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Classification in the Presence of
Label Noise: a Survey

Benoît Frénay and Michel Verleysen, Member, IEEE

Abstract— Label noise is an important issue in classification,
with many potential negative consequences. For example, the
accuracy of predictions may decrease, whereas the complexity of
inferred models and the number of necessary training samples
may increase. Many works in the literature have been devoted
to the study of label noise and the development of techniques to
deal with label noise. However, the field lacks a comprehensive
survey on the different types of label noise, their consequences
and the algorithms that consider label noise. This paper proposes
to fill this gap. First, the definitions and sources of label noise
are considered and a taxonomy of the types of label noise is
proposed. Second, the potential consequences of label noise are
discussed. Third, label noise-robust, label noise cleansing, and
label noise-tolerant algorithms are reviewed. For each category of
approaches, a short discussion is proposed to help the practitioner
to choose the most suitable technique in its own particular field
of application. Eventually, the design of experiments is also
discussed, what may interest the researchers who would like to
test their own algorithms. In this paper, label noise consists of
mislabeled instances: no additional information is assumed to be
available like e.g. confidences on labels.

Index Terms— Class noise, classification, label noise,
mislabeling, robust methods, survey.

I. INTRODUCTION

CLASSIFICATION has been widely studied in machine
learning. In that context, the standard approach consists

in learning a classifier from a labeled dataset, to predict
the class of new samples. However, real-world datasets may
contain noise, which is defined in [1] as anything that obscures
the relationship between the features of an instance and its
class. In [2], noise is also described as consisting of non-
systematic errors. Among other consequences, many works
have shown that noise can adversely impact the classification
performances of induced classifiers [3]. Hence, the ubiquity
of noise seems to be an important issue for practical machine
learning e.g. in medical applications where most of the medical
diagnosis tests are not 100% accurate and cannot be considered
a gold standard [4]–[6]. Indeed, classes are not always as
easy to distinguish as lived and died [4]. It is therefore
necessary to implement techniques that eliminate noise or
reduce its consequences. It is all the more necessary since
reliably labeled data are often expensive and time consuming
to obtain [4], what explains the commonness of noise [7].
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In the literature, two types of noise are distinguished: feature
(or attribute) and class noises [2], [3], [8]. On the one hand,
feature noise affects the observed values of the feature, e.g. by
adding a small Gaussian noise to each feature during measure-
ment. On the other hand, class noise alters the observed labels
assigned to instances, e.g. by incorrectly setting a negative
label on a positive instance in binary classification. In [3] and
[9], it is shown that class noise is potentially more harmful
than feature noise, what highlights the importance of dealing
with this type of noise. The prevalence of the impact of label
noise is explained by the fact: 1) that there are many features,
whereas there is only one label and 2) that the importance of
each feature for learning is different, whereas labels always
have a large impact on learning. Similar results are obtained
in [2]: feature noise appears to be less harmful than class noise
for decision trees, except when a large number of features are
polluted by feature noise.

Even if there exists a large literature about class noise, the
field still lacks a comprehensive survey on different types
of label noise, their consequences and the algorithms that
consider label noise. This paper proposes to cover the class
noise literature. In particular, the different definitions and
consequences of class noise are discussed, as well as the
different families of algorithms that have been proposed to
deal with class noise. As in outlier detection, many techniques
rely on noise detection and removal algorithms, but it is shown
that more complex methods have emerged. Existing datasets
and data generation methods are also discussed, as well as
experimental considerations.

In this paper, class noise refers to observed labels that are
incorrect. It is assumed that no other information is available,
contrarily to other contexts where experts can e.g. provide a
measure of confidence or uncertainty on their own labeling
or answer with sets of labels. It is important to make clear
that only the observed label of an instance is affected, not
its true class. For this reason, here, class noise is called label
noise.

This paper is organized as follows. Section II discusses
several definitions and sources of label noise, as well as a
new taxonomy inspired by [10]. The potential consequences
of label noise are depicted in Section III. Section IV
distinguishes three types of approaches to deal with label
noise: label noise-robust, label noise cleansing, and label
noise-tolerant methods. The three families of methods are
discussed in Sections V–VII, respectively. Section VIII
discusses the design of experiments in the context of label
noise and Section IX concludes this paper.
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II. DEFINITION, SOURCES, AND TAXONOMY

OF LABEL NOISE

Label noise is a complex phenomenon, as shown in this
section. First, Section II-A defines the label noise and specifies
the scope of this survey. Similarities and differences with out-
liers and anomalies are also highlighted, since outlier detection
methods can be used to detect mislabeled instances. Next,
Section II-B reviews various sources of label noise, including
insufficient information, expert labeling errors, subjectivity
of the classes, and encoding and communication problems.
Eventually, a taxonomy of the types of label noise is proposed
in Section II-C to facilitate further discussions. The proposed
taxonomy highlights the potentially complex relationships
between the features of instances, their true class and observed
label. This complexity should be considered when designing
algorithms to deal with label noise, as they should be adapted
to the characteristics of label noise.

A. Definition of Label Noise and Scope of the Survey

Classification consists in predicting the class of new
samples, using a model inferred from training data. In this
paper, it is assumed that each training sample is associated
with an observed label. This label often corresponds to the true
class of the sample, but it may be subjected to a noise process
before being presented to the learning algorithm [11]. It is
therefore important to distinguish the true class of an instance
from its observed label. The process that pollutes labels is
called label noise and must be separated from feature (or
attribute) noise [2], [3], [8] that affects the value of features.
Some authors also consider outliers that are correctly labeled
as label noise [12], what is not done here.

In this survey, label noise is considered to be a stochastic
process, i.e., the case where the labeling errors may be
intentionally (like e.g. in the food industry [13]–[16]) and
maliciously induced by an adversary agent [17]–[26] is not
considered. Moreover, labeling errors are assumed to be inde-
pendent from each other [11]. Edmonds [27] shows that noise
in general is a complex phenomenon. In some very specific
contexts, stochastic label noise can be intentionally introduced
e.g. to protect people privacy, in which case its characteristics
are completely under control [28]. However, a fully specified
model of label noise is usually not available, what explains
the need for automated algorithms that are able to cope
with label noise. Learning situations where label noise occurs
can be called imperfectly supervised, i.e. pattern recognition
applications where the assumption of label correctness does
not hold for all the elements of the training sample [29]. Such
situations are between supervised and unsupervised learning.

Dealing with label noise is closely related to outlier detec-
tion [30]–[33] and anomaly detection [34]–[38]. Indeed, mis-
labeled instances may be outliers, if their label has a low
probability of occurrence in their vicinity. Similarly, such
instances may also look anomalous, with respect to the class
that corresponds to their incorrect label. Hence, it is natural
that many techniques in the label noise literature are very close
to outlier and anomaly detection techniques; this is detailed in
Section VI. Many of the methods that have been developed

to deal with outliers and anomalies can also be used to deal
with label noise (see e.g. [39] and [40]). However, it must
be highlighted that mislabeled instances are not necessarily
outliers or anomalies, which are subjective concepts [41]. For
example, if labeling errors occur in a boundary region where
all classes are equiprobable, the mislabeled instances neither
are rare events nor look anomalous. Similarly, an outlier is not
necessarily a mislabeled sample [42], since it can be due to
feature noise or simply be a low-probability event.

B. Sources of Label Noise

As outlined in [1], the identification of the source(s) of
label noise is not necessarily important, when the focus of
the analysis is on the consequences of label noise. However,
when a label noise model has to be embedded directly into the
learning algorithm, it may be important to choose a modelling
that accurately explains the actual label noise.

Label noise naturally occurs when human experts are
involved [43]. In that case, possible causes of label noise
include imperfect evidence, patterns that may be confused
with the patterns of interest, perceptual errors or even bio-
logical artifacts. See [44] and [45] for a philosophical account
on probability, imprecision, and uncertainty. More generally,
potential sources of label noise include four main classes.

First, the information that is provided to the expert may
be insufficient to perform reliable labeling [1], [46]. For
example, the results of several tests may be unknown in
medical applications [12]. Moreover, the description language
may be too limited [47], what reduces the amount of available
information. In some cases, the information is also of poor or
variable quality. For example, the answers of a patient during
anamnesis may be imprecise or incorrect or even may be
different if the question is repeated [48].

Second, as above-mentioned, errors can occur in the expert
labeling itself [1]. Such classification errors are not always
due to human experts, since automated classification devices
are used nowadays in different applications [12]. In addition,
since collecting reliable labels is a time consuming and costly
task, there is an increasing interest in using cheap, easy-to-get
labels from nonexpert using frameworks like e.g. the Amazon
Mechanical Turk1 [49]–[52]. Labels provided by nonexpert are
less reliable, but [49] shows that the wealth of available labels
may alleviate this problem.

Thirdly, when the labeling task is subjective, like e.g. in
medical applications [53] or image data analysis [54], [55],
there may exist an important variability in the labeling by
several experts. For example, in electrocardiogram analysis,
experts seldom agree on the exact boundaries of signal pat-
terns [56]. The problem of interexpert variability was also
noticed during the labeling of the Penn Treebank, an annotated
corpus of over 4.5 million words [57].

Eventually, label noise can also simply come from data
encoding or communication problems [3], [11], [46]. For
example, in spam filtering, sources of label noise include
misunderstanding the feedback mechanisms and accidental
click [58]. Real-world databases are estimated to contain

1https://www.mturk.com



FRÉNAY AND VERLEYSEN: CLASSIFICATION IN THE PRESENCE OF LABEL NOISE 847

Fig. 1. Statistical taxonomy of label noise inspired by [10]: (a) noisy completely at random (NCAR), (b) noisy at random (NAR), and (c) noisy not at
random (NNAR). Arrows report statistical dependencies. Notice the increasing complexity of statistical dependencies in the label noise generation models,
from left to right. The statistical link between X and Y is not shown for clarity.

around five percents of encoding errors, all fields taken
together, when no specific measures are taken [59]–[61].

C. Taxonomy of Label Noise

In the context of missing values, Schafer and Graham
[10] discuss a taxonomy that is adapted below to provide
a new taxonomy for label noise. Similarly, Nettleton et al.
[62] characterize noise generation in terms of its distribution,
the target of the noise (features, label, etc.) and whether its
magnitude depends on the data value of each variable. Since
it is natural to consider label noise from a statistical point of
view, Fig. 1 shows three possible statistical models of label
noise. To model the label noise process, four random variables
are depicted: X is the vector of features, Y is the true class, Ỹ
is the observed label, and E is a binary variable telling whether
a labeling error occurred (Y �= Ỹ ). The set of possible feature
values is X , whereas the set of possible classes (and labels) is
Y . Arrows report statistical dependencies: for example, Ỹ is
assumed to always depend on Y (otherwise, there is no sense
in using the labels).

1) Noisy Completely at Random Model: In Fig. 1(a),
the relationship between Y and Ỹ is called noisy completely at
random (NCAR): the occurrence of an error E is independent
of the other random variables, including the true class itself. In
the NCAR case, the observed label is different from the true
class with a probability pe = P(E = 1) = P(Y �= Ỹ ) [11],
sometime called the error rate or the noise rate [63]. In
the case of binary classification, NCAR noise is necessarily
symmetric: the same percentage of instances are mislabeled
in both classes. When pe = 1/2, the labels are useless, since
they no longer carry any information [11]. The NCAR setting
is similar to the absent-minded professor discussed in [64].

