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Medical systematic reviews answer particular questions within a very specific domain of expertise by
selecting and analysing the current pertinent literature. As part of this process, the phase of screening
articles usually requires a long time and significant effort as it involves a group of domain experts eval-
uating thousands of articles in order to find the relevant instances. Our goal is to support this process
through automatic tools. There is a recent trend of applying text classification methods to semi-automate
the screening phase by providing decision support to the group of experts, hence helping reduce the
required time and effort. In this work, we contribute to this line of work by performing a comprehensive
set of text classification experiments on a corpus resulting from an actual systematic review in the area of
Internet-Based Randomised Controlled Trials. These experiments involved applying multiple machine
learning algorithms combined with several feature selection techniques to different parts of the articles
(i.e., titles, abstract, or both). Results are generally positive in terms of overall precision and recall mea-
surements, reaching values of up to 84%. It is also revealing in terms of how using only article titles pro-
vides virtually as good results as when adding article abstracts. Based on the positive results, it is clear
that text classification can support the screening stage of medical systematic reviews . However, selecting
the most appropriate machine learning algorithms, related methods, and text sections of articles is a
neglected but important requirement because of its significant impact to the end results.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Medical Systematic Reviews support the conversion of medical
research into practice by bringing together the collection of exist-
ing studies that are relevant to a specific medical question. This
synthesis of current evidence benefits different stakeholders such
as clinicians and policymakers.

Although Systematic Reviews started as early as the 18th cen-
tury (Lind, 1753), their production exploded after the second half
of the 20th century along with a significant increment of publica-
tions in medical, nursing, and allied health care (Shonjania & Bero,
2001). Unfortunately, the significant growth of clinical trials in the
last decades, has not been matched by a suitable number of sys-
tematic reviews produced (Bastian et al., 2010). An analysis of
the situation at the time revealed that because the amount of work
required to produce reviews is increasing, there was a majority of
systematic reviews with many years out of date (Shojania et al.,
2007).

The general process for creating a systematic review is based on
three main steps: (i) conducting broad searches in the relevant lit-
erature, (ii) manually screenning titles and abstract of retrieved
citations, and (iii) reviewing full articles of those citations identi-
fied as relevant. No matter how critical and necessary these steps
are, they are very time consuming, especially the screening of cita-
tions and the review of candidate studies.

Multiple text mining techniques have been gaining popularity
over the past years as a consequence of the ever increasing amount
of available digital documents of unstructured text and, thus, the
necessity of analysing their content in flexible ways (Hearst,
1999). From these techniques, one of the most prominent is text
classification using machine learning, which consists of automati-
cally predicting one or more suitable categories for unstructured
texts written in natural language (e.g., English, Spanish, etc.). Text
classification is currently a major research area with many com-
mercial and research applications in a large number of domains.
Medicine is one of the most evident areas where text mining meth-
ods have multiple applications, such as the discovery of new liter-
ature (Swanson, 1986), concept-based search (Ide, Loane, &
Demner-Fushman, 2007), or automatic bibliographic update in
clinical guidelines (Iruetaguena et al., 2013).

This work was motivated by the hypothesis that text classifica-
tion could assist the production of Systematic Reviews by support-
ing reviewers in their process of manually screening published
articles. Although this assumption is not new, as there has been re-
cently an incipient while still modest body of research in this
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direction (Thomas, McNaught, & Ananiadou, 2011), our contribu-
tion is focused on: (i) studying the application of a comprehensive
selection of machine learning algorithms, (ii) combining these
algorithms with multiple feature selection methods and different
numbers of features, (iii) selecting different parts of citations (i.e.,
title, abstract, or both), and (iv) applying these methods to the
medical domain of Internet-Based Randomised Controlled Trials.

In such a way, an automatic text classification system could be
trained with a set of articles from the medical domain in question
after the collection of studies had been already manually screened.
As these articles describing primary studies had been manually la-
belled as either relevant or irrelevant, they fit well with the para-
digm of a two-class text classifier. Once the system was trained,
it was ready to automatically classify unseen articles, therefore
providing input into the screening process similarly to a human ex-
pert. In consequence, this system would not aim at replacing the
persons involved in the decision process but to complement and
assist them. Contrary to other previous studies covered by Sec-
tion 4, where they directly selected either the abstract of the full
article to train and test the classifiers, we were interested in inves-
tigating what sections of the articles provided the best results. We
also applied a bigger variety of classifiers than other previous stud-
ies, in addition to multiple feature selection methods.

This paper is organised as follows. Section 2 describes the meth-
ods used in this work to automatically classify articles. Section 3
describes the manual process for performing systematic reviews
in medicine and how it can be supported by text classification. Pre-
vious efforts in this area of research are described in Section 4. The
design and analysis of the experiments proposed to validate our
hypothesis is provided by Section 5 The paper concludes with Sec-
tion 6, which also suggests some ideas for future work.

