser model, and
Cheeseman [149] proposed a mixture of Gaussian.

4.3. Trainable Fuser

Fuser weight selection can be treated as a specific learning pro-
cess [31,136]. Shlien [150] used Dempster and Shafer’s theory to
reach a consensus on the weights to combine decision trees. Woz-
niak [151] trained the fuser using perceptron-like learning, evolu-
tionary algorithm [152,153]. Zheng used data envelopment



Fig. 6. Architecture of the MCS making decision on the basis of class label fusion only (left diagram). The right diagram corresponds to a MCS using additional information
from the feature values.

Fig. 7. Architecture of the MCS which computes the decision on the basis of support function combination.
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analysis [154]. Other fuser trainable methods may be strictly re-
lated to ensemble pruning methods, when authors use some heu-
ristic search algorithm to select the classifier ensemble, as [72,141]
according to the chosen fuser.

We have to mention the group of combination methods built
from pools of heterogenous classifiers, i.e. using different classifica-
tion models, such as stacking [155]. This method trains combina-
tion block using individual classifier outputs presented during
classification of the whole training set. Most of the combination
methods do not take into consideration possible relations among
individual classifiers. Huang and Suen [156] proposed Behavior-
Knowledge Space method which aggregates the individual classifi-
ers decision on the basis of the statistical approach.
5. Concept Drift

Before entering the discussion of practical applications we con-
sider a very specific topic of real life relevance which is known as
Concept Drift in knowledge engineering domains, or non-station-
ary processes in signal processing and statistics domains. Most of
the conventional classifiers do not take into consideration this phe-
nomenon. Concept Drift means that the statistical dependencies
between object features and its classification may change in time,
so that future data may be badly processed if we maintain the
same classification, because the object category or its properties
will be changing. Concept drift occurs frequently in real life
[157]. MCS are specially well suited to deal with Concept Drift.

Machine learning methods in security applications (like spam
filters or IDS/IPS) [158] or decision support systems for marketing
departments [159] require to take into account new training data
with potentially different statistical properties [116]. The occur-
rence of Concept Drift decreases the true classification accuracy
dramatically. The most popular approaches are the Streaming
Ensemble Algorithm (SEA) [111] and the Accuracy Weighted
Ensemble (AWE) [160]. Incoming data are collected in data chunks,
which are used to train new models. The individual classifiers eval-
uation is done on their accuracy on the new data. The best per-
forming classifiers are selected to constitute the MCS committee
in the next time epoch. As the decision rule, the SEA uses a major-
ity voting, whereas the AWE uses a weighted voting strategy. Ko-
tler et al. present the Dynamic Weighted Majority (DWM)
algorithm [114] which modifies the decision combination weights
and updates the ensemble according to number of incorrect deci-
sions made by individual classifiers. When a classifier weight is
too small, then it is removed from the ensemble, a new classifier
is trained and added to the ensemble in its place.

A difficult problem is drift detection, which is the problem of
deciding that the Concept Drift has taken place. The current re-
search direction is to propose an additional binary classifier giv-
ing the decision to rebuild the classifiers. The drift detector can
be based on changes in the probability distribution of the in-
stances [161–163] or classification accuracy [164,165]. Not all
classification algorithms dealing with concept drift require drift
detection, because they can adjust the model to incoming data
[166][?].
6. Applications

Reported applications of classifier ensembles have grown
astoundingly in the recent years due to the increase in computa-
tional power allowing training of large collections of classifiers in
practical application time constraints. A recent review appears in
[18]. Sometimes the works combine diverse kinds of classifiers,
so-called heterogeneous MCS. Homogeneous MCS, such as Random
Forest (RF), are composed of classifiers of the same kind. In the
works revised below, basic classifiers are Multi-Layer Perceptron
(MLP), k-Nearest Neighbor (kNN), Radial Basis Function (RBF), Sup-
port Vector Machines (SVM), Probabilistic Neural Networks
(PNNs), and Maximum Likelihood (ML) classifiers.
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We review in this section recent applications to remote sensing
data, computer security, financial risk assessment, fraud detection,
recommender systems, and medical computer aided diagnosis.

