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Abstract—With XML becoming a ubiquitous language for data interoperability purposes in various domains, efficiently querying XML

data is a critical issue. This has lead to the design of algebraic frameworks based on tree-shaped patterns akin to the tree-structured

data model of XML. Tree patterns are graphic representations of queries over data trees. They are actually matched against an input

data tree to answer a query. Since the turn of the 21st century, an astounding research effort has been focusing on tree pattern models

and matching optimization (a primordial issue). This paper is a comprehensive survey of these topics, in which we outline and compare

the various features of tree patterns. We also review and discuss the two main families of approaches for optimizing tree pattern

matching, namely pattern tree minimization and holistic matching. We finally present actual tree pattern-based developments, to

provide a global overview of this significant research topic.

Index Terms—XML querying, data tree, tree pattern, tree pattern query, twig pattern, matching, containment, tree pattern

minimization, holistic matching, tree pattern mining, tree pattern rewriting
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1 INTRODUCTION

SINCE its inception in 1998, the eXtensible Markup
Language (XML) [1] has emerged as a standard for data

representation and exchange over the Internet, as many
(mostly scientific, but not only) communities adopted it for
various purposes, e.g., mathematics with MathML [2],
chemistry with CML [3], geography with GML [4], and e-
learning with SCORM [5], just to name a few. As XML
became ubiquitous, efficiently querying XML documents
quickly appeared primordial and standard XML query
languages were developed, namely XPath [6] and XQuery
[7]. Research initiatives also complemented these standards,
to help fulfill user needs for XML interrogation, e.g., XML
algebras such as Tree Algebra for XML (TAX) [8] and XML
information retrieval [9].

Efficiently evaluating path expressions in a tree-struc-
tured data model such as XML’s is crucial for the overall
performance of any query engine [10]. Initial efforts that
mapped XML documents into relational databases queried
with SQL [11], [12] induced costly table joins. Thus,
algebraic approaches based on tree-shaped patterns became
popular for evaluating XML processing natively instead [13],
[14]. Tree algebras indeed provide a formal framework for
query expression and optimization, in a way similar to
relational algebra with respect to the SQL language [15].

In this context, a tree pattern (TP), also called pattern tree
or tree pattern query (TPQ) in the literature, models a user
query over a data tree. Simply put, a tree pattern is a graphic
representation that provides an easy and intuitive way of
specifying the interesting parts from an input data tree that
must appear in query output. More formally, a TP is matched
against a tree-structured database to answer a query [16].

Fig. 1 exemplifies this process. The upper left-hand side part
of the figure features a simple XML document (a book
catalog), and the lower left-hand side a sample XQuery that
may be run against this document (and that returns the title
and author of each book). The tree representations of
the XML document and the associated query are featured
on the upper and lower right-hand sides of Fig. 1,
respectively. At the tree level, answering the query translates
in matching the TP against the data tree. This process can be
optimized and outputs a data tree that is eventually
translated back as an XML document.

Since the early 2000s, a tremendous amount of research
has been based on, focusing on, or exploiting TPs for various
purposes. However, few related reviews exist. Gou and
Chirkova extensively survey querying techniques over
persistently stored XML data [17]. Although the intersection
between their paper and ours is not empty, both papers are
complementary. We do not address approaches related to
the relational storage of XML data. By focusing on native
XML query processing, we complement Gou and Chirkova’s
work with specificities such as TP structure, minimization
approaches, and sample applications. Moreover, we cover
the many matching optimization techniques that have
appeared since 2007. Other recent surveys are much shorter
and focus on a particular issue, i.e., twig queries [18] and
holistic matching [19].

The aim of this paper is thus to provide a global and
synthetic overview of more than 10 years of research about
TPs and closely related issues. For this sake, we first formally
define TPs and related concepts in Section 2. Then, we
present and discuss various alternative TP structures in
Section 3. Since the efficiency of TP matching against tree-
structured data is central in TP usage, we review the two
main families of TP matching optimization methods
(namely, TP minimization and holistic matching ap-
proaches), as well as tangential but nonetheless interesting
methods, in Section 4. Finally, we briefly illustrate the use of
TPs through actual TP-based developments in Section 5. We
conclude this paper and provide insight about future TP-
related research in Section 6.
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2 BACKGROUND

In this section, we first formally define all the concepts used

in this paper (Section 2.1). We also introduce a running

example that illustrates throughout the paper how the TPs

and related algorithms we survey operate (Section 2.2).

2.1 Definitions

2.1.1 XML Document

XML is known to be a simple and very flexible text format.

It is essentially employed to store and transfer text-type

data. The content of an XML document is encapsulated

within elements that are defined by tags [1]. These

elements can be seen as a hierarchy organized in a tree-

like structure.

2.1.2 XML Fragment

An XML document may be considered as an ordered set of
elements. Any element may contain subelements that may
in turn contain subelements, etc. One particular element,
which contains all the others, is the document’s root. Any
element (and its contents) different from the root is termed
an XML fragment. An XML fragment may be modeled as a
finite rooted, labeled, and ordered tree.

2.1.3 Data Tree

An XML document (or fragment) may be modeled as a data

tree t ¼ ðr;N;EÞ, where N is a set of nodes, r 2 N is the root

of t, and E is a set of edges stitching together couples of

nodes ðni; njÞ 2 N �N .

2.1.4 Data Tree Collection

An XML document considered as a set of fragments may be

modeled as a data tree collection (also named forest in TAX

[8]), which is itself a data tree.

2.1.5 Data Subtree

Given a data tree t ¼ ðr;N;EÞ, t0 ¼ ðr0 ; N 0
; E

0 Þ is a subtree of

t if and only if

1. N
0 � N ;

2. let e
0 2 E0 be an edge connecting two nodes ðn0i; n

0

jÞ
of t

0
; there exists an edge e 2 E connecting two nodes

ðni; njÞ of t such that ni ¼ n
0

i and nj ¼ n
0

j.

2.1.6 Tree Pattern

A tree pattern p is a pair p ¼ ðt; F Þ where

1. t ¼ ðr;N;EÞ is a data tree;
2. F is a formula that specifies constraints on t’s nodes.

Basically, a TP captures a useful fragment of XPath [20].
Thus, it may be seen as the translation of a user query [21].
Translating an XML query plan into a TP is not a simple
operation. Some XQueries are written with complex combi-
nations of XPath and FLWOR expressions, and imply more
than one TP. Thus, such queries must be broken up into
several TPs. Only a single XPath expression can be translated
into a single TP. The more complex a query is, the more its
translation into TP(s) is difficult [10]. Starting from TPs to
express user queries in the first stage, and optimize them in
the second stage is a very effective solution used in XML
query optimization [21].

2.1.7 Tree Pattern Matching

Matching a TP p against a data tree t is a function f : p! t

that maps nodes of p to nodes of t such that

. structural relationships are preserved, i.e., if nodes
ðx; yÞ are related in p through a parent-child relation-
ship, denoted PC for short or by a simple edge/in
XPath (respectively, an ancestor-descendant relation-
ship, denoted AD for short or by a double edge // in
XPath), their counterparts ðfðxÞ; fðyÞÞ in t must be
related through a PC (respectively, an AD) relation-
ship too;

. formula F of p is satisfied.

The output of matching a TP against a data tree is termed
a witness tree in TAX [8].

2.1.8 Tree Pattern Embedding

Embedding a TP p into a data tree t is a function g : p! t

that maps each node of p to nodes of t such that structural
relationships (PC and AD) are preserved.

The difference between embedding and matching is that
embedding maps a TP against a data tree’s structure only,
whereas matching maps a TP against a data tree’s structure
and contents [22]. In the remainder of this paper, we use the
more general term matching when referring to mapping TPs
against data trees.

2.1.9 Boolean Tree Pattern

A Boolean TP b yields a “true” (respectively, “false”) result
when successfully (respectively, unsuccessfully) matched
against a data tree t. In other words, b has no output node(s)
[23]: it yields a “true” result when t structurally matches
(embeds) p.

2.2 Running Example

Let us consider the data tree from Fig. 2a, which represents a
collection of books. The root doc gathers books, each described
by their title, author(s), editor, year of publication, and summary.
Data tree nodes are connected by simple edges (/), i.e., PC
relationships. Books do not necessarily bear the same
structure. For instance, a summary is not present in all books,
and some books are written by more than one author.

30 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 1, JANUARY 2013

Fig. 1. Tree representation of XML documents and queries.



The TP from Fig. 2b selects book titles, authors, and years.

