
2250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

Outlier Detection for Temporal Data: A Survey
Manish Gupta, Jing Gao, Member, IEEE, Charu C. Aggarwal, Fellow, IEEE, and Jiawei Han, Fellow, IEEE

Abstract—In the statistics community, outlier detection for time series data has been studied for decades. Recently, with advances in
hardware and software technology, there has been a large body of work on temporal outlier detection from a computational
perspective within the computer science community. In particular, advances in hardware technology have enabled the availability of
various forms of temporal data collection mechanisms, and advances in software technology have enabled a variety of data
management mechanisms. This has fueled the growth of different kinds of data sets such as data streams, spatio-temporal data,
distributed streams, temporal networks, and time series data, generated by a multitude of applications. There arises a need for an
organized and detailed study of the work done in the area of outlier detection with respect to such temporal datasets. In this survey,
we provide a comprehensive and structured overview of a large set of interesting outlier definitions for various forms of temporal data,
novel techniques, and application scenarios in which specific definitions and techniques have been widely used.

Index Terms—Temporal outlier detection, time series data, data streams, distributed data streams, temporal networks, spatio-temporal
outliers, applications of temporal outlier detection, network outliers

1 INTRODUCTION

OUTLIER detection is a broad field, which has been
studied in the context of a large number of application

domains. Aggarwal [1], Chandola et al. [2], Hodge et al. [3]
and Zhang et al. [4] provide an extensive overview of out-
lier detection techniques. Outlier detection has been studied
in a variety of data domains including high-dimensional
data [5], uncertain data [6], streaming data [7]–[9], net-
work data [9]–[13] and time series data [14], [15]. Outlier
detection is very popular in industrial applications, and
therefore many software tools have been built for effi-
cient outlier detection, such as R (packages ‘outliers’1

and ‘outlierD’ [16]), SAS2, RapidMiner3, and Oracle
datamine4.

The different data domains in outlier analysis typically
require dedicated techniques of different types. Temporal
outlier analysis examines anomalies in the behavior of
the data across time. Some motivating examples are as
follows.

1. http://cran.r-project.org/web/packages/outliers/outliers.pdf
2. http://www.nesug.org/Proceedings/nesug10/ad/ad07.pdf
3. http://www.youtube.com/watch?v=C1KNb1Kw-As
4. http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/
anomalies.htm

• M. Gupta is with Microsoft, Gachibowli, Hyderabad 500032, India.
E-mail: gmanish@microsoft.com.

• J. Gao is with the University at Buffalo, State University of New York,
Buffalo, NY 14260 USA. E-mail: jing@buffalo.edu.

• C. C. Aggarwal is with the IBM T.J. Watson Research Center, Yorktown,
NY 10598 USA. E-mail: charu@us.ibm.com.

• J. Han is with University of Illinois at Urbana-Champaign, Urbana-
Champaign, IL 61801 USA. E-mail: hanj@illinois.edu.

Manuscript received 26 Feb. 2013; revised 15 Oct. 2013; accepted 27 Nov.
2013. Date of publication 15 Dec. 2013; date of current version 31 July 2014.
Recommended for acceptance by J. Pei.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.184

• Financial Markets: An abrupt change in the stock
market, or an unusual pattern within a specific win-
dow such as the flash crash of May 6, 2010 is an
anomalous event which needs to be detected early
in order to avoid and prevent extensive disruption
of markets because of possible weaknesses in trading
systems.

• System Diagnosis: A significant amount of data gen-
erated about the system state is discrete in nature.
This could correspond to UNIX system calls, aircraft
system states, mechanical systems, or host-based
intrusion detection systems. The last case is particu-
larly common, and is an important research area in
its own right. Anomalies provide information about
potentially threatening and failure events in such
systems.

• Biological Data: While biological data is not temporal
in nature, the placement of individual amino-acids
is analogous to positions in temporal sequences.
Therefore, temporal methods can be directly used for
biological data.

• User-action Sequences: A variety of sequences abound
in daily life, which are created by user actions
in different domains. These include web browsing
patterns, customer transactions, or RFID sequences.
Anomalies provide an idea of user-behavior which
is deviant for specific reasons (e.g., an attempt to
crack a password will contain a sequence of login
and password actions).

This broad diversity in applications is also reflected in
the diverse formulations and data types relevant to outlier
detection. A common characteristic of all temporal out-
lier analysis is that temporal continuity plays a key role in
all these formulations, and unusual changes, sequences, or
temporal patterns in the data are used in order to model
outliers. In this sense, time forms the contextual variable
with respect to which all analysis is performed. Temporal

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2251

Fig. 1. Organization of the survey.

outlier analysis is closely related to change point detec-
tion, and event detection, since these problems represent
two instantiations of a much broader field. The problem
of forecasting is closely related to many forms of tem-
poral outlier analysis, since outliers are often defined as
deviations from expected values (or forecasts). Nevertheless,
while forecasting is a useful tool for many forms of out-
lier analysis, the broader area seems to be much richer and
multi-faceted.
Different Facets of Temporal Outlier Analysis: Outlier
analysis problems in temporal data may be categorized in a
wide variety of ways, which represent different facets of the
analysis. The area is so rich that no single type of abstract
categorization can fully capture the complexity of the prob-
lems in the area, since these different facets may be present
in an arbitrary combination. Some of these facets are as
follows.

• Time-series vs Multidimensional Data Facet: In time-
series data (e.g., sensor readings) the importance of
temporal continuity is paramount, and all analysis
is performed with careful use of reasonably small
windows of time (the contextual variable). On the
other hand, in a multi-dimensional data stream such
as a text newswire stream, an application such as
first-story detection, might not rely heavily on the tem-
poral aspect, and thus the methods are much closer
to standard multi-dimensional outlier analysis.

• The Point vs Window Facet: Are we looking for an
unusual data point in a temporal series (e.g., sud-
den jump in heart rate in ECG reading), or are we
looking for an unusual pattern of changes (contigu-
ous ECG pattern indicative of arrythmia)? The latter
scenario is usually far more challenging than the for-
mer. Even in the context of a multi-dimensional data
stream, a single point deviant (e.g., first story in a
newswire stream) may be considered a different kind
of outlier than an aggregate change point (e.g., sud-
den change in the aggregate distribution of stories
over successive windows).

• The Data Type Facet: Different kinds of data such
as continuous series (e.g., sensors), discrete series
(e.g., web logs), multi-dimensional streams (e.g., text
streams), or network data (e.g., graph and social
streams) require different kinds of dedicated meth-
ods for analysis.

• The supervision facet: Are previous examples of
anomalies available? This facet is of course common
to all forms of outlier analysis, and is not specific to
the temporal scenario.

These different facets are largely independent of one
another, and a large number of problem formulations are
possible with the use of a combination of these different
facets. Therefore, this paper is largely organized by the
facet of data type, and examines different kinds of scenarios
along this broad organization.
Specific Challenges for Outlier Detection for Temporal
Data: While temporal outlier detection aims to find rare
and interesting instances, as in the case of traditional out-
lier detection, new challenges arise due to the nature of
temporal data. We list them below.

• A wide variety of anomaly models are possible
depending upon the specific data type and scenario.
This leads to diverse formulations, which need to
be designed for the specific problem. For arbitrary
applications, it may often not be possible to use off-
the-shelf models, because of the wide variations in
problem formulations. This is one of the motivating
reasons for this survey to provide an overview of
the most common combinations of facets explored
in temporal outlier analysis.

• Since new data arrives at every time instant, the
scale of the data is very large. This often leads to
processing and resource-constraint challenges. In the
streaming scenario, only a single scan is allowed.
Traditional outlier detection is much easier, since it
is typically an offline task.

• Outlier detection for temporal data in distributed
scenarios poses significant challenges of minimizing
communication overhead and computational load in
resource-constrained environments.

In this work, we aim to provide a comprehensive and
structured overview of outlier detection techniques for tem-
poral data. Fig. 1 shows the organization of the survey
with respect to the data type facet. For each data type, we
discuss specific problem classes in various subsections. We
begin with the easiest scenario for temporal data – discrete
time series data (Section 2). However a lot of data gets
sampled over very short time intervals, and keeps flow-
ing in infinitely leading to data streams. We will study
techniques for outlier detection in streams in Section 3.

2252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

Often times, data is distributed across multiple locations.
We study how to extract global outliers in such distributed
scenarios in Section 4. For some applications like environ-
mental data analysis, data is available over a continuum of
both space and time dimensions. We will study techniques
to handle such data in Section 5. Finally, networks can cap-
ture very rich semantics for almost every domain. Hence,
we will discuss outlier detection mechanisms for network
data in Section 6. We will also present a few applications
where such temporal outlier detection techniques have been
successfully employed in Section 7. The conclusions are
presented in Section 8.

2 TIME SERIES OUTLIER DETECTION

A significant amount of work has been performed in
the area of time series outliers. Parametric models for
time series outliers [15] represents the first work on out-
lier detection for time series data. Several models were
subsequently proposed in the statistics literature, includ-
ing autoregressive moving average (ARMA), autoregressive
integrated moving average (ARIMA), vector autoregression
(VARMA), CUmulative SUM Statistics (CUSUM), expo-
nentially weighted moving average, etc. While a detailed
exposition is beyond the scope of this survey, we will pro-
vide an overview of the key ideas in this topic, especially
from a computer science perspective. We direct the reader
to [17]–[19] for further reading from the statistics point of
view. In this section, we will focus on two main types of
outlier detection techniques for time series studied in the
data mining community. The first part concerns techniques
to detect outliers over a database of time series, whereas the
second part deals with outliers within a single time series.

2.1 Outliers in Time Series Databases
Given a time series database, we will discuss methods to
identify a few time series sequences as outliers, or to iden-
tify a subsequence in a test sequence as an outlier. An
outlier score for a time series can be computed directly,
or by first computing scores for overlapping fixed size
windows and then aggregating them. We discuss these
techniques in this subsection.

2.1.1 Direct Detection of Outlier Time Series
Given: A database of time series
Find: All anomalous time series

It is assumed that most of the time series in the database
are normal while a few are anomalous. Similar to tradi-
tional outlier detection, the usual recipe for solving such
problems is to first learn a model based on all the time
series sequences in the database, and then compute an out-
lier score for each sequence with respect to the model. The
model could be supervised or unsupervised depending on the
availability of training data.
Unsupervised Discriminative Approaches

Discriminative approaches rely on the definition of a
similarity function that measures the similarity between
two sequences. Once a similarity function is defined, such
approaches cluster the sequences, such that within-cluster
similarity is maximized, while between-cluster similarity is
minimized. The anomaly score of a test time series sequence

is defined as the distance to the centroid (or medoid)
of the closest cluster. The primary variation across such
approaches, are the choice of the similarity measure, and
the clustering mechanism.
Similarity Measures: The most popular sequence similarity
measures are the simple match count based sequence similar-
ity [20], and the normalized length of the longest common
subsequence (LCS) [21]–[24]. The advantage of the former
is its greater computational efficiency, whereas the latter
can adjust to segments in the sequences containing noise,
but is more expensive because of its dynamic programming
methodology.
Clustering Methods: Popular clustering methods include
k-Means [25], EM [26], phased k-Means [27], dynamic
clustering [24], k-medoids [21], [22], single-linkage clus-
tering [28], clustering of multi-variate time series in the
principal components space [29], one-class SVM [30]–[33]
and self-organizing maps [34]. The choice of the clustering
method is application-specific, because different clustering
methods have different complexity, with varying adaptabil-
ity to clusters of different numbers, shapes and sizes.
Unsupervised Parametric Approaches

In unsupervised parametric approaches, anomalous
instances are not specified, and a summary model is con-
structed on the base data. A test sequence is then marked
anomalous if the probability of generation of the sequence
from the model is very low. The anomaly score for the
entire time series is computed in terms of the probabil-
ity of each element. Popular models include Finite state
automata (FSA), Markov models and Hidden Markov
Models (HMMs).

FSA can be learned from length l subsequences in nor-
mal training data. During testing, all length l subsequences
can be extracted from a test time series and fed into the
FSA. An anomaly is then detected if the FSA reaches a state
from where there is no outgoing edge corresponding to the
last symbol of the current subsequence. FSAs have been
used for outlier detection in [23], [35]–[37]. The methods
to generate the state transition rules depend on particular
application domains.

Some Markov methods store conditional information for
a fixed history size=k, while others use a variable his-
tory size to capture richer temporal dependencies. Ye [38]
proposes a technique where a Markov model with k=1
is used. In [39], [40], the conditional probability dis-
tribution (CPD) are stored in probabilistic suffix trees
(PSTs) for efficient computations. Sparse Markovian tech-
niques estimate the conditional probability of an element
based on symbols within the previous k symbols, which
may not be contiguous or immediately preceding to the
element [41], [42].