In the case of multiclass classification, it is usually assumed
that the incorrect label is chosen at random in Y \ {y} when
E = 1 [11], [65]. In other words, a biased coin is first flipped
to decide whether the observed label is correct or not. If the
label is wrong, a fair dice with |Y|−1 faces (where |Y| is the
number of classes) is tossed to choose the observed, wrong
label. This particularly simple model is called the uniform
label noise.

2) Noisy at Random Model: In Fig. 1(b), it is assumed that
the probability of error depends on the true class Y , what is
called here noisy at random (NAR). E is still independent
of X , but this model allows modeling asymmetric label noise,

i.e. when instances from certain classes are more prone to be
mislabeled. For example, in medical case-control studies, con-
trol subjects may be more likely to be mislabeled. Indeed, the
test that is used to label case subjects may be too invasive (e.g.,
a biopsy) or too expensive to be used on control subjects and is
therefore replaced by a suboptimal diagnostic test for control
subjects [66]. Since one can define the labeling probabilities

P(Ỹ = ỹ|Y = y)

=
∑

e∈{0,1}
P(Ỹ = ỹ|E = e, Y = y)P(E = e|Y = y), (1)

the NAR label noise can equivalently be characterized in
terms of the labeling (or transition) matrix [67], [68]

γ =
⎛

⎜⎝
γ11 · · · γ1nY
...

. . .
...

γnY1 · · · γnYnY

⎞

⎟⎠

=
⎛
⎜⎝

P(Ỹ = 1|Y = 1) · · · P(Ỹ = nY |Y = 1)
...

. . .
...

P(Ỹ = 1|Y = nY ) · · · P(Ỹ = nY |Y = nY)

⎞
⎟⎠ (2)

where nY = |Y| is the number of classes. Each row of
the labeling matrix must sum to 1, since

∑
ỹ∈Y P(Ỹ = ỹ|

Y = y) = 1. For example, the uniform label noise corresponds
to the labeling matrix

⎛

⎜⎝

1 − pe · · · pe
nY−1

...
. . .

...
pe

nY−1 · · · 1 − pe

⎞

⎟⎠ . (3)

Notice that NCAR label noise is a special case of NAR label
noise. When true classes are known, the labeling probabilities
can be directly estimated by the frequencies of mislabeling
in data, but it is seldom the case [48]. Alternately, one can
also use the incidence-of-error matrix [48]

⎛
⎜⎝

π1γ11 · · · π1γ1nY
...

. . .
...

πnY γnY1 · · · πnY γnYnY

⎞
⎟⎠

=
⎛

⎜⎝
P(Y = 1, Ỹ = 1) · · · P(Y = 1, Ỹ = nY )

...
. . .

...

P(Y = nY , Ỹ = 1) · · · P(Y = nY , Ỹ = nY )

⎞

⎟⎠ (4)
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where πy = P(Y = y) is the prior of class y. The entries of
the incidence-of-error matrix sum to one and may be of more
practical interest.

With the exception of uniform label noise, NAR label noise
is the most commonly studied case of label noise in the
literature. For example, Lawrence and Schölkopf [67] consider
arbitrary labeling matrices. In [3] and [69], pairwise label noise
is introduced: 1) two classes c1 and c2 are selected and 2) each
instance of class c1 has a probability to be incorrectly labeled
as c2 and vice versa. For this label noise, only two nondiagonal
entries of the labeling matrix are nonzero.

In the case of NAR label noise, it is no longer trivial to
decide whether the labels are helpful or not. One solution is
to compute the expected probability of error

pe = P(E = 1) =
∑

y∈Y
P(Y = y)P(E = 1|Y = y) (5)

and to require that pe < 1/2, similarly to NCAR label noise.
However, this condition does not prevent the occurrence of
very small correct labeling probabilities P(Ỹ = y|Y = y) for
some class y ∈ Y , in particular if the prior probability P(y)
of this class is small. Instead, conditional error probabilities
pe(y) = P(E = 1|Y = y) can also be used.

3) Noisy Not at Random Model: Most works on label
noise consider that the label noise affects all instances with
no distinction. However, it is not always realistic to assume
the two above types of label noise [11], [70]. For example,
samples may be more likely mislabeled when they are similar
to instances of another class [70]–[76], as illustrated in [77]
where empirical evidence is given that more difficult samples
in a text entailment dataset are labeled randomly. It also seems
natural to expect less reliable labels in regions of low density
[78]–[80], where experts predictions may be actually based on
a very small number of similar previously encountered cases.

Let us consider a more complex and realistic model of label
noise. In Fig. 1(c), E depends on both variables X and Y ,
i.e., mislabeling is more probable for certain classes and in
certain regions of the X space. This noisy not at random
(NNAR) model is the most general case of label noise
[81], [82]. For example, mislabeling near the classification
boundary or in low density regions can only be modeled
in terms of NNAR label noise. Such a situation occurs e.g.
in speech recognition where automatic speech recognition
is more difficult in the case of phonetic similarity between
the correct and the recognized words [83]. The context of
each word can be considered to detect incorrect recognitions.
Notice that the medical literature distinguishes differential
(feature dependent, i.e. NNAR) label noise and nondifferential
(feature independent, i.e. NCAR or NAR) label noise [84].

The reliability of labels is even more complex to estimate
that for NCAR or NAR label noise. Indeed, the probability of
error also depends in that case on the value of X . As before,
one can define an expected probability of error that becomes

pe = P(E = 1) =
∑

y∈Y
P(Y = y)

×
∫

x∈X
P(X = x |Y = y)P(E = 1|X = x, Y = y)dx (6)

if X is continuous. However, this quantity does not reflect
the local nature of label noise: in some cases, pe can be
almost zero although the density of labeling errors shows
important peaks in certain regions. The quantity pe(x, y) =
P(E = 1|X = x, Y = y) may therefore be more appropriate
to characterize the reliability of labels.

III. CONSEQUENCES OF LABEL NOISE ON LEARNING

In this section, the potential consequences of label noise
are described to show the necessity to consider label noise in
learning problems. Section III-A reviews the theoretical and
empirical evidences of the impact of label noise on classi-
fication performances, which is the most frequently reported
issue. Section III-B shows that the presence of label noise also
increases the necessary number of samples for learning, as
well as the complexity of models. Label noise may also pose
a threat for related tasks, like e.g. class frequencies estimation
and feature selection, which are discussed in Section III-C
and III-D, respectively.

This section presents the negative consequences of label
noise, but artificial label noise also has potential advantages.
For example, label noise can be added in statistical studies to
protect people privacy: it is used in [28] to obtain statistics for
questionnaires, while making impossible to recover individual
answers. In [85]–[89], label noise is added to improve classi-
fier results. Whereas bagging produces different training sets
by resampling, these works copy the original training set and
switch labels in new training sets to increase the variability in
data.

A. Deterioration of Classification Performances

The more frequently reported consequence of label noise
is a decrease in classification performances, as shown in the
theoretical and experimental works described below.

1) Theoretical Studies of Simple Classifiers: There exist
several theoretical studies of the consequences of label noise
on prediction performances. For simple problems and sym-
metric label noise, the accuracy of classifiers may remain
unaffected. Lachenbruch [71] consider e.g. the case of binary
classification when both classes have Gaussian distribution
with identical covariance matrix. In such a case, a linear
discriminant function can be used. For a large number of
samples, the consequence of uniform noise is noticeable only
if the error rates α1 and α2 in each class are different. In fact,
the change in decision boundary is completely described in
terms of the difference α1−α2. These results are also discussed
asymptotically in [90].

The results of Lachenbruch [71] are extended in [91] for
quadratic discriminant functions, i.e. Gaussian conditional
distributions with unequal covariance matrices. In that case,
prediction is affected even when label noise is symmetric
among the classes (α1 = α2). Consequences worsen when
differences in covariance matrices or misclassification rates
increase. Michalek and Tripathi [92] and Bi and Jeske [93]
show that label noise affects normal discriminant and logistic
regression: their error rates are increased and their parameters
are biased. Logistic regression seems to be less affected.
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In [64], the single-unit perceptron is studied in the presence
of label noise. If the teacher providing learning samples is
absent minded, i.e. labels are flipped with a given probability
(uniform noise), the performances of a learner who takes the
labels for granted are damaged and even get worse than the
performances of the teacher.

Classification performances of the k nearest neighbors
(kNN) classifier are also affected by label noise [94], [95],
in particular when k = 1 [96]. Okamoto and Nobuhiro [96]
present an average-case analysis of the kNN classifier. When
k is optimized, the consequences of label noise are reduced
and remain small unless a large amount of label noise is
added. The optimal value of k depends on both the number of
training instances and the presence of label noise. For small
noise-free training sets, 1NN classifiers are often optimal.
However, as soon as label noise is added, the optimal number
of neighbors k is shown to monotonically increase with the
number of instances even for small training sets, what seems
natural since 1NN classifiers are particularly affected by label
noise.

2) Experimental Assessment of Specific Models: Apart from
theoretical studies, many works show experimentally that label
noise may be harmful. First, the impact of label noise is not
identical for all types of classifiers. As detailed in Section V,
this fact can be used to cope (at least partially) with label
noise. For example, Nettleton et al. [62] compare the impact of
label noise on four different supervised learners: naive Bayes,
decision trees induced by C4.5, kNNs, and support vector
machines (SVMs). In particular, naive Bayes achieves the
best results, what is attributed to the conditional independence
assumption and the use of conditional probabilities. This
should be contrasted with the results in [12], where naive
Bayes is sometime dominated by C4.5 and kNNs. The poor
results of SVMs are attributed to its reliance on support vectors
and the feature interdependence assumption.

In text categorization, Zhang and Yang [97] consider the
robustness of regularized linear classification methods. Three
linear methods are tested by randomly picking and flipping
labels: linear SVMs, ridge regression, and logistic regressions.
The experiments show that the results are dramatically affected
by label noise for all three methods, which obtain almost iden-
tical performances. Only 5% of flipped labels already leads to
a dramatic decrease of performances, what is explained by
the presence of a relatively very small classes with only a few
samples in their experiments.

Several studies have shown that boosting [98] is affected
by label noise [99]–[102]. In particular, the adaptive boosting
algorithm AdaBoost tends to spend too much efforts on learn-
ing mislabeled instances [100]. During learning, successive
weak learners are trained and the weights of instance that are
misclassified at one step are increased at the next step. Hence,
in the late stages of learning, AdaBoost tends to increase the
weights of mislabeled instances and starts overfitting [103],
[104]. Dietterich [100] clearly shows that the mean weight per
training sample becomes larger for mislabeled samples than
for correctly labeled samples as learning goes on. Interestingly,
it has been shown in [105]–[108] that AdaBoost tends to
increase the margins of the training examples [109] and

achieves asymptotically a decision with hard margin very sim-
ilar to the one of SVMs for the separable case [108]. This may
not be a good idea in the presence label noise and may explain
why AdaBoost overfits noisy training instances. In [110], it is
also shown that ensemble methods can fail simply because
the presence of label noise affects the ensembled models.
Indeed, learning through multiple models becomes harder for
large levels of label noise, where some samples become more
difficult for all models and are therefore seldom correctly
classified by an individual model.