6.1. Remote sensing

The main problems addressed by MCS in remote sensing do-
mains are the land cover mapping and change detection. Land cov-
er mapping consists in the identification of materials that are in the
surface of the area being covered. Depending on the application, a
few general classes may be identified, i.e. vegetation, water, build-
ings, roads, or a more precise classification can be required, i.e.
identifying tree or crop types. Applications include agriculture, for-
estry, geology, urban planning, infrastructure degradation assess-
ment. Change detection consists in the identification of places
where the land cover has changed in time, it implies the computa-
tion over time series of images. Change detection may or may not
be based on previous or separate land cover maps. Remote sensing
classification can be done on a variety of data sources, sometimes
performing fusion of different data modalities. Optical data has
better interpretability by humans, but land is easily occluded by
weather conditions, i.e. cloud formations. Hyperspectral sensing
provides high-dimensional data at each image pixel, with high
spectral resolution. Synthetic Aperture Radar (SAR) is not affected
by weather or other atmospheric conditions, so that observations
are better suited for continuous monitoring of seasonally changing
land covers. SAR can provide also multivariate data from varying
radar frequencies. Other data sources are elevation maps, and
other ancillary information, such as the measurements of environ-
mental sensors.

6.1.1. Land cover mapping
Early application of MCS to land cover mapping consisted in

overproducing a large set of classifiers and searching for the opti-
mal subset [38,65,167]. To avoid the combinatorial complexity,
the approach performs clustering of classifier error, aggregating
similar classifiers. The approach was proven to be optimal under
some conditions on the classifiers. Interestingly, testing was per-
formed on multi-source data, composing the pixel’s feature vector
of joining multi-spectral with radar data channels, to compute the
land cover map. The MCS was heterogenous, composed of MLP,
RBF, and PNN.

The application of RF to processing remote sensing data has
been abundant in the literature. It has been applied to estimate
land cover on Landsat data over Granada, Spain [168] and multi-
source data in a Colorado mountainous area [169]. Specifically,
Landsat Multi-Spectral, elevation, slope and aspect data are used
as input features. The RF approach is able to successfully fuse these
inhomogeneous informations. Works on hyperspectral images ac-
quired by the HyMap sensor have been addressed to build vegeta-
tion thematic maps [170], comparing RF and decision tree-based
Adaboost, as well as two feature selection methods: the out-of-
bag and a best-first search wrapper feature subset selection meth-
od. Diverse feature subsets are tested, and the general conclusion is
that tree ecotopes are better discriminated than grass ecotopes.
Further work with RF has been done assessing the uncertainty in
modeling the distribution of vegetation types [171], performing
classification on the basis of environmental variables, in an ap-
proach that combines spatial distribution modeling by spatial
interpolation, using sequential Gaussian simulation and the clus-
tering of species into vegetation types. Dealing with labeled data
scarcity, there are methods [172] based on the combination of RF
and the enrichment of the training dataset with artificially gener-
ated samples in order to increase classifier diversity, which is ap-
plied to Landsat multispectral data. Artificial data is generated
from the Gaussian modeling of the data distribution. The applica-
tion of RF to SAR multitemporal data aims to achieve season invari-
ant detection of several classes of land cover, i.e. grassland, ceral,
forest, etc. [173]. RF performed best, with lowest spatial variability.
Images were coregistered and some model portability was tested,
where the model trained on one SAR image was applied on other
SAR images of the same site obtained at different times. The suc-
cess of RF for remote sensing images has prompted the proposal
of an specific computational environment [174].

Ensambles of SVM have been also applied to land cover map. In-
deed, the ground truth data scarcity has been attacked by an active
learning approach to semi-supervised SVM training [175]. The ac-
tive learning approach is based on the clustering of the unlabeled
data samples according to the clustering of the SVM outputs on
the current training dataset. Samples with higher membership
coefficient are added to the corresponding class data, and the clas-
sifier is retrained in an iterative process. These semi-supervised
SVM are combined in a majority voting ensemble and applied to
the classification SPOT and Landsat optical data. Land cover classi-
fication in the specific context of shallow waters has the additional
difficulties of the scattering, refraction and reflection effects intro-
duced by the water cover. A robust process combines a parallel and
a serial architecture [176], where initial classification results ob-
tained by SVM are refined in a second SVM classifier and the final
result is given by a linear combination of two ensembles of SVM
classifiers and a minimum distance classifier. Besides, the system
estimates the water depth by a bathymetry estimation process.
The approach is applied to Landsat images for the estimation of
coral population in coastal waters. Polarimetric SAR data used for
the classification of Boreal forests require an ensemble of SVM
[177]. Each of the SVM is specifically tuned to a class, with specific
feature selection process. Best results are obtained when multi-
temporal data is used, joining two images from two different sea-
sons (summer and winter) and performing the feature selection
and training on the joint data vectors.

