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A Survey of Cost-Sensitive Decision Tree Induction Algorithms
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The past decade has seen a significant interest on the problem of inducing decision trees that take account of
costs of misclassification and costs of acquiring the features used for decision making. This survey identifies
over 50 algorithms including approaches that are direct adaptations of accuracy-based methods, use genetic
algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different
studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical
timeline of how the field has developed and should provide a useful reference point for future research in
this field.
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1. INTRODUCTION

Decision trees are a natural way of presenting a decision-making process, because
they are simple and easy for anyone to understand [Quinlan 1986]. Learning decision
trees from data, however, is more complex, with most methods based on an algorithm,
known as ID3, that was developed by Quinlan [1979, 1983, 1986]. ID3 takes a table of
examples as input, where each example consists of a collection of attributes, together
with an outcome (or class) and induces a decision tree, where each node is a test on
an attribute, each branch is the outcome of that test, and at the end are leaf nodes
indicating the class to which the example, when following that path, belongs. ID3, and
a number of its immediate descendents, such as C4.5 [Quinlan 1993], OC1 [Murthy
et al. 1994], and CART [Breiman et al. 1984], focused on inducing decision trees that
maximized accuracy.

However, several authors have recognized that in practice there are costs involved
(e.g., Breimen et al. [1984]; Turney [1995]; Elkan [2001]). For example, it costs time
and money for blood tests to be carried out [Quinlan et al. 1987]. In addition, when
examples are misclassified, they may incur varying costs of misclassification depending
on whether they are false negatives (classifying a positive example as negative) or false
positives (classifying a negative example as positive). This has led to many studies
that develop algorithms that aim to induce cost-sensitive decision trees. These studies
are presented in many different sources and, to the best of our knowledge, there is
no comprehensive synthesis of cost-sensitive induction algorithms. Hence, this survey
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aims to provide an overview of existing algorithms and their characteristics that should
be a useful source for any researcher or practitioner seeking to study, develop, or apply
cost-sensitive decision tree learning.

Section 2 of the article begins with a brief introduction to decision tree induction
to set the context for readers not already familiar with this field. The survey iden-
tified over fifty algorithms, some of which are well known and cited, but also some
that are less well known. Section 3 begins by presenting a taxonomy of cost-sensitive
decision tree algorithms that is based on the algorithms identified. Sections 4 and 5
present a survey of the algorithms based on the taxonomy, and Section 6 concludes the
work.

2. BACKGROUND TO DECISION TREE INDUCTION

Given a set of examples, early decision tree algorithms, such as ID3 and CART, utilize
a greedy top-down procedure. An attribute is first selected as the root node using a
statistical measure [Quinlan 1979, 1983; Breiman et al. 1984]. The examples are then
filtered into subsets according to values of the selected attribute. The same process is
then applied recursively to each of the subsets until a stopping condition, such as a cer-
tain proportion of examples being of the same class. The leaf nodes are then assigned
the majority class as the outcome. Researchers have experimented with different se-
lection measures, such as the GINI index [Breiman et al. 1984], using chi-squared
[Hart 1985], and which have been evaluated empirically [Mingers 1989]. The selection
measure utilized in ID3 is based on Information Theory which provides a measure
of disorder, often referred to as the entropy, and which is used to define the expected
entropy, E for an attribute A [Shannon 1948; Quinlan 1979; Winston 1993]

E(A) =
∑
a∈A

P (a) .
∑
c∈C

−P(a|c)log2(P(a|c))), (1)

where a ∈ A are the values of attribute A, and the c ∈ C are the class values.
This formula measures the extent to which the data is homogeneous. For example,

if all the data were to belong to the same class, the entropy would be “0”. Likewise if
all the examples belonged to different classes, the entropy would be “1”. ID3 uses an
extension of the entropy by calculating the gain in information (I) achieved by each
of the attributes if these were chosen for the split and choosing the attribute which
maximizes this gain

ID3: IA = E (D) − E(A),

where E(D) = ∑
a∈A

− Nc
N log2

Nc
N , calculated on the current training set before splitting.

Although Quinlan adopted this measure for ID3, he noticed that the measure is
biased towards attributes that have more values, and hence proposed a normalization,
known as the Gain Ratio, which is defined by

C4.5: GainRatioA = IA

Inf oA
where Inf oA =

∑
a∈A

− Na

N
log2

Na

N
.

C4.5 was also developed to include the ability to process numerical data and deal
with missing values. Figure 1 presents the tree that results from applying the ID3
procedure to the examples in Table I. At each leaf is the class distribution, in the
format of [faulty, not faulty].

Once a decision tree has been built, some type of pruning is then usually carried out.
Pruning is the term given to that of replacing one or more subtrees with leaf nodes.
There are three main reasons for pruning. One is that it helps to reduce the complexity
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Fig. 1. Decision tree after ID3 has been applied to the dataset in Table I.

Table I. Example Dataset Television Repair

picture quality sound quality age class
poor good 2 faulty
poor excellent 1 faulty
good poor 2 faulty
good poor 2 faulty
good excellent 1 not faulty
good good 1 not faulty
good good 2 faulty
excellent good 1 faulty
excellent excellent 1 not faulty
excellent good 2 not faulty
good good 2 faulty
good good 2 faulty
good good 1 not faulty
excellent excellent 1 not faulty
excellent good 1 not faulty

of a decision tree, which would otherwise make it very difficult to understand [Quinlan
1987], resulting in a faster, possibly less costly classification. Another reason is to help
prevent the problem of overfitting the data.

The third reason is that noisy, sparse, or incomplete datasets can cause very complex
decision trees, so pruning is a good way to simplify them [Quinlan 1987]. There are
several ways to calculate whether a subtree should be pruned or not. Quinlan [1987],
Knoll et al. [1994], and Bradford et al. [1998a, 1998b] have discussed different methods
to do this, for instance, aiming to minimize loss [Bradford et al. 1998a, 1998b], or using
misclassification costs to prune a decision tree [Knoll et al. 1994]. This article focuses
on surveying the cost-sensitive tree induction algorithms and readers interested in
pruning are referred to the comprehensive review by Frank and Witten [1998].
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Fig. 2. Taxonomy of cost-sensitive decision tree inducation algorithms.

3. A FRAMEWORK FOR COST-SENSITIVE TREE INDUCTION ALGORITHMS

Section 2 summarized the main idea behind decision tree induction algorithms that
aim to maximize accuracy. How can we induce decision trees that minimize costs?
The survey reveals several different approaches. First some of the algorithms aim to
minimize just costs of misclassification, some aim to minimize just the cost of obtaining
the information, and others aim to minimize both costs of misclassification as well as
costs of obtaining the data. Second, the algorithms vary in the approach they adopt.
Figure 2 summarizes the main categories that cover all the algorithms found in this
survey. There are two major approaches: methods that adopt a greedy approach that
aims to induce a single tree, and nongreedy approaches that generate multiple trees.
Methods that generate single trees include early algorithms, such as CS-ID3 [Tan and
Schlimmer 1989], that adapt entropy-based selection methods to include costs and
postconstruction methods such as AUCSplit [Ferri et al. 2002] that aim to utilize costs
after a tree is constructed. Algorithms that utilize nongreedy methods include those
that provide a wrapper around existing accuracy-based methods, such as MetaCost
[Domingos 1999], genetic algorithms, such as ICET [Turney 1995], and algorithms
that adopt tentative searching methods.

Table II categorizes the algorithms identified in the literature with respect to the
taxonomy shown in Figure 2 and shows the significant volume of work in this field in
each of the classes. The table also indicates whether the algorithms incorporate test
costs, misclassification costs, or both. The timeline of algorithms, shown as Figure 3, is
also interesting. The first mention of the importance of costs dates back to Hunt et al.’s
[1966] Concept Learning System framework (CLS) that aimed to develop decision trees
and recognized that tests and misclassifications could have an economic impact on hu-
man decision making. Although ID3 adopts some of the ideas of CLS, a significant
difference in the development was ID3’s use of an information-theoretic measure for
attribute selection [Quinlan 1979]. The use of an information-theoretic top-down ap-
proach in ID3 influenced much of the early work which focused on methods for adapting
existing accuracy-based algorithms to take account of costs. These early approaches
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Table II. Cost-Sensitive Decision Tree Induction Algorithm Categorized with Respect to Taxonomy by Time

ALGORITHM SOURCE
Use of costs during construction
GINI Altered Priors Breiman et al. 1984
CS-ID3 * Tan & Schlimmer 1989, 1990, Tan 1993
IDX * Norton 1989
EG2 * Nunez 1991
LMDT Draper et al. 1994
Cost-Minimization Pazzani et al. 1994
C4.5CS Ting 1998, 2002
EvalCount, MaxCost, AvgCost Margineantu & Dietterich 2003
Decision Tree with Minimal Costs † Ling et al. 2004
Decision Tree with Minimal Costs Under Resource Constrains † Qin et al. 2004
DTNB † Sheng & Ling 2005
CSNL Vadera 2005a
LDT Vadera 2005b
Performance † Ni et al. 2005
CSGain, CSGainRatio * Davis et al. 2006
CSTree Ling et al. 2006a
LazyTree † Ling et al. 2006b
PM † Liu 2007
CTS-DT † Zhang et al. 2007
CS-C4.5 * Freitas et al. 2007
Post construction
I-gain (Cost-Laplace prob) Pazzani et al. 1994
AUCSplit Ferri et al. 2002
GA methods
ICET † Turney 1995
ECCO † Omielan 2005
CGP Li et al. 2005
GCT MC Kretowski & Grzes 2007
Boosting
UBoost, Cost-UBoost Ting & Zheng 1998a
AdaCost Fan et al. 1999, Ting 2000b
CSB1, CSB2 Ting 2000b
SSTBoost Merler et al. 2003
GBSE, GBSE-T Abe et al. 2004
JOUS-Boost Mease et al. 2007
Lp-CSB, Lp-CSB-PA, Lp-CSB-A Lozano & Abe 2008
Bagging
MetaCost Domingos 1999
MetaCost A, MetaCost CSB Ting 2000a
Cost plus Prior Probability, Cost-Only Lin & McClean 2000
Costing (Black box) Zadrozny et al. 2003a, 2003b
B-PET, B-LOT Moret et al. 2006
Multiple Structure
Multi-tree Estruch et al. 2002
Stochastic approaches
ACT † Esmeir & Markovitch 2007, 2008
TATA† Esmeir & Markovitch 2010, 2011