HMMs can be viewed as temporal dependency-oriented
mixture models, where hidden states and transitions
are used to model temporal dependencies among mix-
ture components. HMMs do not scale well to real
life datasets. The training process may require judi-
cious selection of the model, the parameters, and ini-
tialization values of the parameters. On the other hand,
HMMs are interpretable and theoretically well moti-
vated. Approaches that use HMMs for outlier detection
include [23], [43]–[46].

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2253

Fig. 2. Window-based time series outlier detection.

Unsupervised OLAP Based Approach
Besides traditional uni-variate time series data, richer

time series are quite popular. For example, a time series
database may contain a set of time series, each of which
are associated with multi-dimensional attributes. Thus, the
database can be represented using an OLAP cube, where
the time series could be associated with each cell as a mea-
sure. Li et al. [47] define anomalies in such a setting, where
given a probe cell c, a descendant cell is considered an
anomaly if the trend, magnitude or the phase of its associ-
ated time series are significantly different from the expected
value, using the time series for the probe cell c.
Supervised Approaches

In the presence of labeled training data, the following
supervised approaches have been proposed in the liter-
ature: positional system calls features with the RIPPER
classifier [48], subsequences of positive and negative strings
of behavior as features with string matching classifier [34],
[49], neural networks [50]–[54], Elman network [53], motion
features with SVMs [55], bag of system calls features with
decision tree, Naïve Bayes, SVMs [56]. Sliding window sub-
sequences have also been used as features with SVMs [57],
[58], rule based classifiers [59], and HMMs [44].

2.1.2 Window-Based Detection of Outlier Time Series
Given: A database of time series
Find: All anomalous time windows, and hence anomalous
time series

Compared to the techniques in the previous subsection,
the test sequence is broken into multiple overlapping sub-
sequences (windows). The anomaly score is computed for
each window, and then the anomaly score (AS) for the
entire test sequence is computed in terms of that of the indi-
vidual windows. Window-based techniques can perform
better localization of anomalies, compared to the tech-
niques that output the entire time series as outliers directly.
These techniques need the window length as a param-
eter. Windows are called fingerprints, pattern fragments,
detectors, sliding windows, motifs, and n-grams in various
contexts. In this methodology, the techniques usually main-
tain a normal pattern database, but some approaches also
maintain a negative pattern or a mixed pattern database.
Fig. 2 shows a general sketch of the method.
Normal Pattern Database Approach

In this approach, normal sequences are divided into size
w overlapping windows. Each such window subsequence

is stored in a database with its frequency. For a test
sequence, subsequences of size w are obtained, and those
subsequences that do not occur in normal database are con-
sidered mismatches. If a test sequence has a large number
of mismatches, it is marked as an anomaly [44], [49], [51],
[53], [60]. Rather than looking for exact matches, if a sub-
sequence is not in the database, soft mismatch scores can
also be computed [20], [61]–[63].

Besides contiguous window subsequences, a lookahead
based method can also be used for building a normal
database [64]. For every element in every normal sequence,
the elements occurring at distance 1,2,. . ., k in the sequence
are noted. A normal database of such occurrences is cre-
ated. Given a new test sequence, a lookahead of the same
size k is used. Each pair of element occurrence is checked
with the normal database, and the number of mismatches
is computed.
Negative and Mixed Pattern Database Approaches

Besides the dictionaries for normal sequences, anomaly
dictionaries can also be created [34], [50], [65]–[67]. All nor-
mal subsequences of length w are obtained from the input
string. Next, all sequences of size w not in the set are con-
sidered detectors or negative subsequences. Detectors can
be generated randomly or by using some domain knowl-
edge of situations that are not expected to occur in normal
sequences. A test sequence is then monitored for presence
of any detector. If any detector matches, the sequence can
be considered an outlier.

2.1.3 Outlier Subsequences in a Test Time Series
Given: A database of time series D and a test time series t
Find: An outlier subsequence (or a pattern) p in t

The anomaly score for a pattern p can be computed
as the difference between the frequency of pattern p in
test time series and the expected frequency in database D.
Keogh et al. [68] define a soft match version of the prob-
lem where the frequency of pattern p in the database D is
defined using the largest number l such that every subse-
quence of p of length l occurs at least once in D. Another
form of soft matching is defined in [69], where rather than
an exact match of pattern p, any permutation of p is also
considered a match. To make the computations efficient,
the TARZAN algorithm was proposed which exploits suf-
fix trees [68], [70], [71]. Also Gwadera et al. [72], [73] have
proposed Interpolated Markov Models (IMM) to efficiently
compute the match score of a pattern or its permutations
within any time series.

2.2 Outliers Within a Given Time Series
Given a single time series, one can find particular elements
(or time points) within the time series as outliers, or one
can also find subsequence outliers. In this subsection, we
will discuss techniques for both these cases.

2.2.1 Points as Outliers
Given: A time series t
Find: Outlier points in t

Various methodologies have been proposed to find out-
lier points for a time series. A large number of prediction
models and profile based models have been proposed. An

2254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

information-theoretic compression based technique has also
been proposed to find “deviants”. We will discuss these
techniques below. Apart from these, a number of cluster-
ing and classification approaches described in Section 2.1.1,
can also be used to detect point outliers.
Prediction Models

The outlier score for a point in the time series is com-
puted as its deviation from the predicted value by a
summary prediction model. The primary variation across
models, is in terms of the particular prediction model used.

Given a time series, one can predict the value at time t as
a median of the values in the size-2k window from t − k to
t+k [74], or as an average of all the points in the cluster that
the value at time t maps to [75], or using regression mod-
els. Single-layer linear network predictor (or AR model) has
been used in a large number of studies including [75]. Other
prediction models include Multilayer perceptron (MLP)
predictor [75] and support vector regression [76]. Mixture
transition distribution (MTD) have been proposed for out-
lier detection for general non-Gaussian time series [77].
Tsay et al. [78] propose a vector ARIMA model to iden-
tify additive outliers, innovation outliers, level shifts, and
temporary changes from multi-variate time series. Besides
individual points, multiple outliers can also be discovered
using prediction models, e.g., using re-weighted maximum
likelihood estimates [79] or using Gibbs sampling and block
interpolation [80].

There are many variants of this technique. Outlier-
aware variants of these prediction models estimate model
parameters and outliers together [81]–[84]. In multi-
variate time series, prediction could be made for all con-
stituent time series. In [85], to compute outliers for multi-
variate time series, testing for outliers is done only in some
smartly selected projection directions rather than testing the
multivariate series directly to compute outliers.
Profile Similarity based Approaches

These approaches maintain a normal profile and then
compare a new time point against this profile to decide
whether it is an outlier. For example, for multiple OS perfor-
mance metric time series, the Tiresias system [86] maintains
a normal profile and also a variance vector. Any new data
point is compared both with the normal profile and the
variance vector to compute its anomaly score. Here the pro-
file is the actual smoothed time series data from past data.
In [87], a neural network is used to maintain the normal
profile and an estimation is made for the next value in the
sensor stream based on this profile. We will discuss more
profile based techniques in Section 3 in the context of data
streams.
Deviants

Deviants are outlier points in time series from a min-
imum description length (MDL) point of view [88]. If
the removal of a point P from the time sequence results
in a sequence that can be represented significantly more
succinctly than the original one, then the point P is a
deviant. These information-theoretic models explore the
space-deviation tradeoff by fixing the deviation, rather than
fixing the space, as in conventional models. Thus the prob-
lem is to find points whose removal results in a histogram
representation with a lower error bound than the origi-
nal, even after the number of buckets has been reduced

to account for the separate storage of these deviant points.
Jagadish et al. [88] propose a dynamic programming mecha-
nism to solve the problem. Muthukrishnan et al. [89] make
the observation that for any bucket, the optimal set of k
deviants within the bin always consists of the l highest and
remaining k − l lowest values for some l ≤ k. Then, they
propose an approximation to the dynamic programming-
based solution, that maintains a partial solution only for a
few interspersed indexes of the time series rather than for
each value.

2.2.2 Subsequences as Outliers
Given: A time series t
Find: Outlier subsequences in t

In the previous subsection, we looked at techniques
to identify point outliers. In this subsection, we will visit
mechanisms to identify outlier subsequences in time series.

Given a time series T, the subsequence D of length
n beginning at position l is said to be the discord (or
outlier) of T if D has the largest distance to its nearest
non-overlapping match [90]. The brute force solution is
to consider all possible subsequences s ∈ S of length n
in T and compute the distance of each such s with each
other non-overlapping s′ ∈ S. Top-K pruning can be used
to make this computation efficient. Subsequence compar-
isons can be smartly ordered for effective pruning using
various methods like heuristic reordering of candidate sub-
sequences [91], locality sensitive hashing [92], Haar wavelet
and augmented tries [93], [94], and SAX with augmented
trie [95]. To compute the distance between subsequences,
most methods use Euclidean distance while Compression
based Dissimilarity Measure (CDM) is used as a distance
measure in [96]. Yankov et al. [97] solve the problem for a
large time series stored on the disk.

Chen et al. [98] define the subsequence outlier detection
problem for an unequal interval time series which is a time
series with values sampled at unequal time intervals. For
such a time series, a pattern is defined as a subsequence of
two consecutive points. A pattern p is called an anomaly, if
there are very few other patterns with the same slope and
the same length. To identify anomalies at multiple scales,
the Haar transform is used. Haar transform is also used
in [99] to identify multi-level trends and anomalies.

Besides the aforementioned definitions of outlier subse-
quences, some more variants have also been discussed in
the literature. For example, in [100] a lead and a lag window
are defined as adjacent subsequences. The two windows
could be of any length. The subsequence represented by
the lead window is an anomaly, if its similarity with the
lag window is very low. They measure the similarity using
chaos bitmaps. As another example, Zhu et al. [101] com-
pute subsequences of length w with a very high aggregate
value as outliers. They use a novel data structure called
Shifted Wavelet Tree to solve the problem.

3 OUTLIER DETECTION FOR STREAM DATA

Compared to static data, streaming data does not have
a fixed length. Streams can be a time-series or multidi-
mensional. Temporal dependencies for multidimensional
streams, are used differently than in time-series. Rather

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2255

Fig. 3. Stream anomaly detection.

than using time-series forecasting methods, these methods
are closer to conventional multidimensional models, but
with a temporal component, which accounts for temporal
drift, and deviations.

3.1 Evolving Prediction Models
Given: A multidimensional data stream s
Find: Outlier points in s

Evolving prediction models are models in which the
parameters or components of the model are updated as new
data arrives in order to better capture the normal trends in
the data. In this subsection, we will discuss a few such
models.
Online Sequential Discounting

Yamanishi et al. [102], [103] present SmartSifter which
employs an online discounting learning algorithm to incre-
mentally learn the probabilistic mixture model, with a
decay factor to account for drift. The outlier score for a data
point is computed in terms of the probabilistic fit value to
the learned mixture model. Such mixture models are used
for conventional multidimensional data, but without the
adjustments for incremental updates and temporal decay.
Fig. 3 shows an illustration of the method.

For categorical variables, they propose the Sequentially
Discounting Laplace Estimation (SDLE) algorithm. In
SDLE, cells are created by partitioning the space of all val-
ues of all categorical variables. The probability of a symbol
in a cell is the number of occurrences of that symbol in
that cell divided by the total data points with the Laplace
smoothing. When a new data point arrives, the count for
all the cells are adjusted with temporal discounting and
appropriate Laplace smoothing is applied.

For continuous variables, they propose two models: an
independent model and a time series model. The indepen-
dent model is a Gaussian mixture model in the parametric
case and a kernel mixture model in the non-parametric case.
For learning the Gaussian mixture model (GMM), they pro-
vide the Sequentially Discounting EM (SDEM) algorithm
which is essentially an incremental EM algorithm with
discounting of effect of past examples. For learning the ker-
nel mixture model, Yamanishi et al. provide Sequentially
Discounting Prototype Updating (SDPU) algorithm where
the coefficients of the mixture and the variance matrix are
fixed and so it iteratively learns only the means of the ker-
nels or the prototypes. For learning the time series model,
they provide the Sequentially Discounting AR (SDAR) algo-
rithm which learns the AR model parameters iteratively
with time discounting.