2. Text classification

Text mining consists of discovering of previously unknown
information from existing text resources (Hearst, 1999). It is also
called intelligent text analysis, text data mining, or knowledge-dis-
covery in text. Text mining is related to data mining, which intends
to extract useful patterns from structured text or data usually
stored in large database repositories. Instead, text mining searches
for patterns in unstructured natural language texts (e.g., books,
articles, e-mail messages, Web pages, etc.). Text mining is a multi-
disciplinary field that includes several tasks such as text analysis,
clustering, categorisation, summarisation, or language
identification.

Text classification is one of key text mining tasks that has
gained significant popularity over the last decade or so. One of
the main reasons for it is the increasing amount of digital docu-
ments available and thus the necessity to access their content in
flexible ways (Sebastiani, 2002). Text classification is also referred
to as Text Categorisation, Document Classification, or even Topic
Spotting. The current approach to text classification is applying
the machine learning paradigm that uses of a set of previously cat-
egorised documents to automatically build a categoriser by learn-
ing from this data (i.e., inductive inference). As part of this whole
process, each text document is represented by a feature vector,
thus dismissing the order of words and other grammatical issues,
as this representation is able to retain enough useful information
for the classification task (Salton, 1989).

The next sections describe the sequential steps that shape text
classification.

2.1. Document preprocessing

The preprocessing stage starts by tokenising documents. In this
step, a text document is transformed into smaller units known as
words or terms. It is common that the process also involves the re-
moval of certain characters such as non-alphabetical ones, as well
as converting them into lower case. After tokenisation, there are
two further steps performed: removal of stop words and stemming
of words.

A stop word is a term that is considered not to add significant
semantic meaning to sentences. Therefore, they can be safely re-
moved without affecting the whole meaning of the sentence. They
mainly consist of topic-neutral words like articles and
prepositions.

Stemming is the process of normalising words by applying mor-
phological rules that allow a speaker to derive variants of the same
idea to evoke an action (i.e., verb), an object or concept (i.e., noun),
or a property (i.e., adjective) (Lovins, 1968). For example, the words
activate, activating, activeness, activation are derived from the same
stem activ and all share an abstract meaning of action or move-
ment. Stemming does the reverse process, deducing the stem from
a fully suffixed word according to its morphological rules. These
rules concern morphological and inflectional suffixes. The former
type usually changes the lexical category of words whereas the lat-
ter indicates plural and gender. Because most languages have a
large number of word stems, applying this technique will most
probably reduce the number of global unique terms in all the
documents.

These three preprocessing procedures described above (tokeni-
sation, stop-word removal, and stemming) are highly dependent
on the language in question. Therefore, the preprocessing of docu-
ments can be considered to be language dependent.

2.2. Document modelling

After the documents have been preprocessed, the extracted
information from each document is used to build a model repre-
senting that particular instance. Feature Selection contributes to
this goal by reducing the overall dimensionality of terms, thus
allowing the posterior creation of feature vectors to represent the
documents. This step is crucial as machine learning algorithms
usually work better on low-dimensional data, and they may re-
quire too much time or memory when the dimensionality of the
data set is high (Salton, 1989). In other words, Feature Selection
consists of choosing the subset that contains the most relevant
terms of all the existing ones in the collection of training
documents.

Because text classification depends on a well-defined set of cat-
egories, Feature Selection can be local or global. Global Feature
Selection consists of generating a subset of terms from all the
terms in all categories, while local Feature Selection creates a sub-
set for each document category, where the most relevant features
of the category are included.

Term Frequency (TF) is a very simple yet effective term evalua-
tion function based on counting how many times each term ap-
pears across all documents.

The higher this count, the more relevant this term is considered.
Document Frequency (DF) and inverse document frequency (IDF)
are very similar to TF and are based on the count of documents
each term appears in. The reason for having these two complemen-
tary functions is that in some cases, and depending on the charac-
teristics of the document collection, the feature selection may
work better when only the terms that appear in the most docu-
ments are kept, while in other situation it may be just the opposite.

The term evaluation function v2 calculates the dependence be-
tween the occurrences of a term and each category based on the
number of expected vs observed occurrences.

After feature selection, the documents are then modelled. A
very commonly used algebraic model is the Vector Space Model
(VSM), which represents text documents in a high-dimensional
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space where each of its dimensions corresponds to a word in the
document collection and each document is represented by a fea-
ture vector. One of the most common methods is term frequency
related to its inverse document frequency (TF/IDF) (Baeza-Yates
& Ribeiro-Neto, 1999; Salton & Buckley, 1988), that estimates a
weight for each term in a document, where the term frequency
in the given document offers a measure of the relevance of the
term within a document, while the document frequency is a mea-
sure of the global relevance of the term within a collection of doc-
uments. In particular, considering a collection of documents D
containing n documents, so that D = {d0, . . . ,dn�1}, where a single
document is identified by di,0 6 i < n and contains a collection of
terms di ¼ ft0; . . . ; tjdi j�1g, where jdij indicates its size. Finally, the
value of TF/IDF for a term contained in a document within a collec-
tion of documents was given by

TF=IDFðdi; tj;DÞ ¼ TFðtj ;dÞ � log2IDFðtj;DÞ ¼
jtj j

maxfTFðt0 ;diÞ; . . . ;TFðtjdi j�1 ;diÞg
� log2

jDj
jD � tj j

;

ð1Þ

where jtjj is the number of times that the term tj occurs in the doc-
ument di (which is normalised using the maximum term frequency
found in di) and jD � tjj indicates in how many documents tj

appears.

