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Abstract—Recent technology andmarket trends have demanded
the significant need for feasible solutions to video/camera systems
and analytics. This paper provides a comprehensive account on
theory and application of intelligent video systems and analytics.
It highlights the video system architectures, tasks, and related an-
alytic methods. It clearly demonstrates that the importance of the
role that intelligent video systems and analytics play can be found
in a variety of domains such as transportation and surveillance.
Research directions are outlined with a focus on what is essential
to achieve the goals of intelligent video systems and analytics.

Index Terms—Behavior detection, computer vision, intelligent
video system (IVS), surveillance, video analytics, visual context
recognition.

I. INTRODUCTION

I NTELLIGENT video systems (IVS) and intelligent video
analytics (IVA) have been substantially growing from prac-

tical needs in the past decade, being driven by a wide range
of applications in transportation and healthcare [1]. In the last
years, the video analytics market has been about 60% annual
compound growth.1 By traditional video surveillance, a watch-
stander often faces the duty of staring at hundreds of screens. In
fact, it is a crucial challenge if a person has to monitor every-
thing effectively even between only two screens. Human eyes
get tired quickly after few minutes if one has to draw its atten-
tion among different screens. Even with just a single screen for
a period as long as 30 min, one can miss more than 80% of the
activity in the scene.2

Regarding the terminology, Elliott recently defines that an
IVS is “any video surveillance solution that utilizes tech-
nology to automatically, without human intervention, process,
manipulate and/or perform actions to or because of either
the live or stored video images” [2]. IVS embeds computer
vision technologies into video devices such as cameras, en-
coders, routers, digital video recorders (DVRs), network video
recorders (NVRs), and other video management and storage
devices [3]. An IVS provides a constant, unblinking eye on
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any scene. With its IVA, the system helps government, public
and commercial organizations to transform video surveillance
into a real-time, proactive, event-driven process. The virtual
operator stays focused by introducing a level of automation to
video monitoring. Alert conditions may be set with real-time
processing algorithms to deliver information for a security team
to react swiftly and take action. Alerts may also be sent via
wireless, Internet, and telephone lines with real-time detecting
and tracking of intruders, vehicles, or threats [4].
The rapidly increasing demand in this area challenges both

academic researchers and industrial practitioners to timely
provide analytics theory and system solutions to meet the
overwhelming global need. Generally speaking, the challenge
is twofold: though hardware of video systems have been
fast-developing in the past years thanks to the introduced
digital signal processors, hardware-oriented issues are still
demanding and unsolved especially for specific applications,
system scalability, capability, and real-time performance [5]; on
the other hand, algorithm-based analytics have been targeted as
the breakthroughs for intelligent video systems and analytics.
The state of the art in computer vision and computational
intelligence has confirmed that algorithms and software will
make a substantial contribution to practical solutions to video
analysis and applications in the near future. Hence, this survey
is timely to bring the ideas, solutions of the worldwide research
community in a summary, to present the latest advances and
developments in video systems design, tracking, modeling,
behavior understanding, abnormal detection, real-time per-
formance and practical implementation of intelligent video
systems and analytics.
There are over 6000 research papers published since 1971,

falling into the topics of intelligent video systems and analytics.
The concept appeared in early 1970s but the subject emerged
to the community around 1980s and developed slowly in that
decade, it was well investigated in 1990s and the topic devel-
oped further rapidly since 2000. In short, the published papers
addressed three aspects of video systems: hardware, software
and their applications.
In this paper, we highlight advances in intelligent video sys-

tems and analytics in terms of hardware, software and their ap-
plications. This survey concentrates the contributions in most
recent five years, although some fundamental work has been at-
tracted to researchers as early as in 1970s [6]. For early contri-
butions on video surveillance, please refer to [7].

II. VIDEO SYSTEMS

A. Video System Architecture

Intelligent video systems and services incorporate hardware
system integration, management, and video processing to end-
point users. A complete solution needs to provide the design,
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Fig. 1. Overview of the IVS architecture.

integration, installation, and training. System architecture and
performance are the main concerns of both providers and users
[8]. There are several generations of video systems, i.e., tradi-
tional analog systems, analog DVR systems, networked analog
DVR systems, networked video encoder systems, networked
IP-camera systems, and cloud-based video systems. Fig. 1 il-
lustrates the overview of present video systems. Architectures
such as portable video systems with smart phones are also re-
search issues in the community [9], but that is beyond the scope
of this paper.
IVS requires analytic processing in either embedded cam-

eras or central servers. In contrast to traditional CCTV camera,
high-performance embedded cameras combine video sensing,
video processing, and communication within a single device
[10]. On the other hand, embedded smart cameras have limited
processing power, memory, and bandwidth [11].
To decrease the computational complexity of computer vision

algorithms, one way is to achieve low-level image processing
at the level of sensor acquisition. Sato et al. introduced the de-
sign and implementation of a hybrid IVS that consists of an em-
bedded system and a personal computer-based system. The em-
bedded system performs some of the image processing tasks and
sends the processed data to the computer [12].