The online discounting behavior is also used to update
the “normal” distribution in SRI’s Emerald system [104], by
giving more weight to recent data. Online discounting has
also been used for mixed attribute data streams, to maintain

the frequency of an itemset (a set of attribute values) [11],
where a point is called an outlier if it shares the attribute
values with none or very few other points. Exponentially
greater importance (another form of online discounting) is
given to the recent points to learn a polynomial function in
StreamEvent [8] which is an algorithm to efficiently com-
pute outliers from multiple synchronous streams, though
this model is based on the time-series scenario.
Dynamic Cluster Maintenance

Other than the online discounting methods, large num-
ber of methods use dynamically maintained cluster models
for computing outliers from data streams. For example,
normalized length of the longest common subsequence
(LCS) has been used as the sequence similarity measure
for dynamic clustering by Sequeira et al. [24]. In the text
domain, online clustering methods were proposed in [105]
to detect outliers.
Dynamic Bayesian Networks

Sometimes updating the parameters of the model is not
enough. The model can be modified by itself to incorporate
drifts in the data stream. Hill et al. [106] present an approach
that uses Dynamic Bayesian networks which are Bayesian
networks with network topology that evolves over time,
adding new state variables to represent the system state at
the current time t. They present two strategies for detect-
ing anomalous data: Bayesian credible interval (BCI) and
maximum a posteriori measurement status (MAP-ms). The
first method uses an HMM model, where Kalman filtering
is used to sequentially infer the posterior distributions of
hidden and observed states as new measurements become
available from the sensors. The posterior distribution of
the observed state variables is then used to construct a
Bayesian credible interval for the most recent set of mea-
surements. Any measurements that fall outside of the p%
Bayesian credible interval can be classified as anomalous.
In the second method, a 2-layered DBN is used. The sta-
tus (e.g., normal/anomalous) of each sensor measurement
is also modeled as a hidden state. The maximum a posteri-
ori estimate, (i.e., the most likely value given the posterior
distribution) of the hidden state variable, indicating the
measurement status, can be used to classify the sensor
measurements as normal or anomalous.

3.2 Distance-Based Outliers for Sliding Windows
Given: A data stream s
Find: Distance based outliers in any time window of s

Besides defining outliers for data streams using predic-
tion models, one can also compute distance based outliers
for data streams at any time instant. Given a set of points, a
point o is called a DB(k, R) distance outlier if there are less
than k points within distance R from o [107]. Given a data
stream, at any time point, one can discover outliers from
the set of points lying within the current sliding window.
Distance based outliers can be discovered both in a global
as well as in a local sense on points within the current slid-
ing window. Fig. 4 shows a 1-dimensional stream dataset
with two time windows (t3 to t18 and t7 to t22). Consider
the window at time t18. If we consider a point with k < 4
points within distance R as outliers, o9 (with k=4 neighbors
o5, o10, o14 and o15) and o11 (with k=4 neighbors o3, o4,
o6 and o13) are examples of inliers, while o8 (with only 2

2256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

Fig. 4. Distance-based outliers for sliding windows [108].

neighbors o7 and o16) and o17 (with only 1 neighbor o18)
are examples of outliers.

3.2.1 Distance-Based Global Outliers
As the sliding window for a stream moves, old objects
expire and new objects come in. Since objects expire over
time, the number of preceding neighbors of any object
decreases. Therefore, if the number of succeeding neigh-
bors of an object is less than k, the object could become
an outlier depending on the stream evolution. Conversely,
since any object will expire before its succeeding neighbors,
inliers having at least k succeeding neighbors will be inliers
for any stream evolution. Such inliers are called safe inliers
(e.g., in Fig. 4, for k=3, o9 is a safe inlier as it has 3 succeed-
ing neighbors (o10, o14, o15) while o11 is not, as it has only
1 succeeding neighbor (o13)).

Angiulli et al. [108] propose an exact algorithm to effi-
ciently compute distance outliers using a new data struc-
ture called Indexed Stream Buffer (ISB) which supports a
range query. Further, they also propose an approximate
algorithm which uses two heuristics: (a) It is sufficient to
retain in ISB only a fraction of safe inliers, (b) Rather than
storing the list of k most recent preceding neighbors, it is
enough to store only the fraction of preceding neighbors,
which are safe inliers to the total number of safe inliers.

Yang et al. [109] propose that maintaining all neigh-
bor relationships across time may be very expensive.
Therefore, abstracted neighbor relationships can be main-
tained. However, maintaining such cluster abstractions is
expensive too. Hence, they exploit an important charac-
teristic of sliding windows, namely the “predictability” of
the expiration of existing objects. In particular, given the
objects in the current window, the pattern structures that
will persist in subsequent windows can be predicted by
considering the objects (in the current window) that will
participate in each of these windows only. These predicted
pattern structures can be abstracted into “predicted views”
of each future window. They propose an efficient algo-
rithm which makes use of the predicted views to compute
distance based outliers.

The problem of distance-based outlier detection for
stream data can also be solved using dynamic clus-
ter maintenance, as has been done for similar problems
in [110], [111].

3.2.2 Distance-Based Local Outliers
Local Outlier Factor (LOF) is an algorithm for finding
anomalous data points by measuring the local deviation of
a given data point with respect to its neighbours [112]. The
LOF algorithm developed for static data can be adapted
to the incremental LOF problem (i.e., the stream setting)
in three ways: (a) periodic LOF, i.e., apply LOF on entire
data set periodically, or as (b) supervised LOF, i.e., com-
pute the k-distances, local reachability density (LRD) and
LOF values using training data and use them to find out-
liers in test data or as (c) iterated LOF where the static
LOF algorithm can be re-applied every time a new data
record is inserted into the data set. A better approach is
proposed in [113], where the incremental LOF algorithm
computes LOF value for each data record inserted into the
data set and instantly determines whether the inserted data
record is an outlier. In addition, LOF values for existing
data records are updated if needed. Thus, in the insertion
part, the algorithm performs two steps: (a) insertion of new
record, when it computes the reachability distance, LRD
and LOF values of a new point; (b) maintenance, when it
updates k-distances, reachability distance, LRD and LOF
values for affected existing points.

3.3 Outliers in High-Dimensional Data Streams
Zhang et al. [114] present Stream Projected Outlier deTec-
tor (SPOT), to deal with outlier detection problem in
high-dimensional data streams. SPOT employs a window
based time model and decaying cell summaries to cap-
ture statistics like Relative Density and Inverse Relative
Standard Deviation of data points in the cell from the data
stream. Sparse Subspace Template (SST), a set of top sparse
subspaces obtained by unsupervised and/or supervised
learning processes, is constructed in SPOT. These SSTs are
the subspaces which are explored to find projected outliers
effectively. Multi-Objective Genetic Algorithm (MOGA) is
employed as an effective search method in unsupervised
learning for finding outlying subspaces from training data.
SPOT is also capable of online self-evolution, to cope with
evolving dynamics of data streams.

4 OUTLIER DETECTION FOR STREAM DATA IN
DISTRIBUTED SCENARIOS

Zhang et al. [4] provide a detailed survey for outlier detec-
tion techniques on wireless sensor networks. The main
challenges for outlier detection in a distributed setting are
as follows.

• Resource constraints: Energy, memory, computa-
tional capacity and communication bandwidth are
all scarce.

• High communication cost: Communication cost is
orders of magnitude greater than the computation
costs.

• Distributed streaming data: Processing data online
coming at different rates from multiple distributed
sensors is non-trivial.

• Dynamics: Dynamic network topology, frequent
communication failures, mobility and heterogeneity

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2257

Fig. 5. Distributed data streams scenario.

of nodes are a few dynamic features of such datasets
which are challenging to handle.

• Large-scale deployment: Traditional outlier detection
algorithms are not easily scalable.

• Identifying outlier sources: It is important to make
distinctions between errors, events and malicious
attacks.

In a distributed stream setting, points are distributed across
various nodes (sensors). Each sensor has an associated
stream of incoming points and the aim is to find top few
distance based outliers based on the global data (Fig. 5). In
a distributed spatio-temporal setting, the position of sensors
is also important when computing outliers. We discuss both
settings in this section.

4.1 Distributed Temporal Data
Given: A set of sensors each with an associated data stream
Find: Distance/density based outliers based on global data
Sharing Local Outliers and Other Data Points: Let us first
discuss an algorithm [115] for a distributed static setting,
where each sensor holds a set of points and tries to com-
pute the set of the global top-K outliers. An outlier detection
algorithm A is available which outputs a ranking function
R. R is anti-monotonic wrt data and R should be smooth,
e.g., the distance to the kth nearest neighbor, the average
distance to the k nearest neighbors, etc. Consider a point x
in dataset P. Consider a subset P0 of P. If P0 is the small-
est subset such that R(x, P) = R(x, P0) then P0 is called the
support set of x over P.

Based on the above basic concepts, we discuss the algo-
rithm flow as follows. Each sensor exchanges messages
with its neighbors. Each sensor can apply A to compute
top-K outliers for its knowledge where the knowledge of the
sensor is its own points plus the points received in mes-
sages. Sensor pi should send to pj all of pi’s current outliers
and their supports. If, for any of these points x, pi can-
not be certain that pj has x (i.e. neither previous messages
from pi to pj nor messages from pj to pi contain x), then
x must be sent to pj. Second, pi may have points which
would effect outliers previously sent by pj, but these may
not be accounted for in the first part. It suffices for pi to
send the support of all of the outliers in message from pj to
pi which were not in that message. In a streaming setting,
when a new point is sampled, data changes at the local sen-
sor itself. This requires that the same calculation is made as
in the case of a change in knowledge of the sensor due to
receiving a message. If the algorithm needs to only consider
points which were sampled recently (i.e. employ a sliding
window), this can be implemented by adding a time-stamp
to each point when it is sampled. Each node can retire old
points regardless of where they were sampled and at no
communication cost at all.

Sharing Local Outliers Only: Since transmitting the entire
data or even the model to every node could be expen-
sive, Otey et al. [116] propose that only the local outliers be
exchanged between nodes. If all nodes agree that a point is
an outlier, then we can assume that the point is a global out-
lier. The sites only communicate when some user-specified
event occurs. Examples of such events include a user’s
query for the global outliers, when a node finishes pro-
cessing a fixed number of points, or when a node finds a
fixed number of outliers. Clearly, since there is no global
computation, this is an approximate algorithm.
Sharing Local Outliers and Data Distributions: In this
approach, data distributions are also shared along with
the local outliers. The sensor network is organized in the
form of a hierarchy. Kernel density estimators are used to
approximate the sensor data distribution. Once the data
distributions are estimated, the density of the data space
around each value can be computed, and thus outliers can
be determined. For distance based outliers, the goal is to
identify, among all the sensor readings in a sliding win-
dow, those values that have very few close neighbors. The
global distance based outliers are computed by sending the
local model and the local outliers to the parent nodes. For
density based method, Subramaniam et al. [117] propose
the Multi Granularity Deviation Factor (MDEF) metric. A
value is flagged as an outlier, if its MDEF is statistically
significantly different from that of the local averages. To
estimate global MDEF based outliers, each node sends the
new observations to its parent with a probability f , and
then the parent node communicates the new model to the
lowest level of nodes through the intermediate nodes. The
hierarchical architecture of a sensor network has also been
proposed by Palpanas et al. [118]. The distribution of the
sensed data is assumed to be the kernel density estimators.
When the observed data points do not fit this model, they
are considered as outliers.

4.2 Distributed Sensor Data Streams With Spatial
Considerations

For some applications, the location of the sensors is also
important. In such settings where data is available across
space and time, one can find faulty sensors.
Given: A set of sensors each with (x,y) coordinates and an
associated data stream
Find: Outlier sensors and outlier regions

In this setting, each sensor is associated with a data
stream based on a part of a source signal received at its
location. Each sensor thus receives data which is a combi-
nation of the source signal plus some noise where a part of
the noise component captures the outlierness in the signal.
The outlier detection process then consists of four phases:
clustering, temporal outlier detection, removal of the spatial
variation, and spatial outlier detection. In the beginning,
sensors form a cluster and elect their cluster-head. After
that, the cluster-head receives data from sensors, carries
out most of the computation tasks, and broadcasts results
to sensors. In the next phase, each sensor detects and rec-
ognizes any existing temporal outliers. This task can be
realized by making all sensors operate simultaneously in
parallel. In the third phase, it is important to remove any

2258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

Fig. 6. ST-outlier detection framework.

geometrical effect caused by the sensor distribution. The
signal power reduces in proportion to the distance from
the source. If this bias is not accounted for properly, sen-
sors near the source that receive more energy might be
falsely regarded as outliers, even though they are not. If
the data has some bias, the distribution might be heavily
tailed with outliers located near the tail of the distribution.
In that case, the min and max values are removed as out-
liers iteratively using the property of α-stable distributions.
The last phase is the spatial outlier detection using the var-
iogram method [119, p. 69-83]. Since this method generally
shows the spatial variance between sensors, outliers can be
considered as those ones that deviate remarkably from the
majority of the data. Note that this method [120] assumes
that the outliers are uncorrelated in time and space, and
can be modeled as an α-stable distribution.