2.3. Machine learning algorithms

There is a wide variety of machine learning algorithms for data
classification (Aggarwal & Zhai, 2012) that can be applied to text
classification . However, it is important to take into account that
words in text documents represent data attributes that are gener-
ally quite sparse and high dimensional, due to the combination of
usually large dictionary size and the low frequencies of most of its
words.

We selected a range of classification algorithms based on the
diversity of the underlying machine learning methods that support
them. The types of algorithms considered included linear, probabi-
listic, example-based, and profile-based. The following sections
provide a brief description of them.

2.3.1. Naïve bayes
Naïve bayes is a probabilistic classification algorithm based on

the assumption that any two terms from T = {t1, . . . , tjTj} represent-
ing a document d and classified under category c are statistically
independent of each other (Lewis, 1998). This can be expressed by

PðdjcÞ ¼
YjTj

i¼1

PðtijcÞ ð2Þ

The category predicted for d is based on the highest probability gi-
ven by

argmaxPðcjdÞ ¼ argmaxPðcÞ PðdjcÞ ¼ argmaxPðcÞ
YjTj

i¼1

PðtijcÞ ð3Þ

Two commonly used probabilistic models for text classification
under the naïve bayes framework are the multi-variate Bernoulli
and the multinomial models. These two approaches were com-
pared in McCallum and Nigam (1998), with the multinomial model
proving to perform significantly better than the multi-variate Ber-
noulli, hence motivating us to choose the first for this work.

2.3.2. k-Nearest neighbours
k-Nearest Neighbours (kNN ) is an example-based classification

algorithm (Yang & Chute, 1994) where an unseen document is clas-
sified with the category of the majority of the k most similar train-
ing documents. The similarity between two documents can be
measured by the Euclidean distance of the n corresponding feature
vectors representing the documents

sðdi;djÞ ¼
Xn

f¼1

ðdif � djf Þ
2
: ð4Þ

All neighbours can be treated either equally or with an assigned
weight that corresponds to their distance to the document being
categorised. We selected two weighting methods: inverse to the
distance (1/s) and opposite to the distance (1 � s). In cases where
several of these k nearest neighbours are found to belong to the
same category, their weights are added together, so that the final
weighted sum is used as the probability score for that category.
Sorting them by rank yields a list of categories where to assign
the document.

Building a kNN categoriser also requires experimentally deter-
mining a threshold k, obtaining good results with 30 6 k 6 45
(Yang & Liu, 1999). It is also interesting to note that increasing
the value of k does not degrade the performance significantly.

2.3.3. Support vector machines
Support vector machines (SVM) are a group of supervised learn-

ing methods that can be applied to either classification or regres-
sion. It has become a popular algorithm in the last years due to
its good performance, with reports of possibly being the current
most accurate technique for text classification (Liu, 2011). It is also
important to note that in certain situations (e.g., large set of sup-
port vectors), using SVM can be significantly expensive computa-
tionally speaking (Burges, 1998).

Its foundation is the Structural Risk Minimisation principle
(Vapnik, 1995) from computational learning theory, which
searches for a hypothesis with the lowest error. More specifically,
given a set of two-class instances to classify, a SVM finds the un-
ique hyperplane in a high dimensional space that separates the po-
sitive and negative instances with maximum margin (i.e.,
minimum error). Those instances defining an hyperplane are
known as support vectors. In consequence, the answer to a classi-
fication problem is given by the support vectors that determine the
maximum margin hyperplane. This is known as a linear classifier.
In those cases where classes cannot be separated by a linear clas-
sifier, the features of the instances are mapped into a feature space
using nonlinear functions called feature functions. The nonlinear
mapping induced by the feature functions is computed with spe-
cial nonlinear functions called kernels (Joachims, 2002). In this
case, the solution is defined as a weighted sum of the values of cer-
tain kernel function evaluated at the support vectors.

In other words, given a set of training documents D = {d0,d1, -
. . . ,dn}, where di represents the feature vector for a document cat-
egorised as ci 2 {1, �1}n with 0 6 i < n, the support vector machines
are based on solving the optimisation problem expressed by

max
ai

Xn�1

i¼0

ai �
1
2

X
i;j

aiajcicjKðdi;djÞ; ð5Þ

with ai P 0 and K representing the kernel function. Although new
kernels are being proposed by the research community, the most
established instances include the linear kernel where K(di,dj) = di -
� dj, the polynomial kernel where K(di,dj) = [di � dj + 1]b, the Gaussian
radial basis function kernel where Kðdi;djÞ ¼ expð�ckdi � djk2Þ for
c > 0, and the sigmoid kernel where K(di,dj) = tanh(jdi � dj + c) with
j > 0 and c < 0.