B. Distributed IVS

There are two categories of IVS architectures, i.e., central-
ized mode and distributed mode [13]. In centralized architec-
tures, video and other information are collected by cameras and
brought back to a centralized server for further analysis. In dis-
tributed ones, the network cameras are intelligent and are ca-
pable of locally processing the video to extract relevant infor-
mation. On concern of connectivity for city surveillance [14],
Internet, cellular networks, and cloud-based video systems are
commonly considered to connect the cameras to feed back to
the city’s central network.
Remote surveillance systems and mobile surveillance sys-

tems can be deployed for working in harsh environments. They
can be integrated with interoperability solution, providing ex-
tended monitoring capability. The systems can also be powered
by power cable, self-contained battery power, solar or gener-
ator power sourcing. A variety of sensors have been developed
to monitor the Earth, ranging from in situ seismographic net-
works to hyperspectral imaging instruments. Despite an impres-
sive collection of sensing assets, there is still much untapped

potential with multiple instruments and remote sensing imagery
[15].
Integration of information from multiple cameras is essential

in movie production or intelligent surveillance systems [16],
[17]. Since complexity can be increased by increasing the
number of camera views [11], cooperative [18] and networked
[19] strategies are often developed in such IVSs.
In this aspect, Cheng et al. present an approach to recog-

nizing driver activities using a multiperspective multimodal
(i.e., thermal infrared and color) system for real-time tracking
of important body parts [20]. The surveillance task is for robust
tracking and profiling of human activities. Huang and Trivedi
introduce video arrays for real-time tracking of person, head,
and face in a controlled room [21].
There are a number of studies to enable smart video surveil-

lance in a multicamera network [22]. For example, Trivedi et
al.worked on dynamic context capture and distributed video ar-
rays for intelligent spaces [23]. A collaborative inference frame-
work is presented in [24] for visual sensor networks. An efficient
occupancy-reasoning algorithm is used in smart video surveil-
lance based on this kind of framework. The existence proba-
bilities are estimated for every camera, and they are combined
using a work-tree architecture with a distributed and collabora-
tive framework.

C. Video Quality Diagnosis

Video systems in poor environments are often associated with
poor video quality. Self-awareness of video quality provides a
means of diagnosis and alarm for system maintenance. An auto-
matically selected focusing region [25] and digital image stabi-
lization technique [26] are also useful for improvement of video
quality. Denoising techniques such as wavelet transform [27]
may also be adopted in IVA. Murino et al. present an adaptive
strategy for regulating the intrinsic parameters of a camera. The
parameter regulation procedure is based on the computation of
the quality of an acquired signal by means of a set of functions
which estimate the image goodness [28].

D. System Adaptability

1) Configuration and Calibration: System configuration and
design for wide-area surveillance include modality selection,
sensor planning, data fusion, and communication among mul-
tiple sensors. An IVS is often required to have far-field view,
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wide coverage, high resolution, cooperative sensors, and adap-
tive sensing modalities, sometime with dynamic objects in un-
controlled environments [29]. A smart sensor-based system in
[30] integrates a set of analog and digital computing units. The
architecture paves the way for a more compact vision system
and increases the performance reducing the data flow exchanges
with a microprocessor in control [3].
In an IVS, intensive image processing usually demands

relevant hardware implementations for real-time performance.
However, many applications are hard to be characterized a
priori, since they take different paths according to events
happening in the scene at runtime. Hence, reconfigurable hard-
ware devices are viable, with both real-time performance and
dynamic adaptability for the system [31].
System calibration is more related with 3-D computer vision

but is sometime also necessary in IVS. A camera calibration
using the geometry properties of road lane markings is proposed
in [32]. The camera parameters include pan angle, tilt angle,
swing angle, focal length, and camera distance. Results show
that the method outperforms the others in terms of accuracy and
noise sensitivity. For adaptive camera regulation for investiga-
tion of real scenes, Murino et al. analyze the feature histograms
to compute actual camera parameters, i.e., focusing distance,
aperture diameter, electronic gain, and black level [28].
2) Capability and Scalability: Cross-platform capability

and scalability are important features pursued in the IVS
community. Many studies treat central processing approaches
with scene analysis processed inside a central server. Such
approaches require tremendous efforts in building the system
and limit the scalability. To accomplish scalable IVSs, an
inference framework in visual sensor networks is necessary,
one in which autonomous scene analysis is performed via
distributed and collaborative processing among camera nodes
without necessity for a high-performance server [24]. IVSs
also require reliable transmission of high-quality video over
networks using available resources. Scalable video coding is a
video compression technology to support potential capabilities
[33]. Ghiasi et al. exploit reconfigurable hardware devices
embedded in a number of networked cameras [31].