Yet another way to use the location of sensors is to con-
sider neighbors within distance r. Given spatio-temporal
data from a sensor network, a sensor s can be considered
as an outlier for a time window w, if the value at sensor s at
the end of the window has less than k measurements from
all sensors within window w, within a distance r. Once out-
lier sensors are discovered, Franke et al. [121], [122] propose
models to compute polygonal outlier regions in the sensor
network.

5 OUTLIER DETECTION FOR
SPATIO-TEMPORAL DATA

Some studies find outliers considering only their tempo-
ral neighbors, while other work concerns outliers with
respect to their spatial neighbors only. Combining these two
notions, a spatio-temporal outlier (ST-Outlier) is a spatio-
temporal object whose behavioral/thematic (non-spatial
and non-temporal) attributes are significantly different from
those of the other objects in its spatial and temporal
neighborhoods. Fig. 6 shows a typical ST-Outlier detection
pipeline.

5.1 Techniques for ST-Outlier Detection
Given: A spatio-temporal dataset
Find: ST-Outliers, i.e., spatio-temporal objects whose behav-
ioral (non-spatial and non-temporal) attributes are signifi-
cantly different from those of the other objects in its spatial
and temporal neighborhoods

Most of the ST-Outlier detection techniques first find
spatial outliers and then verify their temporal neighbor-
hood. The techniques differ in the way spatial outliers are
computed. We discuss these techniques below.

Birant et al. [123] propose a density-based ST-
Outlier detection mechanism. First, they run a modified
DBSCAN [124] clustering algorithm on the data with two
main modifications: (1) To support the temporal aspect, a
tree is traversed to find both spatial and temporal neigh-
bors of any object within a given radius. (2) To find

outliers, when clusters have different densities, the algo-
rithm assigns a density factor to each cluster and compares
the average value of a cluster with the new coming value.
After clustering, potential outliers are detected. This is fol-
lowed by checking the spatial neighbors to verify whether
these objects are actually spatial outliers. The next step
checks the temporal neighbors of the spatial outliers iden-
tified in the previous step. If the characteristic value of a
spatial outlier does not have significant differences from its
temporal neighbors, this is not an ST-Outlier. Otherwise, it
is confirmed as an ST-Outlier.

Cheng et al. [125], [126] propose a four step approach.
(1) Clustering: Form some regions that have significant
semantic meanings, i.e. the spatio-temporal objects of inter-
est. (2) Aggregation: Spatial resolution (scale) of the data is
reduced for clustering. It is also called filtering since the
outliers (noise) will be filtered after the spatial scale change.
(3) Comparison: Results obtained at the two spatial scales are
compared to detect the potential spatial outliers. The objects
that are found in Step 1 and are missed (or filtered) in Step 2
are potential ST-Outliers. The comparison can be realized
either by exploratory visualization analysis or visual data
mining. (4) Verification: Check the temporal neighbors of
the suspected ST-Outliers detected in the previous step to
detect ST-Outliers.

Adam et al. [127] studied distance based outlier detection
for a spatio-temporal dataset. Voronoi diagrams are used to
establish spatial clusters called micro-clusters. Based on the
spatial and semantic similarity (computed using the cor-
responding time series) between two micro-clusters they
can be merged to get macro-clusters. Spatial similarity for
micro-cluster computation uses two measures: the Jaccard
coefficient that represents similarity and the Silhouette coef-
ficient that represents quality of clustering. Any datum
that differs sufficiently from other points in the macro
neighborhood is then marked as an ST-Outlier.

5.2 Tracking of ST-Outliers
Given: A spatio-temporal dataset
Find: ST-Outlier solids, i.e., a region across time

While previous techniques consider an ST-Outlier as a
point in space and time, an ST-Outlier could be considered
as a solid with its base in the XY space dimension and
volume across the time dimension. Wu et al. [128] propose
an ST-Outlier detection algorithm called Outstretch, which
discovers the outlier movement patterns of the top-K spa-
tial outliers over several time periods. The top-K spatial
outliers are found using the Exact-Grid Top-K and Approx-
Grid Top-K algorithms (popular spatial outlier detection
algorithms) with a well-known spatial scan statistic known
as Kulldorff’s scan statistic. An ST-Outlier may exist over
more than one time period. For example, if there is higher
than average precipitation in Peru over the years 1998-2002,
then the solid in three dimensional (X, Y and time) space
is an outlier. Using the top-K spatial outliers for each time
period, they find all the sequences of outliers over time and
store into a tree. The Outstretch algorithm takes as input
the top-K values for each year period under analysis, and a
variable r, the region stretch, which is the number of grids
to ‘stretch’ by, on each side of an outlier. Outstretch then
examines the top-K values of the second to last available

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2259

year periods. For all the years, each of the outliers from
the current year are examined to see if they are framed
by any of the stretched regions from the previous year.
If they are, the item is added to the end of the previous
year’s child list. As a result, all possible sequences over all
years get stored into the outlier tree and can be retrieved for
analysis.

Similarly, Lu et al. [129] propose a wavelet fuzzy clas-
sification approach to detect and track region outliers in
meteorological data. First, wavelet transform is applied
to meteorological data to bring up distinct patterns that
might be hidden within the original data. Then, a powerful
image processing technique, edge detection with competi-
tive fuzzy classifier, is extended to identify the boundary
of region outlier. After that, to determine the center of the
region outlier, the fuzzy-weighted average of the longitudes
and latitudes of the boundary locations is computed. By
linking the centers of the outlier regions within consecutive
frames, the movement of a region outlier can be captured
and traced.

5.3 Trajectory Outliers
Given: A set of trajectories
Find: Anomalous trajectories

Most of the techniques are based on distance, direction
and density of trajectories. However, classification and his-
torical similarity based techniques have also been proposed.
We discuss these below.
Distance Between Trajectories: Lee et al. [130] propose
TRAjectory Outlier Detection (TRAOD) algorithm which
consists of two phases: (1) Partitioning Phase and (2)
Detection Phase. In the first phase, each trajectory is
split into partitions using a 2-level partitioning. Distance
between trajectory partitions is calculated as a weighted
sum of three components: perpendicular distance, parallel
distance and angle distance. In the second phase, a trajec-
tory partition is considered outlying if it does not have
sufficient number of similar neighbors (with appropriate
considerations of local density). A trajectory is an outlier if
the sum of the length of its outlying partitions is at least F
times the sum of lengths of all of its partitions.
Direction and Density of Trajectories: Ge et al. [131] con-
sider two types of outlying trajectories: outliers in terms
of direction and outliers in terms of density. The continu-
ous space is discretized into small grids and a probabilistic
model is used to turn the direction information of trajec-
tories in a grid into a vector with eight values to indicate
the probabilities of moving towards eight directions within
this grid. The direction trend is thus generated within a
fixed area by summarizing the moving directions from large
amounts of trajectories for a period of time. Then, once
some objects move across this area along the completely dif-
ferent directions from the summarized directions, they can
be labeled as outliers in a real-time fashion by measuring
the similarity between the directions of the observed objects
and the summarized directions. Also, with this discretized
space, the density of trajectories can be computed in each
grid conveniently. The trajectory density within each grid
is estimated as the number of trajectories across this grid.
The trajectory density distribution can be obtained with
sufficient historical trajectory data. The outlying score of

a new trajectory can then be measured based on the den-
sity of trajectories in the grids where this trajectory actually
passes.
Historical Similarity: While the above techniques stress
on the spatial continuity to define outliers, Li et al. [132]
propose a method for detecting temporal outliers with
an emphasis on historical similarity trends between data
points. At each time step, each road segment checks its
similarity with the other road segments, and the historical
similarity values are recorded in a temporal neighborhood
vector at each road segment. Outliers are calculated from
drastic changes in these vectors. Given a road segment with
a historically stable set of neighbors (in feature space, not
physical space), an outlier is loosely defined as a drastic
change in the membership of this set. A change is noted
heavily for a pair of road segments if the two road segments
are historically similar but dissimilar at this time instant, or
if the two road segments are not historically similar but sim-
ilar at this time instant. Based on this, each road segment
is given an exponential reward or penalty each day. The
outlier score of an road segment on a particular day is then
equal to the sum of rewards and penalties. The power of
this method compared with a method that measures only
the singular road segment is that it is robust to population
shifts.
Trajectory Motifs: Li et al. [55] propose a motion-classifier
for trajectory outlier detection, which consists of the follow-
ing three steps. (a) Object movement features, called motifs,
are extracted from the object paths. Each path consists of a
sequence of motif expressions, associated with the values
related to time and location. (b) To discover anomalies in
object movements, motif based generalization is performed
to cluster similar object movement fragments and general-
ize the movements based on the associated motifs. (c) With
motif based generalization, objects are put into a multi-
level feature space and are classified by a classifier that
can handle high-dimensional feature spaces to discriminate
anomalous trajectories from normal ones.

6 OUTLIER DETECTION FOR TEMPORAL
NETWORKS

Given a stream of graphs, how does one identify an out-
lier graph? Given a temporal network with community
distributions for each of its nodes, how does one track com-
munity evolution, and thereby define community outliers?
In this section, we will study techniques that help us answer
these questions.

6.1 Graph Similarity-Based Outlier Detection
Algorithms

Given: A series of graph snapshots
Find: Outlier graph snapshots

Various graph distance metrics can be used to create
time series of network changes by sequentially comparing
graphs from adjacent periods. These time series are individ-
ually modeled as univariate autoregressive moving average
(ARMA) processes and then outliers can be detected.

Let V be the set of nodes when both the graph snapshots
G and H contain the same set of nodes, else VG and VH are
used to denote the respective vertex sets of the two graphs.

2260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

EG and EH are edges in graphs G and H. Let wG(u, v) and
wH(u, v) denote the edge weights for edge (u, v) in the
graphs G and H respectively. The distance/similarity mea-
sures to compute distances between two graphs G and H
are mentioned below.

(1) Weight Distance [133]: It is a function of the dif-
ference between the edge weights of the graphs G and
H normalized by the maximum of the edge weights in
G or H.

(2) MCS Weight Distance [133]: It computes weight dis-
tance based on the edges in MCS where the maximum
common subgraph (MCS) F of G and H is the common
subgraph with the most vertices.

(3) MCS Edge Distance [133]: It is defined in terms of
the number of edges in the MCS as follows. d(G, H) = 1 −
|mcs(EG,EH)|

max(|EG|,|EH|) .

(4) MCS Vertex Distance [133]: It is defined in a similar
way as in the MCS edge distance, but vertex sets of the
two graphs rather than edge sets are used in the distance
computation.

(5) Graph Edit Distance [133]–[135]: The simplest form
of graph edit distance is given by d(G, H) = |VG| +
|VH| − 2|VG ∩ VH| + |EG| + |EH| − 2|EG ∩ EH|. This cap-
tures the sequence of edit operations required to make
graph G isomorphic to graph H. Graph edit distance can
be expressed in other ways where the costs of insert-
ing/deleting/substituting a node/edge are different [136].
Further, node edits and edge edits can be given different
importance levels.

(6) Median Graph Edit Distance [133], [137]: Median
graph can be computed for a fixed window of graphs using
graph edit distance. Median graph edit distance is the edit
distance of the graph from the median graph.

(7) Modality Distance [133]: The Modality distance
between graphs G and H is the absolute value of the dif-
ference between the Perron vectors of these graphs. Perron
vector is the eigen vector corresponding to the largest eigen
value for the adjacency matrix of the corresponding graph.

(8) Diameter Distance [133], [138]: The Diameter distance
between graphs G and H is the difference in the diameters
for each graph.

(9) Entropy Distance [133], [138]: The Entropy distance
between graphs G and H is defined using entropy-like mea-
sures associated with edge weights for the corresponding
graphs.

(10) Spectral Distance [133], [138]: The Spectral distance
between graphs G and H is defined in terms of the k
largest eigenvalues of the Laplacian for the graphs G and
H respectively.

(11) Umeyama graph distance [139]: The Umeyama
graph distance is defined as the sum of the squares of
the differences between edge weights for the corresponding
edges of the graphs G and H respectively.

(12) Vector Similarity [134]: This is computed as the
Euclidean distance between the principal eigenvectors of
the graph adjacency matrices of the two graphs.

(13) Spearman’s correlation coefficient [134]: This is cal-
culated as the rank correlation between sorted lists of
vertices of the two graphs. Vertices are sorted based on the
PageRank or some other properties.