Key ∗ indicates test costs only incorporated, † indicates both test Costs and misclassification costs;
otherwise misclassification costs only.
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Table III. Definitions of Equations

Symbol Definition
N Number of examples in current training set/node
Ni Number of examples in training set belonging to class i
x Refers to an example in the training set
node(x) Leaf node to which the example belongs
k Number of classes and indicates looping through each class in turn
w Weights
A Indicates an attribute
a Indicates attribute values belonging to an attribute
Cij Misclassification cost of classifying a class i example as a class j example
CA Test cost for attribute A
cost(x,y) Cost of classifying example x into class y
hi The ith hypothesis

were evaluated empirically by Pazzani et al. [1994] who observed little difference in
performance between algorithms that used cost-based measures and ones that used
information gain. This, together with the publication of the results of the ICET system
[Turney 1995] which used genetic algorithms led to significant interest in developing
more novel algorithms, including intense research on the use of boosting and bagging
[Ting and Zheng 1998a, 1998b; Ting 2000a, 2000b; Domingos 1999; Zadrozny et al.
2003a; Lozano and Abe 2008] and more recently, on the use of stochastic approaches
[Esmeir and Markovitch 2010, 2011].

The rest of the article is organized according to the categorization in Table II, with
Section 4 describing the algorithms adopting a single-tree, greedy strategy and Section
5 describing the algorithms that use a multiple-tree, nongreedy strategy. The Appendix
includes a summary of the datasets used by the studies surveyed and which can help
identify suitable data for future studies. Table III shows the notation and definitions
used throughout the article.

4. SINGLE-TREE, GREEDY COST-SENSITIVE DECISION TREE INDUCTION ALGORITHMS

As described in Section 2, historically, the earliest tree algorithms developed top-down
greedy algorithms for inducing decision trees. The primary advantage of such greedy
algorithms is efficiency, though a potential disadvantage is that they may not explore
the search space adequately to obtain good results. This section presents a survey of
greedy algorithms. The survey identified two major strands of research: Section 4.1 de-
scribes algorithms that utilize costs during tree construction and Section 4.2 describes
postconstruction methods that are useful when costs may change frequently.

4.1. Use of Costs during Construction

4.1.1. The Extension of Statistical Measures. As outlined in the previous section, top-
down decision tree induction algorithms use a measure, such as information gain, to
select an attribute upon which the dataset will be partitioned during the tree induction
process. A reasonable extension, which was taken by a number of early algorithms,
was to adapt these information-theoretic measures by including costs. These early
algorithms retained the top-down induction process and the only differences between
them are the selection measures and whether they take account of costs of attributes
as well as costs of misclassification.

Five of the algorithms, CS-ID3 [Tan and Schlimmer 1989], IDX [Norton 1989], EG2
[Nunez 1991], CSGain [Davis et al. 2006], and CS-C4.5 [Frietas et al. 2007] focus
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Fig. 3. A timeline of algorithms.
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Fig. 4. Decision tree after EG2 has been applied to the dataset in Table I.

on minimizing the cost of attributes and adapt the information-theoretic measure to
develop a cost-based attribute selection measure, called the Information Cost Function
for an attribute A(ICFA).

EG2: ICFA = 2Inf oGainA − 1/(CA + 1)ω (2)

CS-ID3: ICFA= (InfoGainA)2/CA

IDX: ICFA= InfoGainA/CA

CS-C4.5: ICFA = InfoGainA/(CAφA)ω

CSGain: ICFA = (Na/N) ∗ InfoGainA − ω ∗ CA

These measures are broadly similar in that they all include the cost of an attribute
(CA) to bias the measure towards selecting attributes that cost less but still take some
account of the information gained. The only difference between the measures is the
extent of weight given to the cost of an attribute, with EG2 and CS-C4.5 adopting a
user-provided parameter ω that varies the extent of the bias. CS-C4.5 also includes φA,
a risk factor used to penalize a particular type of tests, known as delayed tests, which
are tests, such as blood tests, where there is a time lag between requesting and receiv-
ing the information. The authors of CSGain also experiment with a variation called
CSGainRatio algorithm, where they use the Gain Ratio instead of the information
gain.

Figure 4 presents a cost-sensitive decision tree induced by applying the EG2 algo-
rithm to the data in Table I. For illustration purposes, the attributes picture quality,
sound quality, and age are assigned random test costs of 30, 15, and 1 units, respec-
tively. These costs are used in selecting an attribute using the ICF measure resulting
in a tree that takes account of the costs of the tests.

Algorithms that continue this adaptation of information-theoretic measures but also
take account of the misclassification cost as well as the test costs include an approach
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by Ni et al. [2005], Zhang et al. [2007], Zhang [2010], and Liu [2007]. Although the
detailed measures differ, they all aim to capture the trade-off between the cost of
acquiring the data and its contribution to reducing misclassification cost. Ni et al.
[2005], for example, utilize the following attribute selection measure

Performance: ICFA = (
(2GainRatioA − 1) ∗ DMCA/(CA + 1)

) ∗ώA (3)

where ώA is the bias of experts for attribute A and DMCA is the improvement in
misclassification cost if the attribute A is used.

As well as using both types of cost, this algorithm makes use of domain experts who
assign a value of importance to each of the attributes. If an expert has no knowledge
of the importance of an attribute this bias is set to the default value of 1. If some
attributes produce the same value for Eq. (3), preference is given to those attributes
with the largest reduction in misclassification costs (DMCA). If this fails to find an
attribute then the attribute with the largest test cost (CA) is chosen as the aim is to
reduce misclassification costs.

Liu [2007] identifies some weaknesses of Eq. (3), noting that several default values
have been used, so develops the PM algorithm. Liu [2007] notes that if gain ratios
of attributes are small, the values returned by the original algorithm, Eq. (3), would
be small, resulting in the costs of attributes being ignored. If attributes have large
total costs, the information contained in those attributes will be ignored. Other issues
are the conflict of applying resource constraints. For instance, the overall aim of this
algorithm is to allow for user resource constraints and it is therefore necessary to
allow for the fact that users with increased test resources are not concerned as much
about the cost of attributes, rather in the reduction of misclassification costs, and
alternatively those with limited test resources are more concerned with the cost of the
tests in order to reduce the overall costs rather than only reducing the misclassification
costs.

In order to trade off between these needs, a solution offered by Liu [2007] is to
normalize the gain ratio values and to employ a harmonic mean to weigh between
concerns with test costs (low test resources) and reduction in misclassification costs
(when test resources are not an issue), additionally a parameter α is used to balance
requirements of different test examples with different test resources.

Zhang et al. [2007] take a different approach when adapting the Performance algo-
rithm. They focus on the fact that the test costs and misclassification costs are possibly
not on the same scale; test costs would be considered on a cost scale of currency whilst
misclassification costs, particularly in terms of medical diagnosis, states Zhang et al.
[2007], must be a social issue; what monetary value could be assigned for potential
loss of life? The adaptation attempts to achieve maximal reduction in misclassification
costs from lower test costs. The only difference to Eq. (3) to produce CTS (Cost-Time-
Sensitive Decision Tree), is to remove the bias of expert parameter, preferring to ad-
dress such issues as waiting costs (also referred to in other studies as delayed cost), at
the testing stage by developing appropriate test strategies.

The preceding measures all utilize the information gain as part of a selection mea-
sure. An alternative approach, taken by Breiman et al. [1984], is to alter the class
probabilities, P(i) used in the information gain measure. That is, instead of estimat-
ing P(i) by Ni/N, it is weighted by the relative cost, leading to an altered probability
[Breiman et al. 1984, page 114].

Altered Probabilityi = Cij ∗ (Ni/N) /
∑

j

cost (j)
(
Nj/N

)
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In general, the cost of misclassifying an example of class j may also depend on the
class i that it is classified into, so Breiman et al. [1984] suggest adopting the sum of
costs of misclassification.

cost (j) =
∑

i

Cij (4)

Although these altered probabilities can then be used in the information gain mea-
sure, the method was tried by Pazzani et al. [1994] using the GINI index.

Altered GINI = 1 −
k∑

y=1

Altered Probabilityy
2

C4.5 allows the use of weights for examples, where the weights alter the information
gain measure by using sums of weights instead of counts of examples. So instead
of counting the number of examples with attribute value a and class k, the weights
assigned to these examples would be summed and used in Eq. (1).