2.3.4. Rocchio
Rocchio is a profile-based classification algorithm (Moschitti,

2003) adapted from the classical Vector Space Model with TF/IDF
weighting and relevance feedback to the classification process. This
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type of classifier uses a similarity measure between a representa-
tion (also called profile) pi of each category ci and the unseen doc-
ument dj to classify. This similarity is usually estimated as the
cosine angle between the vector that represents ci and the feature
vector obtained from dj. Therefore, a document to classify is con-
sidered to belong to a particular category when its related similar-
ity estimation is greater than a certain threshold.

Rocchio needs a feature frequency function to be defined, such
as

sðf ;dÞ ¼ rðf ;dÞ logðjDj=nf ÞP
i2F rði;dÞ logðjDj=niÞ

; ð6Þ

where F is the set of all existing features with f 2 F, ni expresses in
how many documents fi appears, and r is the function of relative rel-
evance of multiple occurrences that can be defined by
r(f,d) = max(0, log(0,nf)).

The profile pi of a category ci is a vector of weights where one
instance is calculated by

wðf ; dÞ ¼max 0;
b
jDcj

X
d2Dc

sðf ;dÞ � c
jDcj

X
d2Dc

sðf ; dÞ

0
@

1
A; ð7Þ

where Dc is the set of documents belonging to c and Dc the set of
documents not belonging to c. The parameters b and c control the
relative impact of these positive and negative instances to the vec-
tor of weights, with standard values being b = 16 and c = 4 (Mos-
chitti, 2003).

2.4. Evaluation measures

Precision (p) and recall (q) are two common measures for
assessing how successful a text categoriser is. Precision indicates
the probability that a document assigned to a certain category by
the classifier actually belongs to that category. On the contrary, re-
call estimates the probability that a document that actually be-
longs to a certain category will be correctly assigned to that
category during the categorisation process. These two measures
are defined by

p ¼ TPi

TPi þ FPi
; q ¼ TPi

TPi þ FNi
; ð8Þ

where TPi indicates the number of true positives or how many doc-
uments were correctly classified under category ci. Similarly, FPi

indicates the number of false positives and FNi corresponds to false
negatives. Table 1 provides an overview of these measures.

Precision and recall are generally combined into a single mea-
sure called Fb, with 0 6 b 61. The parameter b, which is used to
find the appropriate balance between the importance of p and q,
is expressed by

Fb ¼
ðb2 þ 1Þpq

b2pþ q
: ð9Þ

Values close to 0 give more importance to p while those closer to1
provide more relevance to q. The most common applied value is 1,
Table 1
Category-specific contingency table of classification. It shows the expert decision
about a document belonging to a category, in relation to the classifier prediction.

Expert decision Classifier prediction Result

Yes Yes TP
Yes No FN
No Yes FP
No No TN
which procures the same importance for both p and q. Therefore,
Eq. (9) is transformed into

F1 ¼
2pq
pþ q

¼ 2TPi

2TPi þ FPi þ FNi
: ð10Þ

Instead of using category-specific values of F1, an averaged measure
is usually preferred, concretely the macro- and micro-average, iden-
tified by FM

1 and Fl
1 respectively. Micro-averaging gives more

emphasis on performance of frequent categories (i.e., there are
more training documents for these categories) and is defined by

Fl
1 ¼

PjCj
i¼12TPiPjCj

i¼1ð2TPi þ FPi þ FNiÞ
; ð11Þ

where jCj indicates the number of categories.
By contrast, macro-averaging focuses on uncommon categories.

Micro-averaged measures will almost always have higher scores
than the macro-averaged ones. This can be expressed by

FM
1 ¼

PjCj
i¼1F1i

jCj : ð12Þ

Finally, the overall error is measured through

error ¼
PjCj

i¼1ðFPi þ FNiÞPjCj
i¼1ðTPi þ FPi þ FNi þ TNiÞ

: ð13Þ
2.5. Cross validation

Cross validation consists of partitioning a sample of data into
subsamples such that analysis is initially performed on a single
subsample, while further subsamples are retained in order for sub-
sequent use in confirming and validating the initial analysis. Cross
validation is a concept borrowed from statistics by text classifica-
tion where it is used to evaluate a categoriser by applying the mea-
sures described in Section 2.4. A learning algorithm is trained with
a percentage of all the existing training set. When the training is
finished, the data that was not used for training is then used to test
the performance of the trained algorithm.

There are different types of cross validation, with the n-fold
method (also called rotation estimation) possibly the most com-
mon (Kohavi, 1995). It consists of dividing the complete collection
of documents D into n mutually exclusive subsets called folds D0-

,D1, . . . ,Dn�1. Each fold should have the same number of documents
except for the last n � 1 subset that may end having more docu-
ments than the other subsets. Then, for each partition, one of the
n subsets Dt is used as the test set while the rest of the subsets DnDt

are used to create a training set. The accuracy estimation using
cross validation corresponds to the number of correct categorisa-
tions divided by the total number of documents in the collection
as expressed by

acccv ¼
P
hdj ;cii2Dk

dðCðD n Dj;djÞ; ciÞ
n

ð14Þ

with Dj being the test fold that incorporates the document dj with
category ci, d(i, j) = 1 if i = j or 0 otherwise, and C is the categorisation
function that returns a category.

