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Discrete Bayesian Network Classifiers: A Survey

CONCHA BIELZA and PEDRO LARRAÑAGA, Universidad Politécnica de Madrid

We have had to wait over 30 years since the naive Bayes model was first introduced in 1960 for the so-called
Bayesian network classifiers to resurge. Based on Bayesian networks, these classifiers have many strengths,
like model interpretability, accommodation to complex data and classification problem settings, existence of
efficient algorithms for learning and classification tasks, and successful applicability in real-world problems.
In this article, we survey the whole set of discrete Bayesian network classifiers devised to date, organized
in increasing order of structure complexity: naive Bayes, selective naive Bayes, seminaive Bayes, one-
dependence Bayesian classifiers, k-dependence Bayesian classifiers, Bayesian network-augmented naive
Bayes, Markov blanket-based Bayesian classifier, unrestricted Bayesian classifiers, and Bayesian multinets.
Issues of feature subset selection and generative and discriminative structure and parameter learning are
also covered.
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1. INTRODUCTION

Bayesian network classifiers are special types of Bayesian networks designed for clas-
sification problems. Supervised classification aims at assigning labels or categories
to instances described by a set of predictor variables or features. The classification
model that assigns labels to instances is automatically induced from a dataset contain-
ing labeled instances or sometimes by hand with the aid of an expert. We will focus on
learning models from data, favored by the large amount of data collected and accessible
nowadays.

Bayesian network classifiers have many advantages over other classification tech-
niques, as follows: (1) They offer an explicit, graphical, and interpretable representation
of uncertain knowledge. Their semantics is based on the sound concept of conditional
independence since they are an example of a probabilistic graphical model. (2) As
they output a probabilistic model, decision theory is naturally applicable for dealing
with cost-sensitive problems, thereby providing a confidence measure on the chosen
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predicted label. (3) Thanks to the model expressiveness of Bayesian network classi-
fiers, they can easily accommodate feature selection methods and handle missing data
in both learning and inference phases. Also, they fit more complex classification prob-
lems in any type of domain (discrete, continuous, and mixed data), with undetermined
labels, partial labels, many class variables to be simultaneously predicted, new flows of
streaming data, and so forth. (4) There is an active research field developing a plethora
of learning from data algorithms, covering different frequentist and Bayesian, expert,
and/or data-based viewpoints. Besides, the induced models can be organized hierar-
chically according to their structure complexity. (5) Bayesian network classifiers can
be built with computationally efficient algorithms whose learning time complexity is
linear on the number of instances and linear, quadratic, or cubic (depending on model
complexity) on the number of variables, and whose classification time is linear on the
number of variables. (6) These algorithms are easily implemented, although most of the
available software only contains the simplest options (naive Bayes and tree-augmented
naive Bayes), focusing instead on learning general-purpose Bayesian networks. (7) Nu-
merous successful real-world applications have been reported in the literature, with
competitive performance results against state-of-the-art classifiers.

This article offers a comprehensive survey of the state of the art of the Bayesian
network classifier in discrete domains. Unlike other reviews mentioned later, this arti-
cle covers many model specificities: (1) for naive Bayes, its weighted version, inclusion
of hidden variables, metaclassifiers, special situations like homologous sets, multiple
instances, cost-sensitive problems, instance ranking, imprecise probabilities, text cat-
egorization, and discriminative learning of parameters; (2) for selective naive Bayes,
univariate and multivariate filter approaches and wrapper and embedded methods;
(3) the not-so-well-known seminaive Bayes classifier; (4) for one-dependence Bayesian
classifiers, wrapper approaches, metaclassifiers based on tree-augmented naive Bayes,
and discriminative learning; (5) for general Bayesian network classifiers, classifiers
based on identifying the class variable Markov blanket, metaclassifiers, and discrim-
inative and generative learning of general Bayesian networks used for classification
problems; and (6) Bayesian multinets for encoding probabilistic relationships of asym-
metric independence. Besides, we provide a clear unified notation for all models and
graphical representations of their corresponding networks.

A recent overview of Bayesian network classifiers is Flores et al. [2012]. However,
the authors only cover the basic details of naive Bayes, tree-augmented naive Bayes, k-
dependence Bayesian classifiers, averaged one-dependence estimators, Bayesian multi-
nets, dependency networks, and probabilistic decision graphs. Other shorter reviews
of Bayesian network classifiers are Goldszmidt [2010], discussing only naive Bayes
and tree-augmented naive Bayes, and Al-Aidaroos et al. [2010], focusing on variants of
naive Bayes classifiers. This article is a comprehensive, methodical, and detailed sur-
vey of Bayesian network classifiers ever conducted, elaborating on a variety of facets
and a diversity of models.

The article is organized as follows. Section 2 reviews the fundamentals of Bayesian
network classifiers in discrete domains. Then, different models of increasing struc-
ture complexity are presented consecutively. Section 3 describes naive Bayes. Section 4
addresses selective naive Bayes. Section 5 introduces seminaive Bayes. Section 6 fo-
cuses on one-dependence Bayesian classifiers, like tree-augmented naive Bayes and the
super-parent one-dependence estimator. Section 7 discusses k-dependence Bayesian
classifiers. Section 8 sets out general Bayesian network classifiers, covering Bayesian
network-augmented naive Bayes, classifiers based on identifying the Markov blanket
of the class variable, unrestricted Bayesian classifiers, and discriminative learning.
Section 9 discusses the broadest models, Bayesian multinets. Section 10 shows an il-
lustrative example highlighting the differences between the most important classifiers.
Finally, Section 11 rounds the article off with a discussion and future work.
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2. FUNDAMENTALS

Let X = (X1, . . . , Xn) be a vector of discrete predictor random variables or features,
with xi ∈ �Xi = {1, 2, . . . , ri}, and let C be a label or class variable, with c ∈ �C =
{1, 2, . . . , rc}. Given a simple random sample D = {(x(1), c(1)), . . . , (x(N), c(N))}, of size N,
with x( j) = (xj1, . . . , xjn), drawn from the joint probability distribution p(X, C), the
supervised classification problem consists of inducing a classification model from D
able to assign labels to new instances given by the value of their predictor variables.
Common performance measures include classification accuracy, sensitivity, specificity,
the F-measure, and area under the ROC curve. All these measures must be estimated
using honest evaluation methods, like hold-out, k-fold cross-validation, bootstrapping,
and so forth [Japkowicz and Mohak 2011].

A Bayes classifier assigns the most probable a posteriori (MAP) class to a given
instance x = (x1, . . . , xn), that is,

arg max
c

p(c|x) = arg max
c

p(x, c), (1)

which, under a 0/1 loss function, is optimal in terms of minimizing the conditional risk
[Duda et al. 2001].

For a general loss function, λ(c′, c), where c′ is the class value output by a model and c
is the true class value, the Bayesian classifier can be learned by using the Bayes decision
rule that minimizes the expected loss or conditional risk R(c′|x) = ∑

c∈�C
λ(c′, c)p(c|x),

for any instance x [Duda et al. 2001].
Bayesian network classifiers [Friedman et al. 1997] approximate p(x, c) with a fac-

torization according to a Bayesian network [Pearl 1988]. The structure of a Bayesian
network on the random variables X1, . . . , Xn, C is a directed acyclic graph (DAG) whose
vertices correspond to the random variables and whose arcs encode the probabilistic
(in)dependences among triplets of variables; that is, each factor is a categorical distri-
bution p(xi|pa(xi)) or p(c|pa(c)), where pa(xi) is a value of the set of variables Pa(Xi),
which are parents of variable Xi in the graphical structure. The same applies for pa(c).
Thus,

p(x, c) = p(c|pa(c))
n∏

i=1

p(xi|pa(xi)). (2)

When the sets Pa(Xi) are sparse, this factorization prevents having to estimate an
exponential number of parameters, which would otherwise be required.

For the special case of Pa(C) = ∅, the problem is to maximize on c:

p(x, c) = p(c)p(x|c).

Therefore, the different Bayesian network classifiers explained later correspond with
different factorizations of p(x|c). The simplest model is the naive Bayes, where C is
the parent of all predictor variables and there are no dependence relationships among
them (Sections 3 and 4). We can progressively increase the level of dependence in these
relationships (one-dependence, k-dependence, etc.) giving rise to a family of augmented
naive Bayes models, explained in Sections 5 through 8.1; see Figure 1.

Equation (2) states a more general case; see also Figure 1. p(x, c) is factorized in
different ways, C can have parents, and we have to search the Markov blanket of C to
solve Equation (1) (Section 8.2). The Markov blanket (see Pearl [1988, p. 97]) of C is
the set of variables MBC that make C conditionally independent of the other variables
in the network, given MBC , that is,

p(c|x) = p(c|xMBC ), (3)
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Fig. 1. Categorization of discrete Bayesian network classifiers according to the factorization of p(x, c).

where xMBC denotes the projection of x onto the variables in MBC . Therefore, the
Markov blanket of C is the only knowledge needed to predict its behavior. A probability
distribution p is faithful to a DAG representing a Bayesian network if, for all triplets of
variables, they are conditionally independent with respect to p iff they are d-separated
in the DAG. For such p, MBC is unique and is composed of C ’s parents, children, and
the children’s other parents (spouses) [Pearl 1988].

There are two strategies for learning both the Markov blanket and the structures
for augmented naive Bayes: testing conditional independences (constraint-based tech-
niques [Spirtes et al. 1993]) and searching in the space of models guided by a score to be
optimized (score + search techniques [Cooper and Herskovits 1992]). They can also be
combined in hybrid techniques. Alternatively, we can use these strategies to learn an
unrestricted Bayesian network, which does not consider C as a distinguished variable,
from which only the Markov blanket of C must be extracted for classification purposes
(Section 8.3). Finally, specific conditional independence relationships can be modeled
for different c values, giving rise to different Bayesian classifiers, which are then joined
in the more complex Bayesian multinet (Section 9). The parents of Xi, Pac(Xi), may be
different depending on c; see Figure 1.

Apart from learning the network structure, the probabilities p(xi|pa(xi)) are esti-
mated from D by standard methods like maximum likelihood or Bayesian estimation.
In Bayesian estimation, assuming a Dirichlet prior distribution over (p(Xi = 1|Pa(Xi) =
j), . . . , p(Xi = ri|Pa(Xi) = j)) with all hyperparameters equal to α, then the posterior
distribution is Dirichlet with hyperparameters equal to Nijk+α, k = 1, . . . , ri, where Nijk
is the frequency in D of cases with Xi = k and Pa(Xi) = j. Hence, p(Xi = k|Pa(Xi) = j)
is estimated by

Nijk + α

N· j· + riα
, (4)

where N· j· is the frequency in D of cases with Pa(Xi) = j. This is called the Lindstone
rule. A special case of the Lindstone rule called Laplace estimation, with α = 1 in
Equation (4), is used in Good [1965]. Also, the Schurmann-Grassberger rule, where
α = 1

ri
, is employed in Hilden and Bjerregaard [1976] and Titterington et al. [1981].

Obviously, the maximum likelihood estimate is given by Nijk

N· j·
.

So far we have proceeded with only one selected Bayesian network classifier, as if that
model had generated the data, thus ignoring uncertainty in model selection. Bayesian
model averaging provides a way of accounting for model uncertainty. It uses the Bayes
rule to combine the posterior distributions under each of the models considered with
structure Sm in a space S, each weighted by its posterior model probabilities:

p(x, c|D) =
∑
Sm∈S

p(x, c|Sm,D)p(Sm|D). (5)
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Fig. 2. A naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)p(x5|c).

The posterior probability of model Sm is given by

p(Sm|D) = p(D|Sm)p(Sm)∑
Sl∈S p(D|Sl)p(Sl)

(6)

and the (marginal) likelihood of model Sm is

p(D|Sm) =
∫

p(D|θm, Sm)p(θm|Sm)dθm, (7)

where the vector of parameters of model Sm is θm = (θC, θ X1 , . . . , θ Xn), and for the case
of Pa(C) = ∅, θC = ((p(c))rc

c=1) and θ Xi = ((((θi jk))ri
k=1)qi

j=1). θi jk denote p(Xi = k|Pa(Xi) = j)
and qi represents the total number of different configurations of Pa(Xi).

Since our models are Bayesian network classifiers and, according to Equation (2),
p(x, c|Sm,D) = p(c)

∏n
i=1 θi jk, Equation (5) is then simplified as

p(x, c|D) ∝
∑
Sm∈S

p(c)

(
n∏

i=1

θi jk

)
p(D|Sm)p(Sm).

3. NAIVE BAYES

Naive Bayes [Maron and Kuhns 1960; Minsky 1961] is the simplest Bayesian network
classifier (Figure 2), since the predictive variables are assumed to be conditionally
independent given the class, transforming Equation (1) into

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c). (8)

This assumption is useful when n is high and/or N is small, making p(x|c) difficult to
estimate. Even if the assumption does not hold, the model classification performance
may still be good in practice (although the probabilities are not well calibrated) because
the decision boundaries may be insensitive to the specificities of the class-conditional
probabilities p(xi|c) [Domingos and Pazzani 1997]; that is, variance is reduced because
few parameters are required and the biased probability estimates may not matter since
the aim is classification rather than accurate posterior class probability estimation
[Hand and Yu 2001].