E. Data Management and Transmission

IVSs collect, index, store, and deliver video 24/7 and allow
users to monitor scenic events in real time. Along with the
rapidly increasing mass of online and offline videos, it is
demanding to develop efficient methods for management and
retrieval of video clips/segments based on the semantic content
[34]. Hong et al. describe an intelligent video categorization
engine that uses the learning capability of artificial neural
networks to classify suitably preprocessed video segments into
a predefined number of semantically meaningful events [35].
Tsai et al. design a videotext in a picture display system which
can extract the videotexts in the subchannel and then combine
these videotexts with the main channel [36]. Single-instruction
multiple-data-based mechanisms were created to enhance
the computational efficiency on numerous convolutions and
accumulations in videotext extraction.
Managing imprecise queries using semantic content is dra-

matically harder than queries based on low-level features due

to the absence of a proper continuous distance function, which
is an active open research area [37]. Kim and Shibata present
a natural language approach to content-based video indexing
and retrieval [38]. The experiments illustrate the proposed index
structure has superior retrieval capabilities compare with those
used in conventional methods. The task also relates video struc-
turing, object, and text detection [39], [40], as well as visual
saliency analysis [41].
For reliable transmission of high-quality video in situa-

tions of web-based monitoring, as the live data through the
packet-switched network environment of the Internet can
result in packet loss and quality degradation. Grgurevic et
al. attempted the possibilities of insuring the credibility and
authenticity of the surveillance video by digital signing, using
the public key infrastructure as part of inter-operable traffic and
information system in the future intelligent transport-systems
[42].
A summary of some early works on intelligent surveillance

in visible and multimodal framework can also be found in [29]
and [43].

III. ANALYTIC TASKS

A. Object Analytic Attributes

1) Target Description: The analytic methods are heavily
overlapped with those in computer vision and image pro-
cessing. The workflow and the most important steps in video
surveillance usually include background subtraction, moving
foreground segmentation, object/shadow detection, tracking
and classification, and event recognition [44], [45]. In every
step of IVA, the target in the video sequence has to be repre-
sented by some mathematically describable features. Common
descriptors developed in the community include local color
histogram, texture, and geometrical shapes. On this issue,
researchers have been searching methods such as invariant
moments, parametrical geometry, wavelet, multiresolution
representation, statistical and structural approaches, edge his-
togram, tangent space, hidden Markov model (HMM), and
centroid-radii model.
The well-known RANSAC method is applied to estimate

parameters of a mathematical model of geometrical shapes,
parametrical geometry, and others. In particular, various types
of modified SAC algorithms have been proposed to improve
the tradeoff between computational cost and accuracy in
parametrical geometry. For example, MSAC is more robust
than RANSAC, because MSAC uses not only the number
of outliners but also the error of candidate pairs included in
Inliers. On the other hand, the method using genetic algorithm
sampling consensus (GASAC) can improve the computational
efficiency and accuracy in IVA.
2) Target Detection: Target detection and recognition by

contextual information contributes a part of analytic tasks in
IVS. It is well investigated to detect and classify traffic signs
from road images in real time as a support tool for guidance
and navigation of intelligent vehicles [46], but the hundreds
of traffic sign types and their various shapes and colors make
it still difficult to develop a generalized method of traffic sign
detection [47].
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Background subtraction is crucial for detecting moving ob-
jects in videos. For instance, to identify the entrance legality in
a restricted area, a background subtraction technique is used in
[48], to detect moving objects. Obtaining foreground regions by
subtracting its background image can be achieved by different
methods, such as the mixture of Gaussians [49], the kernel den-
sity estimation, or the concurrence of image variations.
Instead of using a frame-subtraction method, Gao et al.

introduce a Marr wavelet, kernel-based background modeling
method, and a background subtraction method based on bi-
nary discrete wavelet transforms [50]. Shadow removing is a
difficult task in a complex context. Li et al. attempted to use a
Gaussian mixture model (GMM) for background removal and
detection of moving shadows [51]. Two indices are defined for
characterizing nonshadowed regions where one indicates the
characteristics of lines; the other index can be characterized
by the information in gray scales of images which helps us to
build a newly defined set of darkening ratios based on Gaussian
models.
3) Target Tracking: IVA often needs detection and tracking

of suspicious objects [11]. Tsai et al. propose a dissimilarity
measure based on the optical-flow technique for surface defect
detection aiming [52]. Chen et al. develop a hierarchical back-
ground model based on segmented background images with
convincing experimental results [53].
Object tracking aims to detect the path of objects moving by

obtaining input from a series of images [54]. It tracks the object
by assuming the initial state and noise covariance. Wang et al.
present an efficient approach to embed hyperspectral imaging
capability in an intelligent panoramic scanning system for real-
time target tracking and signature acquisition [55].
For intelligent traffic monitoring, lane estimation and moving