C4.5’s use of weights has been utilized to incorporate misclassification costs, by
overriding the weight initialization method. For example if the cost to misclassify a
faulty example from the example dataset in Table I is 5, those examples belonging to
class “faulty” could be allocated the weight of 5, and examples belonging to class “not
faulty” could have the weight of 1, so that more weight is given to those examples with
higher misclassification cost. C4.5CS is one such algorithm which utilizes this use of
weights.

The method of computing initial weights by C4.5CS is similar to that of the GINIAl-
teredPriors algorithm developed by Breiman et al. [1984] and Pazzani et al. [1994].
When presented with the same dataset, both methods would produce the same deci-
sion tree. However, Ting [1998] observe that the method which alters the priors would
perform poorly as pruning would be carried out in a cost-insensitive way, whereas the
C4.5CS algorithm uses the same weights in its pruning stage. In his experiments with
a version which replicates Breiman et al. [1984]’s method, C4.5(π ’) performs worse that
the C4.5CS algorithm. He explains this result as owing to different weights in the tree
growing stage and the pruning stage.

The sum of all the weights for class j in the C4.5CS algorithm will be equal to N.
The aim of C4.5CS is to reduce high-cost errors by allocating the highest weights to
the most costly errors so that C4.5 concentrates on reducing these errors.

C4.5CS [Ting 1998, 2002]: weightj = cost( j)
N∑

i cost(i)Ni

where cost(j) and cost(i) are as defined by Eq. (4).

MaxCost [Margineantu and Dietterich 2003]: weightj = max1≤i≤kC ji

AvgCost [Margineantu and Dietterich 2003]: weightj =
∑k

i=1,i �= j
C ji

(k−1)

These latter two algorithms have been designed to solve multiclass problems so the
cost matrices involved are not the usual 2 × 2 grids presented when solving two-class
problems. Instead a k × k matrix is used, the diagonal cells containing the cost of
correctly classifying an example, usually zero although for some domains it could well
be greater than zero.

Table IV presents an example of a cost matrix of a dataset where k = 4. The diagonal
cells have been assigned zero therefore a correct classification results in zero cost.
Two algorithms developed by Margineantu and Dietterich [2003] use this cost matrix
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Table IV. Example of a Cost Matrix of a
Four-Class Problem

Correct Class

Predicted class 1 2 3 4
1 0 10 2 5
2 100 0 5 2
3 5 2 0 50
4 2 5 25 0

directly to compute initial weights. MaxCost uses the worst-case cost of misclassifying
an example. The maximum value within a column is considered to be the worst-case
cost of misclassifying an example. For instance, the weight of all class 1 examples
will be assigned 100 as that is the maximum misclassification cost in the column
corresponding to class 1. AvgCost calculates the average cost of misclassifying an
example for its weight. Each weight is computed as the mean of the off-diagonal cells
in the corresponding column. Using this algorithm, class 1 examples are assigned
35.6. These two algorithms are considered more efficient than others of this type
[Margineantu and Dietterich 2003].

Margineantu and Dietterich [2003] also suggest an alternative way of setting the
weights, called EvalCount, where an accuracy-based decision tree is first induced and
then used to obtain the weights. The training data is subdivided into a subtraining
set and a validation set. The subtraining set is then used to grow an accuracy-based
decision tree. Using this decision tree, the cost of misclassification for each class on
the validation set is then measured using the cost matrix. The weight allocated to a
training example is then set to the total cost of misclassifying an example of that class.

4.1.2 Direct Use of Costs. Instead of adapting the information gain to include costs,
a number of algorithms utilize the cost of misclassification directly as the selection
criteria. These algorithms can be subdivided into two groups: those that only use
misclassification costs and those which also include test costs.

The central idea with these algorithms is to calculate the expected cost if an attribute
is used to divide the examples, compared with the expected cost if there is no further
division (i.e., a leaf is assumed). The attribute that results in the most reduction is
then selected to divide the examples. Of course, if none of the attributes results in a
reduction, then a leaf node is created.

Cost-Minimization [Pazzani et al. 1994], Decision Trees with Minimal Cost [Ling
et al. 2004], and two adaptations Decision Trees with Minimal Cost under Resources
Constrain [Qin et al. 2004] and CSTree [Ling et al. 2006a] use either misclassification
costs or a combination of misclassification costs and test costs to partition the data.
Cost-Minimization, the simplest of these, chooses the attribute which results in the
lowest misclassification costs.

One of the main algorithms to use costs directly in order to find the attribute on which
to partition data is Decision Trees with Minimal Cost developed by Ling et al. [2004],
spawning other adaptations. Expected cost is calculated using both misclassification
costs and test costs aiming to minimize the total cost. An attribute with zero or smallest
test cost is most likely to be the root of the tree, thus attempting to reduce the total
cost. This algorithm has been developed firstly to minimize costs and secondly to deal
with missing values in both the training and testing data. In training, examples with
missing values remain at the node representing the attribute with missing values. In a
study comparing techniques by Zhang et al. [2005], it was concluded that this was the
best way to deal with missing values in training examples. How and whether to obtain
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Fig. 5. Decision tree when DT with MC has been applied to dataset in Table I.

values during testing are solved by constructing testing strategies and are discussed
additionally in Ling et al. [2006b].

To illustrate what happens when only the costs (i.e., no information gain) are used to
select attributes, consider the application of the DT with MC algorithm to the example
in Table I, where in addition to the test costs we assume the misclassification costs of
50 and 200 for the faulty and not faulty class respectively.

Figure 5(a) shows the tree induced by DT with MC algorithm, which is very different
from the cost-sensitive tree produced by EG2 (Figure 4) and from the tree produced by
ID3 (Figure 1). This algorithm employs prepruning, that is, it stops splitting as soon
as there is no improvement. Figure 5(b) shows a partial tree obtained if the left branch
was expanded further. The additional attribute that would lead to the least cost is
sound quality, with a total cost of 220 units since there are still two faulty examples
misclassified but there is the extra cost of 120 units for testing sound quality (i.e.,
8 examples each costing 15 units). However, the cost without splitting is 100 units (i.e.,
2 faulty examples misclassified, with misclassification cost of 50) and hence, in this
case, the extra test is not worthwhile.

Ling et al. [2006b] use the algorithm developed in Ling et al. [2004] in a lazy learn-
ing framework in order to use different test strategies to obtain missing values on
test data and to address problems of delayed tests. Using expected total cost, a tree
is induced for each test example using altered test costs, whereby test costs are re-
duced to zero for examples with known values, thus making them a more desirable
choice.

Ling et al.’s [2004] algorithm is further adapted into CSTree which does not take into
account test costs, using only misclassification costs [Ling et al. 2006a]. CSTree deals
with two-class problems and estimates the probability of the positive class using the
relative cost of both classes and uses this to calculate expected cost.

A different and perhaps more extensive idea is by Qin et al. [2004], who develop
an adaptation of the Ling et al. [2004] algorithm Decision Trees with Minimal Cost
under Resource Constrains. Its purpose is to trade off between target costs (test costs
and misclassification costs) and resources. Qin et al. [2004] argue that it is hard to
minimize two performance metrics and it is not realistic to minimize both of them at
the same time. So they aim to minimize one kind of cost and control the other in a
given budget. Each attribute has two costs, test cost and constrain, likewise each type
of misclassification has a cost and a constrain value. Both these values are used in the
splitting criteria, to produce a target-resource cost decision tree [Qin et al. 2004] and
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used in tasks involving target cost minimization (test cost) and resources consumption
for obtaining missing data.

Decision Tree with Minimal Costs under Resource Constrain:

ICFA = (T − TA) /ConstrainA

ConstrainA = (N − o) ∗ rA + p ∗ Cij(r) + n ∗ Cji(r) + o ∗ Cji(r)

Here T is the misclassification cost before splitting, TA is the expected cost if
attribute A is chosen,rA, Cij(r) and Cji(r) are the resource costs for false negatives
and false positives respectively, p is the number of positive examples, and n the
number of negative examples, and o the number of examples, with missing attribute
value.

A different approach than simply using the decision tree produced using direct costs
is suggested by Sheng and Ling [2005], a hybrid cost-sensitive decision tree. They
develop a hybrid between decision trees and naı̈ve Bayes, DTNB (Decision Tree with
naı̈ve Bayes). Decision trees have a structure which is used to collect the best tests
but ignores, when classifying, originally known attribute values not appearing in the
path taken by a test example. It is argued by Sheng and Ling [2005] that any value is
available at a cost. If values are available at the testing stage, these might be useful in
order to reduce misclassification costs and to ignore them would be wasting available
information. Naı̈ve Bayes can use all known attribute values for classification but has
no structure to determine which tests to perform and in what order they should be
carried out in order to obtain unknown attribute values. The DTNB algorithm aims to
combine the advantages of both techniques.

A decision tree is built using expected cost reduction using the sum of test costs
and expected misclassification costs to determine whether to further split the data and
on what attribute. Simultaneously a cost-sensitive naı̈ve Bayes model using Laplace
correction and misclassification costs is hidden at all nodes including leaves and is
used for classification only of the test examples. The decision tree supplies the sets
of tests used in various test strategies and the naı̈ve Bayes model, built on all the
training data, classifies the test examples. This overcomes problems caused by seg-
mentation of data, that is the reduction of data at lower leaves, and makes use of
all attributes with known values but which have not been selected during induc-
tion so that no information, once obtained, is wasted. In experiments, this hybrid
method proved to be better in combination than the individual techniques [Sheng and
Ling 2005].