3. Medical systematic reviews

A systematic review consists of synthesising the relevant pub-
lished literature representing the high-quality research evidence
that answers a specific research question (Sackett, Rosenberg,
Gray, Haynes, & Richardson, 1996). Systematic reviews provide
the foundation for Evidence-based Medicine (Greenhalgh, 2010),
which is based on the premise that medical knowledge, based on
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the accumulation of results from multiple scientific studies, is
more reliable than expert opinion. Although evidence-based re-
search and practice originated in medicine, they are currently used
in other areas including nursing, economics, software engineering
(Kitchenham et al., 2009), and social sciences (Petticrew & Roberts,
2006).

Fig. 1 depicts the general process of producing a systematic re-
view. It starts by proposing a health-related question, which is fol-
lowed by the pertinent retrieval of candidate scientific studies
from the literature. The corresponding search task should attempt
to cover all the existing literature without bias (Dubben & Beck-
Bornholdt, 2005) through a number of queries and filters that
may include a combination of controlled vocabulary and natural
language expressions.

Once all potential studies have been retrieved, the screening
phase consists of two or more reviewers reading each abstract in
order to determine its eligibility for a full-text review (The Cochra-
ne Collaboration, 2011). This screening process is typically per-
formed over collections of 2000–5000 bibliographic references,
and its main goal is to include all relevant articles (University of
York, 2008). At the end of the screening process, the number of rel-
evant articles detected would typically be around 200–400. Based
on our own experience, the time required for one person to pro-
ceed with screening 10,000 instances is about 500 hours (i.e., 20 in-
stances per hour). In other words, this is a very time-consuming
task.

The last step consists of retrieving the full text of these relevant
articles in order to systematically evaluate each one of them, even-
tually selecting about 10–50 of those that are both pertinent and
with a high standard of quality.

It is during the screening where automatic text classification
can be useful as Fig. 1 illustrates. We identify two possible ap-
proaches to take advantage of the text classifier: (i) a conservative
one where the classifier is used as a reassurance tool by reviewers,
DRA

Fig. 1. Overview of the traditional process to produce a systematic review modified by th
classifier can either replace or complement the input by a human expert depending on
who would pay especial attention to those articles in disagree-
ment, and (ii) an aggressive approach where one or more reviewers
are ‘replaced’ by the text classifier.

4. Related work

One of the first attempts of testing a similar hypothesis was re-
ported by Aphinyanaphongs, Tsamardinos, Statnikov, and Hardin
(2005). They applied naïve bayes and SVM text classifiers to a cor-
pus of internal medicine articles from the ACP Journal Club to dis-
cover that SVM offered the best performance in terms of
sensitivity, specificity, and precision.

More recently, Wallace, Trikalinos, Lau, Brodley, and Schmid
(2010) used a SVM classifier to three different collections of article
abstracts plus titles, determining that the system was useful to re-
duce the number of citations to manually screen by almost 50%.
The authors proposed a semi-automatic ‘aggressive’ approach with
reviewers trusting the text classifier by not screening those articles
it labelled as irrelevant.

Frunza et al. (2011) applied a naïve bayes classifier to a collec-
tion of 47,274 article abstracts previously manually labelled, using
20,000 abstracts for training and the rest for testing. They obtained
results that included very high recall values (up to 99%) at the ex-
pense of a moderate precision of 63%.

The most recent work (Bekhuis & Demner-Fushman, 2012) is
also the most complete so far. It consisted of applying kNN, naïve
bayes, and SVM classifiers, combined with Information Gain as
their method for feature selection, to either article titles or article
title plus abstracts. The experiments also showed positive results
where the initial set of documents to manually screen was reduced
by up to 46%.

The conclusion after looking at these previous instances is that
there is a disparity about the type of classifiers being used and the
text content selected from articles. Also, they did not analyse the
FT

e inclusion of automatic text classification to the citation screening phase. The text
the acceptable level of risk.
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impact of different types of feature selection methods and number
of selected features (i.e., dimensionality of the VSM) as part of the
classification process.

5. Validation

We considered appropriate to empirically evaluate our hypoth-
esis through a validation exercise. It is important to differentiate
verification and validation. The first consists of merely confirming
that the implemented system works sensibly and fulfils expecta-
tions, while the latter requires an accurate analysis of experimental
results with in relation to an existing set of actual results (Mihram,
1972).

For this purpose, Section 5.1 provides details on the character-
istics of the collection of articles under study. Section 5.2 describes
the selected configurations for machine learning algorithms and
related methods such as feature selection. The implementation of
these experiments is briefly described in Section 5.3, before Sec-
tion 5.4 provides and discusses the results.

5.1. Corpus

The corpus selected for this work is called Internet-Based Ran-
domised Control Trial (IBRCT) mapping. It was created with the
purpose of identifying those Randomised Controlled Trials (RCT)
that used the Internet as an intrinsic component to their clinical
trial process, including the phases such as design, information re-
trieval, statistical analysis, or reporting regardless of whether the
article describing the study explicitly established this fact.