Other approaches transform the data to avoid the effects of violating the conditional
independence assumption, thereby improving the probability estimates made by naive
Bayes. The class dispersion problem covers distributions p(x|c), where clusters of cases
that belong to the same class are dispersed across the input space. One possible solution
is to transform the class distribution by applying a clustering algorithm to each subset
of cases with the same label, producing a refinement (extension) on the number of
labels. This is proposed in Vilalta and Rish [2003], where a naive Bayes is then learned
over this new dataset, and finally the predicted (extended) labels are mapped to the
original space of labels.
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From a theoretical point of view, if all variables (predictors and class) are binary,
the decision boundary has been shown to be a hyperplane [Minsky 1961]. For ordinal
nonbinary predictor variables, the decision boundary is a sum of n polynomials, one
for each variable Xi, with a degree equal to ri − 1 [Duda et al. 2001]. Naive Bayes
has proved to be optimal (i.e., achieving lower zero-one loss than any other classifier)
for learning conjunctions and disjunctions of literals [Domingos and Pazzani 1997]. A
bound for the degradation of the probability of correct classification when naive Bayes
is used as an approximation of the Bayes classifier is given in Ekdahl and Koski [2006].

The inclusion of irrelevant (redundant) variables for the class does not (does) worsen
the performance of a naive Bayes classifier [Langley and Sage 1994]. Hence, it is
important to remove irrelevant and redundant variables, as the so-called selective
naive Bayes should ideally do (see Section 4).

From a practical point of view, there have been some attempts to visualize the effects
of individual predictor values on the classification decision. Most are based on an
equivalent expression for a naive Bayes model in terms of the log odds that for a binary
class (c vs. c̄) results in

logit p(c|x) = log
p(c|x)
p(c̄|x)

= log
p(c)
p(c̄)

+
n∑

i=1

log
p(xi|c)
p(xi|c̄)

.

While Orange software [Možina et al. 2004] uses nomograms to represent the additive
influence of each predictor value, ExplainD [Poulin et al. 2006] uses bar-based charts
with different levels of explanation capabilities.

3.1. Parameter Estimation

The Bayesian probability estimate called m-estimate is successfully used in the naive
Bayes classifier [Cestnik 1990]. It has a tunable parameter m whereby it can adapt to
domain properties, such as the level of noise in the dataset.

A Bayesian bootstrap method of probability estimation is presented in Norén and
Orre [2005]. This results in sampling from the dataset of just the N′ ≤ N different
cases of D with a Dirichlet distribution with hyperparameters related to the frequency
of these N′ distinct values in D. The variables in a Dirichlet random vector can never be
positively correlated and must have the same normalized variance. These constraints
deteriorate the performance of the naive Bayes classifier and motivate the introduction
of other prior distributions, like the generalized Dirichlet and the Liouville distribu-
tions [Wong 2009].

An estimation inspired by an iterative Hebbian rule is proposed in Gama [1999]. In
each iteration and for each of the N cases, if the case is well (incorrectly) classified by
the current naive Bayes model, then p(xi|c) for its corresponding values xi and its true
class c should be increased (decreased), adjusting the other conditional probabilities.

3.2. Weighted Naive Bayes

Adjusting the naive Bayesian probabilities during classification may significantly im-
prove predictive accuracy. A general formula is

p(c|x) ∝ wc p(c)
n∏

i=1

[p(xi|c)]wi (9)

for some weights wc, wi, i = 1, . . . , n. In Hilden and Bjerregaard [1976], wc = 1 and
wi = w ∈ (0, 1),∀i, attaching more importance to the prior probability of the class
variable. w is fixed by looking for a good performance after some trials. Also, in Hall
[2007], wc = 1 and wi is set to 1/

√
di, where di is the minimum depth at which variable
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Fig. 3. (a) Naive Bayes with a hidden variable H [Kwoh and Gillies 1996]; (b) hierarchical naive Bayes
[Zhang et al. 2004; Langseth and Nielsen 2006]; (c) finite mixture model, with a hidden variable as a parent
of predictor variables and the class [Kontkanen et al. 1996]; (d) finite-mixture-augmented naive Bayes [Monti
and Cooper 1999].

Xi is tested in the unpruned decision tree constructed from the data. Fixing the root
node to depth 1, di weighs Xi according to the degree to which it depends on the values
of other variables. Finally, in Webb and Pazzani [1998], the linear adjustment wc is
found by employing a hill-climbing search maximizing the resubstitution accuracy and
wi = 1,∀i.

3.3. Missing Data

When the training set is incomplete (i.e., some variable values are unknown), both
classifier efficiency and accuracy can be lost.

Simple solutions for handling missing data are either to ignore the cases including
unknown values or to consider unknowns to be a separate value of the respective vari-
ables [Kohavi et al. 1997]. These solutions introduce biases in the estimates. Another
common solution is imputation, where likely values (mode or class-conditional mode)
stand in for the missing data. Other suggestions [Friedman et al. 1997] are to use the
expectation-maximization (EM) algorithm [Dempster et al. 1977] or gradient descent
method. However, these methods rely on the assumption that data are missing at ran-
dom (i.e., the probability that an entry will be missing is a function of the observed
values in the dataset). This cannot be verified in a particular dataset, and if violated,
the methods lead to decreased accuracy.

This is why the robust Bayesian estimator is introduced in Ramoni and Sebastiani
[2001b] to learn conditional probability distributions from incomplete datasets with-
out any assumption about the missing data mechanism. The estimation is given by
an interval including all the estimates induced from all possible completions of the
original dataset. A new algorithm to compute posterior probability intervals from
interval-valued probabilities is then proposed in Ramoni and Sebastiani [2001a]. In
the classification phase, all these intervals are ranked according to a score to decide
the class with the highest-ranked interval.

3.4. Including Hidden Variables

The violation of the conditional independence assumption in naive Bayes can be inter-
preted as an indication of the presence of hidden or latent variables. Introducing one
hidden variable in the naive Bayes model as a child of the class variable and parent of
all predictor variables is the simplest solution to this problem; see Figure 3(a). This is
the approach reported in Kwoh and Gillies [1996], where the conditional probabilities
attached to the hidden node are determined using a gradient descent method. The
objective function to be minimized is the squared error between the real class values
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and the class posterior probabilities. The approach taken in Zhang et al. [2004] is more
general, since many hidden variables are arranged in a tree-shaped Bayesian network
called hierarchical naive Bayes. The root is the class variable, the leaves are the pre-
dictor variables, and the internal nodes are the hidden variables. An example is given
in Figure 3(b). This structure is learned using a hill-climbing algorithm that compares
candidate models with the Bayesian information criterion (BIC), whereas its param-
eters are estimated using the EM algorithm [Dempster et al. 1977]. A classification
accuracy-focused improvement is shown in Langseth and Nielsen [2006]. This strategy
is faster since latent variables are proposed by testing for conditional independencies.

There are other options for relaxing the conditional independence assumption. First,
the finite mixture model introduced in Kontkanen et al. [1996] leaves the class vari-
able as a child node, whereas the common parent for both the discrete or continuous
predictors and the class variable is a hidden variable; see Figure 3(c). This unmea-
sured discrete variable is learned using the EM algorithm and models the interaction
between the predictor variables and between the predictor variables and the class
variable. Thus, the class and the predictor variables are conditionally independent
given the hidden variable. Second, the finite-mixture-augmented naive Bayes [Monti
and Cooper 1999] is a combination of this model and naive Bayes. The standard naive
Bayes is augmented with another naive Bayes with a hidden variable acting as the
parent of the predictor variables; see Figure 3(d). The hidden variable models the de-
pendences among the predictor variables that are not captured by the class variable.
Therefore, it is expected to have fewer states in its domain (i.e., the mixture will have
fewer components) than the finite mixture model.

3.5. Metaclassifiers

We may use many rather than just one naive Bayes. Thus, the recursive Bayesian
classifier [Langley 1993] observes each predicted label (given by the naive Bayes)
separately. Whenever a label is misclassified, a new naive Bayes is induced from those
cases having that predicted label. Otherwise, the process stops. The successive naive
Bayes classifier [Kononenko 1993] repeats for a fixed number of iterations the learning
of a naive Bayes from the whole data with redefined labels: a special label c0 is assigned
to cases correctly classified by the current naive Bayes, whereas their original labels
are retained in the other instances. When classifying a new instance, the naive Bayes
learned last should be applied first. If c0 is predicted, the next latest naive Bayes
must be applied; otherwise, the predicted label will be the answer. Also, any ensemble
method can be used taking naive Bayes as the base classifier. A specific property of the
AdaBoost algorithm based on naive Bayes models is that the final boosted model is
shown to be another naive Bayes [Ridgeway et al. 1998]. Finally, two naive Bayes can
be used as the base classifier in a random oracle classifier [Rodrı́guez and Kuncheva
2007]. This is formed by two naive Bayes models and a random oracle that chooses
one of them in the classification phase. The oracle first divides the predictive variable
space into two disjoint subspaces based on some random decisions. A naive Bayes is
then learned from those instances belonging to each subspace. A possible reason for
the success of (ensembles based on) random oracle classifiers is that the classification
may be easier in each subspace than in the original space.

Multiclass problems are often transformed into a set of binary problems via class bi-
narization techniques. Prominent examples are pairwise classification and one-against-
all binarization. Training all these binary classifiers, each of which is less complex and
has simpler decision boundaries, increases the robustness of the final classifier with
probably less computational burden. The classifier resulting from an ensemble of pair-
wise naive Bayes (ci vs. c j) that combines the predictions of the individual classifiers
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using voting and weighted voting techniques is equivalent to a common naive Bayes.
This does not hold for one-against-all binarization [Sulzmann et al. 2007].

Alternatively, naive Bayes can be hybridized with other classification models. The
NBtree is introduced in Kohavi [1996], combining naive Bayes and decision trees.
NBtree partitions the training data using a tree structure and builds a local naive
Bayes in each leaf with nontested variables. The particular case of a tree with only one
branching variable is reported in Cano et al. [2005], where several methods for choosing
this variable are proposed. Optionally, for each new case to be classified, a (local) naive
Bayes can be induced only from its k closest cases in the dataset. This hybrid between
naive Bayes and the k-nearest neighbor model is called locally weighted naive Bayes
[Frank et al. 2003], since the instances in the neighborhood are weighted, attaching less
weight to instances that are further from the test instance. Finally, the lazy Bayesian
rule learning algorithm [Zheng and Webb 2000] induces a rule for each example, whose
antecedent is a variable-value conjunction while the consequent is a local naive Bayes
with features that are not in the antecedent.

3.6. Special Situations

(a) Homologous sets. We sometimes have to classify a set of cases that belong to the
same unknown class (i.e., a homologous set), for example, a set of leaves taken from
the same unknown plant whose species we intend to identify. The homologous naive
Bayes [Huang and Hsu 2002] takes this knowledge into account, where Equation (8) is
now given by

p(c|x1, . . . , xH,H) ∝ p(c)
H∏

h=1

n∏
i=1

p(xhi|c),

since we wish to classify the homologous set {x1, . . . , xH}, and H denotes that all cases
in this set have the same unknown class label. This way, we ensure that different labels
are not assigned to all these cases.

(b) Multiple instances. In this setting, the learner receives a set of bags that
are labeled positive or negative. Each bag contains many instances. A bag is labeled
positive (negative) if at least one (all) of its instances is (are) positive (negative). We are
looking for a standard classification of individual instances from a collection of labeled
bags, for example, learning a simple description of a person from a series of images
that are positively labeled if they contain the person and negatively labeled otherwise.

The multiple-instance naive Bayes [Murray et al. 2005] starts by assigning negative
labels to all the instances in a negative bag. In a positive bag, all the instances are
assigned a negative label except one, which receives a positive label. Then a naive
Bayes is applied to this dataset. For every positive bag that was misclassified (i.e., all
its instances were classified as negative), the instance with the maximum a posteriori
probability of being positive is relabeled as positive. A second naive Bayes is applied
to this new dataset. This succession of naive Bayes models is halted when a stopping
condition is met.

(c) Cost sensitivity. For general loss functions, a cost-sensitive naive Bayes selects,
for each instance x, the class value minimizing the expected loss [Ibáñez et al. 2014] of
predictions.

We can consider the associated costs of obtaining the missing values in a new case
to be classified (e.g., an X-ray test). In this respect, a test-cost-sensitive naive Bayes
classifier is proposed in Chai et al. [2004], whose aim is to minimize the expected loss
by finding how the unknown test variables should be chosen (sequentially or batch-
wise). A different situation arises when we have a fixed budget and we are concerned
with costs during the learning phase. Here we wish to decide sequentially which tests
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to run on which instance subject to the budget (i.e., budgeted learning [Lizotte et al.
2003]). Naive Bayes’s conditional independence assumption simplifies the sequential
process for test selection.

(d) Instance ranking. In many applications, an accurate ranking of instances is
more desirable than their mere classification, for example, a ranking of candidates in
terms of several aspects in order to award scholarships. Since naive Bayes produces
poor probability estimates [Domingos and Pazzani 1997], an interesting question is to
examine this model’s ranking behavior in terms of a well-known ranking quality mea-
sure, the area under the ROC curve or AUC. When all variables are binary, theoretical
results on its optimality for ranking m-of-n concepts are given in Zhang and Su [2008],
unlike for classification, where naive Bayes cannot learn all m-of-n concepts [Domingos
and Pazzani 1997]. The ideas are extended in Zhang and Sheng [2004] to a weighted
naive Bayes given by Equation (9) with wc = 1, where weights wi are learned using
several heuristics.

(e) Imprecise and inaccurate probabilities. Unobserved or rare events, expert
estimates, missing data, or small sample sizes can possibly generate imprecise and
inaccurate probabilities. Using confidence intervals rather than point estimates for
p(xi|c) and p(c) is an option, as in the interval estimation naive Bayes [Robles et al.
2003]. An evolutionary algorithm can search all the possible (precise) models obtained
by taking values in those confidence intervals for the most accurate model. A more
general way to deal with imprecision in probabilities is by giving a credal set (i.e., the
convex hull of a nonempty and finite family of probability distributions). The naive
credal classifier [Zaffalon 2002] uses the class posterior probability intervals and a
dominance criterion to obtain the output of the classification procedure, which, in this
case, can be a set of labels instead of singletons. The effects of parameter inaccuracies
are investigated in Renooij and van der Gaag [2008] with sensitivity analysis tech-
niques. The effect of varying one parameter on the posterior probability of the class
does not significantly influence the performance of the naive Bayes model. However,
this article does not investigate the effect of varying more than one parameter at a
time.