Moreover, formula F indicates that author must be different

from Jill. Generally, a formula is a Boolean combination of

predicates on node types (e.g., $1:tag ¼ book) and/or values

(e.g., $3:value! ¼ “Jill”). Matching this TP against the data

tree from Fig. 2a outputs the data tree (or witness tree) from

Fig. 2c. Only one book is selected from Fig. 2a, since the other

one (title ¼ “A dummy for a computer”):

1. does not contain a year element;
2. is written by author Jill, which contradicts formula F .

Finally, the AD relationship $1==$3 in Fig. 2b’s TP is

correctly taken into account. It is not the structure of the

book element with title ¼ “A dummy for a computer” that

disqualifies it, but the fact that one of its authors is Jill. If

this author was Gill, knowing the publication year of the

book, “A dummy for a computer” would be output.

3 TREE PATTERN STRUCTURES

We review in this section the various TP structures found

in the literature. Most have been proposed to support

XML algebras (Section 3.1), but some have also been

introduced for specific optimization purposes (Section 3.2).

We conclude this section by discussing their features in

Section 3.3.

3.1 Tree Patterns in Algebraic Frameworks

The first XML algebras have appeared in 1999 [24], [25] in

conjunction with efforts aiming to define a powerful XML

query language [26], [27], [28], [29], [30]. Note that they

have appeared before the first specification of XQuery, the

now standard XML query language, which was issued in

2001 [7]. The aim of an XML tree algebra is to feature a set of

operators to manipulate and query data trees. Query results

are also data trees.

3.1.1 TAX Tree Pattern

The Tree Algebra for XML [8] is one of the most popular XML
algebras. TAX’s TP preserves PC and AD relationships from
an input ordered data tree in output, and satisfies a formula
that is a Boolean combination of predicates applicable to
nodes. The example from Fig. 2b corresponds to a TAX TP,
save that node relationships are simple edges labeled AD or
PC in TAX instead of being expressed as single or double
edges. The TAX TP is the most basic TP used in algebraic
contexts. It has thus been greatly extended and enhanced.

3.1.2 Generalized Tree Pattern (GTP)

The idea behind generalized tree patterns is to associate
more options with TP edges in order to enrich matching. In
TAX, one absent pattern node in the matched subtree
prevents it to appear in output. A GTP extends the classical
TAX TP by creating groups of nodes to facilitate their
manipulation, and by enriching edges to be extracted by the
mandatory/optional matching option [21].

Fig. 3 shows an example of GTP, where the edge
connecting the year element to its parent book node is dotted
(i.e., optional), and title and author nodes are connected to
the same parent book node with solid (i.e., mandatory)
edges. This GTP permits to match all books described by
their title and author(s), mandatorily, and that may be
described by their year of publication. Matching it against the
data tree from Fig. 2a outputs both books (“Maktub” and “A
dummy for a computer”), even though the second one does
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Fig. 2. Sample data tree (a), tree pattern (b), and witness tree (c).

Fig. 3. Sample generalized tree pattern.



not contain a year element, while ensuring that the title and
author elements exist in the matched book subtrees.

Finally, note that the GTP from Fig. 3, unlike the TP from
Fig. 2b, does not include an author ! ¼ “Jill” clause in its
formula. Retaining this predicate would not allow the second
book (title ¼ “A dummy for a computer”) to be matched by
this GTP, since the Boolean combination of formula elements
(related with and) cannot be verified.

3.1.3 Annotated Tree Pattern

A feature, more than a limitation, of the TAX TP is that a set of
subelements from the input data tree may all appear in the
output data tree. For example, a TP with a single author node
can match against a book subtree containing several author
subelements. Annotated pattern trees (APTs) from the Tree
Logical Class (TLC) algebra [31] solve this problem by
associating matching specifications to tree edges. Matching
options are

. +: one to many matches;

. -: one match only;

. *: zero to many matches;

. ?: zero or one match.

Fig. 4 shows an example of APT where the - option is
employed to extract books written by one author only. This
APT matches only the first book from Fig. 2a (title ¼
“Maktub”), since the second has two authors.

3.1.4 Ordered Annotated Pattern Tree

An APT, as a basic TAX TP, preserves the order output of
nodes from the input data tree, whatever node order is
specified in the TP. In other words, node order in witness
trees is always the same as that of the input data tree. No
reordering option is available, though it is essential when
optimizing queries. To circumvent this problem, the APT
used in TLC’s Select and Join operators is supplemen-
ted with an order parameter (ord) based on an order
specification (O-Spec) [13]. Four cases may occur:

1. empty: output node order is unspecified; O-Spec is
empty;

2. maintain: input node order is retained; O-Spec
duplicates input node order;

3. list-resort: nodes are wholly sorted with respect to
O-Spec; input node order is forsaken;

4. list-add: nodes are partially sorted with respect to
O-Spec.

For example, associating the O-Spec specification [author,

title] to the APT from Fig. 4 permits to select books ordered

by author first, and then title. Graphically, the author node
would simply appear on the left-hand side of the witness

tree and the title node on the right-hand side.

3.2 Tree Patterns Used in Optimization Processes

Many TP matching optimization approaches extend the basic

TP (Fig. 2b) to allow a broader range of queries. In this section,

we survey the TPs that introduce new, interesting features

with respect to those already presented in Section 3.1.

3.2.1 Global Query Pattern Tree (G-QPT)

A global query pattern tree is constructed from a set of

possible ordered TPs proposed for the same query [32]. First,
a root is created for the G-QPT. Then, each TP is merged with

the G-QPT as follows:

. the TP root is merged with the G-QPT root;

. TP nodes are merged with G-QPT nodes with
respect to node ordering and PC-AD relationships.

For example, TPs p1 and p2 from Fig. 5 together answer

query “select title, authors and year of publication of books”

and merge into G-QPT g.

3.2.2 Twig Pattern

Twig patterns are designed for directed and rooted graphs
[33]. Here, XML documents are considered having a graph
structure, thanks to ID references connecting nodes. Twig
patterns respect PC-AD node relationships and express
node constraints in formula F (called twig condition here)
with operators such as equals to, contains,� , etc. In Fig. 6, we
represent the twig pattern that is equivalent to the TP from
Fig. 2b.

Moreover, distance-bounding twigs (DBTwigs) extend

twig patterns to limit the large number of answers resulting

from matching a classical twig pattern against a graph [33].

This method is called Filtering þ Ranking. Its goal is to filter
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Fig. 4. Sample annotated pattern tree.

Fig. 5. Sample construction of global query pattern tree.

Fig. 6. Sample twig pattern.



data to be matched by indicating the length of paths
corresponding to descendant edges. DBTwigs also permit
to indicate the number (0; 1; . . . ) of nodes to be matched. All
these parameters are indicated in the graphical representa-
tion of DBTwigs.

3.2.3 Logical Operator Nodes

Izadi et al. include in their formal definition of TPs a set O of
logical operator nodes [34]. ^, _, and � represent the binary
AND, OR, and XOR logical operators, respectively. : is the
unary NOT operator. These operator nodes go further than
GTPs’ mandatory/optional edge annotations by specifying
logical relationships between their subnodes. For instance,
Fig. 7 features a TP that selects book titles and either a set of
authors or an editor.

3.2.4 Node Degree and Output Node Specification

In a TP, the degree of a tree node x, denoted degreeðxÞ,
represents its number of children [35]. Miklau and Suciu
define a maximal value for degreeðxÞ within a path
expression optimization algorithm. This approach is mainly
designed to check containment and equivalence of XPath
fragments (Section 4.1.1). Then, translating XPath expres-
sions into TPs requires the identification of an output node
marked with a wildcard (�) in the TP. For example, suppose
that we are only interested in book titles from Fig. 2a. Then,
we would simply associate a � symbol with the title node in
the TP from Fig. 2b. Note that the other nodes must remain
in the TP if they appear in formula F and thus help specify
the output node.

3.2.5 Extended Formula

Lakshmanan et al. further specify how formula F is
expressed in a TP [22]. They define F as a combination of
tag constraints (TCs), value-based constraints (VBCs) and
node identity constraints (NICs). TCs specify constraints on
tag names, e.g., node:tag ¼ “book.” VBCs specify selection
and join constraints on tag attributes and values using the
operators ¼; 6¼;�;�; > , and < . NICs finally determine
whether two TP nodes are the same ð�Þ or not. In addition

to TCs, VBCs, and NICs, wildcards (�) are associated with
untagged nodes.

For example, in Fig. 8, we extend the TP from Fig. 2b
with a VBC indicating that books to be selected must be of
type “Novel.” We suppose here that a type is associated
with each book node, that the first book (title ¼ “Maktub”) is
of type “Novel,” and that the second book (title ¼ “A
dummy for a computer”) is of type “Technical book.” Then,
the output tree would of course only include the book
entitled “Maktub.”