(14) Sequence similarity [134], [140]: It is the similarity of
vertex sequences of the graphs that are obtained through a
graph serialization algorithm. Such an algorithm creates a
serial ordering of graph vertices which is maximally edge
connected. That means that it maximizes the number of
vertices that are consecutive in the ordering and are edge
connected in the graph.

(15) Signature similarity [134], [140]: It is computed as
the Hamming distance between the fingerprints of two
graphs. To get such fingerprints, a similarity hash function
is applied to the graphs being compared.

(16) Vertex/edge overlap (VEO) [140]: Two graphs are
similar if they share many vertices and/or edges. The
Jaccard index is one way to compute the overlap between
two graphs. It is defined as the length of intersections of
vertices/edges divided by that of the union.

(17) Vertex ranking (VR) [140]: Two graphs are similar if
the rankings of their vertices are similar. The vertices can be
ranked using their qualities, and the similarity of rankings
can be computed using a rank correlation method such as
Spearman’s correlation coefficient.

For TCP/IP traffic data, it was observed that time series
based on the MCS edge, MCS vertex, edit, median and
entropy metrics had no false positives. However, the time
series based on the spectral, modality and diameter distance
metrics are considerably more computationally intensive
and also did not lend themselves to accurate ARMA mod-
elling [133]. Amongst vertex ranking, vector similarity,
vertex/edge overlap, sequence similarity, and signature
similarity, Papadimitriou et al. [134] observed that signature
similarity and vector similarity were the best at detecting
anomalies from web crawl graphs while not yielding false
positives.

Another measure to define outliers on a pair of graph
snapshots is the shortest path distance between any pair
of nodes. Given two snapshots of a temporal graph, Gupta
et al. [141] study the problem of finding node pair outliers
which are node pairs with maximum change in shortest
path distance across the two graph snapshots.

6.2 Online Graph Outlier Detection Algorithms
Given: A stream of graphs
Find: Outlier graph snapshots or outlier localized regions

The techniques in the previous subsection are usually
applied over a fixed length time series of graphs. Next, we
will discuss an eigenvector based approach and a structural
outlier detection approach for graph streams.

Ide et al. [142] proposed an eigenvector-based method for
anomaly detection over graph streams. The principal eigen-
vector of the graph weight matrix at time t is called activity
vector u(t). Activity vectors over time interval h are stored
in the matrix U(t) = [u(t), u(t−1), . . ., u(t−h+1)]. Then the
“typical pattern” is defined to be the left singular vector of
U(t). For any new data point at time t, this U(t − 1) matrix
is constructed, the typical pattern is extracted and then
the typical pattern vector is compared against the activity
vector at time t. The angle between the vectors gives sim-
ilarity between the activity vector and the typical pattern
of the data in the last h time snapshots. The authors pro-
vide an online algorithm to calculate the threshold for the

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2261

Fig. 7. Framework for community outlier detection.

angle as well. A similar method is also proposed by Akoglu
et al. [143] to spot anomalous points in time at which many
agents in an agent network change their behavior in a way
such that it deviates from the norm.

While Ide et al. take a spectral approach, Aggarwal
et al. [9] propose the problem of structural outlier detec-
tion in massive network streams. They use a structural
connectivity model to define outliers in graph streams as
those graph objects which contain such unusual bridging
edges. To handle the sparsity problem of massive networks,
the network is dynamically partitioned to construct statis-
tically robust models of the connectivity behavior. These
models are maintained using an innovative reservoir sam-
pling approach for efficient structural compression of the
underlying graph stream. Using these models, edge gener-
ation probability is defined and then graph object likelihood
fit is defined as the geometric mean of the likelihood fits
of its constituent edges. Those objects for which this fit is
t standard deviations below the average of the likelihood
probabilities of all objects received so far are reported as
outliers. Further, in [162], the authors maintain the infor-
mation about the changes in the different neighborhoods
of the network using a localized principal component anal-
ysis algorithm. Localized regions of sudden change in the
underlying network are then reported as outliers.

6.3 Community-Based Outlier Detection Algorithms
Given: A series of graph snapshots
Find: Outlier nodes with anomalous temporal community
changes

Given two snapshots of a network, the communities
evolve across the two snapshots. While most objects follow
the popular community distribution change trends, some
objects do not. Such rare objects are called Evolutionary
Community Outliers (ECOutliers) [13]. Fig. 7 shows a typ-
ical framework to discover community outliers from net-
work data. To begin with, communities can be discovered
independently in both snapshots. To discover ECOutliers,
it is important to first identify the usual transition trends
of community evolution. A key problem in discovering the
community transition trends is computing matching com-
munities across both snapshots. ECOutlier detection can
then be performed using these patterns. However, com-
munity matching itself suffers from ECOutliers and hence
must be done in an outlier-aware way. The framework dis-
cussed in [13] integrates outlier detection and community

matching together in an iterative manner. Such an inte-
grated formulation performs much better than performing
outlier detection after community matching separately.

Moreover, the authors investigated the task of out-
lier detection in a general setting of multiple network
snapshots [12]. Such outliers are called Community Trend
Outliers (CTOutliers). This study exploits the subtle tem-
poral community evolution trends to perform outlier detec-
tion. While ECOutliers [13] capture the notion of anomalous
community transitions, CTOutliers [12] capture anomalous
community changes across multiple time snapshots, and in
a more subtle way. Two main challenges were (1) comput-
ing patterns from a sequence of community membership
probability distributions (soft sequences) associated with
every object for a series of timestamps, and (2) comput-
ing the outlier score of individual soft sequences based on
such patterns. The authors proposed an effective two-step
procedure to detect community trend outliers. They first
modeled the normal evolutionary behavior of communities
across time using soft patterns discovered from the dataset.
In the second step, they proposed effective measures to
evaluate probability of an object deviating from the normal
evolutionary patterns.

Besides these, a variety of metrics have been proposed
in [144], that can be used for community based tempo-
ral outlier detection in graphs. These include consistency
between two clusterings, snapshot clustering quality, social
stability and sociability of objects. Though community
based outlier detection has been studied for a static het-
erogeneous graph recently [145], there is no technique yet
for temporal heterogeneous graphs.

7 APPLICATIONS OF TEMPORAL OUTLIER
DETECTION TECHNIQUES

In this section, we briefly discuss different environmen-
tal, industrial, surveillance, computer network, biological,
astronomy, web, information network and economics appli-
cations, which are relevant to temporal outlier detection.

7.1 Environmental Sensor Data
Hill et al. [75], [106] use dynamic Bayesian networks to iden-
tify measurement errors in a wind speed data stream from
WATERS Network Corpus Christi Bay testbed. Angiulli
et al. [108] extract distance outliers from the rain, sea
surface temperature, relative humidity, precipitation time
series obtained from the Pacific Marine Environmental
Laboratory of the U.S. National Oceanic and Atmospheric
Administration (NOAA). Birant et al. [123] identify spatio-
temporal outliers from the wave height values of four
seas: the Black Sea, the Marmara Sea, the Aegean Sea, and
the east of the Mediterranean Sea. The outliers consist of
locations with significantly high wave height values on a
particular date compared to its spatio-temporal neighbors.
Cheng et al. [126] compute spatio-temporal outliers from
the water height data obtained from Ameland, a barrier
island in the north of the Netherlands. Sun et al. [146]
explore the South China area dataset from 1992 to 2002
with five variables: cloud cover percentage, diurnal temper-
ature range, precipitation, temperature, vapor and pressure.
They answer outlier queries like “which locations always

2262 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

have different temperature from their neighborhoods in the
recent 10 years”. They can find droughts and flood outliers
like flood in Yangzi River Valley in 1998. Wu et al. [128]
find extreme precipitation events from South American pre-
cipitation data set obtained from the NOAA (Hydrology)
for Peru over 1998-2002. Outlier detection using rotated
PCA has also been used to discover drought areas, intense
fertility loss areas, hurricanes from Australian district rain-
fall [147], Sicily Island yearly Maximum Value Composit
of SPOT/VEGETATION NDVI [148] and NOAA/NCEP
(National Centers of Environmental Prediction) global
reanalysis [129] data sets.

7.2 Industrial Sensor Data
The work in [74] predicts anomalies based on two dif-
ferent signals obtained from a flight data recorder (FDR).
These correspond to the altitude of the aircraft and roll
angle. These have been used to find anomalous altitude
changes and roll angle using deviation from median-based
prediction. Anomalies in jet engines have been discovered
by analyzing the high/low pressure shaft harmonic fre-
quencies in jet engine vibration data [25] using k-Means
clustering. Similarly, anomalies such as tool breakage detec-
tion have been discovered using cutting force data [149]
with a neural network. Bu et al. [93] discover discords from
power consumption data for a Dutch research facility using
Haar wavelets and augmented tries.

7.3 Surveillance and Trajectory Data
Li et al. [132] discover anomalies from average daily speed
and average daily load dataset for taxicabs in San Francisco
during July 2006. Ge et al. [131] find anomalies such as
vehicle moving to the left side of the road (wrong way),
vehicle taking a wrong short cut, and people jaywalking.
Yankov et al. [97] also find discords from trajectory data.
Trajectory data can also be used for monitoring the move-
ment of patients and senior citizens. For example, it can
be used to discover events such as taking a wrong bus,
having a bad fall, encountering a sudden slow-down and
getting lost [110]. They use dynamic cluster maintenance to
discover such outlier activities.

Surveillance data can be useful in smart homes to
discover anomaly situations. An example would be the
situation where the resident has turned on the bathwa-
ter, but has not turned it off before going to bed [150].
Similarly, data from health and medical monitoring sen-
sors attached to patients can be used to identify symptoms
or diseases. Surveillance videos can be explored to dis-
cover outliers, such as the appearance of a new object,
object zooming in a camera and novel video content [113]
using the distance based local outliers for data streams.
Pokrajac et al. [113] study trajectories from surveillance
videos to identify anomalous behaviors such as people first
walking right and then back left, or people walking very
slowly.

7.4 Computer Networks Data
Techniques for outlier detection from temporal data have
been widely used for intrusion detection [24], [61]–[63],
[108], [151]. Lakhina et al. [152] use multivariate timeseries

of origin-destination flows measuring the number of bytes,
packets, and IP-level flows to discover anomalies such
as high rate point-to-point byte transfer, denial of service
(DOS), distributed denial of service (DDOS) attacks, flash
crowd (large demand for a resource/service), host scanning
for a vulnerable port or network scanning for a target port,
WORM5, OUTAGE6, etc. They find outliers using the sub-
space method which is borrowed from the multivariate sta-
tistical process control literature. Domain-specific features,
such as duration, protocol type, number of bytes trans-
ferred for TCP connection with Euclidean distance are used
with a variant of single-linkage clustering in [28]. Ye [38]
uses Markov models on the audit data of a Sun Solaris
system from MIT Lincoln lab to detect intrusion scenarios,
such as password guessing, root privileges access through
symbolic links, remote unauthorized access attempt, etc.
Sequences of Unix user commands are examined in [33]
using SVMs to discriminate between normal sequences and
intrusion sequences. A variant of the online sequential dis-
counting algorithm has been used in [153] to characterize
probabilistic correlation between flow-intensities measured
at multiple points in a computer network using GMMs. An
AutoRegressive model with eXogenous inputs (ARX) has
been proposed in [154] to learn the relationship between
flow intensities measured at multiple points in a computer
network, and thereby detect correlation-based faults.

7.5 Biological Data
Keogh et al. [91] discover anomalous subsequences (dis-
cords) from electrocardiograms. Shape discords (unusual
shapes) have been found to be useful in zoology, anthropol-
ogy, and medicine [92]. Wei et al. [92] use shape discords
to discover an odd butterfly, given a group of seemingly
similar butterflies. Given a dataset of red blood cells, they
use their techniques to discover teardrop shaped cells,
or dacrocytes, which is indicative of several blood disor-
ders. A fungus dataset has been studied to discover spores
that have sprouted an “appendage” known as a germ
tube. Endangered species equipped with sensors have been
studied to discover abnormal migration behaviors of the
species.

7.6 Astronomy Data
Keogh et al. [91] discover discords from Space telemetry
data. These discords correspond to manually noted errors,
such as “Poppet pulled significantly out of the solenoid
before energizing”. Yankov et al. [97] find discords from
star light-curve data. Zhu et al. [101] detect high gamma
ray bursts from Milagro Gamma Ray data stream.