4.1.3 Linear and Nonlinear Decision Nodes. Most of the early algorithms handle
numeric attributes by finding alternative thresholds, resulting in univariate or axis-
parallel splits. A number of authors have suggested that this is not sufficiently expres-
sive and adopt more sophisticated multivariate splits. These methods still adopt the
top-down decision tree induction process and the primary difference between them,
which we summarize shortly, is whether they adopt linear or nonlinear splits and how
they obtain the splits.

The LMDT algorithm [Draper et al. 1994] was one of the first to go beyond axis-
parallel splits. This algorithm aims to develop a decision tree whose nodes consist
of Nilsson’s [1965] linear machines. A linear machine aims to learn the weights of
linear discriminants. Before looking at the LMDT algorithm, it is worth understanding
the concept of a linear machine, which is central to the LMDT algorithm. Figure 6
summarizes the structure of a linear machine.

Each function gi(x) aims to represent a class i in a winner-takes-all fashion. A weight
wij represents the coefficient of xj for the ith linear discriminant function. The training
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Fig. 6. Linear machine.

procedure involves presenting an example x that belongs to a class i.If the example is
misclassified, say into class j, then the weights of the jth machine can be decreased and
the i th machine increased, as

Wi = Wi+ c.x,
Wj = Wj− c.x,

where c is a correction factor, and the Wi and W j are the weight vectors for the ith and
jth linear discriminants.

When the classes are linearly separable, the use of a constant correction rate (i.e.,
as in a perceptron) is sufficient to determine a suitable discriminant and this simple
procedure converges. However, in general, the classes may not be linearly separable
and the preceding procedure may not converge. Draper et al. [1994] overcame this
problem by utilizing a thermal training procedure developed by Frean [1990]. This
involved using an annealing parameter β to determine the correction factor c as

c = β2/β + k where k = (Wj − Wi)Tx/2xTx,

where Wj is the weight vector of the ith discriminant function that represents the true
class of the example, and Wj is the weight vector of the jth discriminant function that
represents the class in which the example is misclassified.

LMDT is altered to make it cost sensitive by altering its weight learning procedure,
with the aim of reducing total misclassification costs. In the modified version, it samples
the examples based on the cost of misclassifications made by the current classifier. The
training procedure is initialized for each class using a variable “proportioni”, for each
class i. Next, if the stopping criterion is not met, the thermal training rule trains the
linear machine and if the examples have been misclassified, the misclassification cost
is used to compute a new value for each “proportioni”.

An alternative approach to obtaining linear splits, taken in the LDT system [Vadera
2005b], is to take advantage of discriminant analysis which enables the identification
of linear discriminants of the form [Morrison 1976; Afifi and Clark 1996]

(μ1 − μ2) �−1x − 1
2

(μ1 − μ2)�−1(μ1 + μ2) ≤ ln
(

C21 P(C2)
C12 P(C1)

)
, (5)
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where x is a vector representing the new example to be classified, μ1, μ2 are the mean
vectors for the two classes, � is the pooled co-variance matrix, P(Ci) is the probability
of an example being in class Ci.

Theoretically, it can be shown that Eq. (5) minimizes the misclassification cost when
x has a multivariate normal distribution and when the covariance matrices for each of
the two groups are equal.

This trend of moving towards more expressive divisions is continued in the CSNL
system [Vadera 2010] that adopts nonlinear decision nodes. The approach also utilizes
discriminate analysis, and adopts following split that minimizes cost provided the class
distributions are multivariate normal

−1
2

xt(�−1
1 − �−1

2

)
x + (

μt
1�

−1
1 − μt

2�
−1
2

)
x − k ≥ ln

(
C21 P(C2)
C12 P(C1)

))

k = 1
2

ln
( |�1|

|�2| + 1
2

(
μ1

t�−1
1 μ1 − μ2

t�−1
2 μ2

)
, (6)

where x is a vector representing the example to be classified, μ1, μ2 are the mean
vectors for the two classes,

∑
1,

∑
2 are the covariance matrices for the classes, and∑−1

1 ,
∑−1

2 the inverses of the covariance matrices.
Given that the multivariate assumption may not hold in practice, it may be that

utilization of a subset of variables could lead to more cost-effective splits, and hence
several strategies for subset selection are explored. One strategy, explored in Vadera
[2005a], is to attempt all possible combinations and select the subset that minimizes
cost. However, this strategy is not particularly scalable and results in trees that are
difficult to visualize. An alternative strategy, explored in Vadera [2010], selects two of
the most informative features, as measured by information gain, and uses Eq. (6) to
obtain nonlinear divisions.

4.2. Postconstruction

If costs are unknown at training time they cannot be used for inducing a tree. Addi-
tionally if costs are likely to change, this would mean inducing a tree for every different
combination of costs. Hence, various authors have explored how misclassification costs
can be applied after a tree has been constructed.

One of the simplest of ways is to change how the label of the leaf of the decision
tree is determined. I-gain Cost-Laplace Probability [Pazzani et al. 1994] uses a Laplace
estimate of the probability of a class given a leaf shown in Eq. (7). If there are Ni
examples of class i at a leaf and k classes then the Laplace probability of an example
being of class i is

P (i) = Ni + 1

k + ∑k
y=1 Ny

(7)

When considering accuracy only, an example is assigned to the class with the low-
est expected error. To incorporate costs, the class which minimizes the expected cost
of misclassifying an example into class j is selected, where the expected cost is
defined by

Expected Cost of Misclassi f ication into class j = ∑
i Cij P(i).

Ferri et al. [2002] propose a postconstruction method based on Receiver Operating
Characteristics (ROC) [Swets et al. 2000]. ROC facilitates comparison of alternative
classifiers by plotting their true positive rate (on the y axis) against their false positive
rate (on the x axis). Figure 7 shows an example ROC, where the true and false rates
of four classifiers are plotted. The closer a classifier is to the top left-hand corner, the
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Fig. 7. Example ROC.

more accurate it is (since the true positive rate is higher and the false positive rate
smaller).

The convex hull created from the points (0,0), the four classifiers, and (1,1) represents
an optimal front. That is, for any classifier below this convex hull, there is a classifier
on the front that is less costly.

The idea behind Ferri et al.’s [2002] approach is to generate the alternative classifiers
by considering all possible labelings for the leaf nodes of a tree. For a tree with m
leaf nodes, and a two-class problem, there are 2m alternative labels, which could be
computationally expensive. However, Ferri et al. [2002] shows that for a two-class
problem, if the leaves are ordered by the accuracy of one of the classes, then only m+ 1
alternative labelings are needed to define the convex hull, where the jth node of the ith

labeling, Li, j , is defined by

Li, j =
{ −ve i f j < i

+ve i f j ≥ i
.

The convex hull formed by these labelings can then be used to determine the most
optimal classifier once the costs of misclassification are known.

5. MULTIPLE-TREE, NONGREEDY METHODS FOR COST-SENSITIVE
DECISION TREE INDUCTION

Greedy algorithms have the potential to suffer from local optima, and hence an
alternative direction of research has been to develop algorithms that generate and
utilize alternative trees. There are three common strands of work: Section 5.1 describes
the use of genetic algorithms, Section 5.2 describes methods for boosting and bagging,
and Section 5.3 describes the use of stochastic sampling for developing anytime and
anycost frameworks.

5.1. Use of Genetic Evolution for Cost-Sensitive Tree Induction

Several authors have proposed the use of genetic algorithms to evolve cost-effective
decision trees [Turney 1995]. Just as evolution in nature uses survival of the fittest in
order to produce next generations, a pool of decision trees are evaluated using a fitness
function, the fittest retained and combined to produce the next generation repeatedly
until a cost-effective tree is obtained. This section describes the algorithms that utilize
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evolution, which vary in the way they represent, generate, and measure the fitness of
the trees.

One of the first systems to utilize GAs was Turney’s [1995] ICET system (Inexpensive
Classification with Expensive Tests). ICET uses C4.5 but with EG2’s cost function to
produce decision trees, in Section 4.1.

Its populations consist of individuals with the parameters CAi, ω, and CF, where CAi,
ω are biases utilized in Eq. (2) and CF is a parameter used by C4.5 for determining the
aggressiveness of pruning.

ICET begins by dividing the training set of examples into two random but equal parts:
a subtraining set and a subtesting set. An initial population is created consisting of
individuals with random values of CAi, ω, and CF. C4.5, with the EG2’s cost function,
is then used to generate a decision tree for each individual. These decision trees are
then passed to a fitness function to determine fitness. This is measured by calculating
the average cost of classification on the subtesting set.

The next generation is then obtained by using the roulette wheel selection scheme,
which selects individuals with a probability proportional to their fitness. Mutation
and crossover are used on the new generation and passed through the whole
procedure again. After a fixed number of generations (cycles) the best decision tree
is selected. ICET uses the GENEtic Search Implementation System (GENESIS,
Grefenstette [1990]) with its default parameters including a population size of 50
individuals, 1000 trials, and 20 generations.