In order to be included as relevant, a study had to fulfil the fol-
lowing criteria: (i) it had to be a RCT in the broad area of public
health, including educational and behavioural applications; (ii) it
used Internet, including the Web, to support its trial process; and
(iii) it might utilise mobile Internet as a supplementary technology.
Studies falling within the following categories were considered
irrelevant: (i) they only used mobile technology with no Internet
access; and (ii) they deal with social or educational care but not
from a purely health research focus.

The corpus was prepared by querying multiple medical data
bases through very specific search approaches. The latter was
based on search expressions that included synonyms, natural lan-
guage, and keywords in order to identify the appropriate concepts
to find. Moreover, these queries were designed in order to favour
high recall (see Section 2.4 for more details) at the expense of sig-
nificant noise (i.e., low precision as defined also in Section 2.4). The
data bases selected were Medline, Embase, Cinahl, Central, LILACS,
PsycInfo, ERIC, Pedro, OT Seeker, in addition to general Web search
engines such as Google, Yahoo, Copernic, and manual searches in
the journals Journal of the American Medical Informatics Associa-
tion (JAMIA) and Journal of Medical Internet Research (JMIR). Each
of the retrieved articles were completely read and evaluated by the
committee of experts in order to determine its suitability.

The resulting corpus consists of 1941 articles divided into 510
relevant and 1431 irrelevant instances. Each article includes its ti-
tle, author list, journal, keywords, and abstract. The total number of
terms is 631,435 terms in total, with 61,752 of them unique. This
corresponds to an average of 325 per article, where the shortest
article has 48 terms and the longest 1121.

5.2. Experiments

Three types of documents were prepared based on what text
was selected from the citations: (i) only titles, (ii) only abstracts,
or (iii) titles plus abstracts.

These documents were selected in an arbitrary order to be pre-
processed by following the steps covered by Section 2.1. We
performed a preliminary removal of both numeric characters and
stop-words to the articles. Afterwards, we applied a Porter stem-
mer (Porter, 1980) to the remaining terms in order to remove the
most common morphological and inflectional endings. In conse-
quence, the initial dictionary was reduced by 40%, thus leaving
380,384 terms, with 16,580 of them being unique. This preprocess-
ing configuration was chosen as the experimental baseline after
several having performed preliminary trials that included combin-
ing term n-grams (Tan, Wang, & Lee, 2002), no stemming, and no
stop-words with inferior results.

The machine learning algorithms selected were the 4 different
instances explained in Section 2.3: Naïve bayes, kNN, SVM, and
Rocchio. We parametrised kNN by chosing the value k = 35, which
is known to perform well (Yang & Liu, 1999). For SVM, a linear ker-
nel was preferred due to its good balance between execution time
and accuracy of results. In the case of the Rocchio classifier, it was
configured with the standard parameter values a = 0.25, b = 16,
c = 4, and a threshold of 0.7 (Moschitti, 2003).

Feature selection was performed using the 7 different methods
explained in Section 2.2: TF, DF, IDF, v2, local TF, local DF, and local
IDF. The number of features to build the vectors representing the
articles (i.e., the number of dimensions for the VSM) included: 5,
10, 25, 50, 100, 250, 500, 1000, 2000, 4000, 8000, and 15000. Fea-
ture vectors were built using the function TF/IDF as described in
Section 2.2 by Eq. (1).

The set of documents were divided into training and testing
subsets. Because we used cross validation (see Section 2.5) with
10 folds, the number of documents for training was 1747 while
leaving 194 documents for testing in each of the 10 iterations.

Table 2 offers a summary of all the experimental combinations
of machine learning algorithms, feature selection methods, and
number of features. Collectively, they amount to a total number
of 336 classification processes for each cross-validation fold, thus
increasing the number of these to 3360 for each of the three doc-
ument configuration. In consequence, the total number of classifi-
cation processes was 10,080.

5.3. Implementation

These experiments were implemented as a text-mining applica-
tion based on the general text-mining application framework
called Pimiento (García Adeva & Calvo, 2006). This software was
written using Java Standard Edition (J2SE) and aimed at providing
developers with the primary benefits of OOAF, such as modularity,
reusability, extensibility, and inversion of control (Fayad &
Schmidt, 1997).

Pimiento offers numerous features to suit both a production
environment where performance is crucial and a research context
in which highly configurable experiments must be executed. It can
be used in production systems due to its high scalability based on a
cache system that allows for precise control of the amount of
memory allocated, and its performance efficiency thanks to a care-
fully tuned-up code-base. These features are offered as a collection
of software components that cover all the functionalities that it
tackles including categorisation, language identification, cluster-
ing, summarisation, and similarity analysis.