3.2.6 Extended Tree Pattern

Extended TPs complement classical TPs with a negation
function, wildcards, and an order restriction [36]. For
example, in Fig. 9, the negative function (denoted :) helps
specify that we look for an edited book, i.e., with no author
node. The wildcard node � can match any single node in a
data tree. Note that the wildcard has a different meaning here
than in Section 3.2.4, where it denotes an output node, while
output node names are underlined in extended TPs. Finally,
the order restriction denoted by a < in a box means that
children of node book are ordered, i.e., title must come before
the � node.

3.3 Discussion

In this section, we discuss and compare the TPs surveyed in
Sections 3.1 and 3.2. For this sake, we introduce four
comparison criteria.

. Matching power. Matching encompasses two dimen-
sions. Structural matching guarantees that only
subtrees of the input data tree that map the TP are
output. Matching by value is verifying formula F . We
mean by matching power all the matching options
(edge annotations, logical operator nodes, formula
extensions, etc.) beyond these basics. Improving
matching power helps filter data more precisely.

. Node reordering capability. Order is important in XML
querying; thus, modern TPs should be able to alter it
[13]. We mean by node reordering capability the
ability of a TP to modify output node order when
matching against any data tree. Note that node
reordering could be classified as a matching cap-
ability, but the importance of ordering witness trees
leads us to consider it separately.

. Expressiveness. Expressiveness states how a logical
TP, i.e., a TP under its schematic form, translates into
the corresponding physical implementation. The
physical form of a TP may be either expressed with
an XML query language (XQuery, generally), or an
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Fig. 7. Sample tree pattern with logical operator nodes.

Fig. 8. Sample tree pattern with a value-based constraint.

Fig. 9. Sample extended tree pattern.



implementation within an XML database offering
query possibilities. Using a TP for other purposes but
querying, e.g., in optimization algorithms, is not
accounted toward expressiveness. Note that a TP that
cannot be expressed in physical form is usually
considered useless.

. Supported optimizations. TPs are an essential element of
XML querying [16], [37]. Hence, many optimization
approaches translate XML queries into TPs, optimize
them, and then translate them back into optimized
queries. Optimizing a TP increases its matching
power. This criterion references the different kinds
of optimizations supported by a given TP.

TP comparison with respect to matching power, node

reordering capability, expressiveness, and supported opti-

mizations follows (Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4,

respectively), and is synthesized in Section 3.3.5.

3.3.1 Matching Power

The most basic TP is TAX’s [8]. Thus, matching a TAX TP

against a data tree collection is very simple: it is only based

on tree structure and node values specified in formula F . If

F is absent, a TAX TP matches all possible subtrees from the

input data tree.
Associating a mandatory/optional status to GTP edges [21]

increases the number of matched subtrees in output. Only

one absent edge in a TAX TP with respect to a subtree

containing all the other edges in this TP prevents matching,

while the candidate subtree is “almost perfect.” If this edge

is labeled as optional in a GTP, matching becomes success-

ful. Even more flexibility is achieved by logical operator

nodes [34], which allow powerful matching options,

especially when logical operators are combined.
With APTs, matching precision is further improved

through edge annotations [31]. Annotations in APTs force

the matching process to extract data according to their

nature. For example, a classical TAX TP such as the one from

Fig. 2b, extracting books by titles and authors, does not allow

controlling the number of authors. APTs help select only

books with, e.g., more than one author, as in the example

from Fig. 4. Unfortunately, annotations only allow two

maximum cardinalities: one or several. DBTwigs [33]

complement APTs in this respect, by allowing to choose the

exact number of nodes to be matched. Node degree (number

of children) [35] or the negation function of extended TPs [36]

can also be exploited for this sake.
Finally, up to now, we focused on TP structure because

few differences exist in formulas. Graphically, twig patterns

associate constraints with nodes directly in the schema [33]

while in the TAX TP and its derivatives, they appear in

formula F , but this is purely cosmetic. Only TCs, VBCs, and

NICs help further structure formula F [22].

3.3.2 Node Reordering Capability

Despite many studies model XML documents as unordered

data trees, order is essential to XML querying [13]. In

XQuery, users can (re)order output nodes simply through

theOrderby clause inherited from SQL [15]. Hence, modern

TPs should include ordering features [16], [37].

However, among TAX TP derivatives, only ordered APTs

and extended TPs feature reordering features. In G-QTPs,

preorders associated with ordered TP nodes help determine

output order [32]. Unfortunately, order is disregarded in all

other TP proposals.

3.3.3 Expressiveness

TAX TPs and their derivatives (GTPs and APTs) do not

translate into an XML query language, but they are

implemented, through the TLC physical algebra [31], in the

TIMBER XML database management system [38]. TIMBER

permits to store XML in native format and offers a query

interface supporting both classical XQuery fragments and

TAX operators. Note that TAX operators include a Group by

construct that has no equivalent in XQuery.
Translating TAX TPs for XML querying follows nine steps:

1. identify all TP elements in the FOR clause;
2. push formula F ’s predicates into the WHERE clause;
3. eliminate duplicates with the help of the DISTINCT

keyword;
4. evaluate aggregate expressions in LET clauses;
5. indicate tree variables to be joined (join conditions)

via the WHERE clause;
6. enforce any remaining constraint in theWHERE clause;
7. evaluate RETURN aggregates;
8. order output nodes with the help of the ORDER BY

clause;
9. project on the elements indicated in the RETURN

clause.

Similarly, Lakshmanan et al. test the satisfiability of TPs

translated from XPath expressions and XQueries, and then

express them back in XQuery and evaluate them within

the XQEngine XQuery engine [39]. The other TPs we survey

are used in various algorithms (containment and equiva-

lence testing, TP rewriting, frequent TP mining, etc.).

Hence, their expressiveness is not assessed.

3.3.4 Supported Optimizations

Approaches purposely proposing TPs (i.e., algebraic

approaches) are much fewer than approaches using TPs

to optimize XML querying. Moreover, even algebraic

approaches such as TAX do address optimization issues.

Since XML queries are easy to model with TPs, researchers

casually translate any XML query in TPs, which are then

optimized and implemented in algorithms, XML queries or

any other optimization framework.
Hence, the biggest interest of the TP community lies in

enriching and optimizing matching. Matching opportunities

offered by TAX TPs, optional edges of GTPs, annotations,

ordering specification, and duplicate elimination of APTs,

and extended TPs aim to achieve more results and/or better

precision. GTP and APT matching characteristics prove their

efficiency in TIMBER [38].
Finally, satisfiability is an issue related to containment, a

concept used in minimization approaches. Satisfiability

means that there exists a database, consistent with the schema

if one is available, on which the user query, represented by a

TP, has a nonempty answer [22], [40], [41], [42].
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3.3.5 Synthesis

We recapitulate in Table 1 the characteristics of all TPs
surveyed in this paper with respect to our comparison
criteria.

In summary, matching options in TPs are numerous and it
would probably not be easy to set up a metric to rank them.
The best choice, then, seems to select a TP variant that is
adapted to the user’s or designer’s needs. However,
designing a TP that pulls together most of the options we
survey is certainly desirable to maximize matching power.

With respect to output node ordering, we consider the ord
order parameter introduced in APTs the simplest and most
efficient approach. A list of ordered elements can indeed be
associated with any TP, whatever the nature of the input
data tree (ordered or unordered). However, it would be
interesting to generalize the ord specification to other,
possibly more complex, operators beside Select and Join,
the two only operators benefiting from ordering in APTs.

Expressiveness is a complex issue. Translating XML
queries into TPs is indeed easier than translating TPs back
into an XML query plan. XQuery, although the standard
XML query language, suffers from limitations such as the
lack of a Group by construct. Thus, it is more efficient to
implement TPs and exploit them to enrich XML querying in
an ad hoc environment such as TIMBER’s. We think that the
richer the pattern, with matching options, ordering speci-
fications, possibility to associate with many operators (and
other options if possible), the more efficient querying is, in
terms of user need satisfaction.

Finally, minimization, relaxation, containment, equiva-
lence, and satisfiability issues lead the TP community to
optimize these tasks. However, most TPs used in this
context are basic, unlike TPs targeted at matching optimiza-
tion, which allows optimizing XML queries wherein are
translated optimized TPs. In short, the best optimized TP
must be minimal, satisfiable, and offer as many matching
options as possible.

4 TREE PATTERN MATCHING OPTIMIZATION

The aim of TPs is not only to provide a graphical
representation of queries over tree-structured data, but also
and primarily, to allow matching queries against data trees.
Hence, properly optimizing matching is primordial to
achieve good query response time.