More recently, Kretowski and Grzes [2007] describe GDT-MC (Genetic Decision Tree
with Misclassification Costs), an evolutionary algorithm in which the initial population
consists of decision trees that are generated using the usual top-down procedure, except
that the nodes are obtained using a dipolar algorithm. That is, to determine the test for
a node, first two possible examples from the current dataset are randomly chosen such
that they belong to different classes. A test is then created by randomly selecting an
attribute that distinguishes the two examples. Once a tree is constructed, it is pruned
using a fitness function. The fitness function used in GDT-MC aims to take account
of the expected misclassification cost as well as the size of trees and takes the form
[Kretowski and Grzes 2007]

Fitness of tree =
(

1 − EC
MC

)
(1 + γ.T S) ,

where EC is the misclassification cost per example, MC is the maximal possible cost
per example, TS is the number of nodes in the tree, and γ is a user-provided parameter
that determines the extent to which the genetic algorithm should minimize the size of
the tree to aid generalization.

The genetic operators are similar in principle to the crossover and mutation opera-
tors, except that they operate on trees. Three crossover-like operators are utilized on
two randomly selected nodes from two trees:

—exchange the subtrees at the two selected nodes;
—if the types of tests allow, then exchange just the tests;
—exchange all subtrees of the selected nodes, randomly selecting the ones to be ex-

changed.

The mutation operators adopted allow a number of possible modifications of nodes,
including replacing a test with an alternative dipolar test, swapping of a test with a
descendent node’s test, replacement of a non-leaf node by a leaf node, and development
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Fig. 8. Illustration of mapping.

of leaf node into a subtree. A linear ranking scheme, coupled with an elitist selection
strategy, is utilized to obtain the next generation [Michalewicz 1996].1

The ECCO (Evolutionary Classifier with Cost Optimization) system [Omielan 2005]
adopts a more direct use of genetic algorithms by mapping decision trees to binary
strings and then adopting the standard crossover and mutation operators over binary
strings. Attributes are represented by a fixed size binary string, so for example 8
attributes are coded with 3 bits. Numeric attributes are handled by seeking an axis-
parallel threshold value that maximizes information gain, thereby resulting in a binary
split. The mapping between a tree and its binary string is achieved by assuming a fixed
size maximal tree where each node is capable of hosting an attribute which has the
most features.2 Figure 8 illustrates the mapping for a problem where the attributes
have two features only. Such a maximal tree is then interpreted by mapping the nodes
to attributes, assuming that the branches are ordered in terms of the features. In
addition, mutation may result in some nodes with nonexistent attributes, which are
also translated to decision nodes.

A tree is then populated with the examples in a training set and each leaf node labeled
with a class that minimizes the cost of misclassification. A version of the minimum error
pruning algorithm that minimizes cost instead of error is used for pruning. The fitness
measure used is the expected cost of classification, taking account of both the cost of
misclassification and the cost of the tests. Once genes are mapped to decision trees
and pruned, and their fitness obtained, the standard mutation and crossover operators
applied, a new generation of the fittest is evolved and the process repeated a fixed
number of cycles. Like ICET, ECCO adopts the GENESES GA system and adopts its
default parameters.

Li et al. [2005] take advantage of the capabilities of Genetic Programming (GP),
which enable representation of trees as programs instead of bit strings, to develop a
cost-sensitive decision tree induction algorithm. They use the following representation
of binary decision trees as programs, defined using BNF [Li et al. 2005].

<Tree> :: “if-then-else” <Cond><Tree><Tree> | Class
<Cond> :: <Cond> “And” <Cond> | <Cond> “Or” <Cond>

|Not <Cond> | Variable<RelationOperation>Threshold
<RelationOperation> ::= “>” | “<” | “=”

1The elitist strategy ensures that a few of the fittest are copied to the new generation, and the linear ranking
strategy ensures some diversity and avoids the fittest don’t dominate the evolution too early in the evolution.
2The approach works in general for an attribute with more than two features.
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Unlike GDT-MC, which utilizes specialized mutation and crossover operators,
Li et al. [2005] adopt the standard mutation and crossover operators of genetic
programming. This is a tournament selection scheme in which four individuals are
selected randomly with a probability proportional to their fitness and compete to move
to the next generation. The fittest of the four is copied to the pool for the next gener-
ation and this tournament process repeated to produce the complete mating pool for
the next generation. The fitness function employed is also different from ICET, ECCO,
and GDT-MC. Unlike these methods, which utilize expected cost, Li et al. [2005] pro-
pose the following fitness function that is based on the principle that a cost-effective
classifier will maximize accuracy (RC) but minimize the false positive rate (RFP).

Constraint Fitness Function = Wrc′ * RC – Wrfp * RFP

Experimentation with this function leads them to the following additional constraint
to ensure that accuracy of one of classes is not compromised when the costs of misclas-
sifications are significantly imbalanced

Wrc = 1 if C+ε [Pmin, Pmax], 0 otherwise,

where C+ is the proportion of examples predicted to be positive, and the Pmin and Pmax
define the expected range for C+ that is provided by a user.

5.2. Wrapper Methods for Cost-Sensitive Tree Induction

A significant amount of research has been done on accuracy-based classifiers, and
instead of developing new cost-sensitive classifiers or adapting them as described
in Section 4, an alternative strategy is to develop wrappers over accuracy-based
algorithms.

This section describes two approaches for utilizing existing accuracy-based algo-
rithms. Section 5.2.1 describes methods based on boosting, where an accuracy-based
learner is used to generate an improving sequence of hypotheses and Section 5.2.2
describes methods based on bagging that are based on generating and combining
independent hypotheses. Section 5.2.3 describes a method which implicitly includes
alternative hypotheses but in one structure.

5.2.1. Cost-Sensitive Boosting. Boosting involves creating a number of hypotheses ht
and then combining them to form a more accurate composite hypothesis of the form
[Schapire 1999; Meir and Rätsch 2003]

f (x) =
T∑

t=1

αtht(x), (8)

where αt indicates the extent of weight that should be given to ht(x).
One of the first practical boosting methods, AdaBoost (Adaptive Boosting) works by

generating hi(x) in sequential trials by using a learner on weighted examples that
reflect their importance [Freund and Schapire 1996]. It begins by assigning weights of
1/N to each example. At the end of each sequential trial, these weights are adjusted
so that the weights of misclassified examples are increased, but the weights of correct
examples decreased. After a fixed number of cycles, a sequence of trees or hypotheses
hi is available and can be combined to perform classification. The final classification is
based on selecting the class that results in the maximum weighted vote as defined by
Eq. (8). There are different versions of AdaBoost with specific weight update rules (e.g.,
Freund and Schapire [1997], Bauer and Kohavi [1999], Schapire and Singer 1999]). For
example, one version that is based on a weak learner capable of producing hypotheses
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ht that return a confidence rating in the range [−1,1] uses the following update rule
[Schapire 1999]

αt = 1
2

ln
(

1 − εt

εt

)
(9)

wt+1 (x) = wt (x) exp(−αt yht (x))
Zt

where the Zt is used to normalize the weights so they add up to 1.
Thus, AdaBoost consists of three key steps: the initialization, the weight update

equations, and the final weighted combination of the hypotheses. The literature con-
tains a number of algorithms that adapt these three steps of AdaBoost to develop
cost-sensitive boosting algorithms.

In particular, Ting and Zheng [1998a], which was one of the first studies to utilize
boosting for cost-sensitive induction, proposed two adaptations: an algorithm called
UBoost (Boosting with Unequal Instance Weights) and another called Cost-UBoost
(UBoost with Cost-Sensitive adaptation).

UBoost utilizes AdaBoost, except that the weights for each example x, of class j are
initialized to the cost of misclassifying an example of class j, and normalized.3

w0 (x) = cost( j)

The cost of misclassifying an example of class i, denoted by cost(i) a is defined by
Ting and Zheng [1998a], as in Eq. (4). In the following we also use the notation cost(x)
to denote the cost of misclassifying an example x.

In addition, the composite classification rule of Eq. (8) is adapted to first work out
the expected cost of classifying an example ECj(x), into class j using the combined
hypotheses

EC j (x) =
T∑

t=1

αt EC(x, j, ht),

where EC(x,j,ht) is the expected cost if the example x is classified in class j based on the
distribution of examples in the leaf node of the tree ht that leads to the classification
ht(x).

UBoost then selects the class j that results in the minimum expected cost ECj(x).
Ting and Zheng [1998a] also propose a method Cost-UBoost that extends UBoost by

also amending the weight update procedure to take account of costs, so that3

wt+1(x) = wt (x) .β(y′, y),

where y is the actual class and y’ is the predicted class for an example x and β is
defined by

β
(
y′, y

) =
{

Cyy′ when y′ �= y
1 when y′ = y

.

The empirical trials conducted by Ting and Zheng [1998a] suggest that Cost-UBoost
performs better than UBoost in terms of minimizing costs of misclassification for two-
class problems. However, they note that this advantage reduces for multiclass problems

3The presentation here assumes that the normalization of the weights by a factor is Zt is done at the end of
a trial, therefore simplifying the equations.
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and suggest that this is owing to the mapping of different costs of misclassification into
a single misclassification cost by Eq. (4). Later in this section, we describe the more
recent work of Abe et al. [2004], and Lozano and Abe [2008]) that develops theoretical
foundations for multiclass cost-sensitive boosting problems.

