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a b s t r a c t

Optimization based pattern discovery has emerged as an important field in knowledge discovery and
data mining (KDD), and has been used to enhance the efficiency and accuracy of clustering, classification,
association rules and outlier detection. Cluster analysis, which identifies groups of similar data items in
large datasets, is one of its recent beneficiaries. The increasing complexity and large amounts of data in
the datasets have seen data clustering emerge as a popular focus for the application of optimization
based techniques. Different optimization techniques have been applied to investigate the optimal
solution for clustering problems. Swarm intelligence (SI) is one such optimization technique whose
algorithms have successfully been demonstrated as solutions for different data clustering domains.
In this paper we investigate the growth of literature in SI and its algorithms, particularly Particle Swarm
Optimization (PSO). This paper makes two major contributions. Firstly, it provides a thorough literature
overview focusing on some of the most cited techniques that have been used for PSO-based data
clustering. Secondly, we analyze the reported results and highlight the performance of different
techniques against contemporary clustering techniques. We also provide an brief overview of our
PSO-based hierarchical clustering approach (HPSO-clustering) and compare the results with traditional
hierarchical agglomerative clustering (HAC), K-means, and PSO clustering.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Regardless of the type, source, or format of the data, when it
grows beyond certain limits, it becomes difficult to comprehend.
Extracting information from such data becomes difficult. On one
hand, the increase in the amount of data adds to the possibility of
the data possessing more information but on the other hand, it
decreases the speed of pattern extraction. Knowledge Discovery
and Data mining (KDD) has made possible the discovery of such
useful and hidden patterns in the data. KDD is the process of
automatically searching large volumes of data for previously
unknown, potentially interesting and informative patterns [1–4].
KDD techniques are mainly influenced by modern information
exploration techniques, however, they also rely on traditional
computational techniques from statistics, information retrieval,
machine learning and pattern recognition [5,4]. Data selection is
the first phase of KDD, and specifies the scope of the data to be
used for information extraction. The data might come from
different sources and need integration before the actual pattern
extraction process. Primary and secondary attributes, which will
be used in further analysis, are specified in the second stage, the
data is analyzed and preprocessed to enhance the reliability of
pattern extraction, removing irrelevant data, handling missing
values in the data, and removing outlier observations from the
data. The preprocessed data is then transformed into a suitable
format to be processed by the data mining algorithms. Transfor-
mation includes sampling and feature selection. The transformed
data is exploited by a data mining method and post-processed to
reveal the hidden informative patterns. Finally, the evaluation and
interpretation of the resulting patterns take place for decision
making (Fig. 1).

Data mining, which is the core of KDD, extracts informative
patterns such as clusters of relevant data, classification and
association rules, sequential patterns and prediction models from
different types of data such as textual data, audio-visual data, and
microarray data. This data comes from different sources such as
structured databases, semi-structured documents, and data ware-
houses, where the growing amount of data is challenging the
information extraction capabilities of domain experts.

Data clustering, one of the most important techniques in data
mining, aims to group unlabeled data into different groups on the
basis of similarities and dissimilarities between the data elements
[6,5]. A typical clustering process involves feature selection, selec-
tion of a similarity measure, grouping of data, and assessment of
the output. The process can be performed in a supervised, semi-
supervised, or unsupervised manner. Different algorithms have
been proposed that take into account the nature of the data, the
quantity of the data, and other input parameters in order to cluster
the data. Data clustering has received a lot of attention from
researchers of various data mining domains. This has resulted in a
number of approaches being suggested to address one or other
aspects of the data clustering problem. Two of the most commonly
used clustering approaches are partition-based clustering and
hierarchy-based clustering.

Partition-based clustering divides the data into different groups
based on similarities and dissimilarities among the data elements.
Similarity measures differ from application to application, but the
most common measures are distance-based, pattern-based, and
density-based similarity measures. In distance-based similarity
measures, a distance function is used to calculate the relative
position of a data element inside the cluster by comparing it with
the center of the cluster i.e. the centroid. The centroid changes its
position during different iterations to improve the quality of
the clusters in terms of intra-cluster and inter-cluster distances.
The quality of a cluster is relative to an objective function which
can be minimizing the intra-cluster distance, maximizing the
inter-cluster distance, maximizing similarities, and minimizing
dissimilarities among the data elements. K-means clustering
technique is one of the foundations of the partitional approaches
[6]. It uses a distance measure to divide the dataset into K-clusters.
The assignment of data to a particular cluster-centroid is contin-
ued until the centroid remains unchanged in successive iterations
or a maximum number of iterations is reached. In K-means
clustering a data element belongs to only one cluster at a time.
K-Harmonic means [7] is another partition-based clustering tech-
nique introduced to tackle the problem of sensitivity to the
initialization of the K-means method. Partitional approaches are
efficient but the quality of the solution depends on domain

Fig. 1. KDD process [5].
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knowledge, initial centroid position, and the number of clusters
that are specified in advance.

Hierarchical clustering provides a sequence of nested partitions
of the dataset in the form of a hierarchy. It divides the data into a
nested tree structure where the levels of the tree show similarity
or dissimilarity among the clusters at different levels. A hierarch-
ical approach is either agglomerative or divisive. A divisive
approach is based on the splitting of one large cluster into sub-
clusters [8]. In the divisive approach, the clustering process starts
with every data element in one large cluster. The cluster is then
divided into smaller clusters on the basis of proximity until some
criteria related to the number of clusters or number of data
elements per cluster have been reached. In the agglomerative
approach, the clustering process starts with every data element in
an individual cluster. Initially the two most similar objects are
merged using a dissimilarity matrix by selecting the smallest value
of distance between two data points. In each successive pass, the
individual clusters are then merged based on the distance
between these clusters which is calculated using any of the linkage
methods. Linkage methods calculate the distance between two
clusters to find the dissimilarity of the two clusters. There are
three commonly used linkage methods, single linkage, average
linkage, and complete linkage. In the single linkage method the
distance between two clusters is calculated by taking the mini-
mum distance between any two of the members of the clusters.
Complete linkage represents inter-cluster distance by the max-
imum distance between any two of the members of the clusters. In
the average linkage method the distance between two clusters is
calculated by taking the average distance between all members of
the two clusters. The clusters can be cut at some predefined level
on the basis of dissimilarity among the data points [6]. The process
continues until the last two clusters are merged into a single
cluster. The visualization of hierarchical clustering can be shown
using a dendrogram.

Apart from traditional hierarchical clustering methods, a num-
ber of other hierarchy based clustering techniques have been
proposed such as Robust Hierarchical Clustering Algorithm, ROCK
[9]. ROCK is a hierarchical clustering approach for categorical data
that merges the clusters on the basis of number of common
neighbors. Some of the algorithms integrate hierarchical clustering
with partitional clustering such as BIRCH (Balanced Iterative
Reducing and Clustering using Hierarchies) [10], CURE (Clustering
Using Representatives) [11], and Chameleon (Hierarchical Cluster-
ing Algorithm Using Dynamic Modelling) [12]. Some hierarchical
algorithms such as DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [13] use density instead of distance as a
grouping function, and consider the high density areas as a cluster
and the low density areas as outliers.