In this section, we present the two main families of
approaches for optimizing matching, namely minimiza-
tion methods (Section 4.1) and holistic matching ap-
proaches (Section 4.2). We also survey a couple of other
specific approaches (Section 4.3), before globally discuss-
ing and comparing all TP matching optimization methods
(Section 4.4).

4.1 Tree Pattern Minimization

The efficiency of TP matching depends a lot on the size of the
pattern [16], [20], [43], [44]. It is thus essential to identify and
eliminate redundant nodes in the pattern and do so as
efficiently as possible [16]. This process is called TP
minimization.

All research related to TP minimization is based on a
pioneer paper by Amer-Yahia et al. [16], who formulate
the problem as follows: given a TP, find an equivalent TP of
the smallest size. Formally, given a data tree t and a TP p of
size (i.e., number of nodes) n, let S ¼ fpig be the set of TPs
of size ni contained in p (pi � p and ni � n8i). Minimizing p
is finding a TP pmin 2 S of size nmin such that

. pmin 	 p when matched against t;

. nmin � ni 8i.
Moreover, a set C of integrity constraints (ICs) may be

integrated into the problem. There are two forms of ICs:

1. each node of type A (e.g., book) must have a child
(respectively, descendant) of type B (e.g., author),
denoted A! B (respectively, A) B);

2. each node of type A (e.g., book) must have a
descendant of type C (e.g., name), knowing that C is
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a descendant of B (e.g., author), i.e., A) C knowing
that B) C.

Since TP minimization relies on the concepts of contain-
ment and equivalence, we first detail how containment and
equivalence are tested (Section 4.1.1). Then, we review the
approaches that address the TP minimization problem
without taking ICs into account (Section 4.1.2), and the
approaches that do (Section 4.1.3).

4.1.1 Containment and Equivalence Testing

Let us first further formalize the definitions of containment
and equivalence. Containment of two TPs p1 and p2 is
defined as a node mapping relationship h : p1 ! p2 such
that [16], [35]

. h preserves node type, i.e., 8x 2 p1, x and hðxÞ must
be of the same type. Moreover, if x is an output
node, hðxÞ must be an output node too;

. h preserves node relationships, i.e., if two nodes
ðx; yÞ are linked through a PC (respectively, AD)
relationship in p1, ðfðxÞ; fðyÞÞ must also be linked
through a PC (respectively, AD) relationship in p2.

Note that function h is very similar to function f that
matches a TP to a data tree (Section 2.1.7), but here, h is a
homomorphism between two TPs [45]. Moreover, contain-
ment may be tested between a TP fragment and this TP as a
whole. h is then an endomorphism.

Finally, equivalence between two TPs is simply consid-
ered as two-way containment [16], [20]. Formally, let p1 and
p2 be two TPs. p1 	 p2 if and only if p1 � p2 and p2 � p1.

Miklau and Suciu show that containment testing is
intractable in the general case [35]. They nonetheless propose
an efficient algorithm for significant particular cases, namely
TPs with AD edges and an output node. This algorithm is
based on tree automata, the objective being to reduce the TP
containment problem to that of regular tree languages. In
summary, given two TPs p1 and p2, to test whether p1 � p2

. p1’s nodes and edges are matched to deterministic
finite tree automaton A1’s states and transitions,
respectively;

. p2’s nodes and edges are matched to alternating
finite tree automaton A2’s states and transitions,
respectively;

. if langðA1Þ � langðA2Þ, then p1 � p2, where langðAiÞ
is the language associated with automaton Aiði ¼
f1; 2gÞ.

Similar approaches further test TP containment under
Document Type Definition (DTD) constraints [46], [47]. For

instance, Wood exploits regular tree grammars (RTGs) to
achieve containment testing [47]. Let D be a DTD and G1

and G2 RTGs corresponding to p1 and p2, respectively.
Then, p1 � p2 if and only if ðD \G1Þ � ðD \G2Þ.

4.1.2 Unconstrained Minimization

The first TP minimization algorithm, Constraint Indepen-
dent Minimization (CIM) [16], eliminates redundant nodes
from TP p by exploiting the concept of images. Let there be a
node x 2 p. Its list of images, denoted imagesðxÞ, is
composed of nodes from p that bear the same type as x,
but are different from x. For each leaf x 2 p, CIM searches for
nodes of the same type as x in the set of descendants of
imagesðparentðxÞÞ, where parentðxÞ is x’s parent node in p. If
such nodes are found, x is redundant and thus deleted from
p. CIM then proceeds similarly, in a bottom-up fashion, on
parentðxÞ, until all nodes in p (except output nodes that must
always be retained) have been checked for redundancy.

For example, let us consider TP p from Fig. 10. Without
regarding node order, let us check leaf node $5 for
redundancy.

parentð$5Þ ¼ $4; imagesð$4Þ ¼ f$2g; descendantsð$2Þ
¼ f$3g;

where descendantsðxÞ is the set of descendants of node x. $3
bears the same type as $5 (author), thus $5 is deleted.
Similarly, $4 is then found redundant and deleted, out-
putting pmin in Fig. 10. Further testing $1, $2, and $3 does
not detect any new redundant node. Moreover, deleting
another node from pmin would break the equivalence
between p and pmin. Hence, pmin is indeed minimal.

All minimization algorithms subsequent to CIM retain its
principle while optimizing complexity. One strategy is to
replace images by more efficient relationships, i.e., coverage
[48], [49], also called simulation [43]. Let p be the TP to
minimize, and x; y 2 p two of its nodes. If y coversx (xffy) [50]:

. the types of x and y must be identical;

. if x has a child (respectively, descendant) node x0, y
must have a child (respectively, descendant) node y0

such that x0ffy0.
covðxÞ denotes the set of nodes that cover x. covðxÞ ¼ x if
x is an output node. Then, the minimization process tests
node redundancy in a top-down fashion as follows:
8x 2 p, 8x0 2 childrenðxÞ (respectively, descendantsðxÞ), if
9x00 2 childrenðxÞ (respectively, descendantsðxÞ) such that
x00 2 covðx0Þ, then x0 and the subtree rooted in x0 are deleted.
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childrenðxÞ (respectively, descendantsðxÞ) is the set of

direct children (respectively, all descendants) of node x.
Another strategy is to simply prune subtrees recursively

[51]. The subtree rooted at node x, denoted subtreeðxÞ, is

minimized in two steps:

1. 8x0; x00 2 childrenðxÞ, i f subtreeðx0Þ � subtreeðx00Þ
then delete subtreeðx0Þ;

2. 8x0 2 childrenðxÞ (remaining children of x), mini-
mize subtreeðx0Þ.

A variant proceeds similarly, by first searching in a TP p for
any subtree pi redundant with sp, where sp is p stripped of its
root [20]. Formally, the algorithm tests whether p� spi � pi.
Redundant subtrees are removed. Then, the algorithm is
recursively executed on unpruned subtrees spi.

4.1.3 Minimization under Integrity Constraints

Taking ICs into account in the minimization process is

casually achieved as follows:

1. Augment the TP to minimize with nodes and edges
that represent ICs. This is casually achieved with the
classical chase technique [52]. For instance, if we had
a book ! author IC (nodes of type “book” must
have a child of type “author”), we would add one
child node of type author to each of the nodes $2 and
$4 from Fig. 10. Note that augmentation must only
apply to nodes from the original TP, and not to
nodes previously added by the chase.

2. Run any TP minimization algorithm, without testing
utilitarian nodes introduced in step #1 for redun-
dancy, so that ICs hold.

3. Delete utilitarian nodes introduced in step #1.

This process has been applied onto the CIM algorithm, to

produce Augmented CIM (ACIM) [16], as well as on its

coverage-based variants [43], [48], [53]. Since the size of an

augmented TP can be much larger than that of the original

TP, an algorithm called Constraint-Dependant Minimization

(CDM) also helps identify and prune all TP nodes that are

redundant under ICs [16]. CDM actually acts as a filter

before ACIM is applied. CDM considers a TP leaf x0 of type

T 0 redundant and removes it if one of the following

conditions holds:

. parentðx0Þ ¼ x (respectively, ancestorðx0Þ ¼ x) of
type T and there exists an IC T ! T 0 (respectively,
T ) T 0).

. parentðx0Þ ¼ x (respectively, ancestorðx0Þ ¼ x) of type
T , 9x00=parentðx00Þ ¼ x (respectively, ancestorðx00Þ ¼
x) of type T 00, and there exists an IC T 0 ¼ T 00
(respectively, there exists one of the ICs T 00 ) T 0 or
T 0 ¼ T 00).

An alternative simulation-based minimization algorithm
also includes a similar prefilter, along with an augmenta-
tion phase that adds to the nodes of covðxÞ their ancestors
instead of using the chase [43].