In a follow-up study, Ting [2000b] proposes further variations, named CSB0, CSB1,
CSB2 and compares their performance to another variation of AdaBoost, known as
AdaCost [Fan et al. 1999]. CSB0 is essentially the Cost-UBoost algorithm described
earlier, while CSB1, CSB2, and AdaCost utilize increasingly sophisticated weight up-
date functions for weak learners that produce the confidence in its prediction ht(x) ∈
[0, 1] [Ting 2000b]

CSB1: wt+1(x) = wt(x)β(y′, y)exp(−δht (x)),

CSB2: wt+1(x) = wt(x)β(y′, y)exp(−δht (x) αt),

AdaCost: wt+1(x) = wt(x)exp(−δht (x) αtβ
′(y, y′)),

where δ is −1 if the example is misclassified and +1 if classified correctly, and a αt is
defined as derived in Shapire and Singer [1999]

αt = 1
2

ln
(

1 + rt

1 − rt

)

and with rt defined as follows for the CSB family.

rt = 1
N

∑
x∈X

δwt (x) ht(x)

As well as the update equation, the rt and cost adjustment function β ′ are defined
differently for AdaCost.

rt =
∑
x∈X

δwt (x) ht(x)β ′(y, h (x))

β ′ (y′, y
) =

{
0.5 cost (x) + 0.5, when y′ �= y

−0.5 cost (x) + 0.5, when y′ = y

Ting [2000b] evaluates these methods empirically and concludes that the introduc-
tion of the αt in CSB2 does not lead to a significant improvement and the additional
parameters used in AdaCost are not particularly effective either. CSB1 produces more
cost-effective results than AdaCost in 30 runs while AdaCost performs better in 11
runs. Surprisingly, the evaluations also suggest that AdaBoost produces better results
than its cost-sensitive version AdaCost, which Ting [2000b] attributes to the particular
definition of β ′ that allocates a relatively low reward (penalty) when high cost examples
are correctly (incorrectly) classified. This is in contrast to the results presented in Fan
et al. [1999], where AdaCost produces better results than AdaBoost when the Ripper
learner is used instead of C4.5 as the base learner.

The aforesaid adaptations of boosting presume that costs are well-defined in advance.
Merler et al. [2003] argues that in medical applications, the costs of false positives
or false negatives can only be approximate, and further that during the classification
process there two separate phases. In the first phase, the aim is to ensure that the
classifier is sensitive and the true positives are maximized whilst the specificity of a
classifier is retained within acceptable bounds. In a second phase, a specialist medical
consultant would examine the identified positives more carefully, filtering out the
false negatives. Hence, for this type of application, they develop a boosting algorithm,
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SSTBoost (Sensitivity-Specificity tuning Boosting) that adapts AdaBoost so that the
error for the ith example is defined in terms of measures of sensitivity and specificity

εi = (1 − Sensitivity) π+1c+1 + (1 − Specificity) π−1c−1,

where �+1 �−1 are the class priors and c+1, c−1 are the costs of misclassification of
the two classes. Sensitivity is the true positive rate and specificity is true negative rate.

With this definition of error, they use Eq. (9) for αt.

αt =
(

1
2

)
ln

(
1 − εi

εi

)

The weight update equation takes the form

wt+1(x) =
{

wt(x) exp (−αt
(
2 − cost(x)

)
), if example x is classified correctly

wt (x) exp (αtcost (x)) , if example x is classified incorrectly
.

Given specific costs for misclassification, this adaptation of AdaBoost results in a
classifier with a particular sensitivity and specificity. To enable a search for a classifier
in a target region of sensitivity and specificity, they relate the costs of misclassifying
a positive example, c+, and cost of misclassifying negative example, c−, in terms of a
single parameter ω.

c+1 = ω

c−1 = 2 − w

This then enables a search over ω by using the method of bisection to find a classifier
that aims to be within a user-specified region of sensitivity and specificity, meeting
their application goals.

The preceding adaptations of AdaBoost amend the procedure to take account of costs.
In contrast, as part of a study that aims to utilize boosting for estimating conditional
class probabilities, Mease et al. [2007] describe how AdaBoost can be used directly to de-
velop a procedure called JOUS-Boost to perform cost-sensitive boosting. They use a re-
sult owed to Elkan [2001] that shows that it is possible to change the distribution of the
data to reflect the ratio of costs and such that applying boosting on this changed distri-
bution results in minimization of cost. More specifically, given the cost of misclassifica-
tion and number of examples of class 1 and class 2 are N1, N2 respectively, the distribu-
tion of the data is changed so that the number of examples N′

1, N′
2 of class 1 and 2, satisfy

N′
1

N′
2

= N1C12

N2C21
.

This change of distribution can be achieved by sampling the original data in a way
that results in a smaller dataset (undersampling) or a larger dataset (oversampling).
The sampling itself can be done with replacement, where a selected example is
returned, or without replacement. Undersampling can result in loss of data and
oversampling leads to duplication of examples. Mease et al. [2007] carry out experi-
ments on both artificial and real data showing that the duplication due to oversampling
leads to overfitting when boosting. They then propose a variation, called JOUS-Boost
(Over/Under Sampling and Jittering), that amends the sampling process by adding
noise to the features of any duplicated data and provide empirical evidence to show
that this helps to reduce overfitting when AdaBoost is used.

Most of the previous algorithms are based on using boosting on two-class problems.
In two-class problems, algorithms such as UBoost are able to set the weight of an
example in proportion to the cost of misclassifying an example. However, for multiclass
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problems, an example could be misclassified into several classes, so determining the
weight is less obvious. Several authors have proposed methods such as utilizing the
sum or average of misclassification into the other classes (e.g., Breiman et al. [1984]
and Margineantu [2001]); though as noted before, Ting and Zheng [1998a] suggest
that use of these methods may explain a reduction in the advantage gained by Cost-
UBoost over UBoost in their empirical evaluations. Abe et al. [2004] also argue that
these methods do not have a theoretical basis. Hence, they propose an alternative way
of utilizing boosting, called Gradient Boosting with Stochastic Ensembles (GBSE), for
multiclass problems. GBSE is motivated by first defining a stochastic hypothesis H(y |
x) for a class y for an example xbased on the individual hypotheses ht(x) generated by
[Abe et al. 2004]

H (y|x) = 1
T

T∑
t=1

I(ht (x) = y).

If Ht(y|x) is the composite hypothesis after round t of boosting, then it is formed
by combining the previous composite hypothesis Ht−1 with the new hypothesis, ht,
obtained in round t, weighted by αt. We have

Ht (y|x) = (1 − αtt) Ht−1 (y|x) + αt I(ht (x) = y),

where I(E) returns 1 if the expression E is true and 0 if E is false, α = 1/t, and initially
H0(x|y) = 1/k, for a k-class problem.

This enables the definition of the expected cost of misclassification over the exam-
ples, and using gradient descent, Abe et al. [2004] then derive the following weight
update rule, where wx,y is the weight associated with classifying example x in class
y

wx,y = costHt−1(x) − cost(x, y), (10)

where costHt−1(x) is the expected cost of classifying example x by the composite hypoth-
esis Ht−1(x).

However, existing boosting methods assume a single weight of importance per exam-
ple, and not multiple weights, wx,y. Hence, to utilize existing boosting methods, there
needs to be a mapping to and from multiple weights to single weights per example. Abe
et al. [2004] show that this mapping can be achieved by expanding an example (x, y,
(c1, c2, . . . ck)), that has features x, class y, and costs of classification into class i defined
by ci, into k examples.

S = {(x, y, maxjc j − ci)|i ∈ (1..k)} (11)

Abe et al. [2004] prove that minimizing cost over this expanded dataset is equivalent
to minimizing the cost over the original multiclass data. They note that Eq. (10) can
lead to negative weights wx,y which makes it difficult to utilize existing relational
weak learners. They therefore transform the examples of Eq. (11) to the following
form.

{ (
(x, y) , I

(
wx,y ≥ 0

)
, |wx,y|

) |x ∈ X, y ∈ Y } (12)

A weak learner can be applied to these data and used to induce a relational hypothesis
ht(x, y) and the composite hypothesis revised

Ht (y|x) = (1 − αtt) Ht−1 (y|x) + αt ft(y|x), (13)
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where ft(y|x) converts the relational hypothesis to a stochastic form.

ft (y|x) =
⎧⎨
⎩

Ht−1 (y|x) , if no examples x such that h (x, y) = 1

I(h (x, y) = 1)
|{y ∈ Y |h (x, y) = 1}| , otherwise

This formulation defines the mapping needed for GBSE to use single weight boosting
methods for multiclass problems.

A desirable property of any boosting algorithm is that it should converge and lead
to the optimization of its objective. Although this has not been shown for GBSE, Abe
et al. [2004] show that a variant, called GBSE-T, with a fixed α, and the following
amendment of the GBSE weight update Eq. (10) converges exponentially.

wx,y = costHt−1 (x)
k

− cost(x, y)

In a follow-up study, Lozano and Abe [2008] develop stronger theoretical founda-
tions for cost-sensitive boosting in which they derive update equations for a family
of methods, called Cost-Sensitive Boosting with p-norm Loss (Lp-CSB) for which they
prove convergence. Like the aforsaid study, they use stochastic gradient boosting as
the methodology, however, instead of aiming to minimize the expected cost of misclas-
sification at each boosting round, they aim to minimize its approximation using the
p-norm [Lozano and Abe 2008]. We have

1
|S|

∑
(x,y,w)∈S

(h(y|x)p)cost (x, y) for p ≥ 1,

where S takes the expanded form defined as Eq. (11).
They use methodology similar to the derivation of GBSE and use gradient descent

to show that optimizing this p-norm-based objective leads to finding a hypothesis ht at
each round that minimizes [Lozano and Abe 2008, page 507]

∑
x∈X

∑
y∈Y

wx,y(I(ht(x) = y))

where

wx,y = Ht−1(y|x)p−1cost(x, y).