Unlike partitional clustering, hierarchical clustering does not
need the number of clusters to be specified in advance. Hierarch-
ical clustering provides a hierarchy of clusters as a solution while
partitional clustering provides a single solution. In hierarchical
clustering an element assigned to a cluster cannot be reassigned to
another cluster in successive passes. While in partitional clustering
a data element can go into different clusters in successive passes.
Partitional clustering has lower execution time as compared to
hierarchical clustering due to its lower algorithmic complexity [6].

Partitional clustering and hierarchical clustering have their
own advantages and limitations in terms of generating numbers
of clusters, generating different shapes, and overlapping bound-
aries of clusters. The exact number of natural groups in the data,
initial choice of centroids, sensitivity to outliers, and algorithmic
complexity are some of the issues which cause bottlenecks in the
performance of a particular clustering technique.

Apart from their advantages, both techniques have deficiencies
in terms of shape and structure of clusters, exact number of

clusters, clustering configuration and degeneracy. To tackle these
problems, optimization-based techniques have been investigated
for data clustering. When optimization is involved in the process,
it either uses an optimization technique as a data clustering
algorithm or adds optimization to the existing data clustering
approaches. Optimization-based clustering techniques treat data
clustering as an optimization problem and try to optimize an
objective function either to a minima or maxima. In the context of
data clustering, a minimization objective function can be the intra-
cluster distance and maximization can correspond to the inter-
cluster distance. The results achieved so far from adding optimiza-
tion to the data mining processes are promising. Optimization has
significantly improved accuracy and efficiency while solving some
other problems such as global optimization, multi-objective opti-
mization and being trapped in local optima [14–17]. The involve-
ment of intelligent optimization techniques has been found to be
effective in enhancing the performance of complex, real time, and
costly data mining process. A number of optimization techniques
have been proposed to add to the performance of the clustering
process. Swarm intelligence (SI) is one such optimization area
where techniques based on SI have been used extensively to either
perform clustering independently or add to the existing clustering
techniques. The next section provides an overview of some of the
most important SI-based optimization techniques.

Overall the paper has three main aims. Firstly, it provides the
details of evolution of different PSO based clustering techniques
and their growth in the literature. We report these results in
Section 3 highlighting the number of relevant papers and citations
to these papers which were published in the last decade. The
second contribution of this paper is to overview the literature of
PSO based data clustering. We have highlighted the most cited
work in the area of hybrid-PSO clustering and stand-alone PSO
clustering. The last objective of this paper is to provide the
comparative results of different techniques along with a discussion
on pros and cons of each technique.

2. Swarm intelligence and particle swarm optimization (PSO)

Swarm intelligence (SI), inspired by the biological behavior of
birds, is an innovative intelligent optimization technique [18,19].
SI techniques are based on the collective behavior of swarms of
bees, fish schools, and colonies of insects while searching for food,
communicating with each other and socializing in their colonies.
The SI models are based on self organization, decentralization,
communication, and cooperation between the individuals within
the team. The individual interaction is very simple but emerges as
a complex global behavior, which is the core of swarm intelligence
[20]. Although swarm intelligence based techniques have primar-
ily been used and found very efficient in traditional optimization
problems, a huge growth in these techniques has been observed in
other areas of research. These application areas vary from opti-
mizing the solution for planning, scheduling, resource manage-
ment, and network optimization problems. Data mining is one of
the contemporary areas of application, where these techniques
have been found efficient for clustering, classification, feature
selection and outlier detection [21,22]. The use of swarm intelli-
gence has been extended from conventional optimization pro-
blems to optimization-based data mining. Section 3 shows the
results of a survey that depicts a continuous increase in the
number of papers about swarm intelligence and its variants.

A number of SI based techniques with many variants have been
proposed in the last decade and the number of new techniques is
growing. Among different SI techniques, Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO) are the two main
techniques, which are widely used for solving discrete and continuous
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optimization problems. Here we discuss the foundation of PSO
followed by its popularity and year-wise growth in KDD literature.

Particle Swarm Optimization (PSO) is a swarm intelligence based
metaheuristic algorithm proposed by Kennedy and Eberhart [23]
which takes its inspiration from the cooperation and communica-
tion of a swarm of birds. The intelligence which emerges from
such behavior causes the swarm to mimic complex global patterns.
Below we describe general concepts of PSO.

In PSO, each individual in the swarm, called a particle, behaves
like an agent of a highly decentralized and intelligent environ-
ment. Each particle of the swarm contributes to the environment
by following very simple rules, thus cooperating and communicat-
ing with other particles of the swarm. A complex global collective
behavior emerges in the swarm. This complex global behavior is
exploited to solve a complex optimization problem. High decen-
tralization, cooperation amongst the particles and simple imple-
mentation make PSO efficiently applicable to optimization
problems [19,24,25].

PSO has three main components, particles, social and cognitive
components of the particles, and the velocity of the particles. In a
problem space where there may be more than one possible
solution and the optimal solution of the problem is required, a
particle represents an individual solution to the problem. The
learning of the particles comes from two sources, one is from a
particle's own experience called cognitive learning and the other
source of learning is the combined learning of the entire swarm
called social learning. Cognitive learning is represented by perso-
nal best (pBest) and social learning is represented by the global
best (gBest) value. The pBest solution is the best solution the
particle has ever achieved in its history. The gBest value is the best
position the swarm has ever achieved. The swarm guides the
particle using parameter gBest. Together cognitive and social
learning are used to calculate the velocity of particles to their
next position.

When applied to optimization problems, a typical PSO algorithm
starts with the initialization of a number of parameters. One of the
important initializations is selecting the initial swarm. The number
of particles in the swarm depends upon the complexity of the
problem. An initial choice of solutions is normally made randomly.
However an initial guess that spreads the particles uniformly in the
solution space can speed up the emergence towards an optimal
solution. A typical initial number of particles for PSO in a swarm
ranges from 20 to 40 but varies from application to application and
problem to problem. The particles start moving from one position
to another position in search of a better solution based on the social
and cognitive components. The cognitive component pBest for
minimization problems is calculated as

pBestiðtþ1Þ ¼
pBestiðtÞ if f ðXiðtþ1ÞZ f ðpBestiðtÞÞ
Xiðtþ1Þ if f ðXiðtþ1ÞÞo f ðpBestiðtÞÞ

( )
ð1Þ

where Xiðtþ1Þ is the particle's new position, pBesti(t) is the current
personal best, and pBestiðtþ1Þ is the new personal best position of
the particle. The value of gBest comes from the social learning of the
swarm which shows the best fit that any particle of the swarm has
ever achieved. Eq. (2) calculates gBest for the same minimization
problem

gBestðtÞ ¼ argMin
n

i ¼ 1
f ðpBestiðtÞÞ

� � ð2Þ

where n is the total number of particles. Together pBest and gBest
combine to define the velocity of the particle which guides the
particle towards a better solution. The velocity of a particle is thus
calculated as