In systems that learn Boolean concepts with disjuncts,
Weiss [111] explains that small disjuncts (which individually
cover only a few examples) are more likely to be affected
by label noise than large disjuncts covering more instances.
However, only large levels of label noise may actually be a
problem. For decision trees, it appears in [2] that destroying
class information produces a linear increase in error. Taking
logic to extremes, when all class information is noise, the
resulting decision tree classifies objects entirely randomly.

Another example studied in [58] is spam filtering where
performances are decreased by label noise. Spam filters tend
to overfit label noise, due to aggressive online update rules
that are designed to quickly adapt to new spam.

3) Additional Results for More Complex Types of Label
Noise: The above works deal with NAR label noise, but
more complex types of label noise have been studied in the
literature. For example, in the case of linear discriminant
analysis (LDA), i.e. binary classification with normal class
distributions, Lachenbruch [70] considers that mislabeling
systematically occurs when samples are too far from the
mean of their true class. In that NNAR label noise model,
the true probabilities of misclassification are only slightly
affected, whereas the populations are better separated. This is
attributed to the reduction of the effects of outliers. However,
the apparent error rate [112] of LDA is highly influenced, what
may cause the classifier to overestimate its own efficiency.

LDA is also studied in the presence of label noise by
[72], which generalizes the results of [70], [71], [90]–[92].
Let us define: 1) the misallocation rate αy for class y, i.e.
the number of samples with label y that belong to the other
class and 2) a z-axis that passes through the center of both
classes and is oriented toward the positive class, such that
each center is located at z = ±�/2. In [72], three label noise
models are defined and characterized in terms of the proba-
bility of misallocation gy(z), which is a monotone decreasing
(increasing) function of z for positive (negative) samples.
In random misallocation, gy(z) = αy is constant for each class,
what is equivalent to the NAR label noise. In truncated label
noise, g(z) is zero as long as the instance is close enough to
the mean of its class. Afterward, the mislabeling probability
is equal to a small constant. This type of NNAR label noise
is equivalent to the model of [70] when the constant is equal
to one. Eventually, in the exponential model, the probability
of misallocation becomes for the negative class

gy(z) =
{

0 if z ≤ −�
2

1 − exp
(
− 1

2 ky
(
z + �

2

)2
)

if z > −�
2

(7)
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where � is the distance between the centers of both classes
and ky = (1 − 2αy)

−2. A similar definition is given for the
positive class. For equivalent misallocation rates αy , random
misallocation has more consequences than truncated label
noise, in terms of influence on the position and variability of
the discriminant boundary. In turn, truncated label noise itself
has more consequences than exponential label noise. The same
ordering appears when comparing misclassification rates.

B. Consequences on Learning Requirements and
Model Complexity

Label noise can affect learning requirements (e.g., number
of necessary instances) or the complexity of learned models.
For example, Quinlan [2] warns that the size of decision trees
may increase in case of label noise, making them overly com-
plicated, what is confirmed experimentally in [46]. Similarly,
Abellán and Masegosa [104] show that the number of nodes of
decision trees induced by C4.5 for bagging is increased, while
the resulting accuracy is reduced. Reciprocally, Brodley and
Friedl [46] and Libralon et al. [113] and show that removing
mislabeled samples reduces the complexity of SVMs (number
of support vectors), decision trees induced by C4.5 (size of
trees) and rule-based classifiers induced by RIPPER (number
of rules). Postpruning also seems to reduce the consequences
of label noise [104]. Noise reduction can therefore produce
models that are easier to understand, what is desirable in many
circumstances [114]–[116].

In [11], it is shown that the presence of uniform label noise
in the probably approximately correct (PAC) framework [117]
increases the number of necessary samples for PAC identifi-
cation. An upper bound for the number of necessary samples
is given, which is strengthened in [118]. Similar bounds are
also discussed in [65] and [119]. Also, Angluin and Laird [11]
discuss the feasibility of PAC learning in the presence of label
noise for propositional formulas in conjunctive normal form,
what is extended in [120] for Boolean functions represented
by decision trees and in [73] and [121] for linear perceptrons.

C. Distortion of Observed Frequencies

In medical applications, it is often necessary to perform
medical tests for disease diagnosis, to estimate the preva-
lence of a disease in a population or to compare (estimated)
prevalence in different populations. However, label noise can
affect the observed frequencies of medical test results, what
may lead to incorrect conclusions. For binary tests, Bross [4]
shows that mislabeling may pose a serious threat: the observed
mean and variance of the test answer is strongly affected
by label noise. Let us consider a simple example taken
from [4]: if the minority class represents 10% of the dataset
and 5% of the test answers are incorrect (i.e. patients are
mislabeled), the observed proportion of minority cases is
0.95×10%+0.05×90% = 14% and is therefore overestimated
by 40%. Significance tests that assess the difference between
the proportions of both classes in two populations are still
valid in case of mislabeling, but their power may be strongly
reduced. Similar problems occur e.g. in consumer survey
analysis [122].

Frequency estimates are also affected by label noise in
multiclass problems. Hout and Heijden [28] discuss the case
of artificial label noise which can be intentionally introduced
after data collection to preserve privacy. Since the label noise is
fully specified in this case, it is possible to adjust the observed
frequencies. When a model of the label noise is not available,
Tenenbein [123] proposes to solve the problem pointed by [4]
using double sampling, which uses two labelers: an expensive,
reliable labeler and a cheap, unreliable labeler. The model of
mislabeling can thereafter be learned from both sets of labels
[124], [125]. In [48], the case of multiple experts is discussed
in the context of medical anamnesis; an algorithm is proposed
to estimate the error rates of the experts.

Evaluating the error rate of classifiers is also important for
both model selection and model assessment. In that context,
Lam and Stork [126] show that label noise can have an impor-
tant impact on the estimated error rate, when test samples
are also polluted. Hence, mislabeling can also bias model
comparison. As an example, a spam filter with a true error
rate of 0.5%, for example, might be estimated to have an error
rate between 5.5% and 6.5% when evaluated using labels with
an error rate of 6.0%, depending on the correlation between
filter and label errors [127].

D. Consequences for Related Tasks

The aforementioned consequences are not the only possible
consequences of label noise. For example, Zhang et al. [128]
show that the consequences of label noise are important in
feature selection for microarray data. In an experiment, only
one mislabeled sample already leads to about 20% of not
identified discriminative genes. Notice that in microarray data,
only few data are available. Similarly, Shanab et al. [129] show
that label noise decreases the stability of feature rankings. The
sensitivity of feature selection to label noise is also illustrated
for logistic regression in [130]. A methodology to achieve
feature selection for classification problems polluted by label
noise is proposed in [131], based on a probabilistic label noise
model combined with a nearest neighbors-based estimator of
the mutual information.

E. Conclusion

This section shows that the consequences of label noise are
important and diverse: decrease in classification performances,
changes in learning requirements, increase in the complexity of
learned models, distortion of observed frequencies, difficulties
to identify relevant features, etc. The nature and the importance
of the consequences depend, among others, on the type and
the level of label noise, the learning algorithm, and the
characteristics of the training set. Hence, it seems important
for the machine learning practitioner to deal with label noise
and to consider these factors, prior to the analysis of polluted
data.

IV. METHODS TO DEAL WITH LABEL NOISE

In light of the various consequences detailed in Section III,
it seems important to deal with label noise. In the literature,
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there exist three main approaches to take care of label noise
[12], [82], [132]–[137]; these approaches are described below.
Manual review of training samples is not considered in this
survey, because it is usually prohibitively costly and time
consuming, if not impossible in the case of large datasets.

A first approach relies on algorithms that are naturally
robust to label noise. In other words, the learning of the
classifier is assumed to be not too sensitive to the presence
of label noise. Indeed, several studies have shown that some
algorithms are less influenced than others by label noise, what
advocates for this approach. However, label noise is not really
considered in this type of approach. Label noise handling is
entrusted to overfitting avoidance [132]–[134].

Second, one can try to improve the quality of training
data using filter approaches. In such a case, noisy labels
are typically identified and being dealt with before training
occurs. Mislabeled instances can either be relabeled or simply
removed [138]. Filter approaches are cheap and easy to
implement, but some of them are likely to remove a substantial
amount of data.

Eventually, there exist algorithms that directly model label
noise during learning or which have been modified to consider
label noise in an embedded fashion. The advantage of this
approach is to separate the classification model and the label
noise model, what allows using information about the nature
of label noise.

The literature for the three above trends of approaches is
reviewed in the three next sections. In some cases, it is not
always clear whether an approach belongs to one category
or the other. For example, some of the label noise-tolerant
variants of SVMs could also be observed as filtering. Table I
shows an overview of the main methods considered in this
paper. At the end of each section, a short discussion of
the strengths and weaknesses of the described techniques is
proposed, to help the practitioner in its choice. The three
following sections are strongly linked with Section III. Indeed,
the knowledge of the consequences of label noise allows one
to avoid some pitfalls and to design algorithms that are more
robust or tolerant to label noise. Moreover, the consequences
of label noise themselves can be used to detect mislabeled
instances.

V. LABEL NOISE-ROBUST MODELS

This section describes models that are robust to the pres-
ence of label noise. Even if label noise is neither cleansed
nor modeled, such models have been shown to remain
relatively effective when training data are corrupted by
small amounts of label noise. Label noise-robustness is dis-
cussed from a theoretical point of view in Section V-A.
Then, the robustness of ensembles methods and decision
trees are considered in Section V-B and V-C, respec-
tively. Eventually, various other methods are discussed in
Section V-D and V-E concludes about the practical use of
label noise-robust methods.

A. Theoretical Considerations on the Robustness of Losses

Before we turn to empirical results, a first, fundamental
question is whether it is theoretically possible (and under what

circumstances) to achieve perfect label noise-robustness. To
have a general view of label noise-robustness, Manwani and
Sastry [82] study learning algorithms in the empirical risk
minimization (ERM) framework for binary classification. In
ERM, the cost of wrong predictions is measured by a loss
and classifiers are learned by minimizing the expected loss
for future samples, which is called the risk. The more natural
loss is the 0-1 loss, which gives a cost of 1 in case of error
and is zero otherwise. However, the 0-1 loss is neither convex
nor differentiable, what makes it intractable for real learning
algorithms. Hence, others losses are often used in practice,
which approximate the 0-1 loss by a convex function, called
a surrogate [139].

In [82], risk minimization under a given loss function is
defined as label noise-robust if the probability of misclassifica-
tion of inferred models is identical, irrespective of label noise
presence. It is demonstrated that the 0-1 loss is label noise-
robust for uniform label noise [140] or when it is possible to
achieve zero error rate [81]; see e.g. [74] for a discussion in
the case of NNAR label noise. The least-square loss is also
robust to uniform label noise, which guarantees the robustness
of the Fisher linear discriminant in that specific case. Other
well-known losses are shown to be not robust to label noise,
even in the uniform label noise case: 1) the exponential loss,
which leads to AdaBoost; 2) the log loss, which leads to
logistic regression; and 3) the hinge loss, which leads to
SVMs. In other words, one can expect most of the recent
learning algorithms in machine learning to be not completely
label noise-robust.