object tracking are key technologies to success [50], [56]. Liu
and Yung construct a tracking cue as a weighted log likelihood
ratio by both the object GMM and its surrounding GMM [57].
It works even if the object appearance varies due to changes in
viewing angle, scale, and illumination. Kwak et al. proposed
detection-abandoned luggage with an intelligent surveillance
system for public places [44]. To recognize an abandoned lug-
gage event, a finite state automaton is constructed in which each
state represents a certain luggage status.
A monitoring method based on the cellular model is pro-

posed by Hsu et al. [58] to monitor human activities in the in-
door environment. Guan et al. argue that automatic detection of
human faces needs to combine feature extraction and face de-
tection based on local normalization, Gabor wavelets transform
and Adaboost algorithm [59]. An efficient sequential approach
is proposed in [4] and [60] to track multiple objects through
crowds in real-time IVSs. Morioka et al. worked on a coopera-
tive method for adaptive camera selection for target tracking in
multicamera system [18].
4) Real-Time Analytics: IVA algorithms often work in a real-

world environment and at real-time speed [44], in spite of offline
operation in a central analytics server. IVA includes a wide va-
riety of functions, e.g., idle object detection, trajectory tracking,
and spatial video denoising [27] in live image sequences. Events
should be immediately displayed for triggering corresponding
alerts, while the video clip can be stored for later review. Zhang

et al. employs fuzzy genetic algorithm to boost the computing
efficiency of covariance matching for optimal solution in a large
image region [61]. A real-time system is also used in [62] for
detecting tailgating, an example of complex interactions and
activities within a vehicle parking scenario, using an adaptive
background learning algorithm and intelligence to overcome the
problems of object masking, separation, and occlusion.
Furthermore, we must reduce computational time as much

as possible in image processing. General-purpose graphics pro-
cessing unit (GPGPU) has been applied feature extraction, e.g.,
scale-invariant feature transform (SIFT) and object tracking in
real-time. On the other hand, the standard SURF is several times
faster than SIFT.

B. Motion Pattern Recognition

Motion detection is extremely important in IVS. Automatic
interpretation of human and vehicle motion in surveillance
videos is inevitable to detect abnormal behaviors [63]. Based
on the motion property of the dynamic background and that of
the moving vehicles, Zhang et al. present an adaptive motion
histogram for vehicle segmentation. The algorithm consists of
two procedures: adaptive background update and motion his-
togram-based vehicle segmentation [64]. Vanne et al. propose
a configurable motion estimation architecture for a variety of
fast block-matching algorithms. The experiments reveal that
the proposed implementation is able to process real-time fixed
block-size motion estimation at full HDTV resolution.
Zhou et al. develop an automated activity analysis and sum-

marization for eldercare. They construct a silhouette extraction,
human detection, and tracking algorithm for indoor environ-
ments. Important activities of daily living statistics are extracted
for automated functional assessment [65]. A frequent trajectory
patterns mining algorithm is proposed in [66] to learn the object
activities and classify the trajectories in IVSs. The distribution
patterns of the trajectories were generated by an a priori-based
frequent patterns mining algorithm and the trajectories were
classified by the frequent trajectory patterns generated. An ap-
proach is proposed in [67] for learning sequenced spatiotem-
poral activities in outdoor traffic intersections.

C. Behavior and Event Analysis

In public venues, we cannot stop terror or crime by using
a virtual perimeter in the video. Site surveillance cannot rely
solely on motion to identify threats, but video content analysis
must be carried out for abnormal behavior detection or event
recognition. Behavior and event recognition detect and track ob-
jects in video images, applying a set of rules to detect crimes or
violations such as abandoned objects, stopped cars, object re-
moval, excessive speed, abnormal moving, crowding, loitering,
or stalking. In particular, for complexity analysis of human be-
havior in a moving crowd, extraction of object velocity and po-
sition can help mathematical modeling of crowd dynamics [68].
Atallah and Yang summarized three different types of be-

havior patterns, i.e., a sequence of clearly defined consecutive
activities, concurrent activities occurring at the same time,
and subactivities belonging to three activity classes occurring
concurrently and interleavingly [69]. Behavior modeling and
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activity recognition can then be carried out by analyzing these
patterns using methods like HMM [14], [70].
In this area, Albusac et al. [71] propose a conceptual frame-

work based on normality analysis to detect abnormal behaviors
by means of normality concepts. Normality specifies how a cer-
tain object should ideally behave in an environment. The def-
inition of the normal path concept is studied in order to an-
alyze behaviors in an outdoor environment. In [66], a fuzzy
c-means-based learning algorithm and a mean-shift-based clus-
tering procedure were used to construct the representation of
trajectories. The algorithm can be used to describe activities and
identify anomalies.
Behavior and event recognition are widely used in many

surveillance tasks, e.g., intrusion detection (entering a restricted
area) [72]. For neurological diagnosis and management, anal-
ysis is applied to classification of movement disorders [73]. In
development of an intelligent emergency response system in
[74], some volunteers are asked to assume a series of postures,
e.g., walking/standing, sitting/lying down, stooping, stretched
lying, and tucked lying. These tasks are simulated to detect
falls indoor [75].