To facilitate the use of a relational weak learner, the examples are translated to the
following form, into a similar form to Eq. (12) in GSBE [Lozano and Abe 2008, page
508].

S = {((x, y) , l, w′
x,y)|x ∈ X, y ∈ Y }

However, the weights are different from GSBE and defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′
x,y = wx,y

2
and l = 0, f or (x, y) when y does not coresspond to the minimum cost class

w′
x,y =

∑
y∈Y ′ wx,y

2
and l = 1, where Y ′ is the set of all classes except the one

with minimal cost

.

Once a weak learner is applied and a new hypothesis ht(x,y) obtained, the revised
composite hypothesis is defined as in Eq. (13) with ft(x|y) = ht(x, y). Lozano and Abe
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[2008] prove that this scheme and its related family of schemes are guaranteed to
minimize the p-norm-based objective, providing a significant theoretical result and
understanding of cost-sensitive boosting methods.

5.2.2 Cost-Sensitive Bagging. The main principle of bagging is that producing n
resamples of the dataset (with replacement), applying a learning procedure to each
resample, and aggregating the answers leads to better classifiers, particularly for learn-
ers that are not stable [Breiman 1996]. This principle is used in MetaCost [Domingos
1999], which is one of the earliest systems to utilize cost-sensitive bagging. Thus,
MetaCost resamples the data several times and applies a base learner to each sample
to generate alternative decision trees. The decisions made on each example by the al-
ternative trees are combined to predict the class of each example that minimizes the
cost and the examples relabeled. The relabeled examples are then processed by the
base learner, resulting in a cost-sensitive decision tree.

Zadrozny et al. [2003a, 2003b] describe a method called Costing that, like MetaCost,
applies a base learner to samples of the data to generate alternative classifiers.
However, the sampling process is significantly different from MetaCost. Each resample
aims to change the distribution of the data so that minimizing error on the changed
distribution is equivalent to minimizing cost on the original distribution (i.e., as
described for JOUS-Boost). Zadrozy et al. [2003a] argue that using sampling with
replacement can lead to overtraining because of the potential for duplication, and sam-
pling without replacement is also problematic since we can no longer assume that the
examples selected are independent. Hence, to overcome these shortcomings, Zadrozny
[2003a] utilize rejection sampling [Von Neumann 1951] in which an example with cost
c has a probability of c/Z of being accepted, where Z is chosen as the maximum cost of
misclassifying an example. Once these samples, which are proportional to the cost, are
generated using rejection sampling, Costing applies a base learner to generate m clas-
sifiers whose outcomes can be aggregated to classify an example. Notice that, unlike
MetaCost, there is no relabeling of the data in order to generate a single decision tree.

Lin and McLean [2000] develop an approach in which they use different learners on
the same training sample to generate alternative classifiers. As with MetaCost, they
use the different classifiers to predict the class of each example. However, the labelling
of an example x, by a classifier j is based on the risk of classification into two classes

Risk1,j = �2 ∗ P(2|x, j) ∗ C12,

Risk2,j = �1 ∗ P(1|x, j) ∗ C21,
(14)

where �1, �2 are the prior probabilities of the examples in the two classes.
The risk of classification of an example x into a class c is then defined as a weighted

sum of the m classifiers:

Riskx,c =
m∑

j=1

wjRc,j,

where wj, which is the weight associated with classifier j, is the accuracy of the classifier
on the training set. The class c that minimizes Riskx,c is used to label an example x.

Moret et al. [2006] describe a similar method to Lin and McLean [2000], called Bagged
Probability Estimation Trees (B-PETS), but do not utilize the prior class probabilities,
πi,in Eq. (14) and also estimate the P(i|x,j) using the distribution of examples in the leaf
nodes and Laplace’s correction (Eq. (7)) which is known to produce better estimates.

Moret et al. [2006] also propose an alternative way of estimating P(c|x), the proba-
bility of an example x being in a particular class c that makes use of lazy option trees.
A Lazy Option Tree (LOT) is constructed for an example x, using the usual top-down
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process except there are two significant differences. First, since the example is known,
only tests that are consistent with the example are considered at each node. Second,
instead of selecting a single best test for each node, the first k best tests are also stored
as alternative tests, leading to k subtrees. An estimate of P(c|x) is then based on the k
leaf nodes that the example x falls into. In addition, they also use resampling and bag-
ging over lazy option trees (B-LOTs), to produce estimates of P(c|x). These estimates
of P(c|x) can then be used to select the class that minimizes the risk based on the cost
of misclassification.

Given that both MetaCost and AdaBoost each result in improved performance, it
seems plausible that exploring a combination of the two methods could lead to further
improvements. Ting [2000a] investigates this possibility by carrying out an empirical
evaluation of two adaptations of MetaCost: one, called MetaCost A where the base
learner is AdaBoost, and a second, called MetaCost CSB, where the base learner is
CSB0. The results of the empirical evaluations suggest that there is little to be gained
by embedding AdaBoost or CSB0 within MetaCost. Bagging is known to be particularly
effective at reducing variance due to an unstable base learner [Bauer and Kohavi 1999],
which may provide an explanation of why using bagging over AdaBoost or CSB does
not result in further improvements.

The comparison in Ting [2000a] also shows that using a cost-sensitive base learner
for MetaCost does result in improvements over a using a cost-insensitive learner, which
is also apparent in the empirical results presented in Vadera [2010].

5.2.3 Multiple Structures. Estruch et al. [2002] argue that generating alternative
trees such as in boosting and bagging can consume significant space and therefore
propose a structure, called Multi-Tree, which aims to implicitly include alternative
trees. The central idea is to follow the usual top-down decision induction process, but
instead of discarding alternative choices, these are stored as suspended nodes that
could be expanded in the future [Ferri-Ramı́rez 2002; Rissanen 1978]. Figure 9 shows
a multi-tree for the example given Table I of “Television Repair” dataset. The attributes
that have been selected are presented in rectangles, and the suspended nodes, which are
in circles, are linked by the dashed lines. The figure also includes the class distribution
in each node and is given in the format [number of examples in “faulty” class, number
of examples in “not faulty” class]. A multi-tree can be expanded to include an additional
tree by selecting a suspended node and developing it into a tree using the top-down
process but retaining potential attributes as suspended nodes. Estruch et al. [2002]
consider alternative methods of selecting which suspended node to expand and adopt
a random selection scheme. Thus a multi-tree will implicitly include several trees each
of which can be used for classification and whose outcomes can be combined to produce
a weighted classification in the same manner to bagging.

Estruch et al. [2002] experiment with different ways of producing this weighted
classification by taking advantage of the fact that different decision trees may share
the same part of a multi-tree. A multi-tree is not as comprehensible as a single tree,
and hence a method for extracting a single tree is developed.

In contrast to MetaCost, where a single tree is obtained by applying a base learner on
the reclassified examples, a single tree is extracted by traversing a multi-tree bottom-
up, and selecting those suspended nodes that agree the most with the outcomes of
the multi-tree using a randomly created dataset. They then utilize ROC, as described
in Section 4.2, to take account of costs. Estruch et al. [2002] include an empirical
comparison which concludes that it is more efficient in comparison to bagging and
boosting. The results for accuracy suggest that bagging produces better results at
lower number of iterations while the use of multi-tree produces slightly better results
beyond 200 iterations.
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Fig. 9. Multi-tree using the example dataset.

5.3. Stochastic Approach

The greedy methods of induction of trees, described in Section 4, select an attribute after
considering its immediate effect on the examples. Several authors have investigated
the potential for utilizing a k-look-ahead strategy to select attributes by considering
their effect deeper down a tree (e.g., Murthy and Salzberg [1995], Dong and Kothari
[2001]). That is, for each attribute, a subtree of depth k is developed and the attribute
that results in the best subtree is selected. Although increasing the look-ahead depth k
has the potential for increasing the quality of a tree, as Esmeir and Markovitch [2004]
point out, this also leads to an exponential increase in the time required for induction.

Hence, in their work they explore the use of stochastic sampling methods to assess
the attributes and develop ACT [Esmeir and Markovitch 2007, 2008], a framework for
anytime induction of cost-sensitive trees, and TATA [Esmeir and Markovitch 2011], an
anycost framework for learning under limited budgets.

ACT (Anytime Cost-Sensitive Trees) [Esmeir and Markovitch 2007, 2008] uses a
stochastic tree induction algorithm to generate r samples of subtrees for each value of
an attribute. The cost of each of these subtrees is calculated using the training exam-
ples, and the minimum cost utilized as an estimate for the attribute value. The costs
of the subtrees for the attribute values are aggregated to estimate the cost of selecting
an attribute, and the minimum cost attribute selected. The first of the r samples is
generated using the EG2 algorithm and the remaining samples are generated using a
greedy top-down induction process except that the probability of selecting an attribute
is proportional to its information cost measure as defined in EG2 Eq. (2).

In experiments, ACT returned better results than ICET (Section 5.1) and Decision
Trees with Minimal Cost (Section 4.1.2) [Esmeir and Markovitch 2008, page 26].