Finally, the scope of ICs has recently been extended to
include not only forward and subtype (FT) constraints (as
defined in Section 4.1), but also backward and sibling (BS)
constraints [44]:

. each node of type A (e.g., author) must have a parent
(respectively, ancestor) of type B (e.g., book),
i.e., A B (respectively, A( B);

. each node of type A (e.g., book) that has a child of
type B (e.g., editor) must also have a child of type C
(e.g., address), i.e., if A! B then A! C.

Under FBST constraints, several minimal TPs can be

achieved (versus one only under FT constraints), which
allows further optimizations of the chase augmentation and
simulation-based minimization processes.

4.2 Holistic Tree Pattern Matching

While TP minimization approaches (Section 4.1) wholly focus

on the TP side of the matching process, holistic matching (also
called holistic twig join [19]) algorithms mainly operate on
minimizing access to the input data tree when performing

actual matching operations. The initial binary join-based
approach for matching proposed by Al-Khalifa et al. [54]
indeed produces large intermediate results. Holistic ap-

proaches casually optimize TP matching in two steps [55]:

1. labeling: assign to each node x in the data tree t an
integer label labelðxÞ that captures the structure of t
(Section 4.2.1);

2. computing: exploit labels to match a twig pattern p
against t without traversing t again (Section 4.2.2).

Moreover, recent proposals aim at reducing data tree size
by exploiting structural summaries in combination to

labeling schemes. We review them in Section 4.2.3.
Let us finally highlight that, given the tremendous number

of holistic matching algorithms proposed in the literature, it is
quite impossible to review them all. Hence, we aim in the
following sections at presenting the most influential. The
interested reader may further refer to Grimsmo and
Bjørklund’s survey [19], which uniquely focuses on and
introduces a nice history of holistic approaches.

4.2.1 Labeling Phase

The aim of data tree labeling schemes is to determine the

relationship (i.e., PC or AD) between two nodes of a tree from
their labels alone [55]. Many labeling schemes have been

proposed in the literature. We particularly focus in this
section on the region encoding (or containment) and the
Dewey ID (or prefix) labeling schemes that are used in holistic

approaches. However, other approaches do exist, based on a
tree-traversal order [56], prime numbers [57] or a combina-
tion of structural index and inverted lists [58], for instance.

The region encoding scheme [59] labels each node x in a
data tree t with a 3-tuple ðstart; end, levelÞ, where start
(respectively, end) is a counter from the root of t until the
start (respectively, the end) of x (in depth first), and level is
the depth of x in t. For example, the data tree from Fig. 2a is
labeled in Fig. 11, with the region encoding scheme label
indicated between parentheses. In Fig. 11, node xðtitle ¼
“Maktub”) is labeled (3, 4, 3). start ¼ 3 because x is the first
child of the node with start ¼ 2; end ¼ 4 because x has no
children (thus end ¼ startþ 1); and level ¼ 3 (level 1 being
the root’s).

Now, let x and x0 be two nodes labeled ðS;E; LÞ and

ðS0; E0; L0Þ, respectively. Then,

HACHICHA AND DARMONT: A SURVEY OF XML TREE PATTERNS 37



. x0 is a descendant of x if and only if S < S0 and
E0 < E;

. x0 is a child of x if and only if S < S0, E0 < E, and
L0 ¼ Lþ 1.

For example, in Fig. 11, node ðauthor ¼ “Jack”) labeled (18,
19, 4) is a descendant from the node book labeled (12, 25, 2)
and a child of node authors labeled (15, 20, 3).

The Dewey ID scheme [60] labels tree nodes as a
sequence. The root node is labeled � (empty). Its children
are labeled 0, 1, 2, etc. Then, at any subsequent level, the
children of node x are labeled labelðxÞ:0, labelðxÞ:1,
labelðxÞ:2, etc. More formally, for each nonroot element x0,
labelðx0Þ ¼ labelðxÞ:i, where x0 is the ith child of x. Thus,
each label embeds all ancestors of the associated node. For
example, in Fig. 11, the Dewey ID label is featured on the
right-hand side of the “/,” for each node. Node ðauthor ¼
“Jack”), labeled 1.1.1, is the second child of the node labeled
1.1 (i.e., authors), and a descendant of the node labeled 1
(i.e., the right-hand side book).

The Dewey ID scheme has been extended to incorporate
node names [61], by exploiting schema information avail-
able in a DTD or XML schema. Encoding node names along
a path into a Dewey label provides not only the labels of the
ancestors of a given node, but also their names. Moreover,
the Dewey ID scheme suffers from a high relabeling cost for
dynamic XML documents where nodes can be arbitrarily
inserted and deleted. Thus, variant schemes, namely
ORDPATH [62] and Dynamic DEwey (DDE) [63], have
been devised to dynamically extend the domain of label
component values, so that no global relabeling is required.

The main difference between the region encoding and
Dewey ID labeling schemes lies in the way structural
relationships can be inferred from a label. While region
encoding necessitates two nodes to determine whether they
are related by a PC or AD relationship, Dewey IDs directly
relate to ancestors and thus only require to know the
current node’s label. A Dewey ID-labeled data tree is also
easier to update than a region encoded data tree [64].

4.2.2 Computing Phase

Various holistic algorithms actually achieve TP matching,
but they all exploit a data list that, for each node, contains all
labels of nodes of the same type. In this section, we first
review the approaches based on the region encoding scheme,
which were first proposed, and then the approaches based on
the Dewey ID scheme.

As their successors, the first popular holistic matching
algorithms, PathStack and TwigStack, proceed in two steps
[59]: intermediate path solutions are output to match each
query root-to-leaf path, and then merged to obtain the final
result. For example, let us consider the TP represented on the
left-hand side of Fig. 12, to be matched against the data tree
from Fig. 11. Intermediate path solutions follow, expressed
as labels:

. book=title: (2, 11, 2) (3, 4, 3), (12, 25, 2) (13, 14, 3)

. book=editor: (2, 11, 2) (7, 8, 3), (12, 25, 2) (21, 22, 3).

After merging these intermediate paths, we obtain the label
paths below, which correspond to the witness trees
represented on the right-hand side of Fig. 12:

. (2, 11, 2) (3, 4, 3) (7, 8, 3)

. (12, 25, 2) (13, 14, 3) (21, 22, 3).

One issue with TwigStack is that it only considers AD
relationships in the TP and does not consider level
information. Hence, it may output many useless intermedi-
ate results for queries with PC relationships. Moreover, it
cannot process queries with order predicates.

On one hand, in order to reduce the search space, path
summaries that exploit schema information may be used
[65]. If a pattern subtree matches a data tree several times,
TwigStack loads streams for all distinct paths, whether
these streams contribute to the output or not. Path
summaries help distinguish whether the occurrences of
each pattern subtree are output elements or not. Those that
do not are pruned.

On the other hand, TwigStackList better controls the size
of intermediate results by buffering parent elements in PC
relationships in a main-memory list structure [66]. Thus,
only AD relationships in branching edges1 are handled by
TwigStackList, and not in all edges as with TwigStack.
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Fig. 11. Sample data tree labeling.

1. A branching node is a node whose number of children is greater than 1.
All edges originating from a branching node are called branching edges [66].Fig. 12. Sample holistic matching.



OrderedTJ builds upon TwigStackList by handling order

specifications in TPs [67]. OrderedTJ additionally checks the

order conditions of nodes before outputting intermediate

paths, with the help of a stack data structure.
Since TwigStack and OrderedTJ partition data to streams

according to their names alone, two new data streaming

techniques are introduced in iTwigJoin [68]: the tagþlevel

and prefix path schemes. In the OrderedTJ algorithm, only

AD relationships in branching edges are taken into account.

The tag+level scheme also takes PC relationships in all

edges into account. The prefix path scheme further takes 1-

branching into account.
An eventual enhancement has been brought by

Twig2Stack, which optimizes TwigStack by further redu-

cing the size of intermediate results [69]. Twig2Stack

associates each query node x with a hierarchical stack. A

node x0 is pushed into hierarchical stack HS½x� if and only if

x0 satisfies the subtwig query rooted at x. Matching can be

determined when an entire subtree of x0 is seen with respect

to postorder data tree traversal. Baca et al. also fuse

TwigStack and Twig2Stack along the same line, still to

reduce the size of intermediate results [70].
Simply replacing the region encoding labeling scheme by

the Dewey ID scheme would not particularly improve holistic

matching approaches, since they would also need to read

labels for all tree nodes. However, exploiting the extended

Dewey labeling scheme allows further improvements.
TJFast constructs, for each node x in the TP, an input

stream Tx [61]. Tx contains the ordered extended Dewey

labels of nodes of the same type as x. As TwigStackList,

TJFast assigns, for each branching node b, a set of nodes Sb
that are potentially query answers. But with TJFast, the size

Sb is always bounded by the depth of the data tree. TJFast+L

further extends TJFast by including the tag+level streaming

scheme [64].
Eventually, Lu et al. have recently identified a key issue

in holistic algorithms, called matching cross [36]. If a

matching cross is encountered, a holistic algorithm either

outputs useless intermediate results and becomes subopti-

mal, or misses useful results and looses its matching power.