B. Ensemble Methods: Bagging and Boosting

In the presence of label noise, bagging achieves bet-
ter results than boosting [100]. On the one hand, mis-
labeled instances are characterized by large weights in
AdaBoost, which spends too much effort in modeling noisy
instances [104]. On the other hand, mislabeled samples
increase the variability of the base classifiers for bagging.
Indeed, since each mislabeled sample has a large impact on
the classifier and bagging repeatedly selects different subsets
of training instances, each resampling leads to a quite different
model. Hence, the diversity of base classifiers is improved in
bagging, whereas the accuracy of base classifiers in AdaBoost
is severely reduced.

Several algorithms have been shown to be more label noise-
robust than AdaBoost [101], [102], e.g., LogitBoost [141],
and BrownBoost [142]. In [108] and [143]–[145], boosting is
casted as a margin maximization problem and slack variables
are introduced to allow a given fraction of patterns to stand
in the margin area. Similar to soft-margin SVMs, these works
propose to allow boosting to misclassify some of the training
samples, what is not directly aimed at dealing with label noise
but robustifies boosting. Moreover, this approach can be used
to find difficult or informative patterns [145].

C. Decision Trees

It is well known that decision trees are greatly impacted by
label noise [2], [104]. In fact, their instability makes them well
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TABLE I

CLASSIFICATION OF THE METHODS REVIEWED IN SECTIONS V–VII WITH SOME SELECTED EXAMPLES OF TYPICAL METHODS

FOR EACH CLASS. THE TABLE HIGHLIGHTS THE STRUCTURE OF EACH SECTION, SUMMARIZES THEIR

RESPECTIVE CONTENT AND POINTS TO SPECIFIC REFERENCES

suited for ensemble methods [146]–[148]. In [148], different
node split criteria are compared for ensembles of decision trees
in the presence of label noise. The imprecise info-gain [149]
is shown to improve accuracy, with respect to the information
gain, the information gain ratio and the Gini index. Compared
with ensembles of decision trees inferred by C4.5, Abellán and
Masegosa [104] also show that the imprecise info-gain allows
reducing the size of the decision trees. Eventually, they observe
that postpruning of decision trees can reduce the impact of
label noise. The approach is extended for continuous features
and missing data in [150].

D. Other Methods

Most of the studies on label noise robustness have been
presented in Section III. They show that complete label noise
robustness is seldom achieved, as discussed in Section V-A.
An exception is [81], where the 0-1 loss is directly optimized
using a team of continuous-action learning automata:
1) a probability distribution is defined on the weights of a
linear classifier; 2) weights are repetitively drawn from the
distribution to classify training samples; and 3) the 0-1 losses
for the training samples are used at each iteration as a rein-

forcement to progressively tighten the distribution around the
optimal weights. In the case of separable classes, the approach
converges to the true optimal separating hyperplane, even in
the case of NNAR label noise. In [151], 11 classifiers are
compared on imbalanced datasets with asymmetric label noise.
In all cases, the performances of the models are affected by
label noise. Random forests [147] are shown to be the most
robust among the eleven methods, what is also the case in
another study by the same authors [152]. C4.5, radial basis
function networks and rule-based classifiers obtain the worst
results. The sensitivity of C4.5 to label noise is confirmed
in [153], where multilayer perceptrons are shown to be less
affected. In [135], a new artificial immune recognition system
is proposed, called RWTSAIRS, which is shown to be less
sensitive to label noise. In [154], two procedures based on
argumentation theory are also shown to be robust to label
noise. In [12], it is shown that feature extraction can help to
reduce the impact of label noise. Also, Sàez et al. [9], [155]
show that using one-versus-one decomposition in multiclass
problems can improve the robustness, which could be due
to the distribution of the noisy examples in the subproblems,
the increase of the separability of the classes, and collecting
information from different classifiers.



FRÉNAY AND VERLEYSEN: CLASSIFICATION IN THE PRESENCE OF LABEL NOISE 853

Fig. 2. General procedure for learning in the presence of label noise with training set cleansing, inspired by [46].

E. Discussion

Theoretically, common losses in machine learning are not
completely robust to label noise [139]. However, overfitting
avoidance techniques like, e.g., regularization can be used
to partially handle label noise [132]–[134], even if label
noise may interfere with the quality of the classifier, whose
accuracy might suffer and the representation might be less
compact [132]. Experiments in the literature show that the
performances of classifiers inferred by label noise-robust algo-
rithms are still affected by label noise. Label noise-robust
methods seem to be adequate only for simple cases of label
noise that can be safely managed by overfitting avoidance.

VI. DATA CLEANSING METHODS FOR LABEL

NOISE-POLLUTED DATASETS

When training data are polluted by label noise, an obvious
and tempting solution consists in cleansing the training data
themselves, what is similar to outlier or anomaly detec-
tion. However, detecting mislabeled instances is seldom triv-
ial: Weiss and Hirsh [156] show e.g. in the context of learning
with disjuncts that true exceptions may be hard to distinguish
from mislabeled instances. Hence, many methods have been
proposed to cleanse training sets, with different degrees of
success. The whole procedure is shown by Fig. 2, which is
inspired by [46]. This section describes several methods that
detect, remove, or relabel mislabeled instances. First, simple
methods based on thresholds are presented in Section VI-A.
Model prediction-based filtering methods are discussed in
Section VI-B, which includes classification, voting, and par-
tition filterings. Methods based on measures of the impact of
label noise and introspection are considered in Section VI-C.
Section VI-D, VI-E, and VI-F address methods based on
nearest neighbors, graphs and ensembles. Eventually, several
other methods are discussed in Section VI-G and a gen-
eral discussion about data cleansing methods is proposed in
Section VI-H.

A. Measures and Thresholds

Similar to outlier detection [30]–[33] and anomaly detection
[34]–[38], several methods in label noise cleansing are based
on ad hoc measures. Instances can e.g. be removed when the
anomaly measure exceeds a predefined threshold. For example,
in [157], the entropy of the conditional distribution P(Y |X) is
estimated using a probabilistic classifier. Instances with a low
entropy correspond to confident classifications. Hence, such
instances for which the classifier disagrees with the observed
label are relabeled using the predicted label.

As discussed in Section III, label noise may increase
the complexity of inferred models. Therefore, complexity

measures can be used to detect mislabeled instances that
disproportionately increase model complexity when added to
the training set. In [158], the complexity measure for inductive
concept learning is the number of literals in the hypothesis.
A cleansing algorithm is proposed, which: 1) finds for each
literal the minimal set of training samples whose removal
would allow going without the literal and 2) awards one point
to each sample in the minimal set. Once all literals have been
reviewed, the sample with the higher score is removed, if the
score is high enough. This heuristic produces less complex
models. Similarly, Gamberger and Lavrač [159] measure the
complexity of the least complex correct hypothesis (LCCH)
for a given training set. Each training set is characterized by
a LCCH value and is saturated if its LCCH value is equal to
the complexity of the target hypothesis. Mislabeled samples
are removed to obtain a saturated training set. Gamberger
et al. [160]–[162] elaborate on the above notions of complexity
and saturation, which results in the so-called saturation filter.

B. Model Predictions-Based Filtering

Several data cleansing algorithms rely on the predictions
of classifiers: classification, voting, and partition filterings.
In [163], such methods are extended in the context of cost-
sensitive learning, whereas Khoshgoftaar and Rebours [164]
propose a generic algorithms that can be specialized to clas-
sification, voting, or partition filterings by a proper choice of
parameters.

1) Classification Filtering: The predictions of classifiers
can be used to detect mislabeled instances, what is called
classification filtering [161], [164]. For example, [165] learns
a SVM using the training data and removes all instances that
are misclassified by the SVM. A similar method is proposed
in [166] for neural networks. Miranda et al. [167] extend the
approach of [165]: four classifiers are induced by different
machine learning techniques and are combined by voting
to detect mislabeled instances. The above methods can be
applied to any classifier, but it eliminates all instances that
on the wrong side of the classification boundary, what be
can dangerous [168], [169]. In fact, as discussed in [170],
classification filtering (and data cleansing in general) suffers
from a chicken-and-egg dilemma, since: 1) good classifiers
are necessary for classification filtering and 2) learning in the
presence of label noise may precisely produce poor classifiers.
An alternative is proposed in [169], which: 1) defines a
pattern as informative if it is difficult to predict by a model
trained on previously seen data and 2) send a pattern to the
human operator for checking if its informativeness is above
a threshold found by cross-validation. Indeed, such patterns
can either be atypical patterns that are actually informative
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or garbage patterns. The level of surprise is considered to
be a good indication of how informative a pattern is, what is
quantified by the information gain − log P(Y = y|X = x).

In [171], an iterative procedure called robust-C4.5 is intro-
duced. At each iteration: 1) a decision tree is inferred and
pruned by C4.5 and 2) training samples that are misclassified
by the pruned decision tree are removed. The procedure is akin
to regularization, in that the model is repeatedly made simpler.
Indeed, each iteration removes training samples, what in turn
allows C4.5 to produce smaller decision trees. Accuracy is
slightly improved, whereas the mean and variance of the tree
size are decreased. Hence, smaller and more stable decision
trees are obtained, which also perform better. Notice that
caution is advised when comparing sizes of decision trees in
data cleansing [172], [173]. Indeed, Oates and Jensen [172]
show that the size of decision trees naturally tends to increase
linearly with the number of instances. It means that the
removal of randomly selected training samples already leads to
a decrease in tree sizes. Therefore, [172] proposes the measure

100 ×
(

initial tree size−tree size with random filtering

initial tree size−tree size with studied filtering

)
(8)

to estimate the percentage of decrease in tree size which is
simply due to a reduction in the number of samples. For
example, Oates and Jensen [172] shows experimentally for
robust-C4.5 that 42% of the decrease in tree size can be
imputed to the sole reduction in training set size, whereas
the remaining 58% are due to an appropriate choice of the
instances to be removed. A similar analysis could be done for
other methods in this section.

Local models [174] can also be used to filter mislabeled
training samples. Such models are obtained by training a
standard model like e.g. LDA [175] or a SVM [176], [177]
on a training set consisting of the k nearest neighbors of
the sample to be classified. Many local models have to be
learnt, but the respective local training sets are very small.
In [116], local SVMs are used to reject samples for which
the prediction is not confident enough. In [115], the local
SVM noise reduction method is extended for large datasets,
by reducing the number of SVMs to be trained. In [178], a
sample is removed if it is misclassified by a k nearest centroid
neighbors classifier [179] trained when the sample itself is
removed from the training set.

2) Voting Filtering: Classification filtering faces the risk to
remove too many instances. To solve this problem, ensembles
of classifiers are used in [46], [138], and [180] to identify
mislabeled instances, what is inspired by outlier removal in
regression [181]. The first step consists in using a K -fold
cross-validation scheme, which creates K pairs of distinct
training and validation datasets. For each pair of sets, m learn-
ing algorithms are used to learn m classifiers using the training
set and to classify the samples in the validation set. Therefore,
m classifications are obtained for each sample, since each
instance belongs to exactly one validation set. The second
step consists in inferring from the m predictions whether a
sample is mislabeled or not, what is called voting filtering
in [173] or ensemble filtering in [164]. Two possibilities are
studied in [46], [138], and [180]: a majority vote and a

consensus vote. Whereas majority vote classifies a sample as
mislabeled if a majority of the m classifiers misclassified it, the
consensus vote requires that all classifiers have misclassified
the sample. One can also require high agreement of classifiers,
i.e. misclassification by more than a given percentage of the
classifiers [182]. The consensus vote is more conservative than
the majority vote and results in a few removed samples. The
majority vote tends to throw out too many instances [183],
but performs better than consensus vote, because keeping
mislabeled instances seems to harm more than removing too
many correctly labeled samples.