6.1.2. Change detection
Early application of MCS to land cover change detection was

based on non-parametric algorithms, specifically MLP, k-NN, RBF,
and ML classifiers [178,179], where classifier fusion was performed
either by majority voting, Bayesian average and maximum a poste-
riori probability. Testing data were Thematic Mapper multispectral
images, and the Synthetic Aperture Radar (SAR) of Landsat 5 satel-
lite. Recent works on change detection in panchromatic images
with MCS follow three different decision fuser strategies: majority
voting, Dempster-Shafer evidence theory, and the Fuzzy Integral
[180]. The sequential process of the images previous to classifica-
tion includes pan-sharpening of the multi-temporal images, co-
registration, raw radiometric change detection by image subtrac-
tion and automatic thresholding, and a final MCS decision com-
puted on the multi-spectral data and the change detection data
obtained from the various pan-sharpening approaches.

6.2. Computer security

Computer security is at the core of most critical services nowa-
days, from universities, banking, companies, communication. Se-
cure information processing is a growing concern, and the
machine learning approaches are trying to provide predictive solu-
tions that may allow to avoid the negative impact of such attacks.
Here we introduce some of the problems, with current solutions
proposed from the MCS paradigm.

6.2.1. Distributed denial of service
Distributed denial of service (DDoS) are among the most threat-

ening attacks that an Internet Service Provider may face. Distrib-
uted service providers, such as military applications, e-healthcare



M. Woźniak et al. / Information Fusion 16 (2014) 3–17 11
and e-governance can be very sensitive to this type of attacks,
which can produce network performance degradation, service
unavailability, and revenue loss. There is a need for intelligent sys-
tems able to discriminate legitimate flash crowds from an attack. A
general architecture for automatic detection of DDoS attacks is
needed where the attack detection may be performed by a MCS.
The MCS constituent classifiers may be ANNs trained with robust
learning algorithms, i.e. Resilient Back Propagation (RBP). Specifi-
cally, a boosting strategy is defined on the ensemble of RBP trained
ANNs, and a Neyman Pearson approach is used to make the final
decision [181]. This architecture may be based on Sugeno Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) [182]. A critical issue of
the approach is the need to report validation results, which can
only be based on recorded real life DDoS attacks. There are some
public available datasets to perform and report these results. How-
ever, results reported on these datasets may not be informative of
the system performance on new attacks which may have quite dif-
ferent features. This is a pervasive concern in all security applica-
tions of machine learning algorithms.
6.2.2. Malware
Malicious code, such as trojans, virus, spyware, detection by

anti-virus approaches can only be performed after some instance
of the code has been analyzed finding some kind of signature,
therefore some degree of damage has already been done. Predic-
tive approaches based on Machine Learning techniques may al-
low anticipative detection at the cost of some false positives.
Classifiers learn patterns in the known malicious codes extrapo-
lating to yet unseen codes. A taxonomy of such approaches is gi-
ven in [183]. describing the basic code representation by byte
and opcode n-grams, strings, and others like portable executable
features. Feature selection processes, such as the Fisher score,
are applied to find the most informative features. Finally, classi-
fiers tested in this problem include a wide variety of MCS com-
bining diverse base classifiers with all standard fuser designs.
Results have been reported that MCS overcome other ap-
proaches, are better suitable for active learning needed to keep
the classifiers updated and tuned to the changing malicious code
versions.
6.2.3. Intrusion detection
Intrusion Detection and Intrusion Prevention deal with the

identification of intruder code in a networked environment via
the monitoring of communication patterns. Intruder detection per-
formed as an anomaly detection process allows to detect previ-
ously unseen patterns, at the cost of false alarms, contrary to
signature based approaches. The problem is attacked by modular
MCS whose compounding base classifiers are one-class classifiers
built by the Parzen window probability density estimation ap-
proach [128]. Each module is specialized in a specific protocol or
network service, so that different thresholds can be tuned for each
module allowing some optimization of the false alarm rate. On the
other hand, Intrusion Prevention tries to impede the execution of
the intruder code by fail-safe semantics, automatic response and
adaptive enforcement. An approach relies on the fact that Instruc-
tion Set Randomization prevents code injection attacks, so that de-
tected injected code can be used for adaptation of the anomaly
classifier and the signature-based filtering [184]. Clustering of n-
grams is performed to obtain a model of the normal communica-
tion behavior which is accurate allowing zero-day detection of
worm infection even in the case of low payload or slow penetration
[185]. The interesting proposed hybrid intrusion detection was
presented in [186], where decision trees and support vector ma-
chines are combined as a hierarchical hybrid intelligent system
model.
6.2.4. Wireless sensor networks
Wireless sensor networks (WSNs) are collections of inexpen-