Based on this observation, the authors designed a set of

algorithms, collectively called TreeMatch, which use a

concise encoding to present matching results, thus reducing

useless intermediate results. TreeMatch has been proved

optimal for several classes of queries based on extended

TPs (Section 3.2.6).

4.2.3 Structural Summary-Based Approaches

These approaches aim at avoiding repeated access to the
input data tree. Thus, they exploit structural summaries
similar to the DataGuide proposed for semistructured
documents [71]. A DataGuide’s structure describes using
one single label all the nodes whose labels (types) are
identical. Its definition is based on targeted path sets,
i.e., sets of nodes that are reached by traversing a given
path. For example, the DataGuide corresponding to the data
tree from Fig. 2a is represented in Fig. 13.

While a DataGuide can efficiently answer queries with
PC edges (by matching the query path against the label
path directly), it cannot process queries with AD edges nor
twig queries, because it does not preserve hierarchical
relationships [72]. Combining a DataGuide with a labeling
scheme that captures AD relationships allows the recon-
struction, for any node x in a data tree t, of the specific path
instance x belongs to. Thus, in the computing phase, node
labels can be compared without accessing labels related to
inner TP nodes [34].

For instance, TwigX-Guide combines a DataGuide to the
region encoding labeling scheme [72]. Version Tree is an
annotated DataGuide in which labels include a version
number for nodes of the same type (e.g., all book nodes)
[73]. Combined to the Dewey ID labeling scheme, it
supports a matching algorithm called TwigVersion. Finally,
QueryGuide labels DataGuide nodes with Dewey ID lists
and is part of the S3 matching method [34]. All three
approaches have been experimentally shown to perform
matching faster than previous holistic algorithm such as
TwigStack and TJFast.

4.3 Other Pattern Tree Matching Approaches

We present in this section matching approaches of interest
that do not fall into the minimization and holistic families
of methods, namely tree homeomorphism matching
(Section 4.3.1) and TP relaxation (Section 4.3.2).

4.3.1 Tree Homeomorphism Matching

The tree homeomorphism matching problem is a particular
case of the TP matching problem. More precisely, the
considered TPs only bear descendant edges. Formally, given
a TP p and a data tree t, tree homeomorphism matching aims
at determining whether there is a mapping � from the nodes
of p to the nodes t such that if node x0 is a child of x in p, then
�ðx0Þ is a descendant of �ðxÞ in t.

Götz et al. propose a series of algorithms that aim at
reducing the time and space complexity of previous home-
omorphism matching algorithms [74]. Their whole work is
based on a simple matching procedure called MATCH. Let x
be a node of TP p and y a node of data tree t. MATCH tests
whether the subtree rooted at x, subtreeðxÞ, matches
subtreeðyÞ. If y matches x, children of x are recursively
tested to match any child of y. If y does not match x, then x is
recursively tested to match any child of y. MATCH uses the
recursion stack to determine which function call to issue next
or which final value to return, e.g., to determine the data
node y onto which x’s parent was matched in t before
proceeding with x’s siblings. In opposition, L-MATCH

recomputes the information necessary to make the decision
with a backtracking function.
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MATCH and L-MATCH are space-efficient top-down

algorithms, but involve a lot of recomputing and thus bear

a high time complexity. Thus, Götz et al. also introduce a

bottom-up strategy. It is based on algorithm TMATCH that

addresses the tree homeomorphism problem. TMATCH

exploits a left-to-right postorder ordering <post on nodes,

and returns the largest (w.r.t. <post ) TP node x in an interval

½xfrom; xuntil� (still w.r.t. <post ) such that subtreeðyÞ matches
½xfrom; x� if x exists; and xfrom � 1 (the predecessor of xfrom
w.r.t. <post ) otherwise. Finally, TMATCH-ALL generalizes

TMATCH to address the tree homeomorphism matching

problem, i.e., TMATCH-ALL computes all possible exact

matches of p against t.

4.3.2 Tree Pattern Relaxation

TP relaxation is not an optimization of the matching process

per se, but an optimization of its result with respect to user

expectations. TP relaxation indeed allows approximate TP

matching and returns ranked answers in the spirit of

Information Retrieval [37]. Four TP relaxations are proposed,

the first two relating to structure and the last two to content:

1. Edge generalization permits a PC edge in the TP to be
generalized to an AD edge. For example, in Fig. 14,
the book=title edge can be generalized to allow books
with any descendant title node to appear in the
witness tree.

2. Subtree promotion permits to connect a whole subtree
to its grandparent by an AD edge. For example, in
Fig. 14, the address node can be promoted to allow
book nodes that have a descendant address node to
be output even if the address node is not a
descendant of the editor node.

3. Leaf node deletion permits a leaf node to be deleted.
For example, in Fig. 14, the summary node can be
deleted, allowing for books to appear in the witness
tree whether they bear a summary or not.

4. Node generalization permits to generalize the type of a
query node to a supertype. For example, in Fig. 14,
the node book could be generalized to node doc
(document) from Fig. 2a.

Answer ranking is achieved by computing a score. To

this aim, the weighted TP is introduced, where each node

and edge is associated with an exact weight ew and a

relaxed weight rw such that ew � rw. Fig. 14 features a

sample weighted TP. In this example, the score of exact

matches of the weighted TP is equal to the sum of the exact

weight of its nodes and edges, i.e., 41. If the node book was

generalized to doc, the score of an approximate answer that

is a document is the sum of rwðbookÞ and the exact weight of
the other nodes and edges, i.e., 35.

4.4 Discussion

In this section, we discuss and compare the TP matching
optimization approaches surveyed in Sections 4.1, 4.2, and
4.3; except TP relaxation, whose goal is quite different (i.e.,
augmenting user satisfaction rather than matching effi-
ciency). Choosing objective comparison criteria is pretty
straightforward for algorithms. Time and space complexity
immediately come to mind, though they are diversely
documented in the papers we survey.

We could also retain algorithm correctness as a comparison
criterion, although proofs are quite systematically provided
by authors of matching optimization approaches. Thus, we
only notice here that none of the minimization algorithms
reviewed in Section 4.1 actually test the equivalence of
minimal TP pmin to original TP p. More precisely, contain-
ment (i.e., pmin � p) is checked a posteriori, but the
minimization process being assumed correct, equivalence
is not double checked.

Algorithm comparison with respect to complexity follows
(Sections 4.4.1 and 4.4.2), and is synthesized in Section 4.4.3,
where we also further discuss the complementarity between
TP minimization and holistic approaches.

4.4.1 Time Complexity

Time complexity is quite well documented for minimization
approaches. Except the first, naive matching algorithms [16],
all optimized minimization algorithms, whether they take
ICs into account or not, have the worst case time complexity
of Oðn2Þ, where n is the size (number of nodes) of the TP. A
notable exception is Chen and Chan’s extension of ICs to
FSBT constraints [44] that makes the matching problem more
complex. Thus, their algorithms range in complexity, with
respect to the combination of ICs that are processed, from
Oðn2Þ (F and FS ICs) to Oðn3 
 sþ n2 
 s2Þ (FSBT ICs), where s
is the size of the set of element types in ICs.

On the other hand, in papers about holistic approaches,
complexity is often disregarded in favor of the class of TP a
given algorithm is optimal for. The class of TP may be [75]

. AD: a TP containing only AD edges, which may
begin with a PC edge;

. PC: a TP containing only PC edges, which may begin
with an AD edge;

. one-branching node TP: a TP containing at most one
branching node;

. AD in branches TP: a TP containing only AD edges
after the first branching node;

. PC before AD TP: a TP where an AD edge is never
found before a PC edge.

Holistic approaches indeed all have the same worst case
time complexity. It is linear in the sum of all sizes of the
input lists they process and the output list. However, since
these approaches match twigs, they enumerate all root-to-
leaf path matches. Thus, their complexity is actually
exponential in n, i.e., it is OðdnÞ, where d is the size (number
of nodes) of the input data tree [69]. Only Twig2Stack has a
lower complexity, in Oðd 
 bÞ, where b ¼ maxðb1; b2Þ with b1

being the maximum number of query nodes with the same
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label and b2 the maximum total number of children of query
nodes with the same labels (b � n) [69]; as well as
TreeMatch [36], which has been experimentally shown to
outperform Twig2Stack.