Viðtþ1Þ ¼ω� ViðtÞþq1r1ðpBestiðtÞ�XiðtÞÞ
þq2r2ðgBestðtÞ�XiðtÞÞ ð3Þ

where Vi(t) represents the current velocity of the particle i, Viðtþ1Þ
represents the new velocity the particle will achieve to move
from the current position to the new position. The range of
velocities is bounded between VMax and VMin , where VMax is the
maximum velocity and VMin is the minimum velocity. The para-
meters q1 and q2 are constants which weight the social and
cognitive components, r1and r2 are two random numbers ranging
from 0 to 1, and ω is the inertia of the particle. Velocity added to
the current position provides the new position of the particle which
is given by

Xiðtþ1Þ ¼ XiðtÞþViðtþ1Þ ð4Þ
The graphical representation of the particle repositioning is

shown in Fig. 2. It shows how, pBest and gBest affect the particles
movement from position Xi(t) to Xiðtþ1Þ.

Algorithm 1 shows the pseudocode for PSO-based problem
solving. Three key steps to implementing PSO for optimization
are selection of an objective function(s), representation of the
solution space and selection of a stopping criteria. The selection of
an objective function depends on the type and nature of the
problem. In multi-objective optimization more than one objective
function could be used to check the fitness of the swarm.
Representation of the solution is done by coding the particle to
the solution of the problem space which includes specifying
attributes of a particle and a movement mechanism from one
place to another place. The stopping criteria of the algorithm can
be the maximum number of iterations PSO has performed,
accepted error values or some other criteria related to the fitness
of the swarm.

Algorithm 1. PSO for finding minima.

Input: function
R ðxÞ

Output: Minima M

Parameters: Swarm Size S, VMax, VMin, ω,q1,q2, and number of
records N

Method:
1: INITIALIZE S,VMax, VMin, ω,q1,q2, and N
2: for Each Particle X do
3: INITIALIZE Xi

4: end for
5: while (STOPPING CRITERIA(false)) do
6: for each generation of swarm S do
7: for each iteration
8: CALCULATE gBest from Swarm using Eq. (2)
9: CALCULATE Velocity Vi using Eq. (3)

Fig. 2. Movement of a particle influenced by pBest and gBest.
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10: if Velocity is greater than VMax then
11: SET Velocity¼VMax

12: end if
13: if Velocity is less than VMin max
14: SET Velocity¼VMin

15: end if
16: UPDATE Position XiðtÞ
17: end for
18: for Each Particle X do
19: CALCULATE and update pBest from Swarm using Eq. (1)
20: end for
21: end for
22: end while

3. Popularity and growth of the literature in swarm
intelligence

Due to its simplicity and extendibility to different domains, the
study and usage of SI techniques have tremendously increased in
recent years. An enormous rise in the number of papers published
and the number of citations of the SI-based optimization techni-
ques have been recorded. To highlight this trend we conducted a
systematic literature review of the area, basing our search on the
Scopus database. The database has a variety of options to retrieve
data. It supports regular expressions and sophisticated query
design and processing using a variety of subjects such as authors,
articles, titles, and temporal searches. Various queries were
designed to retrieve information from Scopus (http://www.sco
pus.com) as shown in Appendix A. For the results shown in Fig. 3,
a query was designed that retrieves those papers which are related
to PSO-based data clustering using keyword based retrieval from
the titles of the papers. We limited our subject domains to
computing, engineering and mathematics as shown in Query A.1
of Appendix A. The survey of Scopus represented in Fig. 3 shows a
dramatic annual increase in the literature published in the area of
PSO-based clustering over the last 4 years. The next few para-
graphs highlight the type of research in the area over the period of
2002–2011.

The literature reported above does not focus solely on numeric
data clustering but also extends to other data clustering domains.
Fig. 4 shows a subject based distribution of the literature found for
PSO clustering. We categorized the literature into different PSO-
based clustering areas, which include data clustering, sensor
network clustering, image segmentation and clustering, gene
clustering, document and text clustering, and hybrid clustering.
We extracted these categories by manually examining the litera-
ture, and selected six major categories based on the number of
papers retrieved. The number of papers in a category was the main
criteria while the nature of techniques used for clustering, and
application areas were used as secondary categorization criteria.

Papers which did not fit into any of these categories were termed
as others. Some of the areas are overlapping e.g. hybrid clustering
methods, which could be applied to data as well as image
clustering. We observed that in some cases the hybrid clustering
methods are used for modeling purposes and other times for
optimization purposes. From Fig. 4 we can see that text, numeric,
and categorical data clustering are the highest contributors to the
literature of PSO-based clustering over the given time period.
Sensor network clustering is an emerging area and a number of
studies have been conducted to tackle different aspects of the
problem. One reason for using a PSO-based clustering approach is
that the nature of the sensor network is similar to the origin of
PSO. Each sensor in the network is treated as an agent/particle and
different characteristics of that particle are then used to group the
sensors into clusters. Some of the papers which do not fall into any
of the categories were marked as “others”, including clustering
based modeling and fuzzy clustering.

Fig. 4 shows year-wise growth of each subject area text/data
clustering, image and gene data clustering, clustering in sensor
networks and robotics, and hybrid clustering which includes
cross-domain clustering. Text and numeric data clustering leads
in the number of papers published annually. Image clustering and
gene data clustering have also shown consistent growth high-
lighting the importance of PSO clustering in these areas. Clustering
in sensor networks and other engineering domains is also one of
the growing application areas of PSO clustering.

In recent years the implementation of swarm intelligence has
been extended from conventional optimization problems to
optimization-based data mining. Fig. 5 shows the results of a
survey, showing a continuous increase in the number of papers
about swarm intelligence. On average there is an increase of more
than 90% each year since 2000. This literature includes swarmFig. 3. Clustering using particle swarm optimization.

Fig. 4. Year-wise growth of the subject area.

Fig. 5. Literature in swarm intelligence.
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intelligence in KDD, modeling, sensor networks optimization and
image processing.

The overall statistics show that the contribution of PSO to
swarm intelligence literature is more than any other SI based
technique, which suggests the importance of PSO and its simpli-
city and applicability to different application domains. The average
increase for the duration from 2002 to 2011 in PSO is above 50%
annually.

4. Application areas of PSO

This section highlights different application areas of PSO. Most
of the clustering implementations using PSO are in the area of
clustering of numeric and text data. An average annual increase of
about 50% in the number of papers published is recorded in the
last four years, as shown in Fig. 3. Some other KDD areas where
PSO has been implemented are PSO-based outlier detection [26],
PSO-based classification and association rule mining [27–30],
particle swarm based feature selection [31,32], PSO-based
text clustering [33], PSO-clustering based recommender systems
[34–38], and prediction analysis [39].