(f) Text categorization. In this field, documents are represented by a set of random
variables C, X1, . . . , Xn, where C denotes the class of document. Xi has a different
meaning depending on the chosen model [Eyheramendy et al. 2002]. Thus, in the
binary independence model, it represents the presence/absence of a particular term
(word) in the document, and p(xi|c) follows a Bernoulli distribution with parameter pic.
In other models, Xi represents the number of occurrences of particular words in the
document. The multinomial model assumes that the document length and document
class are marginally independent, transforming Equation (8) into

p(c|x) ∝ p(c)

(
n∑

i=1

xi

)
!

n∏
i=1

pxi
ic

xi!
, (10)

where, for each c, pic denotes the probability of occurrence of the ith word and
∑n

i=1 pic =
1. The Poisson naive Bayes model assumes that, in Equation (8), p(xi|c) follows a Poisson
distribution, whereas in the negative binomial naive Bayes model, it is a negative
binomial distribution.

3.7. Discriminative Learning of Parameters

All previous research models the joint probability distribution p(x, c) according to what
is called a generative approach. A discriminative approach [Jebara 2004], however,
directly models the conditional distribution p(c|x).
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Fig. 4. A selective naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x4|c). The variables in the
shaded nodes have not been selected.

When computing p(c|x) from the joint probability distribution given by a naive Bayes
model, it has been shown [Bishop 1995] to be a linear softmax regression. The param-
eters of this discriminative model may be estimated by standard techniques (like the
Newton-Raphson method). Another more direct way of discriminative learning of the
naive Bayes parameters is given in Santafé et al. [2005]: the estimations of parame-
ters maximizing the conditional likelihood are approximated using the TM algorithm
[Edwards and Lauritzen 2001].

4. SELECTIVE NAIVE BAYES

As mentioned in the previous section, the classification performance of naive Bayes
will improve if only relevant, and especially nonredundant, variables are selected to
be in the model. Generally, parsimonious models reduce the cost of data acquisition
and model learning time, are easier to explain and understand, and increase model
applicability, robustness, and performance. Then, a selective naive Bayes (Figure 4) is
stated as a feature subset selection problem, with XF denoting the projection of X onto
the selected feature subset F ⊆ {1, 2, . . . , n}, where Equation (8) is now

p(c|x) ∝ p(c|xF) = p(c)
∏
i∈F

p(xi|c).

The exhaustive search in the space of all possible selective naive Bayes requires the
computation of 2n structures. Although the induction and classification time for a naive
Bayes model is short, the enumerative search for the optimal model can be prohibitive.
This justifies the use of heuristic approaches for this search.

When a filter approach is applied for feature selection, each proposed feature subset
is assessed using a scoring measure based on intrinsic characteristics of the data com-
puted from simple statistics on the empirical distribution, totally ignoring the effects
on classifier performance. A wrapper approach assesses each subset using the classifier
performance (accuracy, AUC, F1 measure, etc.). Finally, an embedded approach selects
features using the information obtained from training a classifier and is thereby em-
bedded (learning and feature selection tasks cannot be separated) in and specific to a
model [Saeys et al. 2007].

4.1. Filter Approaches

When the feature subset is a singleton, we have univariate filter methods. This leads to
a ranking of features from which the selected feature set is chosen once a threshold on
the scoring measure is fixed. The most used scoring measure is the mutual information
of each feature and the class variable I(Xi, C) [Pazzani and Billsus 1997]. Other scoring
measures for a feature, like odds ratio, weight of evidence, and symmetrical uncertainty
coefficient, can be used, some of which are empirically compared in Mladenic and
Grobelnik [1999].

The scoring measures in multivariate filter methods are defined on a feature sub-
set. The scoring measure introduced in Hall [1999], called correlation-based feature
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selection (CFS), promotes the inclusion of variables that are relevant for classification
and, at the same time, avoids including redundant variables. Any kind of heuristic
(forward selection, backward elimination, best first, etc.) can be used to search for this
optimal subset. Another possibility is to simply select those features that the C4.5
algorithm would use in its classification tree, as in Ratanamahatana and Gunopulos
[2003]. A Bayesian criterion for feature selection proposed in Kontkanen et al. [1998]
is based on approximating the supervised marginal likelihood of the class value vector
given the rest of the data. This is closely related to the conditional log-likelihood (see
Section 8.4), turning the learning of the selective naive Bayes into a discriminative
approach.

4.2. Wrapper Approaches

A wrapper approach outputs the feature subset with a higher computational cost than
the filter approach. The key issue is how to search the space of feature subsets of
cardinality 2n. The strategies used range from simple heuristics, like greedy forward
[Langley and Sage 1994] and floating search [Pernkopf and O’Leary 2003], to more
sophisticated population-based heuristics, like genetic algorithms [Liu et al. 2001] and
estimation of distribution algorithms [Inza et al. 2000].

For a large n, a wrapper approach may be impracticable even with the simplest
heuristics. This is why many researchers apply a wrapper strategy over a reduced
filtered subset, thereby adopting a filter-wrapper option [Inza et al. 2004].

4.3. Embedded Approaches

Regularization techniques are a kind of embedded approach that typically sets out to
minimize the negative log-likelihood function of the data given the model plus a penalty
term on the size of the model parameters. An L1 penalty is useful for feature selection
because the size of some parameters is driven to zero. An L1/L2-regularized naive Bayes
for continuous and discrete predictor variables is introduced in Vidaurre et al. [2012].
In addition, a stagewise version of the selective naive Bayes, which can be considered a
regularized version of a naive Bayes, is also presented. Whereas the L1/L2-regularized
naive Bayes model only discards irrelevant predictors, the stagewise version of the
selective naive Bayes can discard both irrelevant and redundant predictors.

4.4. Metaclassifiers

As with naive Bayes (Section 3.5), selective naive Bayes models can be combined in a
metaclassifier. The random naive Bayes [Prinzie and Van den Poel 2007] is a bagged
classifier combining many naive Bayes, each of which has been estimated from a boot-
strap sample with m < n randomly selected features. The naive Bayesian classifier
committee [Zheng 1998] sequentially generates selective naive Bayes models to be
members of the committee. The probability that a feature is used for the next model
increases if the current model performs better than the naive Bayes (with all features).
For each class, the probabilities provided by all committee members are summed up,
taking as the predicted class the one with the largest summed probability.

Bayesian model averaging (see Equation (5)) is an ensemble learning technique.
Applied to all selective naive Bayes models, this gives rise to a unique naive Bayes
model, as shown in Dash and Cooper [2002]. Here Dirichlet priors are assumed for
p(θm|Sm) in Equation (7) and uniform priors for p(Sm) in Equation (6).

5. SEMINAIVE BAYES

Seminaive Bayes models (Figure 5) aim to relax the conditional independence assump-
tion of naive Bayes by introducing new features obtained as the Cartesian product of
two or more original predictor variables. By doing this, the model is able to represent
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Fig. 5. A seminaive Bayes structure from which p(c|x) ∝ p(c)p(x1, x3|c)p(x5|c).

dependencies between original predictor variables. However, these new predictor
variables are still conditionally independent given the class variable. Thus, if Sj ⊆
{1, 2, . . . , n} denotes the indices in the jth feature (original or Cartesian product),
j = 1, . . . , K, Equation (8) is now

p(c|x) ∝ p(c)
K∏

j=1

p(xSj |c),

where Sj ∩ Sl = ∅, for j �= l.
The seminaive Bayes model of Pazzani [1996] starts from an empty structure and

considers the best option between (a) adding a variable not used by the current classi-
fier as conditionally independent of the features (original or Cartesian products) used
in the classifier, and (b) joining a variable not used by the current classifier with each
feature (original or Cartesian products) present in the classifier. This is a greedy search
algorithm, called forward sequential selection and joining, guided wrapper-wise (the
objective function is the classification accuracy), that stops when there is no accuracy
improvement. An alternative backward version starting from a naive Bayes, called
backward sequential elimination and joining, is also proposed by the same author.
Evolutionary computation has been used to guide the search for the best semi-naive
Bayes model in Robles et al. [2003] wrapper-wise with estimation of distribution algo-
rithms. Using a wrapper approach avoids including redundant variables in the model,
since these degrade accuracy, as mentioned in Section 3.

A filter adaptation of the forward sequential selection and joining algorithm is pre-
sented in Blanco et al. [2005]. Options (a) and (b) listed previously are evaluated with a
χ2 test of independence based on the mutual information I(C, Xi) of the class and each
variable not in the current model (for (a)) and on the mutual information of the class
and a joint variable formed by a variable not in the current model and a feature present
in the model (for (b)). We always select the variable with the smallest p-value until
no more new variables can be added to the model (because they do not reject the null
hypothesis of independence). Other filter approaches use alternative scoring metrics
like Bayesian Dirichlet equivalence (BDe) [Heckerman et al. 1995], and leave one out
and log-likelihood ratio test, as in Abellán et al. [2007]. Every time variables form a
new joint variable, this approach [Abellán et al. 2007] tries to merge values of this new
variable to reduce its cardinality and computation time. For imprecise probabilities, a
filter seminaive credal classifier is given in Abellán et al. [2006].

A seminaive Bayes model (or naive Bayes or interval estimation naive Bayes) is the
model built in Robles et al. [2004] at the second level of a metaclassifier following a
stacked generalization scheme, taking as input data the different labels provided by
different classifiers at the first level.

6. ONE-DEPENDENCE BAYESIAN CLASSIFIERS

One-dependence estimators (ODEs) are similar to naive Bayes except that each predic-
tor variable is allowed to depend on at most one other predictor in addition to the class.
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Fig. 6. A TAN structure, whose root node is X3, from which p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3)
p(x5|c, x4).

They can improve naive Bayes accuracy when its conditional independence assumption
is violated.

6.1. Tree-Augmented Naive Bayes

Unlike in seminaive Bayes, which introduces new features to relax the condi-
tional independence assumption of naive Bayes, the tree-augmented network (TAN)
[Friedman et al. 1997] maintains the original predictor variables and models relation-
ships of at most order 1 among the variables. Specifically, a tree-shaped graph models
the predictor subgraph (Figure 6).

Learning a TAN structure first involves constructing an undirected tree. Kruskal’s
algorithm [Kruskal 1956] is used to calculate the maximum weighted spanning tree
(MWST), containing n − 1 edges, where the weight of an edge Xi − Xj is I(Xi, Xj |C),
which is the conditional mutual information of Xi and Xj given C. The undirected tree
is then converted into a directed tree by selecting at random a variable as the root node
and replacing the edges by arcs. This is the tree shaping the predictor subgraph. Finally,
a naive Bayes structure is superimposed to form the TAN structure. The posterior
distribution in Equation (1) is then

p(c|x) ∝ p(c)p(xr|c)
n∏

i=1,i �=r

p(xi|c, xj(i)), (11)

where Xr denotes the root node and {Xj(i)} = Pa(Xi)\C, for any i �= r.
These ideas are adapted from Chow and Liu [1968], where several trees, one for each

value c of the class, were constructed rather than a single tree for the entire domain.
This works like TAN, but uses only the cases from D satisfying C = c to construct each
tree. This collection of trees is a special case of a Bayesian multinet, a terminology
introduced by Geiger and Heckerman [1996] for the first time (see Section 9).

From a theoretical point of view, the procedures in Chow and Liu [1968] (Figure 7(a))
and Friedman et al. [1997] (Figure 7(b)) construct, respectively, the tree-based Bayesian
multinet and the TAN structure that both maximize the likelihood.

Rather than obtaining a spanning tree, the method described in Ruz and Pham
[2009] suggests that Kruskal’s algorithm be stopped whenever a Bayesian criterion
controlling the likelihood of the data and the complexity of the TAN structure holds.
The predictor subgraph will then include e ≤ n−1 arcs. This procedure has been proven
to find an augmented naive Bayes classifier that minimizes the Kullback-Leibler (KL)
divergence between the real joint probability distribution and the approximation given
by the model, across all network structures with e arcs.

Two special situations are when data are incomplete and probabilities are imprecise.
The structural EM algorithm [Friedman 1997] in the space of trees is used in François
and Leray [2006] for the first case. The tree-based credal classifier algorithm that is
able to induce credal Bayesian networks with a TAN structure is proposed in Zaffalon
and Fagiuoli [2003] for the second case.
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Fig. 7. (a) Bayesian multinet as a collection of trees [Chow and Liu 1968]: p(C = 0|x) ∝ p(C =
0)p(x1|C = 0, x2)p(x2|C = 0, x3)p(x3|C = 0)p(x4|C = 0, x3)p(x5|C = 0, x4) and p(C = 1|x) ∝ p(C =
1)p(x1|C = 1)p(x2|C = 1, x3)p(x3|C = 1, x4)p(x4|C = 1, x5)p(x5|C = 1, x1); (b) TAN [Friedman et al.
1997]: p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3)p(x5|c, x4); (c) selective TAN [Blanco et al. 2005]:
p(c|x) ∝ p(c)p(x2|c, x3)p(x3|c)p(x4|c, x3); (d) Bayesian multinet as a collection of forests [Pham et al.
2002]: p(C = 0|x) ∝ p(C = 0)p(x1|C = 0)p(x2|C = 0, x1)p(x3|C = 0, x4)p(x4|C = 0)p(x5|C = 0, x4) and
p(C = 1|x) ∝ p(C = 1)p(x1|C = 1, x3)p(x2|C = 1)p(x3|C = 1)p(x4|C = 1, x2)p(x5|C = 1, x3); (e) FAN [Lucas
2004]: p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c)p(x3|c, x4)p(x4|c)p(x5|c, x4); (f) selective FAN [Ziebart et al. 2007]:
p(c|x) ∝ p(c)p(x2|c, x1)p(x3|c, x4)p(x4|c).