The K -fold cross-validation is also used in [161]. For
each training set, a classifier is learnt and directly filters its
corresponding validation set. The approach is intermediate
between [46], [138], [165], [180] and has been shown to
be nonselective, i.e. too many samples are detected as being
potentially noisy [161]. Eventually, Verbaeten [173] performs
an experimental comparison of some of the above methods and
proposes several variants. In particular, m classifiers from the
same type are learnt using all combinations of the K −1 parts
in the training set. Voting filters are also iterated until no more
samples are removed. In [184], voting filters are obtained by
generating the m classifiers using bagging: m training sets are
generated by resampling and the inferred classifiers are used
to classify all instances in the original training set.

3) Partition Filtering: Classification filtering is adapted for
large and distributed datasets in [69] and [185], which propose
a partition filter. In the first step, samples are partitioned and
rules are inferred for each partition. A subset of good rules
are chosen for each partition using two factors that measure
the classification precision and coverage for the partition. In
the second step, all samples are compared to the good rules
of all partitions. If a sample is not covered by a set of rules,
it is not classified; otherwise, it is classified according to
these rules. This mechanism allows distinguishing between
the exceptions (not covered by the rules) and mislabeled
instances (covered by the rules, but misclassified). Majority
or consensus vote is used to detect mislabeled instances.
Privacy is preserved in distributed datasets, since each site
(or partition) only shares its good rules. The approach is
experimentally shown to be less aggressive than [161]. In
[186], partitioning is repeated and several classifiers are
learned for each partition. If all classifiers predict the same
label that is different from the observed label, the instance is
considered as potentially mislabeled. Votes are summed over
all iterations and can be used to order the instances.

C. Model Influence and Introspection

Mislabeled instances can be detected by analyzing their
impact on learning. For example, Malossini et al. [53] define
the leave-one-out perturbed classification (LOOPC) matrix,
where the (i, j) entry is the label predicted for the j th training
sample if: 1) the j th sample itself is removed from the training
set and 2) the label of the i th sample is flipped. The LOOPC
matrix is defined only for binary classification. Two algo-
rithms are proposed to analyze the LOOPC matrix in search
for wrong labels. The classification-stability algorithm (CL-
stability) analyses each column to detect suspicious samples:
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good samples are expected to be consistently classified even
in the case of small perturbation in training data. The leave-
one-out-error-sensitivity (LOOE-sensitivity) algorithm detects
samples whose label flip improves the overall results of the
classifier. The computation of the LOOPC matrix is expensive,
but it can be afforded for small datasets. Experiments show
that CL-stability dominates LOOE-sensitivity. The approach
is extended in [187] and [188].

Based on introspection, Heskes [64] proposes an online
learning algorithm for the single-unit perceptron, when labels
coming from the teacher are polluted by uniform noise. The
presented samples are accepted only when the confidence of
the learner in the presented labeled sample is large enough.
The propensity of the learner to reject suspicious labels is
called the stubbornness: the learner only accepts to be taught
when it does not contradict its own model too much. The
stubbornness of the learner has to be tuned, since discarding
too many samples may slow the learning process. An update
rule is proposed for the student self-confidence: the stubborn-
ness is increased by learner-teacher contradictions, whereas
learner-teacher agreements decrease stubbornness. The update
rule itself depends on the student carefulness that reflects the
confidence of the learner and can be chosen to outperform any
absent-minded teacher.

D. kNN-Based Methods

The kNN classifiers [189], [190] are sensitive to label noise
[94], [95], in particular for small neighborhood sizes [96].
Hence, it is natural that several methods have emerged in
the kNN literature for cleansing training sets. Among these
methods, many are presented as editing methods [191], what
may be a bit misleading: most of these methods do not edit
instances, but rather edit the training set itself by removing
instances. Such approaches are also motivated by the particular
computational and memory requirements of kNN methods for
prediction, which linearly depend on the size of the training
set. See e.g. [192] for a discussion on instance selection
methods for case-based reasoning.

Wilson and Martinez [95], [193] provide a survey of
kNN-based methods for data cleansing, propose several new
methods and perform experimental comparisons. Wilson and
Martinez [95] show that mislabeled training instances degrade
the performances of both the kNN classifiers built on the
full training set and the instance selection methods that
are not designed to take care of label noise. This section
presents solutions from the literature and is partially based on
[95] and [193]. See e.g. [194] for a comparison of several
instance-based noise reduction methods.

kNN-based instance selection methods are mainly based
on heuristics. For example, the condensed nearest neigh-
bors (CNN) rule [195] builds a subset of training instances
that allows classifying correctly all other training instances.
However, such a heuristic systematically keeps mislabeled
instances in the training set. There exist other heuristics that
are more robust to label noise. For example, the reduced
nearest neighbors (RNN) rule [196] successively removes
instances whose removal do not cause other instances to be

misclassified, i.e. it removes noisy and internal instances. The
blame-based noise reduction (BBNR) algorithm [197] removes
all instances that contribute to the misclassification of another
instance and whose removal does not cause any instance to be
misclassified. In [198] and [199], instances are ranked based
on a score rewarding the patterns that contribute to a correct
classification and punishing those that provide a wrong one.
An important danger of instance selection is to remove too
many instances [200], if not all instances in some pathological
cases [95].

More complex heuristics exist in the literature;
see e.g. [113] and [201] for an experimental comparison for
gene expression data. For example, Wilson [202] removes
instances whose label is different from the majority label in
its k = 3 nearest neighbors. This method is extended in [203]
by the all-k nearest neighbors method. In [95] and [193], six
heuristics are introduced and compared with other methods:
DROP1-6. For example, DROP2 is designed to reduce label
noise using the notion of instance associates, which have the
instance itself in their k nearest neighbors. DROP2 removes
an instance if its removal does not change the number of
its associates that are incorrectly classified in the original
training set. This algorithm tends to retain instances that are
close to the classification boundary. In [200], generalized
edition (GE) checks whether there are at least k ′ samples
in the locally majority class among the k neighbors of an
instance. In such a case, the instance is relabeled with the
locally majority label, otherwise it is simply removed from
the training set. This heuristic aims at keeping only instances
with strong support for their label. Barandela and Gasca [29]
show that a few repeated applications of the GE algorithm
improves results in the presence of label noise.

Other instance selection methods designed to deal with label
noise include e.g. IB3, which employs a significance test to
determine which instances are good classifiers and which ones
are believed to be noisy [204], [205]. Lorena et al. [206]
propose to use Tomek links [207] to filter noisy instances
for splice junction recognition. Different instance selection
methods are compared in [114]. In [192], a set of instances are
selected using Fisher discriminant analysis, while maximizing
the diversity of the reduced training set. The approach is shown
to be robust to label noise for a simple artificial example.
In [208], different heuristics are used to distinguish three types
of training instances: normal instances, border samples and
instances that should be misclassified (ISM). ISM instances are
such that, based on the information in the dataset, the label
assigned by the learning algorithm is the most appropriate
even though it is incorrect. For example, one of the heuristics
uses a nearest neighbors approach to estimate the hardness of
a training sample, i.e. how hard it is to classify correctly. ISM
instances are simply removed, what results in the so-called
PRISM algorithm.

E. Graph-Based Methods

Several methods in the data cleansing literature are sim-
ilar to kNN-based editing methods, except that they repre-
sent training sets by neighborhood graphs [209] where the
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instances (or nodes) are linked to other close instances. The
edge between the two instances can be weighted depend-
ing on the distance between them. Such methods work
directly on the graphs to detect noisy instances. For example,
Sánchez et al. [94] propose variants of kNN-based algorithms
which use Gabriel graphs and relative neighborhood graphs
[210], [211]. In [212] and [213], mode filters, which preserve
edges and remove impulsive noise in images, are extended
to remove label noise in datasets represented by a graph.
In [209] and [214], the i th instance is characterized by its
local cut edge weight statistic Ji , which is the sum of the
weights of edges linking the instance to its neighbors with
a different label. Three types of instances are distinguished:
good samples with a small Ji , doubtful samples with an
intermediate Ji , and bad samples with a large Ji . Two filtering
policies are considered: 1) to relabel doubtful samples and
to remove bad samples or 2) to relabel doubtful and bad
samples using the majority class in good neighbors (if any)
and to remove doubtful and bad samples which have no good
neighbors.

F. Ensemble and Boosting-Based Methods

As discussed in Section III-A.2, AdaBoost is well known
to overfit noisy datasets. Indeed, the weights of mislabeled
instances tend to become much larger than the weights of
normal instances in the late iterations of AdaBoost. Several
works presented below show that this propensity to overfitting
can be exploited to remove label noise.

A simple data cleansing method is proposed in [184], which
removes a given percentage of the samples with the highest
weights after m iterations of AdaBoost. Experiments show that
the precision of this boosting-based algorithm is not very good,
what is attributed to the dynamics of Adaboost. In the first
iterations, mislabeled instances quickly obtain large weights
and are correctly spotted as mislabeled. However, therefore,
several correctly labeled instances then obtain large weights in
late iterations, what explains that they are incorrectly removed
from the training set by the boosting filter.

A similar approach is pursued in [215]. Outlier removal
boosting (ORBoost) is identical to AdaBoost, except that
instance weights which are above a certain threshold are set to
zero during boosting. Hence, data cleansing is performed while
learning and not after learning as in [184]. ORBoost is sensi-
tive to the choice of the threshold, which is performed using
validation. In [216], mislabeled instances are also removed
during learning if they are misclassified by the ensemble with
high confidence.

In [217], edge analysis is used to detect mislabeled
instances. The edge of an instance is defined as the sum
of the weights of weak classifiers that misclassified the
instance [218]. Hence, an instance with a large edge is
often misclassified by the weak learners and is classified by
the ensemble with a low confidence, what is the contrary
of the margin defined in [106]. Wheway [217] observes a
homogenization of the edge as the number of weak classifiers
increases: the mean of the edge stabilizes and its variance
goes to zero. It means that observations which were initially

classified correctly are classified incorrectly in later rounds
to classify harder observations correctly, what is consistent
with results in [106] and [218]. Mislabeled data have edge
values which remain high due to persistent misclassification.
It is therefore proposed to remove the instances corresponding
e.g. to the 5% top edge values.

G. Others Methods

There exist other methods for data cleansing. For example,
in ECG segmentation, Hughes et al. [56] delete the label
of the instances (and not the instances themselves) that are
close to classification boundaries, since experts are known
to be less reliable in that region. Thereafter, semisupervised
learning is performed using both the labeled and the (newly)
unlabeled instances. In [219], a genetic algorithm approach
based on a class separability criterion is proposed. In [220]
and [221], the automatic data enhancement (ADE) method and
the automatic noise reduction (ANR) method are proposed to
relabel mislabeled instances with a neural network approach.
A similar approach is proposed in [222] for decision trees.