One of the important fields where there has been a large
increase in recent years is sensor networks. The literature shows a
wide implementation of PSO in different areas of sensor networks
which includes localization of wireless sensor networks [40,41],
optimization and control [42], network coverage [43], and routing
and clustering of nodes [44,45]. Swarm robotics is another
important area where PSO has successfully been implemented in
robot path/motion planning [46], robot collaboration and commu-
nication, robot learning and decision making [47,48], and source
localization [49]. Image segmentation and image clustering were
some of the first application areas of particle swarm optimization
[50]. Some of the other PSO-based image processing domains
include edge detection, image retrieval and mining, noise removal,
image feature selection and image classification. Recently a survey
has been conducted [51] that outlines one of the most rapidly
growing area of PSO based high dimensional clustering. A number
of PSO based cluster techniques have been reviewed which help
to enhance the efficiency and accuracy of existing clustering
techniques.

Citation counts are one of the factors which can measure the
importance and growth of a research field. The next survey takes
into account the citation counts in the field of particle swarm
optimization. The results of a Scopus query show that the most
cited papers are about the foundations of PSO. A classification of
the research work into foundation/basics of PSO and application
areas of PSO reveals that the foundation literature of PSO
has gotten more than 20,000 citations in total, while some
individual work [23] has more than 12,000 citations alone. On
the other hand, papers about the application of PSO have not been
cited as much as papers about the foundations of PSO. However,
the most cited papers about the application of PSO are in the
field of engineering, which include electromagnetism, voltage
control, controller design, multi-objective optimization and task
assignment.

Fig. 6 shows the distribution of the citations where 23% of the
total citations of PSO belong to applications of PSO while the
remaining 77% of the citations are related to the foundation of the
PSO algorithms. To further investigate the foundation of PSO, 60%
of the literature is related to the origin of basic PSO techniques,
20% of the citations are related to various studies of PSO including
surveys and reviews, and the remaining 20% cite the different
variants of PSO along with their explanations and implementation.

5. Particle swarm optimization based data clustering

Particle swarm optimization was first used by Van der Merwe
and Engelbrecht [17] for data clustering, where randomly created
particles were mapped to one data vector. Each particle in that
data vector is a representative of one centroid. The particles then
moved to a better centroid position during each iteration. The
evaluation of the method was based on the cost function that
evaluates each candidate solution based on the positions of the
proposed clusters' centroids. Xiao et al. [52] hybridized PSO with
Self-Organizing Maps (SOM), using SOM for clustering the data
and PSO for optimizing the weights of the SOM. In Chen and Ye's
approach [14] each particle corresponds to a vector containing the
centroids of the clusters. The results were compared with K-means
and fuzzy C-means using the objective function which takes into
account the intra-cluster distance. A recent similar work [53]
reports the results of k-means added with PSO and multiclass
merging to perform data clustering. In the image processing
domain, Omran et al. [50] suggested a dynamic clustering algo-
rithm based on PSO and K-means for image segmentation. The
proposed approach finds the number of clusters in the data
automatically by initially partitioning the dataset into a large
number of clusters, and the numbers of clusters are optimized
using binary PSO. Cohen and De Castro [54] proposed a Particle
Swarm Clustering (PSC) algorithm with a fixed number of cen-
troids on a benchmark dataset. Instead of coding the whole
solution as a single particle, each particle represents a portion of
the solution. The proposed solution is not based on the use of a
fitness function, instead it moves the particles to the natural
clustering position. The comparison results show that PSC per-
forms better than K-means clustering on the basis of classification
error. Another use of PSO clustering is found in the web usage
domain where Chen and Zhang [55] cluster web sessions using
PSO, combining improved velocity PSO with K-means. The
approach is based on enhanced particle search and updating the
centroids with the help of K-means. Another similar work [56]
recently reported where PSO is used for data clustering indepen-
dently without being hybridized with any other clustering tech-
nique. The authors [57] proposed a K-Harmonic and PSO-based
data clustering algorithm to help the K-Harmonic mean algorithm
escape from local optima. The authors [58] implemented a K-NM-
PSO clustering technique which combines PSO Nelder–Mead (NM)
simplex method and the K-means clustering technique. The
experiments were run on different benchmark datasets from the
UCI machine learning repository [59], demonstrating the robust-
ness of the approach. A bacterial evolutionary algorithm-based
strategy [16] was applied to cluster real and synthetic data. The
authors [60] proposed Multi-Elitist PSO (MEPSO), a modified
version of classical Particle Swarm Optimization (PSO), which
employs a kernel-induced similarity measure instead of the
conventional distance measure. The proposed technique can find
the optimal number of clusters automatically without specifying it
in advance. Another similar work has been proposed [61] based on

Fig. 6. Citation distribution in PSO.
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Differential Evolution (DE). Recently [62–64] PSO has been used to
optimize the parameters for subtractive clustering (SC), and PSO
hybridised with SVM for feature selection and parameter optimi-
zation in the area of predicting bankruptcy and corporate financial
distress.

The related work has addressed some of the common aspects
of data clustering, such as enhancing the efficiency and improving
the accuracy of the techniques, however most of the approaches
have ended up either having as good results as the existing
techniques or with some minor improvements in one or other
aspect. There is still a need for a technique which is efficient and
produces accurate results. Fixing the efficiency problem is still an
open question. The efficiency and accuracy trade off will be
leading the discussion in clustering in the coming years [65]. The
next section highlights some of the techniques mentioned above
and explains their working principles to tackle the data clustering
problem.

We divide PSO-based clustering techniques into two general
categories. The first group includes those techniques which use
PSO as part of another clustering technique in a hybrid manner.
Such techniques use PSO for parameter selection, parameter
optimization, and centroid selection or updating. The first part of
this section highlights such techniques. The second part of this
section explains those techniques where PSO has been used
independently for data clustering. The discussion highlights the
modeling of the problem for the specified PSO-based technique,
selection and initialization of the parameters, number of particles
in the initial swarm, and performance measures selected to
evaluate the technique. Detailed comparison results of these
techniques are discussed in Section 6 with comments on their
pros and cons.

5.1. PSO hybridized for data clustering

PSO has been hybridized with a variety of different clustering
methods such as K-means, K-Harmonic mean, self organizing
maps, and neural networks. It is also used in basic PSO form as
well as in discrete PSO form to cluster data. The data which has
been used for testing and validation purposes include numeric,
alphabetic, microarray and image data. This subsection contains
those techniques where PSO has been hybridized with other
existing clustering techniques.