sive, low power devices deployed over a geographical space for
monitoring, measuring and event detection. Anomalies in the
WSN can be due to failures in software or hardware, or to mali-
cious attacks compelling the sensors to bias or drop their informa-
tion and measurements. Anomaly detection in WSN is performed
using an ensemble of binary classifiers, each tuned on diverse
parameters and built following a different approach (Average,
autorregresive, neural network, ANFIS). The decision is made by a
weighted combination of the classifiers outputs [187].

6.3. Banking, credit risk, fraud detection

In the current economical situation, the intelligent processing of
financial information, the assessing of financial or credit risks, and
related issues have become a prime concern for society and for the
computational intelligence community. Developing new tools may
allow to avoid in the future the dire problems faced today by soci-
ety. In this section we review some of the most important issues,
gathering current attempts to the deal with them.

6.3.1. Fraud detection
Fraud detection involves identifying fraud as soon as possible

after it has been perpetrated. Fraud detection [188] is big area of
research and applications of machine learning, which has provided
techniques to counteract fraudsters in credit card fraud, money
laundering, telecommunications fraud, and computer intrusion.
MCS have been also applied successfully in this domain. A key task
is modeling the normal behavior in order to be able to establish
suspicion scores for outliers. Probabilistic networks are specific
one-class classifiers that are well suited to this task, and bagging
of probabilistic networks has been proposed as a general tool for
fraud detection because the MCS approach improves the robust-
ness of the normal behavior modeling [189].

6.3.2. Credit card fraud
Specific works on credit card fraud detection use real-life data

of transactions from an international creditcard operation [190].
The exploration of the sensitivity to the ratio of fraud to non-fraud
of the random undersampling approach to deal with unbalanced
class sizes is required to validate the approaches. Comparing RF
against SVM and logisti regression [190], RF was the best per-
former in all experimental conditions as measured by almost all
performance measurements. Other approaches to this problem in-
clude a bagged ensemble of SVM tested on a british card applica-
tion approval dataset [191].

6.3.3. Stock market
Trade based stock market manipulation try to influence the

stock values simply by buying and then selling. It is difficult to de-
tect because rules for detection quickly become outdated. An inno-
vative research track is the use of peer-group analysis for trade
stock manipulation detection, based on the detection of outliers
whose dynamic behavior separates from that of the previously
similar stock values, its peers [192]. Dynamic clustering allows to
track in time the evolution of the community of peers related to
the stocks under observation, and outlier detection techniques
are required to detect the manipulation events.

6.3.4. Credit risk
Credit risk prediction models seek to predict whether an indi-

vidual will default on a loan or not. It is greatly affected by the
unavailability, scarcity and incompleteness of data. The application
of machine learning to this problem includes the evaluation of bag-
ging, boosting, stacking as well as other conventional classifiers
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over three benchmarking datasets, including sensitivity to noise
added to the attributes [193]. Another approach for this problem
is the Error Trimmed Boosting (ETB) [194] which has been tested
over a privative dataset provided by a company. ETB consists in
the iterative selection of subsets of samples based on their error
under the current classifier. An special case of credit risk is enter-
prise risk assessment which has a strong economic effect due to
the financial magnitude of the entities involved. To deal with this
problem a combination of bagging and random subspace feature
selection using SVM as the base classifier has been developed
and tested. The resulting method has increased diversity improv-
ing results over a dataset provided by the Bank of China [195].
Bankruptcy prediction is a dramatic special case of credit risk.
Ensemble systems with diversity ensured by genetic algorithm
based selection of component classifiers is proposed in [196] for
bankruptcy prediction in South Korean firms. The prediction of fail-
ure of dotcom companies has been a matter of research since the
bubble explosion after the year 2000. Tuning a hybrid of PNN,
MLP and genetic programming classifiers over a set of features se-
lected applying a t-test and F-test for relevance to the categorical
variable has given some solutions [197]. The same approach is re-
ported in [198] to detect fraud in the financial statement of big
companies.
6.3.5. Financial risks
Uncertainty in the financial operations is identified with the