If the weights of the undirected tree based on conditional mutual information are
first filtered with a χ2 test of independence, the resulting structure is the selective TAN
[Blanco et al. 2005] (Figure 7(c)). The predictor subgraph could be a forest rather than
a tree since it may result in many root nodes.

Other authors propose following a wrapper instead of a filter approach. The next
three references, again, lead to forest predictor structures (i.e., a disjoint union of
trees). Thus, initializing the network to a naive Bayes, we can consider adding possible
arcs from Xi to Xj , for Xj without any predictor variable as parent, and selecting the
arc giving the highest accuracy improvement. This hill-climbing search algorithm is
described in Keogh and Pazzani [2002]. The authors also propose another less expensive
search. Finding the best arc to add is broken down into two steps. First, we consider
making each node a superparent in the current classifier (i.e., with arcs directed to all
nodes without a predictor parent). The best superparent yields the highest accuracy.
Second, we choose one of all the superparent’s children (i.e., the favorite child that
most improves accuracy) for the final structure. Also starting from a naive Bayes, a
sequential floating search heuristic is used in Pernkopf and O’Leary [2003]. In Blanco
et al. [2005], by initializing with an empty predictor subgraph, an algorithm greedily
decides whether to add a new predictor or to create an arc between two predictors
already in the model. Unlike the last two wrapper techniques, it actually performs a
feature subset selection.

Forest-augmented naive Bayes. Rather than using a collection of trees as in Chow
and Liu [1968], a collection of forests, one for each value c of the class, is built in Pham
et al. [2002] (Figure 7(d)). The forests are obtained using a maximum weighted span-
ning forest algorithm (e.g., [Fredman and Tarjan 1987]). The forest-augmented naive
Bayes (FAN) was first defined in Lucas [2004], with only one rather than a collection of
forests in the predictor subgraph, augmented with a naive Bayes (Figure 7(e)). There-
fore, the research reported in Lucas [2004] adapts Pham et al. [2002] for FAN models
as Friedman et al. [1997] did with Chow and Liu [1968] for TAN. The selective FAN
introduced in Ziebart et al. [2007] adds the novelty of allowing the predictor variables
to be optionally dependent on the class variable; that is, missing arcs from C to some
Xi can be found (Figure 7(f)). Moreover, the learning approach is based on maximizing
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the likelihood of the data, which is penalized for avoiding the class variable as a
parent.

Metaclassifiers. Bagging-type metaclassifiers use bootstrap samples and thus re-
quire an unstable base classifier to generate diverse results from the different clas-
sifiers. However, the TAN classifier is stable. A randomization is then needed in the
standard TAN algorithm. Thus, the bagging-randomTAN in Ma and Shi [2004] takes
randomTAN as base classifiers in a bagging scheme. The randomTAN randomly selects
the edges between predictor variables whose conditional mutual information surpasses
a fixed threshold. These selective TAN models vote for the final classification. Using
boosting instead means sampling the original data with weights according to the clas-
sification results of each data item to form a new dataset for the next classifier. This
scheme is employed in the boosted augmented naive Bayes (bAN) [Jing et al. 2008].
The base classifier is chosen by first running a trial with a naive Bayes, then greedily
augmenting the current structure at iteration s with the sth edge having the highest
conditional mutual information. We stop when the added edge does not improve the
classification accuracy. Note that the final structure of the base classifier can be a
FAN.

The averaged TAN (ATAN) [Jiang et al. 2012] takes not a random node but each
predictor variable as root node and then builds the corresponding MWST conditioned
to that selection. Finally, the posterior probabilities p(c|x) of ATAN are given by the
average of the n TAN classifier posterior probabilities.

Bayesian model averaging (see Equation (5)) over TAN structures and parameters is
carried out in Cerquides and López de Mántaras [2005b]. The authors define decompos-
able (conjugate) distributions as priors for p(Sm) in Equation (6) and choose Dirichlet
priors for p(θm|Sm) in Equation (7). They compute the exact Bayesian model averaging
over TANs. In addition, they propose an ensemble of the k most probable a posteriori
TAN models.

Discriminative learning. A discriminative learning of a TAN model is proposed in
Feng et al. [2007]. First, the TAN structure is learned as in Friedman et al. [1997] but
replacing the conditional mutual information by the explaining away residual (EAR)
criterion [Bilmes 2000], that is, using I(Xi, Xj |C) − I(Xi, Xj). Maximizing EAR over the
tree is in fact an approximation to maximizing the conditional likelihood. Second, they
define an objective function based mainly on the KL divergence between the empirical
distribution and the distribution given by the previous TAN structure for each value c
of the class to discriminatively learn the parameters.

A different discriminative score, the maximum margin, is proposed in Pernkopf and
Wohlmayr [2013] to search for the structure of TAN with both greedy hill-climbing
and simulated annealing strategies. The multiclass margin of an instance x(i) is d(i) =

p(c(i)|x(i))
maxc �=c(i) p(c|x(i)) . Rather than searching for the structure that maximizes mini=1,...,N d(i),

this is relaxed with a soft margin, finally defining the maximum margin score of a
structure as

∑N
i=1 min{1, λ log d(i)}, where λ > 0 is a scaling parameter and is set by

cross-validation.
As in Section 3.7 with naive Bayes, the TM algorithm [Edwards and Lauritzen

2001] can be adapted for the discriminatively learning parameters in a TAN classifier
[Santafé et al. 2005].

6.2. SuperParent-One-Dependence Estimators

SuperParent-One-Dependence Estimators (SPODEs) are an ODE where all predictors
depend on the same predictor (the superparent) in addition to the class [Keogh and
Pazzani 2002] (Figure 8). Note that this is a particular case of a TAN model. The
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Fig. 8. A SPODE structure, with X3 as superparent, from which p(c|x) ∝ p(c)p(x1|c, x3)p(x2|c, x3)p(x3|c)
p(x4|c, x3)p(x5|c, x3).

posterior distribution in Equation (1) is

p(c|x) ∝ p(c)p(xsp|c)
n∏

i=1,i �=sp

p(xi|c, xsp),

where Xsp denotes the superparent node. This equation is similar to Equation (11),
particularized as Xr = Xj(i) = Xsp, for any i �= sp.

Metaclassifiers. The averaged one-dependence estimator (AODE) [Webb et al. 2005]
averages the predictions of all qualified SPODEs, where “qualified” means that it
includes, for each instance x = (x1, . . . , xsp, . . . , xn), only the SPODEs for which the
probability estimates are accurate, that is, where the training data contain more than
m instances verifying Xsp = xsp. The authors suggest fixing m = 30. The average
prediction is given by

p(c|x) ∝ p(c, x) = 1
|SPm

x |
∑

Xsp∈SPm
x

p(c)p(xsp|c)
n∏

i=1,i �=sp

p(xi|c, xsp), (12)

where SPm
x denotes for each x the set of predictor variables qualified as superparents

and | · | is its cardinal. AODE avoids model selection, thereby decreasing the variance
component of the classifier.

The AODE can be further improved by deleting Xj from the set of predictors whenever
P(xj |xi) = 1 (xi and xj are highly dependent predictor values) when classifying a new
instance x. Note that this technique introduced in Zheng and Webb [2006] is performed
at classification time for each new instance, and this is why it is called lazy elimination.
It is shown that it significantly reduces classification bias and error without undue
computation.

Another improvement is the lazy AODE [Jiang and Zhang 2006], which builds an
AODE for each test instance. The training data is expanded by adding a number of
copies (clones) of each training instance equal to its similarity to the test instance. This
similarity is the number of identical predictor variables.

Since AODE requires all the SPODE models to be stored in main memory, generalized
additive Bayesian network classifiers (GABNs) defined in Li et al. [2007] propose aggre-
gating only some SPODEs (or other simple Bayesian classifiers) within the framework
of generalized additive models. SPODEs with the lowest mutual information scores
I(Xsp, C) are not considered in the aggregation. Thus, this aggregation is given by the
linear combination of n′ ≤ n probabilities psp(x, c) obtained in the SPODE models:

n′∑
sp=1

λspgsp(psp(x, c)),

where gsp is the link function and 0 ≤ λsp ≤ 1 are parameters to be estimated such
that

∑n′
sp=1 λsp = 1. When gsp is the log function, then p(x, c) ∝ ∏n′

sp=1 pλsp
sp (x, c). It is
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Fig. 9. An example of 3-DB structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c, x1)p(x3|c, x1, x2)p(x4|c, x1,

x2, x3)p(x5|c, x1, x3, x4).

easy to design a gradient-based method to optimize its associated quasi-likelihood that
outputs the combining parameters λsp.

Another way to obtain an ensemble of SPODEs in the AODE is proposed in Yang
et al. [2005] as a wrapper approach. The aim is to select SPODEs so as to maximize
classification accuracy. We need a metric (like minimum description length [MDL],
minimum message length [MML], leave-one-out classification accuracy, accuracy from
backward sequential elimination, or forward sequential addition processes) to order
the n possible SPODEs for selection, and a stopping criterion always based on the
accuracy.

The idea of Yang et al. [2007] is to compute the final predictions as a weighted
average in Equation (12), rather than as an average. Four different weighting schemes
are then proposed. Two of them use the posterior probability of each SPODE given
the data as its weight. The first is based on the inversion of Shannon’s law and the
second is within a Bayesian model averaging, where uniform priors over the n SPODE
structures and Dirichlet priors over the corresponding parameters are assumed. The
other two schemes use a MAP estimation to find the most probable a posteriori set of
weights for a SPODE ensemble, assuming a Dirichlet prior over the weights. These
two last schemes differ as to the posterior, generative, or discriminative models (see
Cerquides and López de Mántaras [2005a] for further details).

6.3. Other One-Dependence Estimators

The weighted ODE can be used to approximate the conditional probabilities p(xi|c) in
the naive Bayes. This was proposed by Jiang et al. [2009], resulting in

p(c|x) ∝ p(c, x) ≈ p(c)
n∏

i=1

⎛
⎝ n∑

j=1, j �=i

wi j p(xi|c, xj)

⎞
⎠ , (13)

where wi j ∝ I(Xi, Xj |C). The same authors propose in Jiang et al. [2012] other weighting
schemes, based on performance measures of the different ODE models, like AUC or
classification accuracy.

The hidden one-dependence estimator classifier (HODE) [Flores et al. 2009] avoids
using any SPODE. HODE introduces, via the EM algorithm, a new variable (the hidden
variable H), with the aim of representing the links existing in the n SPODE models.
Node C in the naive Bayes structure is replaced by the Cartesian product of C and
H. Then we have to estimate the probability of xi conditioned by c and h searching for
arg maxc

∑
h p(c, h)

∏n
i=1 p(xi|c, h).

7. k-DEPENDENCE BAYESIAN CLASSIFIERS

The k-dependence Bayesian classifier (k-DB) [Sahami 1996] allows each predictor vari-
able to have a maximum of k parent variables apart from the class variable (Figure 9).
The inclusion order of the predictor variables Xi in the model is given by I(Xi, C),
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starting with the highest. Once Xi enters the model, its parents are selected by choos-
ing those k variables Xj in the model with the highest values of I(Xi, Xj |C). The main
disadvantages of the standard k-DB are the lack of feature selection (all the original
predictor variables are included in the final model) and the need to determine the op-
timal value for k. Also, once k has been fixed, the number of parents of each predictor
variable is inflexible. Obviously, naive Bayes and TAN are particular cases of k-DBs,
with k = 0 and k = 1, respectively.

The posterior distribution in Equation (1) is

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c, xi1 , . . . , xik),

where Xi1 , . . . , Xik are parents of Xi in the structure. Note that the first k variables
entering the model will have fewer than k parents (the first variable entering the model
has no parents, the second variable has one parent, and so on) and the remaining n− k
variables have exactly k parents.

Feature subset selection is performed in Blanco et al. [2005] within a k-DB using filter
and wrapper approaches. In the filter approach, an initial step selects the predictor
variables that pass a χ2 test of independence based on the mutual information I(C, Xi).
Then the standard k-DB algorithm is applied on this reduced subset, considering only
those arcs that pass an analogous independence test based on conditional mutual
information I(Xi, Xj |C). In the wrapper approach, as in the wrapper TAN approach
discussed in Section 6.1, the decision on whether to add a new predictor or to create
an arc between two predictors already in the model is guided by accuracy, provided
that the added arc does not violate the k-DB restrictions. As a consequence, all the
predictors in the structures output by this wrapper approach have at most k parents,
but there is no need to have n − k variables with exactly k parents. In general, graphs
where each node has at most k parents are called k-graphs.

A k-graph as the predictor subgraph is also the result of a kind of evolutionary
computation method described in Xiao et al. [2009], inspired by the so-called group
method of data handling (GMDH) [Ivakhnenko 1970]. The algorithm to build GMDH-
based Bayesian classifiers starts from a set of s ∝ n + 1 models with only one arc,
corresponding to the pair of variables (C included) with the highest mutual information.
Then a new set of

(s
2

)
models is obtained by pairwise joining the previous structures.

The best s models according to BDe or BIC are selected. This process that incrementally
increases the model complexity is repeated until the new best does not improve the
current best model. The number of parents is always bounded by a fixed k.