PSO and K-means: The credit of starting a research initiative
towards PSO-based data clustering goes to Van der Merwe and
Engelbrecht [17], who presented the idea of using PSO with K-
means clustering for refining the K-means clustering technique.
The approach which they presented, uses a fixed number of
particles as a swarm. Each particle represents a different clustering
solution by assigning centroids of all the clusters to a single
particle. Initial particle assignment was done in a random manner.
The approach is different from K-means as K-means starts with
one solution and tries to optimize that solution in successive
iterations, while in this approach the clustering starts from several
candidate solutions and the best among them is selected in each
iteration. In each successive iteration the particles generate
another set of solutions and this continues until it reaches the
final best achieved solution. They also hybridized K-means with
PSO to initialize the particles and show how performance of the
clustering process can be improved by taking the initial seed from
K-means and feeding it into PSO clustering. The authors have
presented the comparisons of their results with stand alone PSO
clustering and PSO hybrid K-means clustering. Evaluation of
the method was based on the quantization error that evaluates
each candidate solution based on the proposed cluster's centroids.
The results will be described in detail in Section 6.

Dynamic PSO (DCPSO) and K-means: Another hybrid approach
was introduced by Omran et al. [50], using a Dynamic Clustering
algorithm based on PSO (DCPSO). The proposed approach is a
hybridization of PSO and K-means where PSO performs clustering
and K-means performs refinement of the clusters. Unlike the
previous approach, this approach uses binary PSO. It also finds
the number of optimal clusters as compared to the previous
approach where the number of clusters needed to be specified
in advance. The algorithm initializes swarm parameters such as
velocity, number of particles, and initial partition of the dataset.
It then calculates the fitness of the particles and updates the
velocity and position. The process is performed iteratively until the
stopping criteria is met. The approach is capable of automatically
detecting clusters in images, where the clusters are well separated,
completely overlap or partially overlap. In the proposed approach,
large number of clusters were generated and then optimized to a
better clustering solution using binary PSO. The clusters are then
refined using K-means. The approach was validated using three
different validity indices. DCPSO was tested for image segmenta-
tion on benchmark natural image datasets and some synthetic
images.

Improved velocity PSO with K-means (RVPSO-K): Although
RVPSO-K also hybridizes K-means with PSO, the technique is
different from the two techniques mentioned above. This techni-
que is based on changing the flying trajectory of the particles of
the swarm. The authors [55] added random velocity to the
particles to enhance the coverage of the swarm in all directions.
Centroids of the clusters were updated using the same K-means
approach used in the previous work [17]. Stability of the swarm,
accuracy of clustering, and convergence speed were the perfor-
mance measures for the experiments. To the best of our knowl-
edge it is the first work reported, which uses web session data for
the evaluation of the experimental results. The authors used web
logs and selected user visit attributes for clustering. Although the
comparison is done only with K-means, the work defined a new
application area, namely the application of PSO-based data clus-
tering for web usage clustering.

PSO, Nelder–Mead (NM) simplex method and K-means: So far we
have studied hybridization of PSO with K-means and have found
that the hybridization produces slightly better results in terms of
accuracy. Kao et al. [58] proposed an innovative approach which is
based on the combination of PSO, Nelder–Mead (NM) simplex
method, and the K-means clustering technique. The authors
exploited the efficiencies of PSO and NM simplex methods. The
NM simplex method is efficient in local search and K-means has
low computational cost. The authors overcome the shortcomings
of PSO's high computational cost and poor local search behavior by
using this hybridization. Because of the insensitivity of PSO to
initial clustering centroids and its accuracy, they overcome the
initialization sensitivity of the NM simplex method and inaccura-
cies of K-means. The work reports comparison results for accuracy,
intra-cluster distance, and function evaluations of the proposed
approach to PSO clustering, K-means clustering, NM-PSO cluster-
ing, and K-PSO.

PSO and K-Harmonic means (PSO-KHM): In one of the most
recent papers in this area [57], the authors proposed a K-Harmonic
means (KHM) and PSO-based data clustering algorithm to help the
K-Harmonic means algorithm escape from local optima. As dis-
cussed earlier, one of the deficiencies of K-means clustering is that
it gets trapped in local optima. As PSO is a global stochastic
algorithm, it is capable of escaping from local optima. The initial
centroid sensitivity is handled by KHM and PSO. KHM also solves
the problem of slow convergence of PSO for data clustering.
Comparison results for the technique are given in the next section.

PSO and Self Organizing Maps (SOM): The work presented by
Xiao et al. [52] is another example where PSO is used alongside
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another clustering technique. In their proposed SOM/PSO
approach, PSO was hybridized with self-organizing maps (SOM)
to improve the efficiency of the clustering process. The approach
comprises two different phases. Initially SOM are used to cluster
the data and then PSO optimizes the weights of the SOM and
refines the clusters. The results of the hybrid PSO/SOM were
compared with SOM and PSO clustering which shows the effi-
ciency of the technique. The experiment was performed on two
well known gene expression datasets, however there are no
experiments on the machine learning datasets that are typically
used for evaluating data clustering techniques.

5.2. PSO as a data clustering method

Apart from PSO being used as a part of another clustering
technique, there is also some work which uses PSO as a stand
alone clustering technique. This section discusses different cluster-
ing techniques that are solely based on PSO, and do not hybridize
PSO with any other clustering technique.

PSC clustering: Cohen and De Castro [54] proposed a novel
approach that uses PSO as an independent clustering technique,
where the centroids of the clusters were guided by the social and
cognitive learning of the particles. As opposed to earlier versions
of PSO-based clustering techniques, in this approach each particle
represents a portion of the solution instead of representing the
whole solution as a single particle. The proposed solution is not
based on the use of a fitness function, instead it moves the
particles to the centroid of the cluster using the cognitive and
social learning of the particles, which cause optimization in the
intra-cluster distance. To validate the approach the authors
applied the PSC algorithm with a fixed number of centroids on
benchmark datasets. PSC performs better than K-means clustering
in terms of accuracy of clustering, however the computational cost
is not reported.

PSO clustering: Chen and Ye [14] employed a representation in
which a particle corresponds to a vector containing the centroids
of the clusters. The approach is similar to another proposal [17],
where one particle is representative of the clustering solution and
compared to the previous work, there is no hybridization with any
other algorithm, so the execution time which is not reported, must
be higher. The best particle among the swarm is chosen to
represent the solution of the problem. The experiments were
done on artificial datasets and the results were compared with
K-means and fuzzy C-means using an objective function that takes
into account the intra-cluster distance.

Evolutionary Particle Swarm (EPSO) for web usage clustering: The
authors [66,67] customized PSO and EPSO for web usage cluster-
ing. Standard benchmark web usage data was used for the
experiments. The web usage data clustering is different from
traditional data clustering as the data needs a sophisticated pre-
processing stage before it can be grouped into clusters. Another
important thing in such data is the selection of appropriate
attributes for clustering. The authors have discussed the related
work and the significance of the PSO-based clustering approach.
The approach they used is based on moving centroids to their
natural position based on the related data and the approach
is used without any hybridization with any other clustering
technique.