Because the text classification functionality offered by Pimiento
offers the learning algorithms described in Section 2.3, we did not
have to implement any new algorithm. This functionality supports
preprocessing of documents in English, German, French, Spanish,
and Basque. However, only the English preprocessor was needed
for this work. There is also complete evaluation of results using
the evaluation measures described in Section 2.4 such as the cate-
gory-specific measures TPi, FPi, FNi, pi, qi, F1i

and the averaged
measures pl, ql, Fl

1 , pM , qM , FM
1 , as well as partitioning of the test-

ing space using n-fold cross-validation as explained in Section 2.5.



Table 2
Summary of classification experiments.

Classification
algorithms

Feature selection methods Number of features Number of documents Document sections

naïve bayes , kNN ,
SVM, Rocchio

TF, DF, IDF, v2, local TF, local
DF, local IDF

5, 10, 25, 50, 100, 250, 500, 1000, 2000,
4000, 8000, 15000

1747 Training, 194 testing, 10-fold
cross validation

Title, abstract, title
and abstract

Fig. 2. Fl
1 scores of classifying the articles based on their titles.
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The experiments were executed in a computer server based on a
4-core Intel Xeon processor, 16 GB of RAM and the Linux operating
system. Execution time varied significantly among classifiers,
depending mostly on the machine learning algorithm in question.
Naïve bayes and Rocchio were always the fastest, taking a few sec-
onds to complete for a 10-fold cross validation task. For the same
work kNN took about 40 min, while SVM was unpredictable due
to its stochastic nature, but ranging from a few minutes to several
hours. It is interesting to note that the number of selected features
only contributed marginally to the increase in execution time.

5.4. Results

We chose the micro-averaged measure Fl
1 , explained in Sec-

tion 2.4, in order to provide a general measure of performance by
the classifiers.
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Three sets of results were prepared, based on what parts of an
article were selected to form the documents used by the different
classifiers, as described in previous Section 5.2. Thus, Fig. 2 pro-
vides an overview of Fl

1 values for each of the 4 classifiers com-
bined with the 7 feature selection methods over a number of
features when only selecting the titles of the articles. Likewise,
Fig. 3 does so when only the abstracts were taken into account,
while Fig. 4 corresponds to both titles and abstracts. Each data
point in these graphs corresponds to the Fl

1 value for the average
of the 10 classification tasks as produced by the 10-fold cross val-
idation process.

When using only titles, Fig. 2(c) shows that SVM was the classi-
fier with better performance in terms of Fl

1 , with values frequently
between 0.8 and 0.85. Naïve bayes and Rocchio, represented by
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Fig. 3. Fl
1 scores of classifying the a
Fig. 2(a) and (d) respectively, were both quite similar while slightly
inferior to SVM. Fig. 2b made it clear that kNN was the worst per-
forming classifier, which in some cases provided significant poor Fl

1

values — even below 0.4.
SVM also performed better than the rest when both abstracts

and titles plus abstracts were selected from the articles to classify,
as showed by Fig. 2 and Fig. 4(c) respectively.

Both naïve bayes and Rocchio performed slightly better when
using only abstracts (Fig. 3(a) and (d) respectively) instead of only
titles (Fig. 2(a) and 3(a) respectively). However, for these two clas-
sification algorithms there was no remarkable difference when
using only abstracts as opposed to using abstracts plus titles, as
it can be observed by comparing Fig. 3(a) to Fig. 4(a) for naïve
bayes and Fig. 3(a) to Fig. 4(a) for Rocchio.
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(b) kNN classifier.
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Fig. 4. Fl
1 scores of classifying the articles based on their titles and abstracts.
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By contrast, using SVM did not seem to make a major difference
regardless of the article contents selected, except for an insignifi-
cant difference in the averaged error that can probably be ignored.
It only made some difference in the number of features required, as
could be observed by comparing Figs. 2(c), 3(c), and 4(c). In other
words, when only titles were selected SVM required a larger num-
ber of features to perform as well as when more article content was
selected with fewer features. An explanation for this is that the
more the contents selected from articles, the higher the diversity
of features.

In general, SVM clearly showed superiority over the rest of clas-
sifiers, not only in classification performance but in the number of
required features to perform well. This conforms with established
research that describes how SVM tends to work well with few
dimensions (Sindhwani & Keerthi, 2006). This situation might indi-
cate that the number of ‘quality’ features in the corpus was small,
based on the size of documents and the number of them. Another
outcome is that the selection feature methods did not provide a
dramatic difference in performance. It might seem as if SVM
worked better when using term frequencies (either global or local),
while the other algorithms preferred some type of document fre-
quency (either direct, inverse, global, or local).

Table 3 provides a detailed account about the classifier config-
uration that produced the best results for each combination of clas-
sification algorithm and article type. By looking at these
measurements, a positive outcome was that the values of Fl

1 were



Table 3
Best results by classification algorithm, feature selection method, number of features, and article type.