IV. ANALYTIC METHODS

This paper mainly concerns the analytic methods that are spe-
cially applied in IVS. Selected analytic methods are summarized
as follows.

A. Intelligence

IVA have attempted to apply all adaptive and intelligent
methods of neural network [76], genetic algorithm, knowl-
edge-based approaches [71], particle filtering [50], particle
swarm optimization [4], finite state automation [44], reasoning
[24], self-organizing maps (SOMs) [46], support vector regres-
sion (SVR) [77], Kalman filtering [78], semantic analysis [71],
Markov models [79], decision tree [65], and clustering [66].
Specially, an online neural estimator is proposed in [80] for ob-
ject tracking and fixation. Hong et al. compare the performance
of two neural networks: Kohonen’s SOM and fuzzy adaptive
resonance theory (Fuzzy ART) [35].
For adaptive detection, a normalization technique is incorpo-

rated in [59] by local histograms with optimal adaptive corre-
lation technique, so that it can avoid inconsistent performance
caused by sensitivity of variation illuminations such as local
shadowing, noise, and occlusion. The approach uses a cascade
of classifiers to adopt a coarse-to-fine strategy for achieving
higher detection rates with lower false positives. In [58], the in-
door area is divided into several unit areas in which each unit
is considered as a simple cell in the cellular model. A rectan-
gular box is used to group those neighboring active cells into a
unit to represent a moving object. They further apply the gray
relational analysis to detect and track multiple moving objects.
Bio-inspired adaptive hyperspectral imaging for real-time target
tracking is also attempted in [55].

B. Cooperative and View Selection

In multicamera systems, there is a problem of selecting the
right view to display among the multiple video streams. A view

is defined by the camera index and the parameters of the image
cropped within the selected camera. View selection is often
required when selective attention [23], [94] or surveillance at
strategic locations are implemented [17].
A cooperative multicamera system allows a single operator to

monitor activities in a cluttered environment using a distributed
network of video sensors [11], [16]. Video understanding algo-
rithms are developed to automatically detect people or vehicles
and seamlessly track them using a network of cooperating ac-
tive sensors [19], [54]. Wang et al. present a wireless embedded
smart-camera system for cooperative tracking and detection of
composite events spanning multiple camera views [11]. Instead
of transferring or saving every frame or trajectory, events of in-
terest are detected. Simpler events are combined in a time se-
quence to define semantically higher level events.
A collaborative and dynamically adaptive tracking system is

introduced in [31]. It is justified that dynamic adaptation of the
system is necessary through scenarios and applications.
In [18], a fuzzy automaton-based camera-selection method

is introduced. The camera-selection decision is driven by fuzzy
automaton based on the previously selected camera and the
tracking level of the object in each available camera. The results
show that the method is efficient for adaptive camera selection
in multicamera environment and helps easy construction of
multicamera placement.
Chen and de Vleeschouwer propose criteria for optimal plan-

ning of viewpoint coverage and camera selection. Perceptual
comfort is discussed as well as efficient integration of contex-
tual information, which is implemented by smoothing generated
camera sequences to alleviate flickering visual artifacts and dis-
continuous storytelling artifacts [16].
A fully digital autofocusing system is presented in [25] with

automatic focusing region selection and a priori estimated
dataset of circularly symmetric point-spread functions. The
approach provides realistic, unsupervised blur estimation by
analyzing the entropy and edge information in the automatically
selected focusing region.

C. Integration and Statistics

Statistics may be applied for event detection, counting,
routing, guidance, surveillance, and flow control. Here, the
flow mainly includes crowd flow and traffic flow. Besides
the traffic flow detection [81] that is going to discussed in
detail later, there have been many works on attention control
and statistics for business, tourism, public safety, civilization,
exhibition, and markets/shops [14].
Integration of information from multiple sources or cameras

is necessary to make the system more intelligent [29]. Dynamic
synthesis of virtual views is developed for observing the en-
vironment from arbitrary vantage points. Takacs describes a
real-time image processing and sensor fusion system for aerial
vehicles in need of autonomous landing, guidance, and obstacle
avoidance. The system can process and display information
merged from multiple image sources including a high-resolu-
tion millimeter-wave radar, a stored terrain with 3-D airport
database, FLIR, as well as visual reference images [82].
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D. Networked Analytics

Many applications perceive visual information through net-
works of embedded sensors [31]. Distributed smart cameras per-
form real-time computer vision thanks to a confluence of si-
multaneous advances in disciplines of computer vision, image
sensors, embedded computing, and sensor networks. For in-
stance, in [21], a network of video cameras is used for person
tracking in an intelligent room. Comaniciu et al. present a real-
time foveation system for remote and distributed surveillance.
The system performs detection, tracking, selective encoding,
and efficient data transmission. A client-server architecture con-
nects a radial network of camera servers to their central pro-
cessing unit [22].