The k-graphs obtained in Carvalho et al. [2007] are obliged to be consistent with an
order between the predictor variables. This order, σ , is based on a breadth-first search
(BFS) over the TAN predictor subgraph obtained in the usual manner [Friedman et al.
1997]. This means that for any arc Xi → Xj in the k-graph, Xi is visited before Xj in a
total order completing σ . The learning algorithm of BFS-consistent Bayesian network
classifiers can cope with any decomposable score, score expressible as a sum of local
scores that depend only on each node and its parents.

k-graphs are also induced in Pernkopf and Bilmes [2010]. They first establish an
ordering of the predictor variables by using a greedy algorithm. A variable X is cho-
sen whenever it is the most informative about C given the previous variables in the
order, where informativeness is measured by the conditional mutual information,
I(C, X|Xprev). This order can alternatively use classification accuracy as a score as-
suming a fully connected subgraph over C, X, and Xprev. In any case, the best k parents
for each variable among Xprev are selected in a second step by scoring each possibility
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Fig. 10. A Bayesian network-augmented naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x3|c)
p(x4|c, x1, x2, x3)p(x5|c, x3, x4).

with the classification accuracy. Here a naive Bayes assumption is used for X\{Xprev, X},
that is, the variables whose parents have not yet been chosen.

Metaclassifiers. A combination of k-DB models in a bagging fashion is proposed in
Louzada and Ara [2012].

8. GENERAL BAYESIAN NETWORK CLASSIFIERS

This section discusses more general structures. First, relaxing the structure of the
predictor subgraph but maintaining C without any parent defines a Bayesian network-
augmented naive Bayes (Section 8.1). Second, if C is allowed to have parents, its Markov
blanket is the only knowledge needed to predict its behavior (see Equation (3)), and
some classifiers have been designed to search for the Markov blanket (Section 8.2).
Finally, a very general unrestricted Bayesian network that does not consider C as a
special variable can be induced with any existing Bayesian network structure learning
algorithm. The corresponding Markov blanket of C can be used later for classification
purposes (Section 8.3). In all three cases, Equation (1) is

p(c|x) ∝ p(c|pa(c))
n∏

i=1

p(xi|pa(xi)),

where Pa(C) = ∅ in Section 8.1.

8.1. Bayesian Network-Augmented Naive Bayes

Relaxing the fixed number of parents, k, in a k-DB, does not place any limitations
on links among predictor variables (except that they do not form a cycle); that is, a
Bayesian network structure can be the predictor subgraph (Figure 10). This model is
called Bayesian network-augmented naive Bayes (BAN), a term first coined by Friedman
et al. [1997]. The factorization is

p(c|x) ∝ p(c)
n∏

i=1

p(xi|pa(xi)).

The first reference to a learning algorithm for this model is Ezawa and Norton [1996].
First, it ranks the n predictor variables based on I(Xi, C), and then it selects the min-
imum number of predictor variables k verifying

∑k
j=1 I(Xj, C) ≥ tC X

∑n
j=1 I(Xj, C),

where 0 < tC X < 1 is the threshold. Second, I(Xi, Xj |C) is computed for all pairs of
selected variables. The edges corresponding to the highest values are selected un-
til a percentage tXX of the overall conditional mutual information

∑k
i< j I(Xi, Xj |C)

is surpassed. Edge directionality is based on the variable ranking of the first step:
higher-ranked variables point toward lower-ranked variables. Note that this algorithm
resembles the initial proposal for learning a k-DB model [Sahami 1996]; see Section 7.
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Fig. 11. A Markov blanket structure for C from which p(c|x) ∝ p(c|x2)p(x1|c)p(x2)p(x3)p(x4|c, x3).

As explained in Section 2, a Bayesian network can be learned using conditional inde-
pendence tests. This is the strategy adopted in Cheng and Greiner [1999] to obtain the
predictor subgraph. This algorithm has three phases: drafting, thickening, and thin-
ning. First, it computes I(Xi, Xj |C) as a measure of closeness and creates a draft based
on this information. Second, it adds arcs (thickening) when the pairs of nodes cannot be
d-separated, resulting in an independence map (I-map) of the underlying dependency
model. Third, each arc of the I-map is examined using conditional independence tests
and will be removed (thinning) if both nodes of the arc can be d-separated. The final
result is the minimal I-map [Pearl 1988].

Also, a Bayesian network can be learned with a score + search technique. In
Friedman et al. [1997], the structure is learned by minimizing the MDL score with
a greedy forward search. In van Gerven and Lucas [2004], the (conditional) mutual
information score and a forward greedy search is used in the maximum mutual infor-
mation (MMI) algorithm. MMI iteratively selects the arc with the highest (conditional)
mutual information from two sets of candidate arcs: C → Xi-type arcs, chosen with
I(Xi, C), followed, as soon as C has children, by Xj → Xi-type arcs where Xi is a child
of C, chosen with I(Xi, Xj |Pa(Xi)). Note that Pa(Xi) can add new variables at each iter-
ation, and the conditional mutual information should be recomputed accordingly. The
parameter learning uses nonuniform Dirichlet priors to avoid spurious dependences.
Another example of a score + search approach is reported in Pernkopf and O’Leary
[2003], where accuracy is used as the score with a sequential floating search heuristic.

8.2. Bayesian Classifiers Based on Identifying the Markov Blanket of the Class Variable

(a) Detecting conditional independences. Finding the Markov blanket of C
(Figure 11), MBC , can be stated as a feature selection problem, where we start from
the set of all the predictor variables and eliminate a variable at each step (backward
greedy strategy) until we have approximated MBC . A feature is eliminated if it gives
little or no additional information about C beyond what is subsumed by the remaining
features. The method in Koller and Sahami [1996] eliminates feature by feature try-
ing to keep p(C|MB(t)

C ), the conditional probability of C given the current estimation
of the Markov blanket at step t, as close to p(C|X) as possible. Closeness is defined
by the expected KL divergence. The main idea is to note that eliminating a variable
X∗

i , which is conditionally independent of C given MB(t)
C , keeps the expected “distance”

from p(C|MB(t)
C , Xi) to p(C|MB(t)

C ) close to zero. The obtained succession of {MB(t)
C }t,

where MB(t)
C = MB(t−1)

C \{X∗
i }, should converge to the true MBC .

At each step t, the algorithm chooses which variable X∗
i to eliminate, as follows. For

each Xi, we compute for any Xj not yet eliminated, DKL(p(C|Xi = xi, Xj = xj), p(C|Xj =
xj)),∀xi, xj, j �= i, where DKL is the KL divergence. The expected DKL is then computed
as δ(Xi|Xj) = ∑

xi ,xj
p(xi, xj)DKL(p(C|Xi = xi, Xj = xj), p(C|Xj = xj)). We select the

K features (Xi1 , . . . , XiK ) = Mi for which δ(Xi|Xj) is smallest. Mi tries to capture the
variables Xj for which Xi is conditionally independent of C given Xj . The process is
repeated for each Xi, and then we choose the variable X∗

i to be eliminated as the one
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with minimum ∑
mi ,xi

p(mi, xi)DKL(p(C|Mi = mi, Xi = xi), p(C|Mi = mi)).

Finally, the next step t + 1 is started with MB(t+1)
C = MB(t)

C \{X∗
i }. The number of steps

is prespecified and is the number of variables for elimination from the approximate
Markov blanket. Note that, as mentioned in Koller and Sahami [1996], the algorithm
is suboptimal in many ways, particularly due to the very naive approximations that it
uses and the need to specify a good value for K and for the number of variables in the
Markov blanket.

This and the following algorithms are based on the observation that if Xi /∈ MBC
then Ip(C, Xi|MBC) holds; that is, C and Xi are conditionally independent under p given
MBC . This holds if we apply the decomposition property of the conditional independence
[Pearl 1988]

Ip(T , Y ∪ W |Z) ⇒ Ip(T , Y |Z), Ip(T , W |Z) (14)
to Equation (3).

A common assumption in all these algorithms is that D is a sample from a probability
distribution p faithful to a DAG representing a Bayesian network.

The grow-shrink (GS) Markov blanket algorithm [Margaritis and Thrun 2000] starts
from an empty Markov blanket, current Markov blanket CMBC , and adds a variable
Xi as long as the Markov blanket property of C is violated, that is, ¬Ip(C, Xi|CMBC),
until there are no more such variables (growing phase). Many false positives may have
entered the MBC during the growing phase. Thus, the second phase identifies and
removes the variables that are independent of C given the other variables in the MBC
one by one (shrinking phase). In practice, it is possible to reduce the number of tests
in the shrinking phase by heuristically ordering the variables by ascending I(Xi, C)
or the probability of dependence between Xi and C in the growing step. Orientation
rules are then applied to this Markov blanket to get its directed version. GS is the first
correct Markov blanket induction algorithm under the faithfulness assumption; that
is, it returns the true MBC . GS is scalable because it outputs the Markov blanket of
C without learning a Bayesian network for all variables X and C. GS has to condition
on at least as many variables simultaneously as the Markov blanket size, and it is
therefore impractical, because it requires a sample that grows exponentially to this
size if the conditional independence tests are to be reliable. This means that GS is
not data efficient. A randomized version of the GS algorithm with members of the
conditioning set chosen randomly from CMBC is also proposed as a faster and more
reliable variant.

The incremental association Markov blanket (IAMB) algorithm [Tsamardinos and
Aliferis 2003], a modified version of GS, consists of a forward phase followed by a
backward phase. Starting from an empty Markov blanket, it iteratively includes the
variable Xi that has the highest association with C conditioned on CMBC (e.g., condi-
tional mutual information) in the first forward (admission) phase, after checking the
same condition as in GS (¬Ip(C, Xi|CMBC)). We stop when this association is weak.
For each Xi ∈ CMBC , we remove Xi from CMBC if Ip(C, Xi|CMBC\{Xi}) holds to elim-
inate the false positives in the second backward conditioning phase. IAMB scales to
high-dimensional datasets. The authors prove that the Markov blanket corresponds to
the strongly relevant features as defined by Kohavi and John [1997]. Likewise to GS,
IAMB is correct and scalable but data inefficient.

There have been many variants of the IAMB algorithm. The InterIAMBnPC al-
gorithm [Tsamardinos et al. 2003a] interleaves the admission phase with backward
conditioning attempting to keep the size of CMBC as small as possible during all
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the steps. It also substitutes the backward conditioning phase with the PC algorithm
[Spirtes et al. 1993]. Fast-IAMB [Yaramakala and Margaritis 2005] speeds up IAMB,
reducing the number of tests in the admission phase by adding not one but a number
of variables at a time.

The HITON algorithm [Aliferis et al. 2003] consists of three steps. First, HITON-PC
identifies the parents and children of C, the set PC. This is started from an empty set
and includes the variable Xi that has the maximum association with C in the current
PC, CPC. Then, a variable Xj ∈ CPC that meets ¬Ip(C, Xj |S) for some subset S from
CPC is removed from CPC and not considered again for admission. The process is
repeated until no more variables are left. After outputting PC, in the second step,
HITON-PC is again applied to each variable in PC to obtain PCPC, the parents and
children of PC. Thus, the current MBC is CMBC = PC ∪ PCPC. False positives, which
retain just the spouses of C, are removed from CMBC : Xj ∈ CMBC is only retained if
�S ∈ CMBC\PC such that ¬Ip(C, Xj |S). Unlike the GS and IAMB algorithms, HITON
works with conditional (in)dependence statements involving any subset S in CMBC ,
rather than just with CMBC . Finally, in a third step, a greedy backward elimination
approach is applied wrapper-like to the previously obtained Markov blanket. HITON
is scalable and data efficient because the number of instances required to identify the
Markov blanket does not depend on its size but on its topology. However, HITON is
incorrect, as proved by Peña et al. [2007].

The max-min Markov blanket (MMMB) algorithm [Tsamardinos et al. 2003b] is sim-
ilar to HITON. However, it chooses the variable Xi in CPC that exhibits the maximum
association with C conditioned on the subset S∗ of CPC that achieves the minimum
association possible for this variable; that is, S∗ is the subset S of CPC that minimizes
the association of Xi and C given S. This selection method typically admits very few
false positives, whereby all subsets on which we condition in the next steps have a
manageable size. Also, the second step of MMMB introduces a more sophisticated cri-
terion to identify the spouses of C than HITON. MMMB has the same properties as
HITON.

The parents- and children-based Markov boundary (PCMB) algorithm [Peña et al.
2007] is a variant of MMMB that incorporates so-called “symmetry correction.” The
parents–children relationship is symmetric in the sense that Xi belongs to the set of
parents and children of C, and C should also belong to the set of parents and children
of Xi. A breach of this symmetry is a sign of a false-positive member in the Markov
blanket. This leads to the first algorithm that is correct, scalable, and data efficient. This
symmetry correction, based on an AND operator, makes it harder for a true positive
to enter the Markov blanket. This is relaxed in the MBOR algorithm [Rodrigues de
Morais and Aussem 2010], which uses an OR operator and is correct and scalable but
data inefficient. A faster PCMB called breadth-first search of Markov blanket (BFMB)
[Fu and Desmarais 2007] relies on fewer data passes and conditioning on the minimum
set.

The generalized local learning framework for Markov blanket induction algorithms
is proposed in Aliferis et al. [2010]. It can be instantiated in many ways, giving rise
to existing state-of-the-art (HITON and MMPC) algorithms. Both the PC set and the
Markov blanket are seen as the results of searching for direct causes, direct effects,
and direct causes of the direct effects of a variable C.

Table I shows a summary of the main algorithms assuming faithfulness and their
properties.