7.7 Web Data
Given multiple crawls of the web graph, Papadimitriou
et al. [134], [140] find a crawl graph with anomalies.
These anomalies refer either to failures of the web hosts
that do not allow the crawler to access their content or

5. A self propagating code that spreads across a network by
exploiting security flaws.

6. Events causing decrease in traffic exchanged between a pair of
nodes.

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2263

hardware/software problems in the search engine infras-
tructure that can corrupt parts of the crawled data. They use
graph similarity measures like vertex/edge overlap, vertex
ranking, vertex/edge vector similarity, sequence similarity
and signature similarity to derive respective time series and
then detect outliers. Yankov et al. [97] study the MSN query
logs to discover both anticipated bursts (e.g., “easter”,
“hanukkah”) and unanticipated bursts (e.g., unexpected
events like death of a celebrity) of web queries as discords.
Lappas et al. [155] use the notion of spatiotemporal term
burstiness to compute highly spatiotemporally impactful
events as outliers. Mathioudakis et al. [156] also propose
efficient dynamic programming algorithms for the similar
task of identifying notable geographically focused events
from user generated content.

7.8 Information Network Data
Aggarwal et al. [9] discover graphs representing inter-
disciplinary research papers as outliers from the DBLP
dataset using structural outlier detection in massive net-
work streams. They also discover movies with a cast
from multiple countries as outliers from the IMDB dataset.
Gupta et al. [13] discover those authors from DBLP co-
authorship network as outliers which show a significant
deviation in the changes of their research areas compared
with other authors. This work explores the difference across
two network snapshots using temporal community out-
lier detection methods. Similarly, they discover actors from
IMDB as outliers which show a very unusual change in
their movie genre distributions. Priebe et al. [157] study the
communication graph of the Enron data with respect to the
maximum degree and digraph size scan statistics. Excessive
communication outliers which can suggest insider trading
scenarios are discovered.

7.9 Economics Time Series Data
Various temporal economic datasets have been studied with
respect to outlier detection. Gupta et al. [12] identify coun-
try outliers based on the unusual change in the constituents
of the GDP (Consumption, Investment, Public Expenditure
and Net Exports) across time, using temporal community
outlier detection methods. They also find U.S. states as
outliers from the Budget dataset with respect to anoma-
lous change in the distribution of spending with respect
to different components. Otey et al. [116] study the U.S.
Census Bureau’s Income data set to detect outliers, on the
basis of unusual combinations of demographic attribute
values. They also studied the U.S. Congressional Voting
Data to find outliers. An example is a Republican con-
gressman who voted significantly differently from his party
on four bills. They use distance based outlier detection
for distributed temporal data to obtain such outliers. Zhu
et al. [101] perform outlier subsequence detection from the
NYSE IBM stock time series data using Shifted Wavelet
Trees.

8 CONCLUSION AND LESSONS LEARNED

In this work, we presented an organized overview of
the various techniques proposed for outlier detection on

temporal data. Modeling temporal data is a challenging
task due to the dynamic nature and complex evolutionary
patterns in the data. In the past, there are a wide variety of
models developed to capture different facets in temporal
data outlier detection. This survey organized the discus-
sion along different data types, presented various outlier
definitions, and briefly introduced the corresponding tech-
niques. Finally, we also discussed various applications
for which these techniques have been successfully used.
This survey provides a number of insights and lessons as
follows.

• The methods for different data types are not easy
to generalize to one another, though some of them
may have similarity in the framework at the broader
level. For example, change detection in continuous
time series and discrete time series both require
forecasting methods. However, the specific kind of
forecasting method is extremely different in the
two scenarios (regression models in one vs Markov
Models in the other).

• Most window based models are currently offline,
whereas online methods do exist for point based
models. Therefore, there is significant opportunity
for research in the former.

• While the number of formulations of the temporal
outlier detection problem are diverse, they are gen-
erally motivated by the most common applications
which are encountered in the literature. Many recent
applications, especially those corresponding to novel
data types in the context of web-based applications,
may result in combinations of facets, which have not
been explored before.

• There are numerous formulations of temporal outlier
detection, which have not been sufficiently explored.
This is because of the many different combinations
of facets, which can be used for defining temporal
outlier detection problems. Complex data types such
as social streams in which two different data types
are present in combination (text and structure) have
also not been studied.

This comprehensive survey provides a good insight into
various techniques that have been applied on multiple
forms of temporal data and can be used to identify prob-
lem settings that can be worked on in the future. Finally,
for further reading, we direct the reader to a recent book on
outlier analysis [1] and [158] for a tutorial version of this
survey. Also, [159] present outlier detection techniques for
time series data and [160], [161] discuss novelty detection
techniques.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Army
Research Laboratory under Cooperative Agreement
W911NF-11-2-0086 (Cyber-Security) and Cooperative
Agreement W911NF-09-2-0053 (NS-CTA), in part by the
U.S. Army Research Office under Cooperative Agreement
W911NF-13-1-0193, and in part by U.S. National Science
Foundation grant CNS-0931975, grant IIS-1017362, and
grant IIS-1320617.

2264 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

REFERENCES

[1] C. C. Aggarwal, Outlier Analysis. New York, NY, USA: Springer,
2013.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

[3] V. J. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, 2004.

[4] Y. Zhang, N. Meratnia, and P. J. M. Havinga, “Outlier detec-
tion techniques for wireless sensor networks: A survey,”
Centre Telemat. Inform. Technol. Univ. Twente, Enschede, The
Netherlands, Tech. Rep. TR-CTIT-08-59, Oct. 2008.

[5] C. C. Aggarwal and P. S. Yu, “Outlier detection for high
dimensional data,” SIGMOD Rec., vol. 30, pp. 37–46, May 2001.

[6] C. C. Aggarwal and P. S. Yu, “Outlier detection with uncertain
data,” in Proc. 2008 SIAM Int. Conf. SDM, pp. 483–493.

[7] C. Aggarwal and K. Subbian, “Event detection in social streams,”
in Proc. 12th SIAM Int. Conf. SDM, 2012, pp. 624–635.

[8] C. C. Aggarwal, “On abnormality detection in spuriously pop-
ulated data streams,” in Proc. 2005 SIAM Int. Conf. SDM,
pp. 80–91.

[9] C. C. Aggarwal, Y. Zhao, and P. S. Yu, “Outlier detection in
graph streams,” in Proc. 27th ICDE, Hannover, Germany, 2011,
pp. 399–409.

[10] J. Gao et al., “On community outliers and their efficient detection
in information networks,” in Proc. 16th ACM Int. Conf. KDD,
2010, pp. 813–822.

[11] A. Ghoting, M. E. Otey, and S. Parthasarathy, “LOADED: Link-
based outlier and anomaly detection in evolving data sets,” in
Proc. 4th IEEE ICDM, 2004, pp. 387–390.

[12] M. Gupta, J. Gao, Y. Sun, and J. Han, “Community trend outlier
detection using soft temporal pattern mining,” in Proc. ECML
PKDD, Bristol, U.K., 2012, pp. 692–708.

[13] M. Gupta, J. Gao, Y. Sun, and J. Han, “Integrating community
matching and outlier detection for mining evolutionary commu-
nity outliers,” in Proc. 18th ACM Int. Conf. KDD, Beijing, China,
2012, pp. 859–867.

[14] J. P. Burman and M. C. Otto, “Census bureau research project:
Outliers in time series,” Bureau of the Census, SRD Res. Rep.
CENSUS/SRD/RR-88114, May 1988.

[15] A. J. Fox, “Outliers in time series,” J. Roy. Statist. Soc. B Methodol.,
vol. 34, no. 3, pp. 350–363, 1972.

[16] H. Cho, Y. jin Kim, H. J. Jung, S.-W. Lee, and J. W. Lee,
“OutlierD: An R package for outlier detection using quantile
regression on mass spectrometry data,” Bioinformatics, vol. 24,
no. 6, pp. 882–884, 2008.

[17] V. Barnett and T. Lewis, Outliers in Statistical Data. New York,
NY, USA: Wiley, 1978.

[18] D. M. Hawkins, Identification of Outliers. London, U.K.: Chapman
and Hall, 1980.

[19] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. New York, NY, USA: Wiley, 1987.

[20] T. Lane et al., “Sequence matching and learning in anomaly
detection for computer security,” in Proc. AAAI Workshop AI
Approaches Fraud Detection Risk Manage., 1997, pp. 43–49.

[21] S. Budalakoti, A. Srivastava, R. Akella, and E. Turkov, “Anomaly
detection in large sets of high-dimensional symbol sequences,”
NASA Ames Res. Center, Mountain View, CA, USA, Tech. Rep.
NASA TM-2006-214553, 2006.

[22] S. Budalakoti, A. N. Srivastava, and M. E. Otey, “Anomaly detec-
tion and diagnosis algorithms for discrete symbol sequences
with applications to airline safety,” IEEE Trans. Syst., Man,
Cybern., C, Appl. Rev., vol. 39, no. 1, pp. 101–113, Jan. 2009.

[23] V. Chandola, V. Mithal, and V. Kumar, “A comparative eval-
uation of anomaly detection techniques for sequence data,” in
Proc. 2008 8th IEEE ICDM, Pisa, Italy, pp. 743–748.

[24] K. Sequeira and M. Zaki, “ADMIT: Anomaly-based data mining
for intrusions,” in Proc. 8th ACM Int. Conf. KDD, New York, NY,
USA, 2002, pp. 386–395.

[25] A. Nairac et al., “A system for the analysis of jet engine vibra-
tion data,” Integr. Comput. Aided Eng., vol. 6, no. 1, pp. 53–66,
Jan. 1999.

[26] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Ganesha: BlackBox diagnosis of mapReduce systems,”
SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, pp. 8–13,
Jan. 2010.

[27] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock,
“Finding anomalous periodic time series,” J. Mach. Learn.,
vol. 74, no. 3, pp. 281–313, Mar. 2009.

[28] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with
unlabeled data using clustering,” in Proc. ACM CSS Workshop
DMSA, 2001, pp. 5–8.

[29] M. Gupta, A. B. Sharma, H. Chen, and G. Jiang, “Context-aware
time series anomaly detection for complex systems,” in Proc.
SDM Workshop, 2013.

[30] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo,
“A geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data,” in Proc. Appl. Data
Mining Comput. Security, 2002.

[31] P. Evangelista, P. Bonnisone, M. Embrechts, and B. Szymanski,
“Fuzzy ROC curves for the 1 class SVM: Application to intru-
sion detection,” in Proc. 13th Eur. Symp. Artif. Neural Netw., 2005,
pp. 345–350.

[32] J. Ma and S. Perkins, “Time-series novelty detection using
one-class support vector machines,” in Proc. IJCNN, Jul. 2003,
pp. 1741–1745.

[33] B. Szymanski and Y. Zhang, “Recursive data mining for mas-
querade detection and author identification,” in Proc. 5th Annu.
IEEE SMC Inform. Assur. Workshop, 2004, pp. 424–431.

[34] F. A. González and D. Dasgupta, “Anomaly detection using
real-valued negative selection,” Genet. Program. Evolvable Mach.,
vol. 4, no. 4, pp. 383–403, Dec. 2003.

[35] C. Marceau, “Characterizing the behavior of a program using
multiple-length n-grams,” in Proc. 2000 NSPW, pp. 101–110.

[36] C. C. Michael and A. Ghosh, “Two state-based approaches to
program-based anomaly detection,” in Proc. 16th ACSAC, New
Orleans, LA, USA, 2000, pp. 21–30.

[37] S. Salvador and P. Chan, “Learning states and rules for detecting
anomalies in time series,” Appl. Intell., vol. 23, no. 3, pp. 241–255,
Dec. 2005.

[38] N. Ye, “A Markov chain model of temporal behavior for anomaly
detection,” in Proc. 2000 IEEE SMC Inform. Assur. Security
Workshop, vol. 166. pp. 171–174.

[39] J. Yang and W. Wang, “CLUSEQ: Efficient and effective sequence
clustering,” in Proc. 19th ICDE, 2003, pp. 101–112.

[40] P. Sun, S. Chawla, and B. Arunasalam, “Mining for outliers in
sequential databases,” in Proc. 6th SIAM Int. Conf. SDM, 2006,
pp. 94–105.

[41] E. Eskin, W. Lee, and S. Stolfo, “Modeling system calls for intru-
sion detection with dynamic window sizes,” in Proc. DISCEX,
vol. 1. 2001, pp. 165–175.

[42] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from
unix process execution traces for intrusion detection,” in Proc.
AAAI Workshop AI Approaches Fraud Detection Risk Manage., 1997,
pp. 50–56.

[43] G. Florez-Larrahondo, S. M. Bridges, and R. Vaughn, “Efficient
modeling of discrete events for anomaly detection using hidden
Markov models,” in Proc. 8th Int. Conf. ISC, 2005, pp. 506–514.