E. Learning and Classification

Learning and classification are powerful for object detection
and event recognition [62]. An adaptive learning method is used
in [65] to estimate the physical location and moving speed of
a person. Hierarchical decision tree and dimension reduction
methods are explored for human action recognition.
To detect moving objects in image sequences and identify the

entrance legality in a restricted area, Shih et al. extract three
object features, i.e., the position, the size, and the color, to track
the detected entrants [48]. After that, the entrant was segmented
into three parts for locating the region of interest (ROI) using a
watershed transform. Dominant color features extracted from
the ROI are classified for preventing the illegal entrance. Kafai
presented a stochastic multiclass vehicle classification system
that classifies a vehicle into one of four classes: sedan, pickup
truck, SUV/minivan, and unknown [83].
Detecting anomalies exhibited in complex behaviors which

are subtle and difficult to owing to the complex temporal charac-
teristics and correlation amongmultiple objects’ behaviors [84].
In [85], anomaly detection is achieved by the combination of the
normalized log-likelihood with respect to the first-stage HMM
and that to the second-stage multi-observation HMM, which are
determined from the computation of marginal probabilities in a
filtering process. A threshold is used for judging. The results
outperform existing methods in detecting durational anomalies.
Computer vision system can be inspired by the human visual

system for organizing the different visual routines that need to
be carried out [86]. Wang et al. use bio-inspired adaptive hy-
perspectral imaging for real-time target tracking [55]. Quek et
al. propose a brain-inspired neural cognitive approach to SARS
thermal image analysis [87]. From the study by Callan et al.
[88], neural substrates of cost-weighted decision making can be
assessed by investigation of driver’s decision making. They in-
vestigate neural correlates of resolving uncertainty in driver’s
decision making.

F. 3-D Sensing

3-D reconstruction from 2-D images has been the important
foundation for solving the problems in robotics and computer
vision fields [89], [90]. Among important issues in IVS, one of
the main problems is to localize the object features in the 3-D
space. Technologies such as stereo vision [56], [76], [80], laser
scanning, or structure from video motion are common sensing
methods to obtain 3-D information.

Habib develops an intelligent fiber-grating-based 3-D vi-
sion sensory system that enables real-time object detection,
monitoring, and tracking [91]. Gavrila and Munder propose a
method with tight integration of several consecutive modules,
i.e., (sparse) stereo-based ROI generation, shape-based de-
tection, texture-based classification, and (dense) stereo-based
verification [92].
In recent years, various types of real-time 3-D modeling

methods using RGB-D cameras have been adopted after
Microsoft developed the Kinect sensor [54]. These methods
estimate parameters of a mathematical model by choosing and
matching correct pairs of corresponding points between two
images at and based on features such as SIFT and
SURF. A 3-D model is then built using distance information by
coordinate transform based on the estimated parameters.

V. APPLICATIONS

Fundamentals such as system design, data management,
video processing, calibration, edge enhancement, background
subtraction, recognition/detection, tracking, and motion under-
standing are often the common techniques useful for all IVS
application. Although some works are application-specific in
the presentation, they may also be used for general purposes
because of the generality of the method, e.g., the cellular model
proposed in [58] to monitor human activities and normality
analysis to detect abnormal behaviors [71].

A. Management

IVS provides an efficient means to many management tasks,
by applying the technologies of automatic people counting,
access control, flow control, and attention control [14]. Re-
quirements are arisen from managers of all fields for day-to-day
information processing and decision making [3]. The business
needs or outside regulations currently are mainly from campus,
government, retail, airport, seaport, commercial office, gaming,
banking, gathering event, industrial, residential, etc. For ex-
ample in a store or supermarket, IVS is for not only securing
inventory from theft and ensuring that every transaction is
complete and legitimate, but also improving the service by sta-
tistical analysis of customers’ shopping manner and optimizing
employee productivity in retail.

B. Traffic Control and Transportation

IVA have been widely applied in traffic control and trans-
portation, e.g. lane traffic counts, illegal U-turn, illegal lane
change, wrong direction, wrong way, vehicle requiring assis-
tance, incident detection, etc.
IVS is important for gathering data for intelligent trans-

portation system applications over a traffic flow by detection
of moving vehicles [64], [93]. An automatic particle filtering
algorithm is used in [50] to track the vehicle and monitor its
illegal lane changes. Li et al. propose an efficient algorithm
for removing shadows of moving vehicles caused by nonuni-
form distributions of light reflections in the daytime [51].
Traffic-flow-detection technology includes the use of a loop de-
tector, an infrared detector, an image detector, and a microwave
detector. Wang et al. propose a channel awareness vehicle
detector that employs only one pair of transmitter–receiver
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antennas to simultaneously perform the multilane and multi-
vehicle identifications. By using the characteristics of channel
variations, the vehicle detector can determine the vehicle
location, speed, and type [81].
With a machine learning framework, Chen et al. attempt real-