Few algorithms have tried to relax the faithfulness assumption. A weaker condition
is the composition property, which is the converse of Equation (14), which does not
have the guarantee of the Markov blanket being unique. IAMB is still correct under
this composition property, but because it is a deterministic algorithm, it cannot discover
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Table I. Properties of the Main Algorithms for Markov Blanket Discovery under the Faithfulness Assumption

Correct Scalable Data efficient
GS [Margaritis and Thrun 2000] � �
IAMB [Tsamardinos and Aliferis 2003] � �
HITON [Aliferis et al. 2003] � �
MMMB [Tsamardinos et al. 2003b] � �
PCMB [Peña et al. 2007] � � �
MBOR [Rodrigues de Morais and Aussem 2010] � �

different Markov blankets. This drawback is overcome by KIAMB [Peña et al. 2007], a
stochastic version of IAMB, which is not only correct and scalable like IAMB but also
data efficient unlike IAMB. Rather than conditioning on CMBC when searching for
the highest association in the IAMB admission phase, KIAMB conditions on a random
subset of CMBC , whose size is proportional to K ∈ [0, 1]. IAMB corresponds to KIAMB
with K = 1.

Note that none of these algorithms takes into account arcs between either the chil-
dren of C or Pa(C) and the children of C.

(b) Score + search techniques. The partial Bayesian network (PBN) for the
Markov blanket around C [Madden 2002] involves three steps. In the first step, each
predictor variable is classified as either parent of C, child of C, or unconnected to C.
During the second step, the spouses of C are added from the set of parents and uncon-
nected nodes. The third step determines the dependences between the nodes that are
children of C. The three steps are guided by the K2 score [Cooper and Herskovits 1992],
thereby requiring a node ordering. The inclusion of an arc is decided with the score in
a forward greedy way. A similar idea is presented in dos Santos et al. [2011], where the
K2 algorithm [Cooper and Herskovits 1992] is applied on an ordering starting with C.
This ordering prevents C from having parents resulting in an approximated Markov
blanket of C.

For small sample situations, a bootstrap procedure for determining membership in
the Markov blanket is proposed in Friedman et al. [1999]. They answer the question
of how confident we can be that Xi is in Xj ’s Markov blanket (in our case we would
be interested in Xj = C). From each bootstrap sample, a Bayesian network is learned
using the BDe score with a uniform prior distribution and using a greedy hill-climbing
search. Using the procedure described in Chickering [1995], each Bayesian network
is converted into a partially directed acyclic graph (PDAG). From these PDAGs, the
final PDAG is composed of the arcs and edges whose confidence (measured by their
occurrence frequency in these networks) surpasses a given threshold. A PDAG repre-
sents an equivalence class of Bayesian network structures, where equivalence means
that all networks in the class imply the same set of independence statements. Thus, an
equivalence class includes equivalent networks, with the same skeleton (the undirected
version of the DAG) and the same set of immoralities or v-structures (arcs X → Z and
Y → Z but with nonadjacent X and Y ) [Verma and Pearl 1990]. An arc in a PDAG
denotes that all members in the equivalence class contain that arc; an edge Xi − Xj
in a PDAG indicates that some members contain the arc Xi → Xj and some contain
Xj → Xi.

Rather than using a filter score, the search can be guided in a wrapper-wise using
classification accuracy as the score. An example is given in Sierra and Larrañaga [1998],
where the search is performed by means of a genetic algorithm. Each individual in the
population represents a Markov blanket structure for C.

(c) Hybrid techniques. A two-stage algorithm called tabu search-enhanced Markov
blanket is presented in Bai et al. [2008]. In the first stage, an initial Markov blanket is
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Fig. 12. An unrestricted Bayesian network classifier structure from which p(c|x) ∝ p(c|x2)p(x1|c)p(x2)
p(x3)p(x4|c, x3).

obtained based on conditional independence tests carried out according to a breadth-
first search heuristic. In the second stage, tabu search enhancement, allowing four
kinds of move (arc addition, arc deletion, arc switch, and arc switch with node prun-
ing) is introduced. Each possible move is evaluated taking into account classification
accuracy.

8.3. Unrestricted Bayesian Classifiers

This section includes the general unrestricted Bayesian classifiers where C is not
considered as a special variable in the induction process (Figure 12).

The complexity of algorithms that learn Bayesian networks from data identifying
high-scoring structures in which each node has at most k parents, for all k ≥ 3, has
been shown to be NP hard [Chickering et al. 2004]. It holds whenever the learning
algorithm uses a consistent scoring criterion and is applied to a sufficiently large
dataset. This justifies the use of search heuristics.

The K2-attribute selection (K2-AS) algorithm [Provan and Singh 1995] consists of two
main steps. The node selection phase chooses the set of nodes from which the final net-
work is built. In the network construction phase, the network is built with those nodes.
Nodes are selected incrementally by adding the variable whose inclusion results in the
maximum increase in accuracy (of the resulting network). Using these selected vari-
ables, the final network is built using the CB algorithm [Singh and Valtorta 1995]. This
algorithm uses conditional independence tests to generate a “good” node ordering and
then uses the K2 algorithm on that ordering to induce the Bayesian network. A variant
of K2-AS is Info-AS [Singh and Provan 1996]. They differ only as to node selection be-
ing guided by a conditional information-theoretic metric (conditional information gain,
conditional gain ratio, or complement of conditional distance). A simpler approach is to
use a node ordering for the K2 algorithm given by the ranking of variables yielded with
a score (like information gain or chi-squared score) as in Hruschka and Ebecken [2007].

Instead of searching the Bayesian classifier in the space of DAGs, we can use
a reduced search space that consists of a type of PDAGs, called class-focused re-
stricted PDAGs (C-RPDAGs) [Acid et al. 2005]. C-RPDAGs combine two concepts of
DAG equivalence: independence equivalence and a new concept, classification equiva-
lence. This classification equivalence means producing the same posterior probabilities
for the class. Local search is performed by means of specific operators to move from
one C-RPDAG to another neighboring C-RPDAG. Standard decomposable and score-
equivalent (where equivalent networks have the same score) functions guide the search.

As mentioned at the beginning of this section, from the general Bayesian network
obtained with all these methods, the Markov blanket of C is used for classification.

Metaclassifiers. Following the stacked generalization method, a general Bayesian
network classifier is built in Sierra et al. [2001] from the response given by a set of
classifiers. The algorithm for building this network searches for the structure that
maximizes classification accuracy, guided by a genetic algorithm.

Exact Bayesian model averaging of a particular class of structures, consistent with
a fixed partial ordering of the nodes and with bounded in-degree k, is considered in
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Table II. Generative and Discriminative Approaches for Structure and Parameter Learning
of General Bayesian Network Classifiers

Structure learning
Generative Discriminative

Generative Sections 8.1, 8.2, 8.3 CMDL [Grossman and Domingos
2004],

CBIC [Guo and Greiner 2005],
f̂ CLL [Carvalho et al. 2011],
ACL-MLE [Burge and Lane 2005],
EAR [Narasimhan and Bilmes

2005],
MDL-FS [Drugan and Wiering

2010],
Hist-dist [Sierra et al. 2009]

Parameter
learning

Discriminative LR-Roos [Roos et al. 2005],
LR-Feelders [Feelders and

Ivanovs 2006],
ELR [Greiner and Zhou 2002;

Greiner et al. 2005],

CMDL-ELR [Grossman and
Domingos 2004],

CBIC-ELR [Guo and Greiner
2005],

ACL-Max [Burge and Lane 2005]
DFE [Su et al. 2008],
ECL, ACL, and EBW [Pernkopf

and Wohlmayr 2009],
MCLR [Guo et al. 2005; Pernkopf

et al. 2012]
Generative-
Discriminative

Normalized hybrid [Raina et al.
2004; Fujino et al. 2007],

JoDiG [Xue and Titterington
2010],

HBayes [Kang and Tian 2006],
Bayesian blending [Bishop and

Lasserre 2007]

Dash and Cooper [2004]. The authors prove that there is a single Bayesian network
whose prediction is equivalent to the one obtained by averaging the structures of this
particular class. Since constructing this network is computationally prohibitive, they
provide a tractable approximation whereby approximate model-averaging probability
calculations can be performed in linear time. Rather than starting from a fixed node
order, which is hard to obtain and may affect classification performance, the idea of
Hwang and Zhang [2005] is to extend Bayesian model averaging of general Bayesian
network classifiers by averaging over several distinct node orders. The average is
approximated using the Markov chain Monte Carlo sampling technique. This method
performs well when the dataset is sparse and noisy.

8.4. Discriminative Learning of General Bayesian Network Classifiers

As mentioned in Section 3.7, generative classifiers learn a model of the joint probability
distribution p(x, c) and perform classification using Bayes’s rule to compute the pos-
terior probability of the class variable. The standard approach for learning generative
classifiers is maximum likelihood estimation, possibly augmented with a (Bayesian)
smoothing prior. Discriminative classifiers directly model the posterior probability of
the class variable, which is the distribution used for classification. Therefore, genera-
tive models maximize the log-likelihood or a related function, whereas discriminative
models maximize the conditional log-likelihood. Table II summarizes the content of
this section.

(a) Discriminative learning of structures. The log-likelihood of the data D given
a Bayesian network classifier B, LL(D|B), and the conditional log-likelihood, CLL(D|B),
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are both related as follows:

LL(D|B) =
N∑

i=1

log pB
(
c(i), x(i)

1 , . . . , x(i)
n

)

=
N∑

i=1

log pB
(
c(i)|x(i)

1 , . . . , x(i)
n

) +
N∑

i=1

log pB
(
x(i)

1 , . . . , x(i)
n

)

= CLL(D|B) +
N∑

i=1

log pB
(
x(i)

1 , . . . , x(i)
n

)
. (15)

It is the first addend that matters in classification, and a better approach would be to
use CLL(D|B) alone as the objective function. Unfortunately, the CLL function does not
decompose into a separate term for each variable, and there is no known closed-form
solution for the optimal parameter estimates.

The CLL function is used in Grossman and Domingos [2004] to learn the structure
of the network, where the maximum number of parents per variable is bounded, while
parameters are approximated by their maximum likelihood estimates (MLEs), which
is extremely fast. Also, they propose using a modified CLL, which penalizes complex
structures via the number of parameters in the network, that is, a conditional MDL
score (CMDL). A hill-climbing algorithm is used to maximize CLL and CMDL, starting
from an empty network and at each step considering the addition, deletion, or reversion
of an arc. Additionally, this discriminative learning of structures is extended to a
discriminative learning of parameters by computing their estimates via the extended
logistic regression (ELR) algorithm [Greiner and Zhou 2002], although the results were
not much better.

Another way of modifying CLL is to penalize by the number of parameters in C ’s
Markov blanket. This results in the conditional BIC score (CBIC) defined in Guo and
Greiner [2005] as an analog of the generative BIC criterion. This CBIC criterion can
be accompanied by generative (MLE) or discriminative (ELR) parameter learning.

Rather than working with CLL, other authors propose criteria similar to CLL but
with better computational properties. The factorized conditional log-likelihood ( f̂ CLL)
is introduced in Carvalho et al. [2011] with the properties of being decomposable and
score equivalent for BAN classifiers. Note that the addends in CLL (see Equation (15))
can be expressed, for a binary C (c vs. ¬c), as a difference of logarithms:

log pB
(
c(i)|x(i)

1 , . . . , x(i)
n

)) = log p
(
c(i), x(i)

1 , . . . , x(i)
n

)
− log

(
p
(
c(i), x(i)

1 , . . . , x(i)
n

) + p
(
c̄(i), x(i)

1 , . . . , x(i)
n

))
,

the second one being the log of a sum of terms, whereby it is nondecomposable. Then
these addends are approximated by a linear function of the log of these terms. When
substituted in the f̂ CLL score, this can be rewritten in terms of conditional mutual
information and interaction information [McGill 1954]. For parameter learning, the
authors use MLEs.

Another simpler approximation to CLL is the approximate conditional likelihood
(ACL) [Burge and Lane 2005], where the sum mentioned earlier is replaced by a
single term, that is, by log p(c̄(i), x(i)

1 , . . . , x(i)
n ), to avoid the nondecomposability draw-

back. This formulation can be applied even for complex classifiers like Bayesian multi-
nets (see Section 9). This results in a decomposable (although unbounded) score. The
(discriminatively learned) parameters maximizing this score (ACL-Max) have a closed
form. Alternatively, MLEs can be used for parameter learning (ACL-MLE).
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The EAR measure is the criterion maximized in Narasimhan and Bilmes [2005]
using a greedy forward algorithm with an MLE of parameters.

The idea of Drugan and Wiering [2010] is to use both the Bayesian network clas-
sifier that factorizes the joint distribution p(c, x) and an auxiliary Bayesian network
that factorizes p(x). Since the quotient between these two distributions is p(c|x), the
conditional log-likelihood, CLL, of the classifier is then approximated by the differ-
ence between the unconditional log-likelihood of the classifier and the log-likelihood of
the auxiliary network; see the first three sums in Equation (15). Both structures are
learned using a generative method. A new score, called minimum description length for
feature selection (MDL-FS), is introduced to guide the search for good structures, also
allowing feature selection. MDL-FS, like MDL, penalizes the complexity of the classi-
fier and, rather than including the log-likelihood, it includes the so-called conditional
auxiliary log-likelihood, the difference between the log-likelihood of the data given the
Bayesian network classifier and that given the auxiliary Bayesian network over X. In
practical applications, they propose to set a specific family of auxiliary networks before-
hand. Depending on their complexity, the MDL-FS can serve to identify and remove
redundant variables at various levels. Thus, with trees as auxiliary networks, learning
a selective TAN classifier starts with all predictor variables in both types of structures.
The corresponding MDL-FS is computed and guides the next variable to be deleted
following a backward elimination strategy. New structures are learned from the new
set of variables. MLE is used for parameter learning.