financial risks such as credit, business, investment, and operational
risks. Financial distress can be detected by clustering and MCS in
four different combination models. Clustering is performed by
classical SOM and k-means algorithms and used to partition the
data space prior to MCS training [199]. Experimental framework
for the evaluation of financial risk assessment models, giving a spe-
cific performance measures allow the exploration of computational
solutions to these problems [200]. Several conventional classifiers
and MCS have been tested in this framework using a large pool of
datasets. Bank performance and bankruptcy prediction is ad-
dressed using a widely heterogenous MCS including PNN,RBF,
MLP, SVM, CART trees, and a fuzzy rule system. The effect of PCA
initial dimensionality reduction is also tested [201]. The effect of
feature construction from previous experience and a priori infor-
mation in the efficiency of classifiers for early warning of bank fail-
ures is reported in [202].
6.3.6. New fraud trends
Prescription fraud has been identified as a cause of substantial

monetary loss in health care systems, it consists in the prescription
of unnecessary medicaments. The research works need to real life
data from a large multi-center medical prescription database [203].
The authors use a novel distance based on data-mining approach in
a system which is capable of self-learning by regular updates. The
system is designed to perform on-line risky prescription detection
followed by off-line expert evaluation.

A new brand of frauds appear in the online gaming and lotter-
ies, i.e. intended for money laundering, whose detection is dealt
with a mixture of supervised and unsupervised classifiers [204].
To be adaptive to fraudster evolving strategies, it is required to
emphasize online learning, and online cluster detection. Fraud in
telecommunication systems involving usage beyond contract spec-
ifications is dealt with in [205] by a preprocessing, clustering and
classification pipeline. Clustering has been found to improve clas-
sification performance, and boosted trees are the best performing
approach. The analysis of social networks by means of MCS may al-
low the detection of fraud in automobile insurance, consisting in
staging traffic accidents and issuing fake insurance claims to their
general or vehicle insurance company [206].
6.4. Medicine

Medicine is a big area of application of any innovative compu-
tational approach, dealing with massive amounts of data in some
instances, and with very imprecise or ambiguous data in other sit-
uations. The range of applications is quite big, so here we only give
a scrap of all the current problems and approaches related with the
MCS paradigm. In Medicine, a specific research area since the
inception of Artificial Intelligence is the construction of Computer
Aided Diagnosis (CAD) systems or Clinical Decision Support Sys-
tems (CDSS) [207], which involve as the final step some kind of
classifier predicting the subject’s disease or normal status. In CDSS
development, there are several steps such as the definition of the
sensor providing the data, the preprocessing of the data to normal-
ize it and remove noise, the selection of features, and the final
selection of the classifier.

6.4.1. Coronary diseases
A recent instance of CDSS is the application to cardiovascular

disease diagnosis of an heterogenous collection of classifiers, com-
posed of SVM, bayesian networks and ANN [208] finding ten new
biomarkers. In this AptaCDSS-E process starts with the use of an
aptamer biochip scanning protein expression levels which is the
input to physician taking the decisions afterwards. Feature selec-
tion is performed by an ANOVA analysis. Doctor decisions are
stored for system retraining. Classifier combination is done by
majority voting or hierarchical fusion. Many CAD systems related
with coronary diseases are based on the information provided by
the electrocardiogram (ECG), so that many of them rely on the fea-
tures extracted from them. Coronary artery disease is a broad term
that encompasses any condition that affects the heart. It is a
chronic disease in which the coronary arteries gradually harden
and narrow, there have approaches to provide CAD for this condi-
tion, such as the use of a mixture of three ANNs for the prediction
of coronary artery disease [209]. The dysfunction or abnormality of
one or more of the heart four valves is called valvular heart disease.
Its diagnosis is performed by neural network ensembles in
[209,210] over features selected by a correlation analysis with
the categorical variable. Two separate ANNs are trained to identify
myocardial infarction on training sets with different statistics
regarding the percentage of patients in [211]. The network special-
ized in healthy controls is applied to the new data, if the output is
below a threshold the subject is deemed healthy, otherwise the
disease-specific network is applied to decide.