Hierarchical PSO clustering (HPSO-Clustering): In this technique
the deficiency of the traditional partition based clustering i.e.
initialization of particles, trapping in local optima and a lack of the
domain knowledge are tackled [68]. On the other hand hierarch-
ical clustering approaches have disadvantages of efficiency and
premature clustering of objects into different clusters. The combi-
nation of both approaches, partition based techniques that are
relatively efficient, and hierarchical clustering techniques that are

accurate, could give better results. The authors combined these
techniques and added swarm intelligence to the process to give
the novel PSO-based hierarchical agglomerative data clustering
technique (HPSO-clustering). HPSO-clustering is based on the
modeling of each cluster centroid by an individual particle, and
so the complete swarm represents the solution of the clustering
problem. The number of particles is kept large for the maximum
coverage of the problem space. The technique works in an
agglomerative manner starting from a relatively large number of
particles and combining down to only one final particle. Initially
each particle has a small number of associated data vectors while
the final particle contains the entire data set. The first generation
particles adjust their positions by iterating them for a particular
number of iterations. The transition of swarm from one generation
to another generation merges two of the selected particles and
transforms the swarm into a smaller swarm.

Regardless of how the techniques work, and what their
strengths and weaknesses are, the use of PSO in data mining and
particularly in data clustering is increasing. A number of applica-
tions of these techniques have been reported in the literature
which verify the applicability and suitability of PSO for data
mining applications. Our own work [15,66,67,69] is one of the
promising outcomes of PSO-based data clustering.

6. Clustering comparison of selected techniques

PSO-based clustering has been studied by different researchers
for a variety of different application areas. In this section we will
overview some of such work and present their results while also
discussing the pros and cons of their approaches.

We select different performance comparison measure such as
inter-cluster distance (separation of clusters), intra-cluster distance
(compactness of clusters) , number of function evaluations, quanti-
zation error (classification error), and accuracy (correctness in
clustering configuration). Inter and intra-cluster distances are
indicators of how good the clusters are in terms of the position
of each data element within its corresponding cluster as well as
against the elements of different clusters. Low intra-cluster dis-
tance is better than high intra-cluster and vice-versa for inter-
cluster distance. Quantization error is a measure that shows the
classification accuracy of the clustering technique. Lower quanti-
zation error is an indicator of good accuracy. Function evaluations
are an alternative to the execution time which shows the effi-
ciency of the clustering techniques. The lower the number of
function evaluations the better the efficiency of the algorithm.
Overall, these measures describe the validity of the clustering
approach as well as the attributes of the datasets. Some of the
common datasets which are used for the validation and testing of
data clustering techniques are listed in Table 1.

For comparison purposes we chose the widely used UCI
machine learning datasets [59] which are freely available to be
used for testing and validation. These datasets have many types of

Table 1
Description of commonly used datasets.

Name of dataset No. of classes No. of features No. of observations

Vowel 6 3 871
Iris 3 4 150
Crude oil 3 5 56
CMC 3 9 1473
Breast cancer 2 9 699
Glass 6 9 215
Wine 3 13 179
Ruspini 4 2 75
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overlapping behaviors such as no overlap, medium overlap and
extreme overlap among the data items of different clusters. Many
of the researchers from the KDD and machine learning community
have used these datasets as benchmarks for data clustering
problems for testing efficiency and accuracy measures. Apart from
these benchmark datasets, there are other artificial datasets which
are used for testing PSO-based clustering techniques for applica-
tions other than numeric data clustering. Such applications
include text clustering, image clustering and segmentation, sensor
network clustering and gene clustering.

For our experimentation we will comment on the results
obtained using independent PSO, hybridized PSO and other
relevant techniques. The experimental design consists of four
main phases. In the first phase inter and intra cluster distances
of the selected techniques will be assessed. In the second phase,
we will highlight the function evaluations and execution time of
different PSO based clustering techniques, in the third phase
accuracy will be assessed while in the last phase cross validation
on one of the datasets will be performed for verification of the
results.

The scope of the experiments is limited to the measures men-
tioned above. We have omitted some of the results which we could
not verify and presented only those results which could be compared
on standard measures as discussed above. Some of the results do not
include all of the datasets due to this assumption.

The first PSO-based data clustering by Merwe and Engelbrecht
[17] as discussed in Section 5 was compared with the K-means
clustering technique. Table 2 shows a summary of the results
reported in their work which highlights that PSO-based clustering
is better than K-means in terms of inter-cluster (interClus) distance
and quantization error (Qnt.Err). The Hybrid PSO with K-mean as
shown in the last column performs better on quantization error.
Although this approach has a weakness in that it suffers in efficiency
compared with K-means, it is still very important due to its novelty,
pioneering the research in this direction, and in terms of accuracy.
The work has led to some of the very important work that is
published later and based on their work has better results than those
given here. One of the strengths of this work is to highlight the
capability of PSO-based hybrid clustering to converge to lower
quantization error based on the fitness function of PSO.

K-NM-PSO [58] is another recent work which hybridizes PSO
and K-means based on the Nelder–Mead(NM) simplex method for
the local search. Results for the comparison of intra-cluster
distance are given in Table 3. The PSO clustering variant they used

for comparison is described by Chen and Ye [14] and outlined in
Section 5.

The K-NM-PSO results shown in bold show an improvement in
the accuracy of clusters using this approach compared with some
contemporary clustering algorithms such as K-means and PSO-
based data clustering. The number of function evaluations for each
approach is given in Table 4. The K-NM-PSO approach needs fewer
function evaluations than PSO to reach the optima due to its
hybridization with Nelder–Mead (NM) simplex method.

The approach suffers in efficiency in terms of number of
function evaluations compared with K-means. K-means needs
fewer function evaluations as compared to K-NM-PSO. We have
observed this kind of deficiency in almost all PSO-based clustering
techniques.

Another recent work in hybridized PSO-based data clustering is
PSOKHM [57] where PSO and K-Harmonic means (KHM) are
combined to solve some of the problems that PSO aided
K-means algorithms suffer from. The results were compared
against KHM and PSO-based data clustering. Table 5 outlines the
results with respect to KHMðX;CÞ measure which is

KHMðX;CÞ ¼∑n
i ¼ 1

k
∑k

j ¼ 1
1

Jxj � ci J p

where X is the dataset to be clustered ranging from 1 to n, C is the
set of centroids ranging from 1 to k, and p is an input variable for
getting good objective functions. KHMðX;CÞ has been used to
evaluate the quality of the clustering solution based on the ratio
of number of clusters to the intra-cluster distance. Again the
results show that the hybridization has sufficient improvement
over KHM and PSO in terms of accuracy and compactness of
clusters but the efficiency in terms of execution time is quite low
as shown in Table 6. The efficiency in terms of execution time
(s) given in Table 6 shows that PSOKHM has sufficiently better
execution time as compared to PSO but suffers against KHM.

The techniques which we have looked at so far have one
commonality in the results that when PSO is hybridized with
any other technique, it performs better in terms of intra-cluster
distance, inter-cluster distance, accuracy and quantization
error. However, traditional partitional techniques still perform
better on efficiency in terms of function evaluations as well as
execution time.