time traffic density estimation by using a hiddenMarkovmodels
to probabilistically determine the traffic density state [79]. Au-
tomatic incident detection and protection are attracting in many
cities for detecting traffic incidents to provide smoother, safer
and congestion free traffic flow. Cai et al. propose a robust
real-time algorithm to detect snow movement in video streams
[94].
In heavy traffic flow conditions, vehicles have limited ma-

neuverability which affects the magnitude of response to inci-
dent-induced traffic disturbances and how fast changes in these
traffic variables can signal the occurrence of an incident. Such
characteristics are usually used to formulate a loop-based algo-
rithm. Mak and Fan reported two video-based automatic inci-
dent detection algorithms, the individual detection evaluation
and combined detection evaluation algorithms [95]. The algo-
rithms are developed for the detection of lane-blocking inci-
dents in heavy traffic flow conditions using the Central Ex-
pressway in Singapore. The algorithms detect incident-induced
traffic speed and occupancy disturbances differently: the former
processes information at each individual detector station and the
later processes information at two adjacent detector stations.
Detecting license plates is crucial and inevitable in the ve-

hicle license plate recognition system [96]. It is required to en-
sure consistent and reliable plate capture for practical applica-
tions. There are several situations of plate detection, i.e. gen-
eral license plate capture at daytime, close range license plate
capture, license plate capture at night or in the dark environ-
ment, and overview camera to capture both plates and vehicle
details. It is found to improve the recognition performance in
terms of speed by rapidly scanning input images focusing only
on ROIs, while at the same time it does not reduce the system
effectiveness.

C. Intelligent Vehicle

1) Pedestrian detection: IVA can be applied to intelligent
vehicles for traffic sign recognition, people tracking, and driver
assistance. Pedestrians are the most vulnerable participants in
traffic. The first step toward protecting pedestrians is to reliably
detect them in a real-time framework [97], [98]. An actual road
test shows that the algorithm can effectively remove the influ-
ence of pedestrians and cyclists in the complex environment and
can track the moving vehicle exactly. An approach is presented
in [77] for pedestrian detection in urban traffic conditions using
a multilayer laser sensor mounted onboard a vehicle.
2) Driver-Assistance System: Driver-assistance systems that

monitor driver intent, warn drivers of lane departures, or as-
sist in vehicle guidance, collision avoidance, and autonomous
driving are all being actively studied in the community.
In the study of neural correlates of resolving uncertainty in

driver’s decision making, turning right in left-hand traffic at a
signalized intersection is simulated in [88] by graphic anima-
tion-based videos. When the driver’s view is occluded by a big
truck, the uncertainty of the oncoming traffic is resolved by an

in-car video assist system that presents the driver’s occluded
view. An attempt for driver body tracking and activity analysis
is proposed in [20].
Surround information or maps can help in studies of driver

behavior as well as provide critical input in the development of
effective driver assistance systems. Gandhi and Trivedi focus
on the capture of vehicle surroundings using video inputs [56].
3) Traffic Sign Detection and Recognition: Roadway signs

are important for safety, and transportation agencies need to
identify sign condition changes to perform timely maintenance.
Tsai et al. propose an algorithm to detect three condition
changes: missing, tilted, and blocked signs, using GPS data,
and video log images [99].
An innovative image processing model is proposed in [47] to

automatically detect traffic signs and dramatically reduces the
sign inventory workload. The method is composed of: 1) a gen-
eralized traffic sign model to represent the entire class of traffic
signs; 2) a statistical traffic sign color model; 3) a traffic sign
region of interest detection system using polygon approxima-
tion; and 4) traffic sign candidate decision rules based on shape
and color distributions. Prieto and Allen alternatively propose a
method for the detection and recognition of traffic signs using
self-organizing maps [46]. The method first detects potential
road signs by analyzing the distribution of red pixels within the
image and then identifies these road signs from the distribution
of dark pixels in their pictograms. A fast and robust framework
for incrementally detecting text on road signs is presented in
[100].
In other aspects, there are many contributions on IVS for

transportation, such as annotating traffic videos [101] and
authenticity and credibility of videos [42]. Surface movement
guidance and control is introduced in [102], which provides
routing, guidance, surveillance, and control to aircraft and ve-
hicles [82]. An intelligent video surveillance system for aircraft
is introduced in [17], which allows the surveillance data to be
stored within the aircraft and monitored by one of the flight
crew. The monitoring crew will be responsible for identifying
the anomaly within the aircraft and take necessary preventive
actions.