H. Discussion

One of the advantages of label noise cleansing is that
removed instances have absolutely no effects on the model
inference step [158]. In several works, it has been observed
that simply removing mislabeled instances is more efficient
than relabeling them [167], [223]. However, instance selection
methods may remove too many instances [132]–[134], [200],
if not all instances in some pathological cases [95]. On the
one hand, Matic et al. [168] show that overcleansing may
reduce the performances of classifiers. On the other hand, it
is suggested in [46] that keeping mislabeled instances may
harm more than removing too many correctly labeled samples.
Therefore, a compromise has to be found. The overcleansing
problem is of particular importance for imbalanced datasets
[224]. Indeed, minority instances may be more likely to be
removed by e.g. classification filtering (because they are also
more likely to be misclassified), what makes learning even
more difficult. In [225], it is shown that dataset imbalance can
affect the efficiency of data cleansing methods. Label noise
cleansing can also reduce the complexity of inferred models,
but it is not always trivial to know if this reduction is not
simply due to the reduction of the training set size [172], [173].

Surprisingly, to the best of our knowledge, the method
in [56] has not been generalized to other label noise cleansing
methods, what would be easy to do. Indeed, instead of
completely removing suspicious instances, one could only
delete their labels and perform semi-supervised learning on the
resulting training set. The approach in [56] has the advantage
of keeping the distribution of the instances unaltered (what is
not the case for their conditional distributions, though), what is
of particular interest for generative approaches. An interesting
open research question is whether this method would improve
the results with respect to the classical solution of simply
removing suspicious instances. Another alternative would be
to resubmit the suspicious samples to a human expert for
relabeling as proposed in [168]. However, this may reveal too
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costly or even impossible in most of the applications, and there
is no guarantee that the new labels will actually be noise free.

VII. LABEL NOISE-TOLERANT LEARNING ALGORITHMS

When some information is available about label noise or
its consequences on learning, it becomes possible to design
models that consider label noise. Typically, one can learn
a label noise model simultaneously with a classifier, what
uncouples both components of the data generation process and
improves the resulting classifier. In a nutshell, the resulting
classifier learns to classify instances according to their true,
unknown class. Other approaches consist in modifying the
learning algorithm to reduce the influence of label noise. Data
cleansing can also be embedded directly into the learning
algorithm, like e.g. for SVMs. Such techniques are described
in this section and are called label noise-tolerant, since they
can tolerate label noise by modeling it. Section VII-A reviews
probabilistic methods, whereas model-based methods are
discussed in Section VII-B.

A. Probabilistic Methods

Many label noise-tolerant methods are probabilistic, in a
broad sense. They include Bayesian and frequentist methods,
as well as methods based on clustering or belief functions.
An important issue that is highlighted by these methods is the
identifiability of label noise. The four families of methods are
discussed in the following four sections.

1) Bayesian Approaches: Detecting mislabeled instances is
a challenging problem. Indeed, there are identifiability issues
[226]–[228], as illustrated in [122], where consumers answer
a survey with some error probability. Under the assumption
that it results in a Bernoulli process, it is possible to obtain an
infinite number of maximum likelihood solutions for the true
proportions of answers and the error probabilities. In other
words, in this simple example, it is impossible to identify
the correct model for observed data. Several works claim
that prior information is strictly necessary to deal with label
noise. In particular, [5], [122], [227], and [228] propose to use
Bayesian priors on the mislabeling probabilities to break ties.
Label noise identifiability is also considered for inductive logic
programming in [226], where a minimal description length
principle prevents the model to overfit on label noise.

Several Bayesian methods to take care of label noise are
reviewed in [68] and summarized here. In medical applica-
tions, it is often necessary to assess the quality of binary
diagnosis tests with label noise. Three parameters must be
estimated: the population prevalence (i.e., the true proportion
of positive samples) and the sensitivity and specificity of the
test itself [5]. Hence, the problem has one degree of freedom in
excess, since only two data-driven constraints can be obtained
(linked to the observed proportions of positive and negative
samples). In [5], [229] and [230], it is proposed to fix the
degree of freedom using a Bayesian approach: setting a prior
on the model parameters disambiguates maximum likelihood
solutions. Indeed, whereas the frequentist approach considers
that parameters have fixed values, the Bayesian approach
considers that all unknown parameters have a probability

distribution that reflects the uncertainty in their values and
that prior knowledge about unknown parameters can be for-
mally included [231]. Hence, the Bayesian approach can be
interpreted as a generalization of constraints on the parameters
values, where the uncertainty on the parameters is considered
through priors.

Popular choices for Bayesian priors for label noise are
Beta priors [5], [128], [229], [230], [232]–[236] and Dirichlet
priors [237], [238], which are the conjugate priors of binomial
and multinomial distributions, respectively. Bayesian methods
have also been designed for logistic regression [130], [236],
[239]–[241], hidden Markov models [84], and graphical mod-
els for medical image segmentation [242]. In the Bayesian
approaches, although the posterior distribution of parameters
may be difficult (or impossible) to calculate directly, efficient
implementations are possible using Markov chain Monte Carlo
methods, which allow approximating the posterior of model
parameters [68]. A major advantage of using priors is the
ability to include any kind of prior information in the learning
process [68]. However, the priors should be chosen carefully,
for the results obtained depend on the quality of the prior
distribution used [243], [244].

In the spirit of the above Bayesian approaches, an iterative
procedure is proposed in [128] to correct labels. For each
sample, Rekaya et al. [235] define an indicator variable αi ,
which is equal to 1 if the label of the i th instance was switched.
Hence, each indicator follows a Bernoulli distribution parame-
terized by the mislabeling rate (which itself follows a Beta
prior). In [128], the probability that αi = 1 is estimated
for each sample and the sample with the higher mislabeling
probability is relabeled. The procedure is repeated as long as
the test is significant. Indicators are also used in [245] for
Alzheimer disease prediction, where four out of 16 patients
are detected as potentially misdiagnosed. The correction of the
supposedly incorrect labels leads to a significant increase in
predictive ability. A similar approach is used in [246] to robus-
tify multiclass Gaussian process classification. If the indicator
for a given sample is zero, then the label of that sample is
assumed to correspond to a latent function. Otherwise, the
label is assumed to be randomly chosen. The same priors as
in [235] are used and the approach is shown to yield better
results than other methods that assume that the latent function
is polluted by a random Gaussian noise [247] or which use
Gaussian processes with heavier tails [248].

2) Frequentist Methods: Since label noise is an inherently
stochastic process, several frequentist methods have emerged
to deal with it. A simple solution consists in using mixture
models, which are popular in outlier detection [32]. In [249],
each sample is assumed to be generated either from a majority
(or normal) distribution or an anomalous distribution, with
respective priors 1−λ and λ. The expert error probability λ is
assumed to be relatively small. Depending on prior knowledge,
any appropriate distribution can be used to model the majority
and anomalous distributions, but the anomalous distribution
may be simply chosen as uniform. The set of anomalous
samples is initially empty, i.e. all samples initially belong to
the majority set. Samples are successively tested and added
to the anomalous set whenever the increase in log-likelihood
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Fig. 3. Statistical model of label noise, inspired by [67].

due to this operation is higher than a predefined threshold.
Mansour and Parnas [250] also consider the mixture model
and propose an algorithm to learn conjunctions of literals.

Directly linked with the definition of NAR label noise in
Section II-C, Lawrence and Schölkopf [67] propose another
probabilistic approach to label noise. The label of an instance
is assumed to correspond to two random variables (Fig. 3,
inspired by [67]): the true hidden label Y and the observed
label Ỹ that is possibly noisy. Ỹ is assumed to depend only
on the true label Y , whose relationship is described by a
labeling matrix (see Section II-C.2). Using this simple model
of label noise, a Fisher discriminant is learned using an
EM approach. Eventually, the approach is kernelised and is
shown to effectively deal with label noise. Interestingly, the
probabilistic modeling also leads to an estimation of the noise
level. Later, Li et al. [251] extended this model by relaxing
the Gaussian distribution assumption and carried out extensive
experiments on more complex datasets, which convincingly
demonstrated the value of explicit label noise modeling. More
recently, the same model has been extended to multiclass
datasets [252] and sequential data [253]. Asymmetric label
noise is also considered in [66] for logistic regression. It
is shown that conditional probabilities are altered by label
noise and that this problem can be solved by considering
a model of label noise. A similar approach was developed
for neural networks in [254] and [255] for uniform label
noise. Repeatedly, a neural network is trained to predict the
conditional probability of each class, what allows optimizing
the mislabeling probability before retraining the neural net-
work. The mislabeling probability is optimized either using a
validation set [254] or a Bayesian approach with a uniform
prior [255]. In [256], Gaussian processes for classification
are also adapted for label noise by assuming that each label
is potentially affected by a uniform label noise. It is shown
that label noise modeling increases the likelihood of observed
labels when label noise is actually present.

Valizadegan and Tan [257] propose a method based on a
weighted kNN. Given the probability pi that the i th training
example is mislabeled, the binary label yi is replaced by its
expected value −pi yi+(1−pi )yi = (1−2 pi )yi . Then, the sum
of the consistencies

δi = (1 − 2 pi)yi

∑
j∈N(xi )

wi j (1 − 2 p j )y j∑
j∈N(xi )

wi j
(9)

between the expected value of yi and the expected value of the
weighted kNN prediction is maximized, where N(xi ) contains
the neighbors of xi and wi j is the weight of the j th neighbor.

To avoid declaring all the examples from one of the two
classes as mislabeled, a L1 regularization is enforced on the
probabilities pi .

Contrarily to the methods described in Section VII-A.1,
Bayesian priors are not used in the above frequentist methods.
We hypothesize that the identifiability problem discussed
in Section VII-A.1 is solved using a generative approach
and setting constraints on the conditional distribution of X .
For example, in [67], Gaussian distributions are used, whereas
Li et al. [251] consider mixtures of Gaussian distributions. The
same remark applies to Section VII-A.3.

3) Clustering-Based Methods: In the generative statistical
models of Section VII-A.2, it is assumed that the distribution
of instances can help to solve classification problems. Classes
are not arbitrary: they are linked to a latent structure in the
distribution of X . In other words, clusters in instances can
be used to build classifiers, what is done in [136]. First,
a clustering of the instances [258] is performed using an
unsupervised algorithm. Labels are not used and the procedure
results in a mixture of K models pk(x) with priors πk for
components k = 1 . . . K . Second, instances are assumed to
follow the density

p(x) =
∑

y∈Y

K∑

k=1

rykπk pk(x) (10)

where ryk can be interpreted as the probability that the kth
cluster belongs to the yth class. The coefficients ryk are learned
using a maximum likelihood approach. Eventually, classifica-
tion is performed by computing the conditional probabilities
P(Y = y|X = x) using both the unsupervised (clusters)
and supervised (ryk probabilities) parts of the model. When
a Gaussian mixture model is used to perform clustering,
the mixture model can be interpreted as a generalization of
mixture discriminant analysis (MDA, see [259]). In this case,
the model is called robust MDA and is shown to improve clas-
sification results with respect to MDA [136], [260]. In [261],
the method is adapted to discrete data for DNA barcoding and
is called robust discrete discriminant analysis. In that case,
data are modeled by a multivariate multinomial distribution.
A clustering approach is also used in [262] to estimate a
confidence on each label, where each instance inherits the
distribution of classes within its assigned cluster. Confidences
are averaged over several clusterings and a weighted training
set are obtained.