Now we will discuss the work where there is no hybridization
of PSO with another clustering approach. The approach, PSC [54],

Table 3
Total intra-cluster distance for the given datasets [58].

Dataset K-means PSO K-NM-PSO

Vowel 159,242.87 168,477.00 149,141.40
Iris 106.05 103.51 96.67
Crude oil 287.36 285.51 277.29
CMC 5693.60 5734.20 5532.70
Cancer 2988.30 3334.60 2964.70
Glass 260.40 291.33 200.50
Wine 18,061.00 16,311.00 16,293.00

Table 4
Function evaluation for KNM-PSO [58].

Dataset K-means PSO KNM-PSO

Vowel 180 16,290 9291
Iris 120 7260 4556
Crude oil 150 11,325 7057
CMC 270 36,585 21,597
Cancer 180 16,290 10,149
Glass 630 198,765 119,825
Wine 390 73,245 46,459

Table 5
Comparison of KHM(X,C) based on values of p¼3.5 [57].

Dataset KHM PSO PSOKHM

Iris 113.413 255.763 110.004
Glass 1871.812 32,933.349 1857.152
Cancer 243,440 240,634 235,441
CMC 381,444 423,562 379,678
Wine 8,568,319,639 3,637,575,952 3,546,930,579

Table 2
Inter-cluster distance and quantization error [17].

Dataset K-means PSO Hybrid

interClus Qnt.Err interClus Qnt.Err interClus Qnt.Err

Iris 0.88 0.64 0.88 0.77 0.85 0.63
Wine 1.01 1.13 2.97 1.49 2.79 1.07
Breast cancer 1.82 1.99 3.54 2.53 3.33 1.89
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is based on moving the centroids into better positions in a cluster-
based on the cognitive and self organizing of the particles, which
comes from the experience of an individual particle rather than
the complete swarm. Results on the three benchmark datasets are
given in Table 7. Classification error, which is putting the data into
the wrong cluster, is used to compare the clustering techniques.
The results presented in Table 7 show an improvement over the K-
means clustering technique. The results for function evaluation or
efficiency on execution times are not mentioned. It would be
interesting to look at the result of efficiency as the PSC algorithm
may have better execution time compared to other PSO-based
clustering approaches.

Recently we proposed using PSO for data clustering without
hybridizing it with any other clustering algorithms. The prelimin-
ary results of our EPSO-clustering and HPSO-clustering are
reported [15,69]. In HPSO-clustering the clustering process initially
starts with a large number of clusters and in each subsequent
generation only one cluster is consumed to generate a hierarchy of
clusters. The merging process continues until it reaches the final
single cluster. HPSO-clustering is an extension of EPSO-clustering.
HPSO-clustering was tested on seven different datasets against
intra-cluster distance, inter-cluster distance, accuracy, efficiency
and error rate.

The first experiment compares the accuracy of our proposed
technique with hierarchical agglomerative clustering (HAC). The
parameters for the experiments were set to, S¼20–50, vMax¼0.1–
1.0, and max iteration per generation¼100. Table 8 reports the
results of the accuracy of HPSO-clustering and traditional HAC. The
results shown in bold verify the improved accuracy of HPSO-
clustering against HAC.

The second experiment was carried out to test the accuracy of
the approach against partitional and optimization-based cluster-
ing approaches. We selected the base algorithms K-means and

PSO-clustering. The comparison with K-means was made possible
by selecting that generation of HPSO-clustering that matches with
the number of clusters of K-means. Table 9 reports the accuracy
and standard deviation on accuracy for 20 runs. The accuracy of
HPSO-clustering is better than PSO-clustering and K-means clus-
tering on most of the given datasets.

To evaluate the consistency and efficiency of HPSO-clustering
in terms of the number of data points, we scaled the CMC data to
250 thousand observations and 2000 attributes. Fig. 7 shows the
consistency and efficiency of the HPSO-clustering technique.
Execution time is measured against the parameters mentioned
and the proposed approach is consistent in execution time with
the varying parameters. The reason for scaling the CMC dataset
was that it is a benchmark classification data and the ground truth
for the accuracy is already known. From the figure we observe the
linear growth of time against each of the varied parameter. We did
not observe exponential growth in execution time against the
number of observations and dimensions.

Table 10 analyzes the Ruspini dataset and cross validates it
using different measures such as inter-cluster, intra-cluster and
total fitness with mean and standard deviation. The data was
manipulated in two different ways, first the centroids were
randomly selected and secondly the data was shuffled to make it
random. Values reported in the first column represent the best,
worst and mean values of fitness when random centroids were
selected. The second column reports the values when the dataset
was shuffled and the last column shows 10�10 cross validation
for fitness when the centroids were randomly initialized. The
purpose of this experiment is to show the consistency of HPSO-
clustering with different configurations of particles as well as
datasets.

The results described in this section have highlighted the trade-
offs of efficiency and accuracy of output of the clustering process.
Almost all of the PSO-based clustering techniques, whether in stand
alone form or in a hybrid form, have an improved accuracy over
traditional partitional clustering approaches such as K-means and
K-harmonic based clustering. A number of variants to the basic PSO
clustering algorithm have been proposed and have resulted in
improved efficiency and accuracy. Although, the efficiency of PSO-

Table 9
Comparison of accuracy and StdDev. of accuracy for PSO and K-means clustering.

Dataset HPSO K-means PSO

Accuracy StdDev. Accuracy StdDev. Accuracy StdDev.

Iris 90.0333 1.13374 84.36 8.75 87.47 5.38
Breast cancer 96.2005 0.03273 95.86 0.46 94.89 1.32
Wine 70.7584 0.12562 68.88 0.71 71.29 0.41
Vowel 47.6463 1.29002 45.69 2.15 44.65 2.55
Glass 52.7336 1.66269 51.16 2.41 54.41 15.62

Fig. 7. HPSO-clustering execution time (scaled CMC dataset).

Table 6
Run time of KHM, PSO, and PSOKHM.

Dataset KHM PSO PSOKHM

Iris 0.190(0.007) 3.096(0.010) 1.826(0.009)
Glass 4.042(0.007) 43.594(0.338) 17.609(0.015)
Cancer 2.027(0.007) 16.150(0.144) 9.594(0.023)
CMC 8.627(0.009) 148.985(0.933) 39.485(0.056)
Wine 2.084(0.010) 35.284(0.531) 6.598(0.008)

Table 7
Classification error for PSC and K-means

Dataset PSC K-means

Iris 7.68 15.64
Breast cancer 4.31 4.14
Glass 46.26 48.84

Table 8
Accuracy for HPSO clustering and HAC.

Dataset HPSO HAC
Accuracy Accuracy

Iris 92.00 74.6666
Wine 70.7865 61.2359
Breast cancer 96.33 96.33
Glass 54.6728 37.3831
Vowel 47.6463 45.35017
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based clustering has been considerably improved, it still has poor
execution time as compared to partitional clustering techniques.