Structural summary-based approaches (Section 4.2.3)
have been experimentally shown to perform matching
faster than previous holistic algorithms such as TwigStack
and TJFast. However, they have neither been compared to
one another, nor to TreeMatch. Moreover, their time
complexity is expressed in terms of DataGuide degree
and specific features such as the number of versions in
TwigVersion [73], so it is not easy to directly compare it to
other holistic algorithms’. For instance, TwigVersion has the
worst case time complexity of Oðlv 
 nv þ lp 
 eÞ, where lv is
the depth of version tree (annotated DataGuide) v, nv is the
total number of versions on nodes of v whose tags appear in
the leaf nodes of TP p, lp the depth of TP p, and e is the size
of the edge set containing all edges that are on paths from
nodes of v whose tags appear in the leaf nodes of p to the
root node of v [73].

Finally, the complexity of tree homeomorphism match-
ing is proved to be Oðn 
 d 
 lpÞ [74].

4.4.2 Space Complexity

Space complexity is intensively addressed in the literature
regarding holistic approaches, which can produce many
intermediate results whose volume must be minimized, so

that algorithms can run in memory with as low response

time as possible. On the other hand, space complexity is not

considered an issue in minimization processes, which

prune nodes in PTs that are presumably small enough to

fit into any main memory.
Regarding holistic approaches, the worst case space

complexity of TwigStack is minðn 
 lt; sÞ [59], where n is

defined as in Section 4.4.1, lt is the depth of data tree t and s

is the sum of sizes of the n input lists in the computing

phase (Section 4.2.2). Subsequent holistic algorithms are

more time efficient than Twigstack because they are more

space efficient. TwigStackList and iTwigJoin both have

the worst case space complexity of Oðn 
 ltÞ [66], [68].

Noticeably, Twig2Stack’s space complexity is indeed the

same as its time complexity, i.e., Oðd 
 bÞ (Section 4.4.1).

Finally, TJFast and TreeMatch have the worst case space

complexity of Oðl2t 
 bf þ lt 
 fÞ, where bf is the maximal

branching factor of the input data tree and f the number of

leaf nodes in the TP [36], [61].
Structural summary approaches’ space complexity, as is

the case for time complexity, is difficult to compare because

of their specifics. For example, the worst case space

complexity of TwigVersion is Oðlv 
 nvÞ, where lv and nv are

defined as in Section 4.4.1 [73]. Eventually, tree home-

omorphism matching algorithms have a space complexity of

Oðlt 
 logðbfÞÞ [74].
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4.4.3 Synthesis

Table 2 recapitulates the characteristics of all matching
optimization algorithms surveyed in this paper. In addition
to the complexity comparison criteria discussed above, we
also indicate in Table 2 the type of TP handled by each
algorithm, in reference to Section 3, as well as each
algorithm’s distinctive features. The first third of Table 2 is
dedicated to minimization approaches, the second to holistic
approaches, and the third to tree homeomorphism matching.

In the light of this synthesis, we can notice again that TP
minimization and holistic approaches have developed along
separate roads. Papers related to one approach seldom refer
to the other. Indeed, these two families of approaches cannot
be compared, e.g., in terms of raw complexity, since TP
minimization operates on TPs only, while holistic ap-
proaches optimize the actual matching of a TP against a data
tree. TP minimization is actually implicitly considered as
preprocessing TPs before matching [76]. We nonetheless find
it surprising that nobody has ever combined TP minimiza-
tion to holistic matching in a single framework to benefit
from optimization of both data tree access and TP size.

Eventually, Table 2 clearly outlines the history and
outcome of the families of algorithms we survey. With
respect to PT minimization algorithms, unless elaborated ICs
(i.e., FSBT ICs) are needed, the choice should clearly fall on an
approach whose time complexity is Oðn2Þ, such as the
coverage-based approaches [43], [49]. With respect to holistic
matching, the raw efficiency of algorithms is not always easy
to compare, especially between the latest descendants of
Twigstack and structural summary-based approaches such
as TwigVersion [73] or S3 [34], for both complexity and
experimental studies remain partial as of today. The types of
TPs (Section 4.4.1) for which an approach is optimal thus
remains a primary criterion. However, we agree with
Grimsmo and Bjørklund in stating that a global holistic
approach, i.e., an approach that encompasses all kinds of TPs,
is most desirable [19]. In this respect, TreeMatch [36] appears
as the most comprehensive solution as of today.

5 TREE PATTERN USAGES

Beside expressing and optimizing queries over tree-struc-
tured documents, TPs have also been exploited for various
purposes ranging from system optimization (e.g., query
caching [77], [78], addressing and routing over a peer-to-peer
network [79]) to high-level database operations (e.g., schema
construction [80], active XML (AXML) query satisfiability
and relevance [81], [82]) and knowledge discovery (e.g.,
discovering user communities [83]).

In this section, we investigate the most prominent of TP
usages we found in the literature, which we classify by the
means used to achieve the goals we have listed above (e.g.,
routing and query satisfiability), i.e., TP mining (Section 5.1),
TP rewriting (Section 5.2) and extensions to matching
(Section 5.3).

5.1 Tree Pattern Mining

TP mining actually summarizes into discovering frequent

subtrees in a collection of TPs. It is used, for instance, to

cache the results of frequent patterns, which significantly

improves query response time [77], produce data ware-

house schemas of integrated XML documents from histor-

ical user queries [80], or help in website management by

mining data streams [84].

5.1.1 Problem Formulation

LetC ¼ fp1; p2; . . . ; png be a collection of n TPs andminsup 2
½0; 1� a number called minimum support. The support of any

rooted subtree (denoted RST) r is supðrÞ ¼ freqðrÞ=n, where

freqðrÞ is the total occurrence of r in C. Then, the problem of

mining frequent RSTs from C may be defined as finding the

set F ¼ fr1; r2; . . . ; rmg of m RSTs such that 8i 2 ½1;m�;
supðriÞ � minsup [77].

For example, let us consider TP collectionC and RST r from

Fig. 15. Since r � p1 and r � p2, freqðrÞ ¼ 2 and supðrÞ ¼ 2
3 . If

minsup ¼ 1
2 , then r is considered frequent. Note that search-

ing frequent RSTs relies on testing containment (Section 4.1.1)

against TPs of C.

5.1.2 Frequent Subtree Mining Algorithms

One of the first frequent RST mining algorithm, XQPMiner

[85], operates like the famous frequent item set mining

algorithm Apriori [86]. XQPMiner initializes by enumerat-

ing all frequent one-edge RSTs. Then, each further step i is

subdivided in two substeps:

1. candidate i-edge RSTs are built from ði� 1Þ-edge
RSTs and filtered with respect to the minimum
support;

2. each remaining i-edge RST is tested for containment
in each TP of C to compute its support.

FastXMiner optimizes this process by constructing a

global query pattern tree (Section 3.2.1) over C. Then, a tree-

encoding scheme is applied on the G-QTP to partition

candidate RSTs into equivalence classes. The authors show

that only single-branch candidate RSTs need to be matched
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Fig. 15. Sample tree pattern collection and rooted subtree.



against the TPs fromC, which leads to a large reduction in the
number of tree inclusion tests [77].

MineFreq further builds upon this principle by mining
frequent RST sets [80]. A frequent RST set must satisfy two
requirements:

1. support requirement: supðr1; r2; . . . ; rnÞ � minsup;

2. confidence requirement: 8ri; freqðr1;r2;...;rnÞ
freqðriÞ � minconf ,

where minconf is a minimum confidence user-
specified threshold.

The algorithm again proceeds by level, the n-item set RST
candidates being generated by joining ðn� 1Þ item set
frequent RSTs. Candidates in which one or more ðn� 1Þ-
subsets are infrequent are pruned, for they cannot be
frequent. Remaining candidates are then filtered with
respect to support and confidence. Finally, frequent TPs are
built by joining all RSTs in each frequent RST set.

Eventually, Stream Tree Miner (STMer) mines frequent
labeled ordered subtrees over a tree-structured data stream
[84]. Its main contribution lies in candidate subtree
generation, which is suitably incremental.

5.2 Tree Pattern Rewriting

Query rewriting is casually used when views, whether they
are materialized or not, are defined over data. Rewriting a
query Q that runs against a database D is formulating a
query Q0 that runs against a view V built from D such that Q
andQ0 output the same result. When data are tree structured,
views are predefined TPs. Then, Q0 is found among the so-
called useful embeddings (UEs) ofQ in V ; the problem being
to prune redundant, useless UEs [78]. The heuristics that
address this issue [78], [87], [88] rely on containment testing
(Section 4.1.1) to output a minimal set of UEs.