In this spirit, El Gayar et al. [263] propose a method that
is similar to [136]. Labels are converted into soft labels to
reflect the uncertainty on labels. First, a fuzzy clustering of the
training instances is performed, which gives a set of cluster
and the membership of each instance to each cluster. Then,
the membership L yk of the kth cluster to the yth class is
estimated using the fuzzy memberships. Each instance with
label y increases the membership L yk by its own membership
to cluster k. Eventually, the fuzzy label of each instance is
computed using the class memberships of the clusters where
the instance belongs. Experiments show improvements with
respect to other label fuzzification methods like kNN soft
labels and Keller soft labels [264].
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4) Belief Functions: In the belief function theory, each
possible subset of classes is characterized by a belief mass,
which is the amount of evidence which supports the subset
of classes [265]. For example, let us consider an expert who:
1) thinks that a given case is positive, but 2) has a very low
confidence in its own prediction. In the formalism of belief
functions, one can translate the above judgment by a belief
mass function (BMF), also called basic probability assign-
ment m such that m({−1,+1}) = 0.8, m({−1}) = 0, and
m({+1}) = 0.2. Here, there is no objective uncertainty on the
class itself, but rather a subjective uncertainty on the judgment
itself. For example, if a coin is flipped, the BMF would simply
be m({head, tail}) = 1, m({head}) = 0, and m({tail}) = 0
when the bias of the coin is unknown. If the coin is known
to be unbiased, the BMF becomes m({head, tail}) = 0,
m({head}) = 1/2, and m({tail}) = 1/2. Again, this simple
example shows how the belief function theory allows dis-
tinguishing subjective uncertainty from objective uncertainty.
Notice that Smets [266] argues that it is necessary to fall
back to classical probabilities to make decisions. Different
decision rules are analyzed in [79]. Interestingly, the belief
function formalism can be used to modify standard machine
learning methods like e.g. kNN classifiers [78], neural net-
works [80], decision trees [267], mixture models [268], [269],
or boosting [270].

In the context of this paper, belief functions cannot be used
directly, since the belief masses are not available. Indeed,
they are typically provided by the expert itself as an attempt
to quantify its own (lack of) confidence, but we made the
hypothesis in Section I that such information is not available.
However, several works have proposed heuristics to infer belief
masses directly from data [78], [80], [271].

In [78], a kNN approach based on Dempster–Shafer theory
is proposed. If a new sample xs has to be classified, each
training sample (xi , yi ) is considered as an evidence that the
class of xs is yi . The evidence is represented by a BMF ms,i

such that ms,i({yi}) = α, ms,i(Y) = 1 − α and ms,i is zero
for all other subsets of classes, where

α = α0�(ds,i) (11)

such that 0 < α0 < 1 and � is a monotonically decreasing
function of the distance ds,i between both instances. There are
many possible choices for �;

�(d) = exp
(−γ dβ

)
(12)

is chosen in [78], where γ > 0 and β ∈ {1, 2}. Heuristics
are proposed to select proper values of α0 and γ . For the
classification of the new sample xs , each training sample
provides an evidence. These evidences are combined using the
Dempster rule and it becomes possible to take a decision (or to
refuse to take a decision if the uncertainty is too high). The
case of mislabeling is experimentally studied in [78] and [272]
and the approach is extended to neural networks in [80].

In [271], a kNN approach is also used to infer BMFs. For
a given training sample, the frequency of each class in its
k nearest neighbors is computed. Then, the sample is assigned
to a subset of classes containing: 1) the class with the
maximum frequency and 2) the classes whose frequency is not

too different from the maximum frequency. A neural network
is used to compute beliefs for test samples.

B. Model-Based Methods

Apart from probabilistic methods, specific strategies have
been developed to obtain label noise-tolerant variants of
popular learning algorithms, including e.g. SVMs, neural
networks, and decision trees. Many publications also propose
label noise-tolerant boosting algorithms, since boosting tech-
niques like AdaBoost are well known to be sensitive to label
noise. Eventually, label noise is also tackled in semisupervised
learning. These five families of methods are discussed in the
following five sections.

1) SVMs and Robust Losses: SVMs are not robust to
label noise [62], [82], even if instances are allowed to be
misclassified during learning. Indeed, instances which are
misclassified during learning are penalized in the objective
using the hinge loss

[1 − yi 〈xi , w〉]+ (13)

where [z]+ = max(0, z) and w is the weight vector. The hinge
loss increases linearly with the distance to the classification
boundary and is therefore significantly affected by mislabeled
instance that stand far from the boundary.

Data cleansing can be directly implemented into the learning
algorithm of SVMs. For example, instance that correspond
to a very large dual weights can be identified as potentially
mislabeled [273]. In [274], k samples are allowed to be not
considered in the objective function. For each sample, a binary
variable (indicating whether or not to consider the sample)
is added and the sum of the indicators is constrained to
be equal to k. An opposite approach is proposed in [275]
for aggregated training sets that consists of several distinct
training subsets labeled by different experts. The percent-
age of support vectors in training samples is constrained
to be identical in each subset, to decrease the influence of
low-quality teachers, which tend to require more support
vectors due to more frequent mislabeling. In [276] and [277],
SVMs are adapted by weighting the contribution of each
training sample in the objective function. The weights (or fuzzy
memberships) are computed using heuristics. Similar work
is done in [278] for relevance vector machines. Empathetic
constraints SVMs [279] relax the constraints of suspicious
samples in the SVM optimization problem.

Xu et al. [280] propose a different approach, which consists
in using the loss

ηi [1 − yi 〈xi , w〉]+ + (1 − ηi ) (14)

where 0 ≤ ηi ≤ 1 indicates whether the i th sample is an
outlier. The ηi variables must be optimized together with the
weights vector, what is shown to be equivalent to using the
robust hinge loss

min(1, [1 − yi 〈xi , w〉]+). (15)

Notice that there exist other bounded, nonconvex losses
[281]–[284], which could be used similarly. A nonconvex loss
is also used in [285] to produce label noise-tolerant SVMs
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without filtering. For binary classification with y ∈ {−1,+1},
the loss is

K pe

[
(1 − pe(−yi)) [1 − yi 〈xi , w〉]+

−pe(yi ) [1 + yi 〈xi , w〉]+
]

(16)

where K pe = 1/1 − pe(+1) − pe(−1). Interestingly, the
expected value of the proposed loss (with respect to all
possible mislabelings of the noise-free training set) is equal to
the hinge loss computed on the noise-free training set. In other
words, it is possible to estimate the noise-free [. . .] errors
from the noisy data. Theoretical guarantees are given and the
proposed approach is shown to outperform SVMs, but error
probabilities must be known a priori.

2) Neural Networks: Different label noise-tolerant variants
of the perceptron algorithm are reviewed and compared exper-
imentally in [286]. In the standard version of this algorithm,
samples are presented repeatedly (on-line) to the classifier. If a
sample is misclassified with

yi [wxi + b] < 0 (17)

where w is the weight vector and b is the bias, then the
weight vector is adjusted toward this sample. Eventually, the
perceptron algorithm converges to a solution.

Since the solution of the perceptron algorithm can be
biased by mislabeled samples, different variants have been
designed to reduce the impact of mislabeling. With the λ-trick
[287], [288], if an instance has already been misclassified,
the adaptation criterion becomes yi [wxi + b] + λ‖xi‖2

2 < 0.
Large values of λ may prevent mislabeled instances to trigger
updates. Another heuristic is the α-bound [289], which does
not update w for samples that have already been misclas-
sified α times. This simple solution limits the impact of
mislabeled instances. Although not directly designed to deal
with mislabeling, Khardon and Wachman [286] also describe
the perceptron algorithm using margins (PAM) [290]. PAM
updates w for instances with yi [wxi + b] < τ , similarly to
support vector classifiers and to the λ-trick.

3) Decision Trees: Decision trees can easily overfit data, if
they are not pruned. In fact, learning decision trees involves
a tradeoff between the accuracy and simplicity, which are
two requirements for good decision trees in real-world situa-
tions [291]. It is particularly important to balance this tradeoff
in the presence of label noise, what makes the overfitting
problem worse. For example, Clark and Niblett [291] propose
the CN2 algorithm, which learns a disjunction of logic rules
while avoiding too complex ones.

4) Boosting Methods: In boosting, an ensemble of weak
learners ht with weights αt is formed iteratively using a
weighted training set. At each step t , the weights w

(t)
i of mis-

classified instances are increased (respectively, decreased for
correctly classified samples), what progressively reduces the
ensemble training error because the next weak learners focus
on the errors of the previous ones. As discussed in Section III,
boosting methods tend to overfit label noise. In particular,
AdaBoost obtains large weights for mislabeled instances in
late stages of learning. Hence, several methods propose to
update weights more carefully to reduce the sensitivity of

boosting to label noise. In [292], MadaBoost imposes an upper
bound for each instance weight, which is simply equal to the
initial value of that weight. The AveBoost and AveBoost2
[293], [294] algorithms replace the weight w

(t+1)
i of the i th

instance at step t + 1 by

tw(t)
i + w

(t+1)
i

t + 1
. (18)

With respect to AdaBoost, AveBoost2 obtains larger train-
ing errors, but smaller generalization errors. In other words,
AveBoost2 is less prone to overfitting than AdaBoost, what
improves results in the presence of label noise. Kim [295]
proposes another ensemble method called Averaged Boosting
(A-Boost), which: 1) does not consider instances weights
to compute the weights of the successive weak classifiers
and 2) performs similarly to bagging on noisy data. Other
weighting procedures have been proposed in [296], but they
were not assessed in the presence of label noise.

In [297], two approaches are proposed to reduce the con-
sequences of label noise in boosting. First, AdaBoost can
be early-stopped: limiting the number of iterations prevents
AdaBoost from overfitting. A second approach consists in
smoothing the results of AdaBoost. The proposed BB algo-
rithm combines bagging and boosting: 1) K training sets
consisting of ρ percents of the training set (subsampled
with replacement) are created; 2) K boosted classifiers are
trained for M iterations; and 3) the predictions are aggregated.
In [297], it is advised to use K = 15, M = 15, and ρ = 1/2.
The BB algorithm is shown to be less sensitive to label noise
than AdaBoost. A similar approach is proposed in [298]: the
multiple boosting (MB) algorithm.

A reverse boosting algorithm is proposed in [299]. In adap-
tive boosting, weak learners may have difficulties to obtain
good separation frontiers because correctly classified samples
get lower and lower weights as learning goes on. Hence,
safe, noisy, and borderline patterns are distinguished, whose
weights are respectively increased, decreased and unaltered
during boosting. Samples are classified into these three cate-
gories using parallel perceptrons, a specific type of committee
machine whose margin allows to separate the input space into
three regions: a safe (beyond the margin), a noisy (before
the margin), and a borderline regions (inside the margin).
The approach improves the results of parallel perceptrons in
the presence of label noise, but is most often dominated by
classical perceptrons.