7. Future work

From the current literature survey in the field of PSO, we notice
that there is an increasing trend in the number of papers and
citations published in the area. There is evidence that the future of
PSO will mostly be dominated by the research in the implementa-
tion of PSO in different application domains rather than in the
foundations of PSO. Nonetheless there are still some remaining
issues in the foundation of existing PSO techniques that still need
to be investigated thoroughly. In this regard, researchers are
concentrating on two major areas, firstly automation of the
techniques, and secondly generalization of PSO based algorithms.
These two issues are the core of all problems that optimization
based techniques encounter.

The problem of automating different processes and parameters
in PSO needs to be addressed such that the techniques can be
applied to different application areas with less or no domain
knowledge. Current PSO algorithms require us to tune a range of
parameters before it is able to find a better solution. Tuning the
parameters for different problems and applications leads to the
second problem of generalization of the technique. Generalized
parameter values and learning components are required so the
approach can be used in different problem domains and so better
results can be obtained.

In regards to the future work in application areas of PSO, there
is still a gap in testing and validation of these techniques, in spite
of the large amount of research that has been carried out in PSO
based KDD techniques. New areas where such techniques can
perform better need to be explored. Thorough testing of these
techniques on real data instead of benchmark synthetic data, and
validation of the results on the same measures that traditional
data mining techniques have used are another future research
direction.

8. Summary and conclusion

In this paper we have discussed the evolution of clustering
techniques based on Particle Swarm optimization. We system-
atically surveyed the work, and presented the results of increasing
trends in the literature of swarm intelligence, Particle Swarm
Optimization and PSO-based data clustering. The literature survey
(Sections 2 and 3) and the comparison of results (Section 6)

are evidence that there is an enormous increase in the popularity
of such techniques. The techniques are novel, collaboration
and communication based, and simple to implement. PSO has
received prompt attention from optimization-based data mining
researchers. PSO-based data clustering and hybrid PSO clustering
techniques have outperformed many of the contemporary data
clustering techniques. The approach has a tendency to be more
accurate and to avoid getting trapped in local optima. PSO-
clustering, PSC clustering, EPSO clustering and HPSO-clustering
are some of the popular techniques tested on benchmark datasets.

We have also outlined different application areas of PSO
relevant to clustering. Each application area has its own require-
ments and conditions. PSO is simple enough to model and capable
of being used for diverse new application domains. Scalability of
PSO and its variants allows them to be modified for different
application areas. The research also highlights the fact that the
past was mostly dedicated to the theory of the foundations of PSO
and the study of different variants of PSO, whereas in the future an
increase in work is expected in the application areas of PSO.

Appendix A. Scopus queries

A.1. Query to retrieve papers related to PSO clustering

(TITLE(particle swarm optimin) OR TITLE(pso) AND TITLE
(clustern)) AND PUBYEAR IS 2010 AND (LIMIT-TO(SUBJAREA,
“COMP”) OR LIMIT-TO(SUBJAREA, “ENGI”) OR LIMIT-TO(SUBJAREA,
“MATH”) OR LIMIT-TO(SUBJAREA, “DECI”) OR LIMIT-TO(SUBJAREA,
“MULT”))

A.2. Query to retrieve papers related to swarm intelligence

(TITLE(swarm intelligence) OR TITLE(particle swarm optimin) OR
TITLE(pso) OR TITLE(ant colony optimin) OR TITLE(aco) OR TITLE(bee
colonyn)) AND PUBYEAR IS 2009 AND (EXCLUDE(SUBJAREA, “ENVI”)
OR EXCLUDE(SUBJAREA, “BIOC”) OR EXCLUDE(SUBJAREA, “ENVI”) OR
EXCLUDE(SUBJAREA, “BIOC”) OR EXCLUDE(SUBJAREA, “CENG”) OR EX
CLUDE(SUBJAREA, “MEDI”) OR EXCLUDE(SUBJAREA, “CHEM”) OR
EXCLUDE(SUBJAREA, “HEAL”) OR EXCLUDE(SUBJAREA, “ECON”) OR
EXCLUDE(SUBJAREA, “NEUR”) OR EXCLUDE(SUBJAREA, “PHAR”) OR
EXCLUDE(SUBJAREA, “VETE”) OR EXCLUDE(SUBJAREA, “IMMU”))

A.3. Query to retrieve papers related to PSO

(TITLE(particle swarm optimin) OR TITLE(pso)) AND PUBYEAR IS
2009 AND (EXCLUDE(SUBJAREA, “ENVI”) OR EXCLUDE(SUBJAREA,
“BIOC”) OR EXCLUDE(SUBJAREA, “ENVI”) OR EXCLUDE(SUBJAREA,
“BIOC”) OR EXCLUDE(SUBJAREA, “CENG”) OR EXCLUDE(SUBJAREA,
“MEDI”) OR EXCLUDE(SUBJAREA, “CHEM”) OR EXCLUDE(SUBJAREA,
“HEAL”) OR EXCLUDE(SUBJAREA, “ECON”) OR EXCLUDE(SUBJAREA,
“NEUR”) OR EXCLUDE(SUBJAREA, “PHAR”) OR EXCLUDE(SUBJAREA,
“VETE”) OR EXCLUDE(SUBJAREA, “IMMU”))

A.4. Query to retrieve papers related to ACO

(TITLE(ant colony optimin) OR TITLE(aco)) AND PUBYEAR IS 2009
AND (EXCLUDE(SUBJAREA, “ENVI”) OR EXCLUDE(SUBJAREA, “BIOC”)
OR EXCLUDE(SUBJAREA, “ENVI”) OR EXCLUDE(SUBJAREA, “BIOC”) OR
EXCLUDE(SUBJAREA, “CENG”) OR EXCLUDE(SUBJAREA, “MEDI”) OR
EXCLUDE(SUBJAREA, “CHEM”) OR EXCLUDE(SUBJAREA, “HEAL”) OR
EXCLUDE(SUBJAREA, “ECON”) OR EXCLUDE(SUBJAREA, “NEUR”) OR
EXCLUDE(SUBJAREA, “PHAR”) OR EXCLUDE(SUBJAREA, “VETE”) OR
EXCLUDE(SUBJAREA, “IMMU”))

Table 10
Cross validation of Ruspini dataset.

Measures Random centroids Random datasets Cross validation

Intra cluster
Mean 11.40 11.42 11.34
StdDev. 0.17 0.02 0.26
Best 11.39 11.39 10.80
Worst 11.45 11.45 11.85
Fitness
Mean 856.85 858.57 761.54
StdDev. 0.16 1.22 18.68
Best 855.00 856.03 721.88
Worst 870.00 860.98 803.33
Inter cluster
Mean 1079.03 1078.28 1080.77
StdDev. 2.34 4.59 7.27
Best 1092.00 1085.81 1094.24
Worst 1080.23 1070.52 1065.24
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