Article Classifier Category-specific measures Averaged measures

Category TP FP FN TN q p F1 qM pM
FM

1
ql pl Fl

1
Error

Title Naïve bayes Relevant 43 38 7 104 0.86 0.53 0.65 0.8 0.73 0.74 0.76 0.76 0.76 0.18
DF, 500 Irrelevant 104 7 38 43 0.73 0.94 0.82
Rocchio Relevant 13 6 37 136 0.27 0.68 0.38 0.61 0.73 0.62 0.77 0.77 0.77 0.16
v2, 2000 Irrelevant 136 37 6 13 0.96 0.79 0.86
kNN Relevant 3 5 47 138 0.06 0.39 0.11 0.51 0.57 0.47 0.73 0.73 0.73 0.18
TF, 5 Irrelevant 138 47 5 3 0.96 0.74 0.84
SVM Relevant 31 12 19 130 0.63 0.72 0.67 0.5 0.8 0.78 0.84 0.84 0.84 0.12
TF, 100 Irrelevant 130 19 12 31 0.91 0.87 0.89

Abstract Naïve bayes Relevant 43 31 7 111 0.86 0.58 0.69 0.82 0.76 0.77 0.8 0.8 0.8 0.15
Local IDF, 8000 Irrelevant 111 7 31 43 0.78 0.94 0.85
Rocchio Relevant 15 7 35 135 0.3 0.67 0.41 0.62 0.73 0.64 0.78 0.78 0.78 0.15
IDF, 15000 Irrelevant 135 35 7 15 0.95 0.79 0.86
kNN Relevant 2 5 49 137 0.04 0.31 0.07 0.5 0.52 0.45 0.72 0.72 0.72 0.19
TF, 50 Irrelevant 137 49 5 2 0.96 0.74 0.84
SVM Relevant 34 15 16 128 0.69 0.7 0.69 0.79 0.79 0.79 0.84 0.84 0.84 0.12
TF, 10 Irrelevant 128 16 15 34 0.89 0.89 0.89

Title and abstract Naïve bayes Relevant 43 31 7 111 0.86 0.58 0.69 0.82 0.76 0.77 0.8 0.8 0.8 0.15
Local IDF, 8000 Irrelevant 111 7 31 43 0.78 0.94 0.853
Rocchio Relevant 17 9 33 134 0.33 0.64 0.44 0.63 0.72 0.65 0.78 0.78 0.78 0.15
IDF, 15000 Irrelevant 134 33 9 17 0.94 0.8 0.86
kNN Relevant 2 6 48 136 0.05 0.31 0.08 0.5 0.52 0.46 0.72 0.72 0.72 0.19
TF, 5 Irrelevant 136 48 6 2 0.96 74 0.83
SVM Relevant 33 12 17 130 0.7 0.72 0.7 0.79 0.8 0.79 0.84 0.84 0.84 0.11
Local TF, 50 Irrelevant 130 17 12 33 0.91 0.88 0.9
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produced by a generally well-balanced combination of precision
and recall values, both when looking at category-specific measures
(i.e., p and q ) or averaged measures (i.e., pl, ql, pM, and qM ).

Within the context of how the classifier was intended to be use-
ful, it was sensible to assume that one of the key measures to pay
attention to was the number of false negative predictions of rele-
vant articles, which corresponded to the measure FN for category
relevant (i.e., FP for category irrelevant). The reason is that these
mistakes corresponded to relevant articles classified as irrelevant.
This is especially important if the automatic classification was used
aggressively as described in Section 3. If this is the case, the number
of citations to be screened manually would be reduced by up to
57% in the case of naïve bayes and 77% for SVM, at the cost of miss-
ing relevant articles. In other words, irrespective of overall mea-
sures such as Fl

1 , pl, or ql, naïve bayes seemed to provide the
best results in terms of false negatives, with only 7 articles mistak-
enly identified as such.

By contrast, other mistakes such as false positives were less
important because they did not exclude relevant articles — instead,
they merely increased the burden by including irrelevant articles
as relevant. These are probably important aspects to consider care-
fully when applying a text classifier to support decision-making.
6. Conclusions and future work

We empirically evaluated the application of automatic text clas-
sification to the process of medical systematic reviews, in order to
facilitate the manual process carried out by experts during the cita-
tion screening phase. The experiments involved multiple classifica-
tion algorithms combined with several feature selection methods,
and number of features, applied to different parts of the given arti-
cles. The analysis of these experiments showed overall positive re-
sults, especially when using the algorithms naïve bayes and SVM.
Naïve bayes offered the lowest rate of mistakes in the form of FN
for any type of article, whereas SVM performed as well when using
only titles as then appending abstracts. The discussion of the re-
sults explained how the selected method for feature selection
can make significant difference, contrary to common practice of
ignoring this aspect of the text classification process. In this regard,
the experiments also provided an interesting insight into how a re-
duced number of features can produce the best results. In sum-
mary, the presented results indicated that including automatic
text classification to the manual screening process when perform-
ing systematic reviews, can substantially reduce the number of
articles reviewers have to analyse.

Regarding future work, there are two aspects that could be ex-
plored further. One is attempting to improve classification perfor-
mance by applying ensembles of classifiers (Valentini & Masulli,
2002). Another would consist of performing similar experiments
with other collections of articles within other medical domains,
in order to contrast how useful automatic text classification to
the decision-making process.
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