Query rewriting is also notably used in Peer Data
Management Systems (PDMSs). In a PDMS, each peer is
associated with a schema that represents the peer’s domain
of interest, as well as semantic relationships to neighboring
peers. Thus, a query over one peer can obtain relevant data
from any reachable peer in the PDMS. Semantic paths are
traversed by reformulating queries at a peer into queries on
its neighbors, and then to the neighbors’ neighbors,
recursively. In the Piazza PDMS [79], data are modeled in
XML, peer schemas in XML Schema, and queries in a subset
of XQuery. Thus, query reformulation optimization
strongly relates to TP matching optimization. For instance,
one query may follow multiple paths in a PDMS, and thus
may induce redundant reformulations, i.e., redundant
queries on the peers. Pruning queries help reduce such
redundancy. Pruning requires checking query containment
(Section 4.1.1) between a previously obtained reformulation
and a new one. The reformulating process may also
introduce redundant subexpressions in a query, leading to
query minimization (Section 4.1).

5.3 Extended Matching

We review in this section two ways of “pushing” matching
further on. The first one relates to checking the satisfiability
of TPs against Active XML documents [81], [82]. AXML
documents contain both data defined in extension (as in
XML documents) and in intention, by means of web service
calls [89]. When a web service is invoked, its result is
inserted into the document. In this context, a priori checking

whether a query (TP) is satisfiable, i.e., whether there exists
any document the TP matches against, helps avoid
unnecessary query computations.

Although TP satisfiability is well studied [22], with AXML
documents, web service calls may also return data that
contribute to query results, which makes the problem even
more complex. Here, some fact is satisfiable for an AXML
document and a query if it can be in the query result in some
future state [82]. As Miklau and Suciu did for containment
testing (Section 4.1.1), Ma et al. use tree automata to represent
both TPs and sets of AXML documents conforming to a given
schema. Then, the product tree automaton helps decide
whether a TP matches any document. Abiteboul et al. further
test the relevance of web service calls, i.e., whether the result
can impact query answer [82].

The other example of matching enhancement lies in the
context of building semantic communities, i.e., clusters of
users with similar interests modeled as TPs. Chand et al.
propose to replace equivalence by similarity in matching,
which could more generally be used to approximate XML
queries [83], as TP relaxation (Section 4.3.2). Chand et al.
formulate the TP similarity problem as follows. Let S be a
set of TPs, D a set of data trees, and p; q 2 S. The similarity
of p and q is a function sim : S2 7!½0; 1� such that simðp; qÞ is
the probability that p matches the same subset of data from
D as q. Note that, depending on the proximity metric,
simðp; qÞ may be different from simðq; pÞ.

6 CONCLUSION

We provide in this paper a comprehensive survey about
XML tree patterns, which are nowadays considered crucial
in XML querying and its optimization. We first compare TPs
from a structural point of view, concluding that the richer a
TP is with matching possibilities, the larger the subset of
XQuery/XPath it encompasses, and thus the closer to user
expectations it is.

Second, acknowledging that TP querying, i.e., matching
a TP against a data tree, is central in TP usage, we review
methods for TP matching optimization. They belong to two
main families: TP minimization and holistic matching. We
trust we provide a good overview of these approaches’
evolution, and highlight the best algorithms in each family
as of today. Moreover, we want to emphasize that TP
minimization and holistic matching are complementary and
should both be used to wholly optimize TP matching.

We eventually illustrate how TPs are actually exploited
in several application domains such as system optimization,
network routing or knowledge discovery from XML
sources. We especially demonstrate the use of frequent TP
mining and TP rewriting for various purposes.

Although TP-related research, which has been ongoing
for more than a decade, could look mature in the light of
this survey, it is perpetually challenged by the ever-growing
acceptance and usage of XML. For instance, recent applica-
tions require either querying data with a complex or only
partially known structure, or integrating heterogeneous
XML data sources (e.g., when dealing with streams). The
keyword search-based languages that address these pro-
blems cannot be expressed with TPs [90]. Thus, TPs must be
extended, e.g., by the so-called partial tree-pattern queries

HACHICHA AND DARMONT: A SURVEY OF XML TREE PATTERNS 43



(PTPQs) that allow the partial specification of a TP and are
not restricted by a total order on nodes [90], [91]. In turn,
adapted matching procedures must be devised [92], a trend
that is likely to perpetuate in the near future.

Moreover, we purposely focus on the core of TP-related
topics in this survey (namely, TPs themselves, matching
issues and a couple of applications). There is nonetheless a
large number of important topics that we could not address
due to space constraints, such as TP indexing, TP-based view
selection, TP for probabilistic XML, and continuous TP
matching over XML streams.
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[70] R. Baca, M. Krátk�y, and V. Snásel, “On the Efficient Search of an
XML Twig Query in Large DataGuide Trees,” Proc. 12th Int’l
Database Eng. and Applications Symp. (IDEAS ’08), pp. 149-158, 2008.

[71] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases,”
Proc. 23rd Int’l Conf. Very Large Data Bases, pp. 436-445, 1997.

[72] S.-C. Haw and C.-S. Lee, “TwigX-Guide: An Efficient Twig Pattern
Matching System Extending DataGuide Indexing and Region
Encoding Labeling,” J. Information Science and Eng., vol. 25, no. 2,
pp. 603-617, 2009.

[73] X. Wu and G. Liu, “XML Twig Pattern Matching Using Version
Tree,” Data and Knowledge Eng., vol. 64, no. 3, pp. 580-599, 2008.

[74] M. Götz, C. Koch, and W. Martens, “Efficient Algorithms for
Descendant-Only Tree Pattern Queries,” Information Systems,
vol. 34, no. 7, pp. 602-623, 2009.

[75] R. Baca, “Path-Based Approaches to the Twig Pattern Query
Searching,” PhD dissertation, VSB-Technical Univ. of Ostrava,
Czech Republic, 2008.

[76] J. Yao and M. Zhang II, “A Fast Tree Pattern Matching Algorithm
for XML Query,” Proc. IEEE/WIC/ACM Int’l Conf. Web Intelligence
(WI ’04), pp. 235-241, 2004.

[77] L.H. Yang, M.-L. Lee, and W. Hsu, “Efficient Mining of XML
Query Patterns for Caching,” Proc. 29th Int’l Conf. Very Large Data
Bases (VLDB ’03), pp. 69-80, 2003.

[78] J. Wang, K. Wang, and J. Li, “Finding Irredundant Contained
Rewritings of Tree Pattern Queries Using Views,” Proc. Joint Int’l
Conf. Advances in Data and Web Management, (APWeb/WAIM ’09),
pp. 113-125, 2009.

[79] I. Tatarinov and A.Y. Halevy, “Efficient Query Reformulation in
Peer-Data Management Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’04), pp. 539-550, 2004.

[80] J. Zhang, T.W. Ling, R.M. Bruckner, and A.M. Tjoa, “Building
XML Data Warehouse Based on Frequent Patterns in User
Queries,” Proc. Fifth Int’l Conf. Data Warehousing and Knowledge
Discovery (DaWaK ’03), pp. 99-108, 2003.

[81] H.-T. Ma, Z.-X. Hao, and Y. Zhu, “Checking Satisfiability of Tree
Pattern Queries for Active XML Documents,” INFOCOMP J.
Computer Science, vol. 7, no. 1, pp. 11-18, 2008.

[82] S. Abiteboul, P. Bourhis, and B. Marinoiu, “Satisfiability and
Relevance for Queries Over Active Documents,” Proc. 28th ACM
SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems
(PODS ’09), pp. 87-96, 2009.

[83] R. Chand, P. Felber, and M.N. Garofalakis, “Tree-Pattern
Similarity Estimation for Scalable Content-Based Routing,” Proc.
23rd Int’l Conf. Data Eng. (ICDE ’07), pp. 1016-1025, 2007.

[84] M.C.-E. Hsieh, Y.-H. Wu, and A.L.P. Chen, “Discovering Frequent
Tree Patterns over Data Streams,” Proc. Sixth SIAM Int’l Conf. Data
Mining (SDM ’06), 2006.

[85] L.H. Yang, M.-L. Lee, W. Hsu, and S. Acharya, “Mining Frequent
Query Patterns from XML Queries,” Proc. Eighth Int’l Conf.
Database Systems for Advanced Applications (DASFAA ’03),
pp. 355-362, 2003.

HACHICHA AND DARMONT: A SURVEY OF XML TREE PATTERNS 45



[86] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases (VLDB ’94), pp. 487-499, 1994.
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