A score that takes into account the posterior distribution of the class variable during
the structure learning process should in principle lead to models with higher classi-
fication capabilities. The score introduced in Sierra et al. [2009] (Hist-dist) uses, for
each case, the distance between the predicted posterior distribution of the class and
an approximation of the real (degenerated) posterior distribution. This is defined by
giving an α value (close to 1) to the real class of the case and dividing the remain-
ing 1 − α evenly across the other class values. The final score to be minimized is
the mean of those distances for all cases. Different distance measures are proposed
(Euclidean, Kolmogorov-Smirnov, chi-square, etc.). The wrapper approach is based
on the greedy Algorithm B [Buntine 1991], which searches for the best unrestricted
Bayesian classifier.

(b) Discriminative learning of parameters. Logistic regression can be seen as
discriminatively trained naive Bayes classifiers [Agresti 1990]. See also Ng and Jordan
[2001] for an empirical and theoretical comparison of both models, where for small
sample sizes the generative naive Bayes can outperform the discriminatively trained
naive Bayes. In general, discriminatively trained classifiers are usually more accurate
when N is high.

For a fixed Bayesian network structure, finding the values θi jk for the conditional
probability tables that maximize the CLL is NP hard for a given incomplete dataset
[Greiner et al. 2005], something more readily solved in generative models maximizing
the likelihood, which have straightforward EM methods for handling missing data.

Given complete data, the complexity of maximizing the CLL for arbitrary structures
is unknown. However, the CLL does not have local maxima for structures satisfying
a certain graph-theoretic property, and the global maximum can be found by mapping
the corresponding optimization problem to an equivalent logistic regression model
[Roos et al. 2005]. This model has fewer parameters than its Bayesian network clas-
sifier counterpart and is known to have a strictly concave log-likelihood function. The
graph-theoretic property is that the structure of the Bayesian network is such that its
canonical version is perfect; that is, all nodes having a common child are connected.
The canonical version is constructed by first restricting the original structure to C ’s
Markov blanket and then adding as many arcs as needed to make the parents of C
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fully connected. All Bayesian networks with the same canonical version are equiva-
lent in terms of p(c|x1, . . . , xn). Naive Bayes and TAN models comply with this prop-
erty. The conditional distributions p(c|x1, . . . , xn) in the CLL expression are reparam-
eterized using a logistic regression model where the covariates are derived from the
original variables. There are two types of covariates: (a) indicator variables for each
configuration pa(c) and (b) indicator variables for each configuration (xi, pa\C(xi)),
where Xi denotes any children of C, and Pa\C(Xi) = Pa(Xi)\{C}. The original param-
eters, θi jk, are recovered via the exponential function of the logistic regression param-
eters. We call this approach LR-Roos, an acronym of logistic regression for perfect
structures.

A different mapping for perfect graphs to an equivalent logistic regression model
with fewer parameters than LR-Roos is proposed in Feelders and Ivanovs [2006]. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (the best for simple structures) and
conjugate gradient are used to optimize the CLL. We call this approach LR-Feelders.

The aforementioned ELR algorithm [Greiner et al. 2005] is the most popular approxi-
mation procedure for maximizing the CLL for a given Bayesian network structure. ELR
applies to arbitrary Bayesian network structures and works effectively even with an
incomplete dataset. It is often superior to classifiers produced by standard generative
algorithms, especially in common situations where the given Bayesian network struc-
ture is incorrect; that is, it is not an I-map of the underlying distribution. This occurs
when the learning algorithm is conservative about adding new arcs to avoid overfitting
the data or because the algorithm only considers a restricted class of structures that is
not guaranteed to contain the correct structure. For each conditional probability table
entry, ELR is a conjugate gradient-ascent algorithm that tries to maximize CLL with
respect to a softmax function of θi jk, that is, θi jk = eβi jk∑

k′ eβi jk′ .

A different idea is to take the effect of estimating θi jk on classification into account
by adapting the appropriate frequencies from data. θi jk is initialized as the MLE in
iteration t = 0. Going through all the training data, the update at iteration t+1 consists
of summing, for each instance x, the difference between the true posterior probability
p(c|x) (assumed to be 1 when x has label c in the dataset) and the predicted probability
generated by the current parameters pt(c|x), that is, θ

(t+1)
i jk = θ

(t)
i jk + p(c|x) − pt(c|x). This

approach was proposed in Su et al. [2008] and named discriminative frequency estimate
(DFE). DFE can be seen as a more sophisticated approach than the one proposed in
Gama [1999].

Three discriminative parameter learning algorithms are introduced in Pernkopf and
Wohlmayr [2009] for naive Bayes, TAN, or 2-DB structures. First, the exact CLL decom-
position (ECL) algorithm tries to optimize the CLL function. Second, the approximate
CLL decomposition (ACL) algorithm aims at optimizing a lower-bound surrogate of
the CLL function. Third, the extended Baum-Welch (EBW) algorithm is used for these
three structures. All the algorithms initialize the parameters to the MLEs.

A different criterion is optimized in Guo et al. [2005]. The discriminative objective is
to maximize the minimum conditional likelihood ratio (MCLR):

MCLR(θ) = min
i=1,...,N

min
c �=c(i)

p(c(i)|x(i), θ )
p(c|x(i), θ )

.

When Bayesian networks are formulated as a form of exponential model,
log MCLR(θ) resembles a large margin criterion of support vector machines, but sub-
ject to normalization constraints over each variable (probabilities summing 1). These
restrictions are nonlinear, and this yields a difficult optimization problem. The au-
thors solve the problem with convex relaxation for a wide range of graph topologies.
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A conjugate gradient algorithm is instead proposed in Pernkopf et al. [2012] and is
advantageous in terms of computational requirements.

(c) Generative-discriminative learning. Some researchers try to take advantage
of the best of both approaches through hybrid parameter learning (partly generative
and partly discriminative) and generative modeling.

Thus, in the context of text classification, the multinomial naive Bayes model of
Raina et al. [2004] divides the set of predictors into R regions. For the sake of clarity,
we will focus on R = 2, and therefore X = (X1, X2). Equation (8) is modified as

p(c|x) ∝ p(c)p(x1|c)
w1
n1 p(x2|c)

w2
n2 ,

where (w1, w2) controls the relative weighting between the regions, and n1, n2 are their
lengths. For instance, in emails consisting of two regions, subject and body, n2 � n1
since bodies are usually much longer than subjects, and the usual naive Bayes equation
will be mostly dominated by the message body (with many more factors). This model
tries instead to convey that different predictors are of different importance (words in
the subject might be more important) and counteracts the independence assumption of
naive Bayes with normalization factors n1, n2. The expression of p(c|x) is then rewritten
in a logistic regression form, where its linear combination contains parameters, gen-
eratively learned functions of p(xi|c). Parameters wi are discriminatively learned (by
maximizing the CLL), i = 1, 2. They call this model the normalized hybrid algorithm,
designed for a binary class. A multiclass extension is reported in Fujino et al. [2007].

The joint discriminative-generative (JoDiG) approach of Xue and Titterington [2010]
partitions X into two subvectors: X = (XD, XG). A generative approach is applied to XG
to estimate p(xG|c) and a discriminative approach is applied to XD to estimate p(c|xD).
A data-generating process is always assumed in generative but never in discriminative
approaches. In general, when this process is well specified, the generative approach
performs better than the discriminative approach. This is the idea for finding the
partition of X: XD will contain the variables that violate the assumption underlying
the data-generating process (as given by a statistical test). Finally, since XG and XD
are assumed to be (block-wise) conditionally independent given C, then p(xD, xG, c) =
p(xD)p(c|xD)p(xG|c), and both approaches are probabilistically combined to classify a
new instance via the MAP criterion

arg max
c

p(c|xD)p(xG|c).

The hybrid generative/discriminative Bayesian (HBayes) classifier [Kang and Tian
2006] uses a similar idea. The difference lies in how the partition is chosen, for which
purpose a wrapper strategy is adopted in this case: starting from XG = X, the variable
producing the greatest improvement in classification performance is greedily moved
from XG to XD. Ridge logistic regression is used to estimate p(c|xD), whereas naive
Bayes or TAN is used to estimate p(xG|c). The Bayesian network structure is thereby
restricted (Figure 13) to reduce the computational effort.

A Bayesian approach for the combination of generative and discriminative learning
of classifiers is found in Bishop and Lasserre [2007]. This is intended to find the appro-
priate tradeoff between generative and discriminative extremes. Generative and dis-
criminative models correspond to specific choices for the priors over parameters. Since
generative approaches can model unlabelled instances while discriminative approaches
do not, this Bayesian blending can also be applied to semisupervised classification.

9. BAYESIAN MULTINETS

Bayesian networks are unable to encode asymmetric independence assertions in their
topology. This refers to conditional independence relationships only held for some but
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Fig. 13. A HBayes classifier structure from which p(c|x) ∝ p(c|xD)p(xG|c).

not all the values of the variables involved. Bayesian multinets [Geiger and Heckerman
1996] offer a solution. They consist of several (local) Bayesian networks associated
with a subset of a partition of the domain of a variable H, called the hypothesis or
distinguished variable; that is, each local network represents a joint probability of all
(but H) variables conditioned on a subset of H values. As a result of this conditioning,
asymmetric independence assertions are represented in each local network topology.
Consequently, structures are expected to be simpler, with computational and memory
requirement savings. Whereas the typical setting is when H is a root node, other
situations are addressed in Geiger and Heckerman [1996]: H is a nonroot node, and
there is more than one variable representing hypotheses.

For classification problems, the distinguished variable is naturally the class variable
C. All subsets of the C domain partition are commonly singletons. Thus, conditioned
on each c, the predictors can form different local networks with different structures.
Therefore, the relations among variables do not have to be the same for all c. Equa-
tion (1) is, for Bayesian multinets, given by

p(c|x) ∝ p(c)
n∏

i=1

p(xi|pac(xi)),

where Pac(Xi) is the parent set of Xi in the local Bayesian network associated with
C = c; see Figure 1. Therefore, a Bayesian multinet is defined via its local Bayesian
networks and the prior distribution on C.

Particular cases of multinets were explained in Section 6.1: networks reported in
Chow and Liu [1968] and Pham et al. [2002] with trees and forests, respectively, as local
Bayesian networks (illustrated in Figure 7(a) and (d)). Trees are also used in Kłopotek
[2005], although the learning is based on a new algorithm designed for very large
datasets rather than Kruskal’s algorithm. The trees in Huang et al. [2003] are learned
by optimizing a function that includes a penalty term representing the divergence
between the different joint distributions defined at each local network. Finally, the
trees in Gurwicz and Lerner [2006] are learned from all instances, instead of learning
the local structures from only those instances with C = c. The process is guided by
a score that simultaneously detects class patterns and rejects patterns of the other
classes. Thus, for the local network for C = c, the score of x with true class value c is
higher when p(C = c|x) ≥ p(C = c′|x),∀c′ �= c and the score of x with true class value
c′ �= c is higher when p(C = c′|x) ≥ p(C = c|x). The search is based on the hill-climbing
algorithm described in Keogh and Pazzani [2002] (see Section 6.1).

The local structures are general unrestricted Bayesian networks in Friedman et al.
[1997] and Hussein and Santos [2004]. However, the approach taken in Hussein and
Santos [2004] is different. The data are not partitioned according to C = c. The training
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Table III. Mean Accuracies (%) ± Standard Deviations of the 12 Bayesian Network Classifiers

All variables # Filter # Wrapper #
Naive Bayes 71.64 ± 9.78 9 71.98 ± 11.59 5 77.20 ± 8.01 3
Tree-augmented naive Bayes 77.57 ± 8.08 9 76.50 ± 9.10 5 77.55 ± 9.35 5
Bayesian network-augmented naive Bayes 74.78 ± 8.62 9 76.83 ± 10.54 5 77.22 ± 10.14 6
Markov blanket-based Bayesian classifiers 75.16 ± 7.62 9 73.74 ± 7.67 5 76.52 ± 9.00 6
“#” means the number of variables included in the model.

data are first partitioned into clusters from which a set of rules characterizing their
cases are derived. Then a local Bayesian network is learned from the cases satisfying
the rules. This is why the resulting models are called case-based Bayesian network clas-
sifiers, capturing case-dependent relationships, a generalization of hypothesis-specific
relationships.

10. ILLUSTRATIVE EXAMPLE

This section reports the classification accuracy results of 12 different Bayesian net-
work classifiers, according to four increasing model complexities (naive Bayes, tree-
augmented naive Bayes, Bayesian network-augmented naive Bayes, and Markov
blanket-based Bayesian classifiers) including all predictor variables and using two
feature subset selection methods (a filter and a wrapper approach). The filter approach
is univariate and based on information gain, whereas the wrapper search uses a greedy
forward strategy in all models but the Markov blanked-based classifier, which employs
a genetic algorithm.

The classifiers were learned from the Ljubljana breast cancer dataset [Michalski
et al. 1986] with 286 labeled instances of real patients. The classification problem was
to predict breast cancer recurrence (yes or no) in the 5 years after surgery. Recurrence
was observed in 85 out of the 286 patients. The nine predictor variables, measured at
diagnosis, are:

—age: patient age in years, discretized into three equal-width intervals
—menopause: non-, pre-, or postmenopausal patient
—deg-malig: degree of tumor malignancy (histological grade scored 1–3)
—node-caps: whether or not the tumor has perforated through the lymph node capsule
—inv-nodes: the number (range 0–26) of involved axillary lymph nodes that contain

metastatic breast cancer visible on histological examination, discretized into three
intervals

—irradiation: whether or not the patient has been irradiated
—breast: left- or right-sided breast cancer
—breast-quad: location of the tumor according to the four breast quadrants (upper-

outer, lower-outer, upper-inner, and lower-inner) plus the nipple as a central point
—size: maximum excised tumor diameter (in mm), discretized into three equal-width

intervals

Table III shows the classification accuracy (%) and standard deviations of all model
combinations. They have been estimated with 10-fold stratified cross-validation using
WEKA [Hall et al. 2009] software.