In a more recent study, Esmeir and Markovitch [2011] note that minimizing the
sum of test and misclassification costs implies that the costs should be on the same
scale.4 They argue that a more realistic goal would be to develop trees that mini-
mize misclassification costs but subject to a constraint that the total cost of the tests
utilized is no more than a specified cost.5 The limit on test costs may be available prior
to learning, after learning but before classification, or may be unavailable, leading to

4As mentioned in Section 4.1.1, Zhang et al. [2007] also make the same observation, though they adapt the
measure used in the Performance algorithm to represent the trade-off between costs of tests and costs of
misclassification.
5Greiner et al. [2002] provide some theoretical results for active learning under such budgets.
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algorithms they term as precontract, contract, and interruptible classifiers. They de-
velop a framework for algorithms for such situations, called TATA (Tree classification
AT Anycost), that is capable of reducing misclassification costs as the budget for using
tests increases.

They develop this framework by first noting that existing top-down tree induction
algorithms can be adapted so that the total test cost for any example will be no more
than a prespecified cost. This can be achieved during the tree induction process by
only considering those attributes whose cost is below the current available budget,
where the current budget is the initial budget less the cost of the attributes used from
the root to the current node. Then, they adopt an approach similar to ACT, except
that the r samples are obtained using an adapted version of C4.5 in which attributes
that cost more than the available budget are excluded and attributes are selected
stochastically with a probability proportional to their information gain. The samples
for each available attribute are used to estimate the misclassification cost and the one
with minimal misclassification cost selected. Given a maximum budget available for
testing and a suitable sample size r, this achieves the requirements for a precontract
algorithm.

For a contract algorithm, the budget for test costs in not available until the clas-
sification stage. To handle such applications, Esmeir and Markovitch [2011] propose
inducing a sequence of trees, t1, . . . tk, which they term a repertoire, with respective
budgets c1, . . . , ck, where c1 is set to the cost of the least expensive test, and ck is set to
the maximum cost, where all the tests are used. The number of trees k that are used
depends on the amount of time and memory available but also impacts on the time
available for the number of stochastic samples, r, that are possible. The k trees could be
obtained by discretizing the interval from c1 to ck into k-1 uniformly spread intervals
or in a more sophisticated manner by repeatedly using hill-climbing to subdivide an
interval that has the largest gap in terms of expected errors and test cost budgets.6

To achieve the goals of an interruptible algorithm, where neither the budgets for
learning nor the total test costs are available, they propose developing a repertoire of
trees and then to start classification using the tree with the minimum possible budget,
and then repeatedly moving on to the tree with the next higher budget until interrupted
or reaching the final tree.

An empirical evaluation of TATA shows that misclassification costs reduce more
rapidly with increasing budget when compared to EG2, an adapted version of EG2
where only attributes within budget are considered and C4.5. The misclassification
cost also reduces as the number of stochastic samples, r, increases, with the most sig-
nificant improvement occurring when one, two, or three samples are used, but minimal
improvement after three samples.

6. CONCLUSIONS

There has been significant interest in the introduction of costs into decision tree in-
duction. Many ways of introducing costs within the decision tree process have been
developed. Whilst there have been accounts of different types of costs, there has been
no synthesis of the wide range of studies on cost-sensitive algorithms. Hence this article
has carried out an extensive survey of the field with a view to providing an appreciation
of the different approaches and algorithms that have been proposed.

A new taxonomy of cost-sensitive algorithms has been developed, organizing the
algorithms into classes representing the way cost sensitivity has been introduced. The
survey revealed two major approaches; greedy, which induces a single tree making

6More formally, they select an i for which (Ei – Ei+1) (Ci+1 – Ci) is maximum where the Ei and Ci are the
expected error and budgets for the ith tree.
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decisions with no backtracking, and nongreedy, which uses multiple trees and multiple
choices to induce trees. Seven classes are defined.

(a) Use of costs during construction, whereby attribute selection measures are adapted
to include costs. The main differences between the algorithms in this class are the
selection measures used and whether costs of tests, misclassification costs, or both
are incorporated.

(b) Postconstruction, developed when costs are unknown at training time or if the costs
are subject to many changes. Differences between these algorithms arise from how
the labels for leaf nodes are chosen.

(c) GA methods, which utilize evolution, producing populations of decision trees which
are evaluated with regard to costs with the fittest being retained and combined.
The algorithms vary in the way trees are generated or represented and how the
fitness is measured.

(d) Boosting, which generates a number of decision trees in sequence using instance
weights. The algorithms differ in the way that these weights are initialized, and
updated. Other differences between algorithms include how the sampling is done,
and how error rates or confidence rates have been calculated in order to give the
trees with least error more importance in composite voting methods.

(e) Bagging, which generates a number of independent decision trees using resamples
from the training set, thus differing from the trees generated by boosting, being
independent of each other similarly to those in the GA methods. Generally these
algorithms are wrapping methods, using the decision tree as a subroutine and
wrapping the incorporation of costs around it. Differences between these algorithms
are how sampling occurs and in the composite voting method used.

(f) Multiple structures, which expands the ideas of generating alternative trees and
combining the outcome by having alternative trees in one structure. This shows
all possible alternative choices of attribute selection in one decision tree so that
alternative choices are not discarded as in the usual decision tree process but are
stored and can be expanded in the future.

(g) Stochastic approach, which induces decision trees created by generating r stochastic
samples of trees rooted at each potential attribute and selecting the attribute that
results in the best tree. Varying the number of r samples results in the anytime
behavior where quality can improve with more time. As well as anytime behavior,
this approach has been used to produce a framework for anycost behavior, where
misclassification costs reduce as the available total cost for testing increases.

The survey also includes a timeline showing how the field has developed from early
algorithms that simply amend selection measures to take account of costs, to the more
recent and sophisticated stochastic algorithms that use sampling to induce anycost
trees.

Selecting the most appropriate algorithm amongst the many algorithms will depend
on various factors including whether an application needs to minimize costs alone,
minimize costs of tests and misclassifications, whether there is a fixed budget for
test costs, and whether there is a need for anytime or anycost learning. Although the
particular experimental methods, datasets utilized (see Table A.1 in the Appendix) and
related systems compared vary, it is possible to form a general view from the empirical
evaluations presented in the studies.

A number of the nongreedy algorithms show the benefits of generating multiple
trees. Based on the original study by Turney [2005] and the independent comparisons
in Lomax and Vadera [2011], ICET performs well when aiming to minimize the sum
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of costs of misclassification and tests, especially when costs of misclassification are
uniform7.

ACT, a system based on stochastic sampling, improves upon the results from ICET for
both uniform and nonuniform misclassification costs [Esmeir and Markovitch 2008].

The use of boosting has developed from the pioneering work on systems such as Cost-
UBoost [Ting and Zheng 1998a], and AdaCost [Fan et al. 1999] to JOUS-Boost [Mease
et al. 2007] that shows the benefits of adding noise to the sampling process to reduce
overfitting. Lozano and Abe [2008] have advanced our understanding of cost-sensitive
boosting by deriving methods such as Cost-Sensitive Boosting with p-norm Loss (Lp-
CSB) that are guaranteed to converge. The recent work of Esmeir and Markovitch
[2011] on TATA provides a novel framework for applications where the maximum cost
for testing is available in advance, at the classification stage or even later.

Given the relative success of nongreedy algorithms for cost-sensitive tree induction,
a fair question is “Is it worth using or even pursuing future research on greedy cost-
sensitive decision tree induction algorithms?”

The primary advantage of the greedy algorithms is that they are very efficient and
therefore represent a good starting point for applications, and where performance with
respect to costs is very good, there may be little benefit in using the more computa-
tionally expensive multi-tree methods. Producing similar results to multi-tree methods
using single-tree methods does represent a major research challenge, but as the work
on nonlinear decision tree shows [Vadera 2010], it is possible to produce results compa-
rable to MetaCost and ICET for minimization of misclassification costs at a fraction of
the computational time. Whether it is possible to extend this to applications that need
to take account of costs of tests or budgeted learning remains an open question.

In conclusion, the field of cost-sensitive decision tree learning has a rich and diverse
history, providing a strong base for future research that could include: (i) carrying
out an independent and comprehensive empirical evaluation that could help method
selection based on application requirements, (ii) building upon recent advances to
develop new algorithms that improve performance or meet new requirements, and
(iii) developing theoretical foundations that improve our understanding of convergence
and the trade-offs between learning time and cost optimization.

7. APPENDIX

Table A1, given overleaf, shows the top 20 datasets used by the studies in this survey.
These datasets have been divided into groups; two-class datasets, multiclass datasets,
and those which have been used as two-class and multiclass datasets. The table gives
details of how many datasets each study used, the average number of datasets used,
and how many of the datasets are in the top 20. All datasets in the top 20 are available
from the Machine Learning Repository8. Some of the studies have used private datasets
or those from other sources.

The table also indicates whether the test costs and misclassification costs are
provided.

Other datasets which are not in the top 20 listing but are still useful in order to
measure performance include: (i) the Soybean dataset which has 19 classes, (ii) Thyroid
(NN), used by Turney [1995] and others, and is a larger version of the hypothyroid
dataset and having 3 classes, and (iii) Statlog Shuttle, a large dataset with 58,000
examples, useful to examine how an algorithm performs with a larger number of
examples.

7Costs of misclassification are said to be uniform when they are the same for all the classes.
8http://archive.ics.uci.edu/ml/index.html.
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FERRI, C., FLACH, P., AND HERNÁNDEZ-ORALLO, J. 2002. Learning decision trees using the area under the roc

curve. In Proceedings of the 19th Machine Learning International Workshop then Conference. 139–146.
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