5) Semisupervised Learning: In [7], a particle competition-
based algorithm is proposed to perform semisupervised learn-
ing in the presence of label noise. First, the dataset is
converted into a graph, where instances are nodes with edges
between the similar instances. Each labeled node is asso-
ciated with a labeled particle. Particles walk through the
graph and cooperate with identically labeled particles to label
unlabeled instances, while staying in the neighborhood of
their home node. What interests us in [7] is the behavior
of mislabeled particles: they are pushed away by the par-
ticles of near instances with different labels, what prevents
a mislabeled instance to influence the label of close unla-
beled instances. In [300], unlabeled instances are first labeled
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using a semisupervised learning algorithm, and then the new
labels are used to filter instances. Similarly, context-sensitive
semisupervised SVMs [301], [302] first use labeled instances
to label unlabeled instances that are spatially close (e.g. in
images) to them and second these new semilabels are used to
reduce the effect of mislabeled training instances. Other works
on label noise for semisupervised learning include [303] or
[304]–[306], which are particular because they model the label
noise induced by the labeling of unlabeled samples. A similar
problem occur in [307]–[309] where two different views are
available for each instance, like e.g. the text in a web page and
the text attached to the hyperlinks pointing to this page. In the
seminal work of Blum and Mitchell [307], co-training consists
in: 1) learning two distinct weak predictors from labeled data
with each of the two views; 2) predicting labels with the weak
predictors for a random subset of the unlabeled data; and
3) keeping the most confident labels to enlarge the pool of
labeled instances. See [310]–[314] for examples of studies on
the effectiveness of co-training. Co-training allows each weak
predictor to provide labels to improve the other weak predictor,
but the problem is that each weak predictor is likely to make
prediction errors. Incorrect labels are a source of label noise,
which has to be considered, like e.g. in [308] and [309].

C. Discussion

The probabilistic methods to deal with label noise are
grounded in a more theoretical approach than robust or data
cleansing methods. Hence, probabilistic models of label noise
can be directly used and allow to take advantage of prior
knowledge. Moreover, the model-based label noise-tolerant
methods allow us to use the knowledge gained by the analysis
of the consequences of label noise. However, the main problem
of the approaches described in this section is that they increase
the complexity of learning algorithms and can lead to over-
fitting, because of the additional parameters of the training
data model. Moreover, the identifiability issue discussed in
Section VII-A.1 must be addressed, what is done explicitly in
the Bayesian approach (using Bayesian priors) and implicitly
in the frequentist approach (using generative models).

As highlighted in [1], different models should be used for
training and testing in the presence of label noise. Indeed,
a complete model of the training data consists of a label
noise model and a classification model. Both parts are used
during training, but only the classification model is useful for
prediction: one has no interest in making noisy predictions.
Dropping the label noise model is only possible when label
noise is explicitly modeled, as in the probabilistic approaches
discussed in Section VII-A. For other approaches, the learning
process of the classification model is supposed to be robust or
tolerant to label noise and to produce a good classification
model.

VIII. EXPERIMENTS IN THE PRESENCE OF LABEL NOISE

This section discusses how experiments are performed
in the label noise literature. In particular, existing datasets,
label noise generation techniques, and quality measures are
highlighted.

A. Datasets with Identified Mislabeled Instances and
Label Noise Generation Techniques

There exist only a few datasets where incorrect labels have
been identified. Among them, Lewis et al. [315] provide
a version of the Reuters dataset with corrected labels and
Malossini et al. [53] propose a short analysis of the reliability
of instances for two microarray datasets. In spam filtering,
where the expert error rate is usually between 3% and 7%, the
TREC datasets have been carefully labeled by experts adhering
to the same definition of spam, with a resulting expert error
rate of about 0.5% [127]. Mislabeling is also discussed for a
medical image processing application in [316] and Alzheimer
disease prediction in [245]. However, artificial label noise is
more common in the literature. Most studies on label noise
use NCAR label noise that is introduced in real datasets by:
1) randomly selecting instances and 2) changing their label
into one of the other remaining labels [135]. In this case,
label noise is independent of Y . In [317], it is also proposed to
simulate label noise for artificial datasets by: 1) computing the
membership probabilities P(Y = y|X = x) for each training
sample x ; 2) adding a small uniform noise to these values;
and 3) choosing the label corresponding to the largest polluted
membership probability.

Several methods have been proposed to introduce NAR
label noise. For example, in [62], label noise is artificially
introduced by changing the labels of some randomly chosen
instances from the majority class. In [3], [69] and [301],
label noise is introduced using a pairwise scheme. Two
classes c1 and c2 are selected, then each instance of class
c1 has a probability Pe to be incorrectly labeled as c2 and
vice versa. In other words, this label noise models situa-
tions where only certain types of classes are mislabeled. In
[1], label noise is introduced by increasing the entropy of
the conditional mass function P(Ỹ |X). The proposed proce-
dure is called majorization: it leaves the probability of the
majority class unchanged, but the remaining probability is
spread more evenly on the other classes, with respect to the
true conditional mass function P(Y |X). In [151] and [153],
the percentage of mislabeled instances is first chosen; then,
the proportions of mislabeled instances in each class are
fixed.

NNAR label noise is considered in much less works than
NCAR and NAR label noise. For example, Chhikara and
McKeon [72] introduce the truncated and the exponential label
noise models which are detailed in Section III-A.3 and where
the probability of mislabeling depends on the distance to
the classification boundary. A special case of truncated label
noise is studied in [70]. In [81], two features are randomly
picked and the probability of mislabeling depends on which
quadrant (with respect to the two selected features) the sample
belongs to.

In practice, it would be very interesting to obtain more
real-world datasets where mislabeled instances are clearly
identified. Also, an important open research problem is to find
what the characteristics of real-world label noise are. Indeed,
it is not yet clear in the literature if and when NCAR, NAR,
or NNAR label noise is the most realistic.
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B. Validation and Test of Algorithms in the Presence
of Label Noise

An important issue for methods which deal with label noise
is to prove their efficiency. Depending on the consequence of
label noise that is targeted, different criteria can be used. In
general, a good method must either: 1) maintain the value
of the quality criterion when label noise is introduced or
2) improve the value of the criterion with respect to other
methods in the presence of label noise. In the literature, most
experiments assess the efficiency of methods to take care of
label noise in terms of accuracy (see e.g. [46], [69], [138],
[160], [161], [171], [180], and [184]), since a decrease in
accuracy is one of the main consequences of label noise, as
discussed in Section III-A.

Another common criterion is the model complexity [46],
[138], [184], e.g. the number of nodes for decision trees or
the number of rules in inductive logic. Indeed, as discussed in
Section III-B, some inference algorithms tend to overfit in the
presence of label noise, what results in overly complex models.
Less complex models are considered better, since they are less
prone to overfitting.

In some contexts, the estimated parameters of the mod-
els themselves can also be important, as discussed in
Section III-C. Several works focus on the estimation of true
frequencies from observed frequencies [4], [122], [123], [126],
what is important e.g. in disease prevalence estimation.

Eventually, in the case of data cleansing methods, one can
also investigate the filter precision. In other words, do the
removed instances actually correspond to mislabeled instances
and conversely? Different measures are used in the literature,
which can be explained using Fig. 4 inspired by [46] and [138].
In [46], [69], [180], [184] and [318], two types of errors are
distinguished. Type 1 errors are correctly labeled instances that
are erroneously removed. The corresponding measure is

ER1 = # of correctly labelled instances which are removed

# of correctly labelled instances
.

(19)

Type 2 errors are mislabeled instances which are not removed.
The corresponding measure is

ER2 = # of mislabelled instances which are not removed

# of mislabelled instances
.

(20)

The percentage of removed samples that are actually mis-
labeled is also computed in [46], [69], [180], [183], [184]
and [318], what is given by the noise elimination precision

NEP = # of mislabeled instances which are removed

# of removed instances
. (21)

A good data cleansing method must find a compromise
between ER1, ER2, and NEP [46], [69], [180], [184]. On the
one hand, conservative filters remove few instances and are
therefore precise (ER1 is small and NEP is large), but they
tend to keep most mislabeled instances (ER2 is large). Hence,
classifiers learnt with data cleansed by such filters achieve
low accuracies. On the other hand, aggressive filters remove
more mislabeled instances (ER2 is small) to increase the

Fig. 4. Types of errors in data cleansing for label noise, inspired by
[46] and [138].

classification accuracy, but they also tend to remove too
many instances (ER1 is large and NEP is small). Notice that
Verbaeten and Van Assche [184] also compute the percentage
of mislabeled instances in the cleansed training set.

Notice that a problem that is seldom mentioned in the
literature is that model validation can be difficult in the
presence of label noise. Indeed, since validation data are also
polluted by label noise, methods like e.g. cross-validation
or bootstrap may poorly estimate generalization errors and
choose metaparameters that are not optimal (with respect to
clean data). For example, the choice of the regularization
constant in regularized logistic regression will probably be
affected by the presence of mislabeled instances far from the
classification boundary. We think that this is an important open
research question.

IX. CONCLUSION

This survey shows that label noise is a complex phenom-
enon with many potential consequences. Moreover, there exist
many different techniques to address label noise, which can
be classified as label noise-robust, label noise cleansing, or
label noise-tolerant methods. As discussed in Section VII-A.1,
an identification problem occurs in practical inference: mis-
labeled instances are difficult to distinguish from correctly
labeled instances. In fact, without additional information
beyond the main data, it is not possible to take into account the
effect of mislabeling [84]. A solution is to make assumptions
that allow selecting a compromise between naively using
instances as they are and seeing any instance as possibly
mislabeled.

All methods described in this survey can be interpreted
as making particular assumptions. First, in label noise-robust
methods described in Section V, overfitting avoidance is
assumed to be sufficient to deal with label noise. In other
words, mislabeled instances are assumed to cause overfitting
in the same way as any other instance would. Second, in data
cleansing methods presented in Section VI, different heuristics
are used to distinguish mislabeled instances from exceptions.
Each heuristic is a definition of what is label noise. Third,
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label noise-tolerant methods described in Section VII impose
different constraint using e.g. Bayesian priors or structural
constraints (i.e. in generative methods) or attempt to make
existing methods less sensitive to the consequences of label
noise.

In conclusion, the machine learning practitioner has to
choose the method whose definition of label noise seems more
relevant in his particular field of application. For example,
if experts can provide prior knowledge about the values of
the parameters or the shape of the conditional distributions,
probabilistic methods should be used. On the other hand, if
label noise is only marginal, label noise-robust methods could
be sufficient. Eventually, most data cleansing methods are easy
to implement and have been shown to be efficient and to
be good candidates in many situations. Moreover, underlying
heuristics are usually intuitive and easy-to-interpret, even for
the nonspecialist who can look at removed instances.

There are many open research questions related to label
noise and many avenues remain to be explored. For example,
to the best of our knowledge, the method in [56] has not
been generalized to other label noise cleansing methods.
Hughes et al. [56] delete the label of the instances (and not the
instances themselves) whose labels are less reliable and per-
form semisupervised learning using both the labeled and the
(newly) unlabeled instances. This approach has the advantage
of not altering the distribution of the instances and it could
be interesting to investigate whether this improve the results
with respect to simply removing suspicious instances. Also,
it would be very interesting to obtain more real-world datasets
where mislabeled instances are clearly identified, since there
exist only a few such datasets [53], [127], [245], [315], [316].
It is also important to find what the characteristics of
real-world label noise are, since it is not yet clear if and
when NCAR, NAR, or NNAR label noise is the most realistic.
Answering this question could lead to more complex and
realistic models of label noise in the line of e.g. [5], [56],
[67], [70]–[72], [90], [91], [122], [227]–[230], [235], [251].
Label noise should be also be studied in more complex settings
than standard classification, like, e.g., image processing [242],
[301], [302] and sequential data analysis [84], [253]. The prob-
lem of metaparameter selection in the presence of label noise
is also an important open research problem, since estimated
error rates are also biased by label noise [112], [126], [127].
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