Naive Bayes and the filter-based selective naive Bayes (Figure14(a)) are the worst-
performing algorithms (≈71% accuracy). However, the accuracy of selective naive Bayes
increases considerably (up to 77%) using a wrapper-wise-guided search, with only
three predictor variables. WEKA was parameterized to run similar algorithms to those
proposed in the literature and reviewed within this article: Maron and Kuhns [1960]
for naive Bayes, Pazzani and Billsus [1997] for filter-based selective naive Bayes, and
Langley and Sage [1994] for wrapper-based selective naive Bayes.
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Fig. 14. Structures of (a) selective naive Bayes output using a filter approach, (b) TAN, (c) wrapper BAN,
and (d) Markov blanket-based Bayesian classifier.

TAN and its selective versions (filter and wrapper) are the best-performing models
on average. The TAN spanning tree (Figure 14(b)) is rooted at node age. It captures ex-
pected relationships, as specified by the arcs age→menopause, deg-malig→node-caps,
and node-caps→size. Age and menopause are obviously related. There is a greater
likelihood of the tumor penetrating through the lymph node capsule and invading the
surrounding tissues at worse tumor grades. Tumor grade also conditions tumor size.
The WEKA algorithms for these TAN models were similar to the learning algorithms
described in Friedman et al. [1997] for TAN and in Blanco et al. [2005] for both selective
TAN models.

BAN models (Table III, row 3) were learned by setting the maximum number of
parents to 3. Selective BAN models behave similarly to their TAN counterparts. With-
out feature selection, BAN accuracy decreases. The best BAN, which is in fact a FAN
(Figure14(c)), is the wrapper version. This model did not select age, menopause, and
breast-quad. Its structure shares two arcs with the TAN classifier (Figure 14(b)), node-
caps→size and inv-nodes→irradiation. TAN also identified arcs inv-nodes→node-
caps and node-caps→deg-malig, albeit reversed. The most similar algorithms to those
run in WEKA are Friedman et al. [1997] for BAN, Ezawa and Norton [1996] for the
filter-based BAN, and Pernkopf and O’Leary [2003] for the wrapper-based BAN.

Finally, despite the flexibility of the Markov blanket-based classifier structures, they
do not exhibit very high accuracies. Without variable selection (Figure14(d)), C has
only one parent, inv-nodes. This model has many relationships in common with TAN
(Figure14(b)). However, three nodes (deg-malig, node-caps, and size) have three par-
ents, requiring bigger conditional probability tables. Also, there is a new arc, deg-
malig→size (justified by following the aforementioned reasoning), and a missing arc,
C→menopause. The algorithm reported in Madden [2002] is close to the WEKA imple-
mentations of Markov blanket-based classifiers (all variables and filter), whereas we
used WEKA’s genetic algorithm-guided search for the wrapper version as reported in
Sierra and Larrañaga [1998].

In summary, the wrapper versions are the models that work best here. All of them
include at least the inv-nodes, deg-malig, and breast variables. Filter approaches
seem to improve the all-variables strategy. With only nine variables, carefully chosen
by physicians to be relevant for the problem, the advantages of feature selection are
limited. The best model is the wrapper-based TAN. Thus, increasing model complexity
does not necessarily imply a better model. This is why it is always worthwhile to explore
the whole hierarchy of Bayesian classifiers.
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11. DISCUSSION

This survey has shown the power of Bayesian network classifiers in terms of model
expressiveness and algorithm efficiency/effectiveness for learning models from data
and for use in classification. Unlike other pattern recognition classifiers, Bayesian
network classifiers can be clearly organized hierarchically from the simplest naive
Bayes to the most complex Bayesian multinet.

The Bayesian network classifiers are hierarchized in the rows of Table IV, whereas
the columns give an example of their graphical structure, the associated seminal paper,
and the first references proposing filter/wrapper approaches for feature subset selection
and metaclassifiers.

We did not set out to survey the behavior of these classifiers in big real-world prob-
lems. As the no-free-lunch theorem states, this depends on the dataset. However, some
relevant papers, already cited within this survey [Friedman et al. 1997; Cheng and
Greiner 1999, 2001; Pernkopf 2005; Madden 2009], do include empirical comparisons
of the algorithms for learning naive Bayes, TAN, BAN, unrestricted Bayesian classi-
fiers, and Bayesian multinets. They all use datasets from the UCI repository [Bache
and Lichman 2013]. Also, both discriminative and generative parameter learning on
both discriminatively and generatively structured models are compared in Pernkopf
and Bilmes [2005]. The general findings are that more complex structures perform bet-
ter whenever the sample size is big enough to guarantee reliable probability estimates.
Also, smoothing parameter estimation can significantly improve the classification rate.
Discriminative parameter learning produces on average a better classifier than maxi-
mum likelihood parameter learning. In most datasets, structures learned with wrapper
approaches yield the most accurate classifiers.

Since the focus of this article is on Bayesian network classifiers based on Bayesian
networks, other models—models with cycles, like dependency networks, and undi-
rected models, like Markov networks—are beyond its scope. We have not considered
data-streaming situations or specific problems like multilabel or semisupervised clas-
sification or classification with probabilistic labels either. Although the survey has
focused on discrete data, research on continuous and mixed data is on-going.

Research on discrete Bayesian network classifiers may in the future target more
theoretical studies on determining the decision boundary for classifier types apart from
the naive Bayes reviewed here. Also, the gaps in Table IV suggest that there is still room
for research on metaclassifiers and feature subset selection. Metaclassifiers might also
be formed by hybridizing Bayesian classifiers with different types of classifiers other
than the decision trees and k-nearest neighbors mentioned in this article. Finally,
we have seen how naive Bayes can tackle complex classification situations (e.g., with
homologous sets, multiple instances, cost-sensitive learning, instance ranking, and
imprecise probabilities). We expect to see other models dealing with these and more
challenging settings soon.
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M. J. Flores, J. A. Gámez, A. M. Martı́nez, and J. M. Puerta. 2009. HODE: Hidden one-dependence estimator.
In Proceedings of the 10th European Conference in Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU-2009). Lecture Notes in Artificial Intelligence, Vol. 5590. Springer,
481–492.

O. François and P. Leray. 2006. Learning the tree augmented naive Bayes classifier from incomplete datasets.
In Proceedings of the 3rd European Workshop on Probabilistic Graphical Models (PGM-2006). 91–98.

E. Frank, M. Hall, and B. Pfahringer. 2003. Locally weighted naive Bayes. In Proceedings of the 19th
Conference in Uncertainty in Artificial Intelligence (UAI-2003). Morgan Kaufmann, 249–256.

M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization
algorithms. Journal ACM 34, 3 (1987), 596–615.

N. Friedman. 1997. Learning belief networks in the presence of missing values and hidden variables. In
Proceedings of the 14th International Conference on Machine Learning (ICML-1997). Morgan Kaufmann,
125–133.

N. Friedman, D. Geiger, and M. Goldszmidt. 1997. Bayesian network classifiers. Machine Learning 29 (1997),
131–163.

N. Friedman, M. Goldszmidt, and A. Wyner. 1999. Data analysis with Bayesian networks: A bootstrap
approach. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI-1999).
Morgan Kaufmann, 196–205.

S. Fu and M. Desmarais. 2007. Local learning algorithm for Markov blanket discovery. In Proceedings of the
20th Australian Joint Conference on Artificial Intelligence (AI-2007). Lecture Notes in Computer Science,
Vol. 4830. Springer, 68–79.

A. Fujino, N. Ueda, and K. Saito. 2007. A hybrid generative/discriminative approach to text classification
with additional information. Information Processing and Management 43, 2 (2007), 379–392.

J. Gama. 1999. Iterative naı̈ve Bayes. Theoretical Computer Science 292, 2 (1999), 417–430.
D. Geiger and D. Heckerman. 1996. Knowledge representation and inference in similarity networks and

Bayesian multinets. Artificial Intelligence 82 (1996), 45–74.
M. Goldszmidt. 2010. Bayesian network classifiers. In Wiley Encyclopedia of Operations Research and Man-

agement Science. John Wiley & Sons, 1–10.
I. J. Good. 1965. The Estimation of Probabilities: An Essay on Modern Bayesian Methods. The MIT Press.

ACM Computing Surveys, Vol. 47, No. 1, Article 5, Publication date: April 2014.



5:38 C. Bielza and P. Larrañaga

R. Greiner, X. Su, B. Shen, and W. Zhou. 2005. Structural extension to logistic regression: Discriminative
parameter learning of belief net classifiers. Machine Learning 59, 3 (2005), 297–322.

R. Greiner and W. Zhou. 2002. Structural extension to logistic regression: Discriminative parameter learning
of belief net classifiers. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-
2002). AAAI Press/MIT Press, 167–173.

D. Grossman and P. Domingos. 2004. Learning Bayesian network classifiers by maximizing conditional
likelihood. In Proceedings of the 21st International Conference on Machine Learning (ICML-2004). 361–
368.

Y. Guo and R. Greiner. 2005. Discriminative model selection for belief net structures. In Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI-2005). AAAI Press / The MIT Press, 770–
776.

Y. Guo, D. F. Wilkinson, and D. Schuurmans. 2005. Maximum margin Bayesian networks. In Proceedings of
the 21st Conference in Uncertainty in Artificial Intelligence (UAI-2005). AUAI Press, 233–242.

Y. Gurwicz and B. Lerner. 2006. Bayesian class-matched multinet classifier. In Proceedings of the 2006 Joint
IAPR international Conference on Structural, Syntactic, and Statistical Pattern Recognition (SSPR-
2006/SPR-2006). Lecture Notes in Computer Science, Vol. 4109. Springer, 145–153.

M. A. Hall. 1999. Correlation-Based Feature Selection for Machine Learning. Ph.D. Dissertation. Department
of Computer Science, University of Waikato.

M. Hall. 2007. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems
20, 2 (2007), 120–126.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA data mining
software: An update. SIGKDD Explorations 11, 1 (2009), 10–18.

D. J. Hand and K. Yu. 2001. Idiot’s Bayes - not so stupid after all? International Statistical Review 69, 3
(2001), 385–398.

D. Heckerman, D. Geiger, and D. Chickering. 1995. Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20 (1995), 197–243.

J. Hilden and B. Bjerregaard. 1976. Computer-aided diagnosis and the atypical case. In Decision Making
and Medical Care. Can Information Science Help? 365–378.

E. R. Hruschka and N. F. F. Ebecken. 2007. Towards efficient variables ordering for Bayesian network
classifiers. Data and Knowledge Engineering 63 (2007), 258–269.

H. Huang and C. Hsu. 2002. Bayesian classification for data from the same unknown class. IEEE Transactions
on Systems, Man, and Cybernetics Part B 32, 2 (2002), 137–145.

K. Huang, I. King, and M. R. Lyu. 2003. Discriminative training of Bayesian Chow-Liu multinet classifiers.
In Proceedings of the International Joint Conference on Neural Networks (IJCNN-2003), Vol. 1. 484–
488.

A. Hussein and E. Santos. 2004. Exploring case-based Bayesian networks and Bayesian multi-nets for
classification. In Proceedings of the 17th Conference of the Canadian Society for Computational Studies
of Intelligence (CSCSI-2004). Lecture Notes in Computer Science, Vol. 3060. Springer, 485–492.

K.-B. Hwang and B. T. Zhang. 2005. Bayesian model averaging of Bayesian network classifiers over multiple
node-orders: Application to sparse datasets. IEEE Transactions on Systems, Man, and Cybernetics. Part
B: Cybernetics 35, 6 (2005), 1302–1310.
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J.-N. Sulzmann, J. Fürnkranz, and E. Hüllermeier. 2007. On pairwise naive Bayes classifiers. In Proceedings
of the 18th European Conference on Machine Learning (ECML-2007). Lecture Notes in Computer Science,
Vol. 4701. Springer, 371–381.

D. M. Titterington, G. D. Murray, L. S. Spiegelhalter, A. M. Skene, J. D. F. Habbema, and G. J. Gelpke. 1981.
Comparison of discrimination techniques applied to a complex data set of head injured patients (with
discussion). Journal of the Royal Statistical Society Series A 144, 2 (1981), 145–175.

I. Tsamardinos and C. F. Aliferis. 2003. Towards principled feature selection: Relevancy, filters and wrappers.
In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics (AISTATS-
2003).

I. Tsamardinos, C. F. Aliferis, and A. R. Statnikov. 2003a. Algorithms for large scale Markov blanket discov-
ery. In Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference
(FLAIRS-2003). AAAI Press, 376–381.

I. Tsamardinos, C. F. Aliferis, and A. R. Statnikov. 2003b. Time and sample efficient discovery of Markov
blankets and direct causal relations. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2003). 673–678.

M. van Gerven and P. J. F. Lucas. 2004. Employing maximum mutual information for Bayesian classification.
In Proceedings of the 5th International Symposium on Biological and Medical Data Analysis (ISBMDA-
2004). Lecture Notes in Computer Science, Vol. 3337. Springer, 188–199.

T. Verma and J. Pearl. 1990. Equivalence and synthesis of causal models. In Proceedings of the 6th Conference
on Uncertainty in Artificial Intelligence (UAI-1990). Elsevier, 255–270.
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