[44] B. Gao, H.-Y. Ma, and Y.-H. Yang, “HMMs (Hidden Markov
Models) based on anomaly intrusion detection method,” in Proc.
Int. Conf. Mach. Learn. Cybern., 2002, pp. 381–385.

[45] Y. Qiao, X. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detec-
tion method based on HMM,” Electron. Lett., vol. 38, no. 13,
pp. 663–664, Jun. 2002.

[46] X. Zhang, P. Fan, and Z. Zhu, “A new anomaly detection method
based on hierarchical HMM,” in Proc. 4th Int. Conf. PDCAT,
Aug. 2003, pp. 249–252.

[47] X. Li and J. Han, “Mining approximate top-k subspace anomalies
in multi-dimensional time-series data,” in Proc. 33rd Int. Conf.
VLDB, Vienna, Austria, 2007, pp. 447–458.

[48] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion
detection,” in Proc. 7th Conf. USENIX SSYM, Berkeley, CA, USA,
1998, pp. 6–20.

[49] J. B. D. Cabrera, L. Lewis, and R. K. Mehra, “Detection and
classification of intrusions and faults using sequences of system
calls,” SIGMOD Rec., vol. 30, no. 4, pp. 25–34, Dec. 2001.

[50] D. Dasgupta and F. Nino, “A comparison of negative and pos-
itive selection algorithms in novel pattern detection,” in Proc.
IEEE Int. Conf. SMC, Nashville, TN, USA, 2000, pp. 125–130.

[51] D. Endler, “Intrusion detection applying machine learning to
solaris audit data,” in Proc. 14th ACSAC, Phoenix, AZ, USA,
1998, pp. 268–279.

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2265

[52] A. K. Gosh, J. Wanken, and F. Charron, “Detecting anoma-
lous and unknown intrusions against programs,” in Proc. 14th
ACSAC, Phoenix, AZ, USA, 1998, pp. 259–267.

[53] A. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program
behavior profiles for intrusion detection,” in Proc. 1st USENIX
Workshop Intrusion Detection Network Monitoring, Berkeley, CA,
USA, 1999, pp. 51–62.

[54] A. K. Ghosh and A. Schwartzbard, “A study in using neural
networks for anomaly and misuse detection,” in Proc. 8th Conf.
USENIX SSYM, Berkeley, CA, USA, 1999, pp. 12–23.

[55] X. Li, J. Han, and S. Kim, “Motion-alert: Automatic anomaly
detection in massive moving objects,” in Proc. 4th IEEE Int. Conf.
ISI, San Diego, CA, USA, 2006, pp. 166–177.

[56] D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers for
misuse detection using a bag of system calls representation,” in
Proc. 3rd IEEE Int. Conf. ISI, Atlanta, GA, USA, 2005, pp. 511–516.

[57] S. Tian, S. Mu, and C. Yin, “Sequence-similarity kernels for SVMs
to detect anomalies in system calls,” Neurocomputing, vol. 70,
no. 4–6, pp. 859–866, Jan. 2007.

[58] M. Wang, C. Zhang, and J. Yu, “Native API based windows
anomaly intrusion detection method using SVM,” in Proc. IEEE
Int. Conf. SUTC, vol 1. 2006, pp. 514–519.

[59] X. Li, J. Han, S. Kim, and H. Gonzalez, “ROAM: Rule- and motif-
based anomaly detection in massive moving object data sets,”
in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 273–284.

[60] A. Ghosh et al., “Using program behavior profiles for intrusion
detection,” in Proc. SANS Intrusion Detection Workshop, 1999.

[61] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” J. Comput. Security, vol. 6, no. 3,
pp. 151–180, Aug. 1998.

[62] T. Lane and C. E. Brodley, “An application of machine learning
to anomaly detection,” in Proc. 20th NISSC, 1997, pp. 366–380.

[63] T. Lane and C. E. Brodley, “Temporal sequence learning and data
reduction for anomaly detection,” in Proc. 5th ACM Conf. CCS,
1998, pp. 150–158.

[64] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A
sense of self for unix processes,” in Proc. IEEE Symp. Security
Privacy, Oakland, CA, USA, 1996, pp. 120–128.

[65] D. Dasgupta and N. Majumdar, “Anomaly detection in multi-
dimensional data using negative selection algorithm,” in Proc.
Congr. CEC, Honolulu, HI, USA, 2002, pp. 1039–1044.

[66] P. D’haeseleer, S. Forrest, and P. Helman, “An immunological
approach to change detection: Algorithms, analysis and impli-
cations,” in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA,
May 1996, pp. 110–119.

[67] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-
nonself discrimination in a computer,” in Proc. IEEE Symp.
Security Privacy, Oakland, CA, USA, 1994, pp. 202–212.

[68] E. Keogh, S. Lonardi, and B. Y.-C. Chiu, “Finding surprising
patterns in a time series database in linear time and space,” in
Proc. 8th ACM Int. Conf. KDD, Edmonton, AB, Canada, 2002,
pp. 550–556.

[69] M. Atallah, R. Gwadera, and W. Szpankowski, “Detection of sig-
nificant sets of episodes in event sequences,” in Proc. 4th IEEE
ICDM, 2004, pp. 3–10.

[70] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representa-
tion of time series, with implications for streaming algorithms,”
in Proc. 8th ACM SIGMOD Workshop Research Issues DMKD, San
Diego, CA, USA, 2003, pp. 2–11.

[71] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX:
A novel symbolic representation of time series,” Data Mining
Knowl. Discov., vol. 15, no. 2, pp. 107–144, Oct. 2007.

[72] R. Gwadera, M. J. Atallah, and W. Szpankowski, “Markov mod-
els for identification of significant episodes,” in Proc. 5th SIAM
Int. Conf. SDM, 2005, pp. 404–414.

[73] R. Gwadera, M. J. Atallah, and W. Szpankowski, “Reliable detec-
tion of episodes in event sequences,” Knowl. Inform. Syst., vol. 7,
no. 4, pp. 415–437, May 2005.

[74] S. Basu and M. Meckesheimer, “Automatic outlier detection for
time series: An application to sensor data,” Knowl. Inform. Syst.,
vol. 11, no. 2, pp. 137–154, Feb. 2007.

[75] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming
environmental sensor data: A data-driven modeling approach,”
Environ. Modell. Softw., vol. 25, no. 9, pp. 1014–1022, Sep. 2010.

[76] J. Ma and S. Perkins, “Online novelty detection on temporal
sequences,” in Proc. 9th ACM Int. Conf KDD, New York, NY,
USA, 2003, pp. 613–618.

[77] N. D. Le, R. D. Martin, and A. E. Raftery, “Modeling flat
stretches, bursts, and outliers in time series using mixture transi-
tion distribution models,” J. Amer. Statist. Assoc., vol. 91, no. 436,
pp. 1504–1515, 1996.

[78] R. S. Tsay, D. Pena, and A. E. Pankratz, “Outliers in multivariate
time series,” Biometrika, vol. 87, no. 4, pp. 789–804, 2000.

[79] A. Luceno, “Detecting possibly non-consecutive outliers in
industrial time series,” J. Roy. Statist. Soc. B, Statist. Methodol.,
vol. 60, no. 2, pp. 295–310, 1998.

[80] A. Justel, D. Pena, and R. S. Tsay, “Detection of outlier patches
in autoregressive time series,” Statist. Sinica, vol. 11, no. 3,
pp. 651–674, 2001.

[81] A. M. Bianco, M. García Ben, E. J. Martínez, and V. J. Yohai,
“Outlier detection in regression models with ARIMA errors
using robust estimates,” J. Forecasting, vol. 20, no. 8, pp. 565–579,
Dec. 2001.

[82] I. Chang, G. C. Tiao, and C. Chen, “Estimation of time series
parameters in the presence of outliers,” Technometrics, vol. 30,
no. 2, pp. 193–204, 1988.

[83] C. Chen and L.-M. Liu, “Joint estimation of model parameters
and outlier effects in time series,” J. Amer. Statist. Assoc., vol. 88,
no. 421, pp. 284–297, 1993.

[84] R. S. Tsay, “Time series model specification in the presence of
outliers,” J. Amer. Statist. Assoc., vol. 81, no. 393, pp. 132–141,
1986.

[85] P. Galeano, D. Pena, and R. S. Tsay, “Outlier detection in multi-
variate time series by projection pursuit,” J. Amer. Statist. Assoc.,
vol. 101, no. 474, pp. 654–669, 2006.

[86] A. W. Williams, S. M. Pertet, and P. Narasimhan, “Tiresias:
Black-box failure prediction in distributed systems,” in Proc. 21st
IPDPS, Long Beach, CA, USA, 2007, pp. 1–8.

[87] G. Silvestri, F. Verona, M. Innocenti, and M. Napolitano, “Fault
detection using neural networks,” in Proc. IEEE Int. Conf. Neural
Netw., Orlando, FL, USA, Jun. 1994, pp. 3796–3799.

[88] H. V. Jagadish, N. Koudas, and S. Muthukrishnan, “Mining
deviants in a time series database,” in Proc. 25th Int. Conf. VLDB,
Edinburgh, U.K., 1999, pp. 102–113.

[89] S. Muthukrishnan, R. Shah, and J. Vitter, “Mining deviants
in time series data streams,” in Proc. 16th Int. Conf. SSDBM,
Jun. 2004, pp. 41–50.

[90] E. Keogh, J. Lin, S.-H. Lee, and H. Van Herle, “Finding the most
unusual time series subsequence: Algorithms and applications,”
Knowl. Inform. Syst., vol. 11, no. 1, pp. 1–27, Dec. 2006.

[91] E. Keogh, J. Lin, and A. Fu, “HOT SAX: Efficiently finding the
most unusual time series subsequence,” in Proc. 5th IEEE ICDM,
2005, pp. 226–233.

[92] L. Wei, E. Keogh, and X. Xi, “SAXually explicit images:
Finding unusual shapes,” in Proc. 6th ICDM, Hong Kong, 2006,
pp. 711–720.

[93] Y. Bu et al., “WAT: Finding top-k discords in time series
database,” in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 449–454.

[94] A. W.-C. Fu, O. T.-W. Leung, E. Keogh, and J. Lin, “Finding time
series discords based on haar transform,” in Proc. 2nd Int. Conf.
ADMA, Xi’an, China, 2006, pp. 31–41.

[95] J. Lin, E. Keogh, A. Fu, and H. Van Herle, “Approximations to
magic: Finding unusual medical time series,” in Proc. 18th IEEE
Symp. CBMS, 2005, pp. 329–334.

[96] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards
parameter-free data mining,” in Proc. 10th ACM Int. Conf. KDD,
Seattle, WA, USA, 2004, pp. 206–215.

[97] D. Yankov, E. Keogh, and U. Rebbapragada, “Disk aware dis-
cord discovery: Finding unusual time series in terabyte sized
datasets,” Knowl. Inform. Syst., vol. 17, no. 2, pp. 241–262,
Nov. 2008.

[98] X.-Y. Chen and Y.-Y. Zhan, “Multi-scale anomaly detection algo-
rithm based on infrequent pattern of time series,” J. Comput.
Appl. Math., vol. 214, no. 1, pp. 227–237, Apr. 2008.

[99] C. Shahabi, X. Tian, and W. Zhao, “TSA-tree: A wavelet-based
approach to improve the efficiency of multi-level surprise and
trend queries on time-series data,” in Proc. 12th Int. Conf.
SSDBM, Berlin, Germany, 2000, pp. 55–68.

[100] L. Wei et al., “Assumption-free anomaly detection in time
series,” in Proc. 17th Int. Conf. SSDBM, Berkeley, CA, USA, 2005,
pp. 237–240.

[101] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data
streams,” in Proc. 9th ACM Int. Conf KDD, New York, NY, USA,
2003, pp. 336–345.

2266 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

[102] K. Yamanishi and J.-I. Takeuchi, “A unifying framework for
detecting outliers and change points from non-stationary time
series data,” in Proc. 8th ACM Int. Conf. KDD, Edmonton, AB,
Canada, 2002, pp. 676–681.

[103] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, “On-
line unsupervised outlier detection using finite mixtures with
discounting learning algorithms,” Data Mining Knowl. Discov.,
vol. 8, no. 3, pp. 275–300, May 2004.

[104] A. V. Harold and S. Javitz, “The NIDES statistical component
description and justification,” SRI Int., Menlo Park, CA, USA,
Tech. Rep. A010, Mar. 1994.

[105] C. C. Aggarwal and P. S. Yu, “On clustering massive text and
categorical data streams,” Knowl. Inform. Syst., vol. 24, no. 2,
pp. 171–196, 2010.