6.4.2. Proteomics
Proteins are said to have a common fold if they have the same

major secondary structure in the same arrangement and with the
same topology. Machine learning techniques have been proposed
for three-dimensional protein structure prediction. Early ap-
proaches consisted in hybrid systems, such as the ANN, statistical
classifier and case base reasoning classifier combined by majority
voting of [212]. For instance, an ensemble of K-local hyperplanes
based on random subspace and feature selection has been tested
[213], where feature selection is done according to distance to
the class centroids. A recent approach is the MarFold [214] com-
bining by majority voting three margin-based classifiers for protein
fold recognition: the adaptive local hyperplane (ALH), the k-neigh-
borhood ALH and the SVM.

6.4.3. Neuroscience
In the field of Neurosciences, the machine learning approach is

gaining widespread acceptation. It is used for the classification of
image data searching for predictive non-invasive biomarkers that
may allow early or prodromal diagnosis of a number of degenera-
tive diseases which have increasing impact in the society due to
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the aging of populations around the world. Diverse MCS ap-
proaches have been applied to structural MRI data, specifically
for the classification of Alzheimer disease patients, such as an
RVM based two stage pipeline [45], variations of Adaboost [215],
hybridizations of kernel and Dendritic Computing approaches
[216]. Classifier Ensembles have been applied to the classification
of fMRI data [217,218] and its visual decoding [219], which is the
reconstruction of the visual stimuli from the fMRI data.
6.5. Recommender systems

Nowadays, recommender systems are the focus of intense re-
search [220]. They try to help consumers to select the product that
may be interesting for them based on their previous searches and
transactions, but such systems are expanding beyond typical sales.
They are used to predict which mobile telephone subscribers are in
risk of switching to another provider, or to advice conference orga-
nizers about assigning papers to peer reviewers [221]. Burke [222]
proposed hybrid recommender systems combining two or more
recommendation techniques to improve performance avoiding
the drawbacks of an individual recommender. Similar observations
were confirmed by Balabanovic et al. [223] and Pazzani [224] who
demonstrated that hybrid method recommentations improve col-
laborative and content-based approaches.

There are several interesting works which apply the hybrid and
combined approach to recommender systems. Jahrer and Töscher
[225] demonstrated the advantage of ensemble learning applied
to the combination of different collaborative filtering algorithms
on the Netix Prize dataset. Porcel et al. [226] developed an hybrid
fuzzy recommender system to help disseminate information about
research resources in the field of interest of a user. Claypool et al.
[227] performed a linear combination of the ratings obtained from
individual recommender systems into one final recommendation,
while Pazzani proposed to use a voting scheme [224]. Billsus and
Pazzani [228] selected the best recommendation on the basis of a
recommendation quality metric as the level of confidence while
Tran and Cohen [229] preferred an individual which is the most
consistent with the previous ratings of the user. Kunaver et al.
[230] proposed Combined Collaborative Recommender based on
three different collaborative recommender techniques. Goksedef
and Gundoz-Oguducu [231] combined the results of several rec-
ommender techniques based on Web usage mining.
7. Final remarks

We have summarized the main research streams on multiple
classifier systems, also known in the literature as combined classi-
fier or classifier ensemble. Such hybrid systems are the focus of in-
tense research recently, so fruitful that our review could not be
exhaustive. Key issues related to the problem under consideration
are classifier diversity and methods of classifier combination.

The diversity is believed to provide improved accuracy and clas-
sifier performance. Most works try to obtain maximum diversity
by different means: introducing classifier heterogeneity, boot-
strapping the training data, randomizing feature selection, ran-
domizing subspace projections, boosting the data weights, and
many combinations of these ideas. Nowadays, the diversity
hypothesis has not been fully proven, either theoretically or empir-
ically. However, the fact is that MCSs show in most instances im-
proved performance, resilience and robustness to high data
dimensionality and diverse forms of noise, such as labeling noise.

The there are several propositions how to combine the classifier
outputs, what was presented in this work, nonetheless we point
out that classifier combination is not the only way to produce hy-
brid classifier systems. We envisage further possibilities of hybrid-
ization such as:

� Merging the raw data from different sources into one repository
and then train the classifier.
� Merging the raw data and a prior expert knowledge (e.g., learn-

ing sets and human expert rules to improve rules on the basis of
incoming data).
� Merging a prior expert knowledge and classification models

returned by machine learning procedures.

For such a problem we have to take into consideration issues re-
lated to data privacy, computational and memory efficiency.
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