[106] D. J. Hill, B. S. Minsker, and E. Amir, “Real-time Bayesian
anomaly detection for environmental sensor data,” in Proc. 32nd
Conf. IAHR, 2007.

[107] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-
based outliers in large datasets,” in Proc. 24th Int. Conf. VLDB,
New York, NY, USA, 1998, pp. 392–403.

[108] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in
streams of data,” in Proc. 16th ACM CIKM, Lisboa, Portugal,
2007, pp. 811–820.

[109] D. Yang, E. A. Rundensteiner, and M. O. Ward, “Neighbor-based
pattern detection for windows over streaming data,” in Proc. 12th
Int. Conf. EDBT, 2009, pp. 529–540.

[110] Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu, “Efficient anomaly moni-
toring over moving object trajectory streams,” in Proc. 15th ACM
Int. Conf. KDD, Paris, France, 2009, pp. 159–168.

[111] H. Cao, Y. Zhou, L. Shou, and G. Chen, “Attribute outlier detec-
tion over data streams,” in Proc. 15th Int. Conf. DASFAA Part II,
Tsukuba, Japan, 2010, pp. 216–230.

[112] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF:
Identifying density-based local outliers,” in Proc. ACM SIGMOD
Int. Conf. SIGMOD, New York, NY, USA, 2000, pp. 93–104.

[113] D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental local
outlier detection for data streams,” in Proc. IEEE Symp. CIDM,
Honolulu, HI, USA, Apr. 2007, pp. 504–515.

[114] J. Zhang, Q. Gao, and H. Wang, “SPOT: A system for detect-
ing projected outliers from high-dimensional data streams,” in
Proc. 24th ICDE, Cancun, Mexico, 2008, pp. 1628–1631.

[115] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and H. Kargupta,
“In-network outlier detection in wireless sensor networks,” in
Proc. 26th IEEE ICDCS, 2006, pp. 51–81.

[116] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed
outlier detection in mixed-attribute data sets,” Data Mining
Knowl. Discov., vol. 12, nos. 2–3, pp. 203–228, May 2006.

[117] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos, “Online outlier detection in sensor data using
non-parametric models,” in Proc. 32nd Int. Conf. VLDB, Seoul,
Korea, 2006, pp. 187–198.

[118] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos,
“Distributed deviation detection in sensor networks,” SIGMOD
Rec., vol. 32, no. 4, pp. 77–82, Dec. 2003.

[119] N. A. C. Cressie, Statistics for Spatial Data. New York, NY, USA:
Wiley, 1993.

[120] M. Jun, H. Jeong, and C. Kuo, “Distributed spatio-temporal
outlier detection in sensor networks,” in Proc. SPIE, 2005,
pp. 760–763.

[121] C. Franke and M. Gertz, “Detection and exploration of outlier
regions in sensor data streams,” in Proc. IEEE ICDMW, Pisa,
Italy, 2008, pp. 375–384.

[122] C. Franke and M. Gertz, “ORDEN: Outlier region detection
and exploration in sensor networks,” in Proc. ACM SIGMOD,
Providence, RI, USA, 2009, pp. 1075–1078.

[123] D. Birant and A. Kut, “Spatio-temporal outlier detection in large
databases,” J. Comput. Inform. Technol., vol. 14, no. 4, pp. 291–297,
2006.

[124] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. 2nd ACM Int. Conf. KDD, 1996, pp. 226–231.

[125] T. Cheng and Z. Li, “A hybrid approach to detect spatial-
temporal outliers,” in Proc. 12th Int. Conf. Geoinformatics, 2004,
pp. 173–178.

[126] T. Cheng and Z. Li, “A multiscale approach for spatio-temporal
outlier detection,” Trans. GIS, vol. 10, no. 2, pp. 253–263, 2006.

[127] N. R. Adam, V. P. Janeja, and V. Atluri, “Neighborhood based
detection of anomalies in high dimensional spatio-temporal
sensor datasets,” in Proc. ACM SAC, Nicosia, Cyprus, 2004,
pp. 576–583.

[128] E. Wu, W. Liu, and S. Chawla, “Spatio-temporal outlier detection
in precipitation data,” in Proc. 2nd Int. Conf. Sensor KDD, Las
Vegas, NV, USA, 2010, pp. 115–133.

[129] C.-T. Lu and L. R. Liang, “Wavelet fuzzy classification for detect-
ing and tracking region outliers in meteorological data,” in
Proc. 12th Annu. ACM Int. Workshop GIS, 2004, pp. 258–265.

[130] J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection:
A partition-and-detect framework,” in Proc. IEEE 24th ICDE,
Washington, DC, USA, 2008, pp. 140–149.

[131] Y. Ge et al., “Top-eye: Top-k evolving trajectory outlier detec-
tion,” in Proc. 19th ACM Int. CIKM, Toronto, ON, Canada, 2010,
pp. 1733–1736.

[132] X. Li, Z. Li, J. Han, and J.-G. Lee, “Temporal outlier detection in
vehicle traffic data,” in Proc. 2009 IEEE ICDE, Shanghai, China,
pp. 1319–1322.

[133] B. Pincombe, “Anomaly detection in time series of graphs using
ARMA processes,” ASOR Bull., vol. 24, no. 4, pp. 2–10, 2005.

[134] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph
similarity for anomaly detection,” in Proc. 17th Int. Conf. WWW,
2008, pp. 1167–1168.

[135] P. Shoubridge, M. Kraetzl, and D. Ray, “Detection of abnormal
change in dynamic networks,” in Proc. Int. Conf. IDC, Adelaide,
SA, Australia, 1999, pp. 557–562.

[136] K. M. Kapsabelis, P. J. Dickinson, and K. Dogancay,
“Investigation of graph edit distance cost functions for
detection of network anomalies,” in Proc. 13th Biennial CTAC,
vol. 48. Oct. 2007, pp. C436–C449.

[137] P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl, “Median
graphs and anomalous change detection in communication net-
works,” in Proc. Int. Conf. Inform., Decis. Control, Adelaide, SA,
Australia, Feb. 2002, pp. 59–64.

[138] M. Gaston, M. Kraetzl, and W. Wallis, “Graph diameter as
a pseudo-metric for change detection in dynamic networks,”
Austr. J. Combinatorics, vol. 35, pp. 299–312, Jun. 2006.

[139] P. Dickinson and M. Kraetzl, “Novel approaches in modelling
dynamics of networked surveillance environment,” in Proc. 6th
Int. Conf. Inform. Fusion, vol. 1. Cairns, QLD, Australia, 2003,
pp. 302–309.

[140] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph
similarity for anomaly detection,” J. Internet Serv. Appl., vol. 1,
no. 1, pp. 19–30, 2010.

[141] M. Gupta, C. C. Aggarwal, and J. Han, “Finding top-k shortest
path distance changes in an evolutionary network,” in Proc. 12th
Int. Conf. Adv. SSTD, Minneapolis, MN, USA, 2011, pp. 130–148.

[142] T. Idé and H. Kashima, “Eigenspace-based anomaly detection in
computer systems,” in Proc. 10th ACM Int. Conf. KDD, Seattle,
WA, USA, 2004, pp. 440–449.

[143] L. Akoglu and C. Faloutsos, “Event detection in time series of
mobile communication graphs,” in Proc. Army Science Conf., 2010.

[144] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, “Evolutionary
clustering and analysis of bibliographic networks,” in Proc. 2011
Int. Conf. ASONAM, pp. 63–70.

[145] M. Gupta, J. Gao, and J. Han, “Community distribution outlier
detection in heterogeneous information networks,” in Proc. 2013
ECML PKDD, Prague, Czech Republic, pp. 557–573.

[146] Y. Sun et al., “Detecting spatio-temporal outliers in cli-
mate dataset: A method study,” in Proc. 2005 IEEE IGARSS,
pp. 760–763.

[147] W. Drosdowsky, “An analysis of Australian seasonal rainfall
anomalies: 1950–1987,” Int. J. Climatol., vol. 13, no. 1, pp. 1–30,
1993.

[148] R. Lasaponara, “On the use of principal component anal-
ysis (PCA) for evaluating interannual vegetation anomalies
from SPOT/VEGETATION NDVI temporal series,” Ecol. Modell.,
vol. 194, no. 4, pp. 429–434, 2006.

[149] D. Dasgupta and S. Forrest, “Novelty detection in time series
data using ideas from immunology,” in Proc. 5th Int. Conf.
Intelligent Systems, Reno, NV, USA, 1996.

[150] V. Jakkula and D. J. Cook, “Anomaly detection using tempo-
ral data mining in a smart home environment,” Methods Inform.
Med., vol. 47, no. 1, pp. 70–75, 2008.

GUPTA ET AL.: OUTLIER DETECTION FOR TEMPORAL DATA 2267

[151] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intru-
sions using system calls: Alternative data models,” in Proc. 1999
IEEE Symp. Security Privacy, Oakland, CA, USA, pp. 133–145.

[152] A. Lakhina, M. Crovella, and C. Diot, “Characterization of
network-wide anomalies in traffic flows,” in Proc. 4th ACM
SIGCOMM IMC, Taormina, Italy, 2004, pp. 201–206.

[153] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, “Tracking prob-
abilistic correlation of monitoring data for fault detection in
complex systems,” in Proc. ICDSN, Philadelphia, PA, USA, 2006,
pp. 259–268.

[154] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and tracking
of transaction flow dynamics for fault detection in complex
systems,” IEEE Trans. Depend. Secur. Comput., vol. 3, no. 4,
pp. 312–326, Oct. 2006.

[155] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras, “On the
spatiotemporal burstiness of terms,” Proc. VLDB, vol. 5, no. 9,
pp. 836–847, 2012.

[156] M. Mathioudakis, N. Bansal, and N. Koudas, “Identifying,
attributing and describing spatial bursts,” Proc. VLDB, vol. 3,
no. 1, pp. 1091–1102, 2010.

[157] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan
statistics on Enron graphs,” Comput. Math. Org. Theory, vol. 11,
no. 3, pp. 229–247, Oct. 2005.

[158] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection
for temporal data,” in Proc. 13th SIAM Int. Conf. SDM, 2013.

[159] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection
for discrete sequences: A survey,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 5, pp. 823–839, May 2012.

[160] M. Markou and S. Singh, “Novelty detection: A Review—
Part 1: Statistical approaches,” Signal Process., vol. 83, no. 12,
pp. 2481–2497, 2003.

[161] M. Markou and S. Singh, “Novelty detection: A review—Part
2: Neural network based approaches,” Signal Process., vol. 83,
no. 12, pp. 2499–2521, 2003.

[162] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang, “On anomalous
hotspot discovery in graph streams,” in Proc. 2013 IEEE ICDM,
Dallas, TX, USA.

Manish Gupta is an Applied Researcher at
Microsoft Bing, Gachibowli, Hyderabad, India,
and also a visiting faculty member at IIT-
Hyderabad, Hyderabad, India. He received the
master’s degree in computer science from
IIT Bombay, Mumbai, India, in 2007, and
the Ph.D. degree in computer science from
the University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, USA, in 2013. He was
with Yahoo!, Bangalore, India, from 2007 to
2009. His research interests are in the areas of
data mining, information retrieval, and web
mining.

Jing Gao received the Ph.D. degree from
the University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, USA, in 2011. She
is an Assistant Professor with the Computer
Science and Engineering Department, University
at Buffalo, State University of New York, Buffalo,
NY, USA. She was the recipient of an IBM Ph.D.
Fellowship. She is broadly interested in data
and information analysis with a focus on infor-
mation integration, ensemble methods, transfer
learning, anomaly detection, and mining data
streams. She is a member of the IEEE.

Charu C. Aggarwal is a Research Scientist
with the IBM T. J. Watson Research Center in
Yorktown Heights, NY, USA. He received the
Ph.D. degree from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 1996.
He has worked in the the field of performance
analysis, databases, and data mining. He has
published over 200 papers in refereed confer-
ences and journals, and has applied for or
been granted over 80 patents. He has received
the IBM Corporate Award in 2003, the IBM

Outstanding Innovation Award in 2008, the IBM Research Division
Award in 2008, and the Master Inventor at IBM thrice. He is a fellow
of the ACM and the IEEE.

Jiawei Han is an Abel Bliss Professor with
the Department of Computer Science at the
University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, USA. His research inter-
est include data mining, information network
analysis, and database systems, with over 500
publications. He received the ACM SIGKDD
Innovation Award in 2004, the IEEE Computer
Society Technical Achievement Award in 2005,
and the IEEE W. Wallace McDowell Award in
2009. His book Data Mining: Concepts and

Techniques (Morgan Kaufmann) has been used worldwide as a text-
book. He is a fellow of the ACM and the IEEE.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