D. Healthcare and Life Sciences

Video image analysis is able to provide quantitative data on
postural and movement abnormalities and thus has an impor-
tant application in neurological diagnosis andmanagement [73].
Quek et al. investigate the application of several novel brain-in-
spired soft computing techniques in the study of the correlation
of superficial thermal images against the true internal body tem-
perature [87].
Automated IVS surveillance is proposed to ensure safety of

the elderly while respecting privacy and the topic becomes inter-
esting but with many challenges. Fleck and Strasser reported a
prototype 24/7 system installed in a home for assisted living for
several months and shows quite promising performance [10].
Zhou et al. study how IVS and IVA can be used in eldercare to
assist the independent living of elders and to improve the effi-
ciency of eldercare practice [65].
To help blind people for navigation without collision, Na-

garajan et al. propose a real-time scheme in providing vision
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substitution to visually handicapped people [103]. The system
has a computer, a headgear with a digital video camera, and a
set of stereo earphones interconnected. The software processes
the image to locate the object and its boundaries and the result is
mapped onto structured stereo sound patterns, so that the blind
can understand the environment around him through the set of
stereo earphone.
Sensors and intelligent specialist software are helping bi-

ologists by improving the selectivity of images captured and
stored, and the responsiveness of remote systems to their live
imaging needs. Automated and tele-operated equipment greatly
increases observation potential whilst avoiding the disturbance
of human presence [104].
In the future, IVS is expected further for wide applications in

studying life sciences which involve scientific investigation of
living organisms, such as plants, animals, and human beings, as
well as related research for ethology, ecology, zoology, wildlife
biology, systems biology, health sciences, biodynamics, envi-
ronmental science, evolutionary biology, and biomedical sci-
ences [105].

E. Security and Military

Security and military applications have been the primary mo-
tivation in developing IVS [29]. From small outposts to military
cities with thousands of people, everything is a potential target.
Security systems are ready to adapt as needed. IVS can offer
customized, mission-critical security applications and systems
that can adjust quickly to changing needs and government regu-
lations. A basic security application of IVS is for people detec-
tion and tracking in an environment [19], [54]. Based on this, the
system may be employed to estimate the number of accesses in
public buildings as well as the preferred followed routes [106].
Such an automatic surveillance system is developed in [45] to
detect several dangerous situations in subway stations.
Intrusion detection is often required for perimeter protection.

It may take several forms, such as crossing a boundary to move
into the site, moving in a no-man zone, or throwing an object
over a fence. In [48], the color features of an employee’s uni-
form were extracted to identify the entrance legality in a re-
stricted area of an open space. It is reported that the one Chilean
salmon farm experiences up to $2 million a year in theft of
salmon and salmon eggs. An IVS is set up for detecting intru-
sion by boats and unauthorized persons, while differentiating
between marine predators and harmless small animals entering
the perimeter [72].
Leed et al. apply the IVS technology, focusing on a specific

proposal to combat the modern scourge of missile threat to civil
aviation [107]. IVSs integrated with high-value video surveil-
lance equipment and computer-aided dispatch servers are pro-
posed as amethodology to detect and dispatch effective preemp-
tive responses to the threats of shoulder-fired missiles directed
against commercial airlines operating out of airports in densely
populated areas. Abandoned object detection is necessary for
security because unattended or abandoned luggage can be used
as a means of terrorist attack, especially for bombs [44].
Control of sensitive access is required for monitoring access

points such as doors to protect unauthorized entrance and exit.

IVA is used to prevent or detect some tactics of abnormal access.
A scalable access point monitoring solution can be constructed
with embedded video detection and transmission devices for
tailgating detection, combined with a central IVA management
system. Detection accuracy can be enhanced by usingmultiview
analysis, with additional viewing angles for alarm verification
and optionally alert upon certain behaviors near the access point.

VI. RESEARCH DIRECTIONS AND DISCUSSIONS

While IVS and IVA have been developed as useful ap-
proaches for many applications, some problems still exist
in its adaptation in practical environments. The intelligent
surveillance systems are still not widely deployed in practical
applications. Reliability and accuracy may be the main reason
of limitations in the current systems. Not only simply applying
for detection and tracking, researchers are making efforts to
improve the methods mainly in the following aspects.

A. Real-Time Application and Computational Complexity

IVS often requires real-time processing for quick responses.
Analytics have to be performed at the frame rate of the video
system, e.g., 30 fps [108]. However, computer vision often takes
very complex computations. The computational complexity re-
strains the systems of real-time application. Nevertheless, IVA
can take all possible solutions, sometime at any cost, for prac-
tical implementation of security systems, while computer vision
mainly focuses on theoretical advances for low cost and high ac-
curacy. Therefore, it can often be advised to use advanced com-
puters, GPU, and parallel computing.

B. Reliability and Flexibility

Reliability and flexibility are mostly concerned in practical
applications. A good IVS should be flexible in different envi-
ronments and weather conditions, with varying illuminations,
initial parameters, predefined conditions, as well as rain, snow,
shadows, noises, and occlusions. For example, spatial-temporal
distribution can be analyzed for robust foreground segmentation
and feature extraction. It would be interesting in the community
for developing a method to automatically determine the number
of frames for any application so that both spatial and temporal
information can be combined for optimization.

C. Efficiency and Accuracy

Both efficiency and accuracy are important factors in IVA.
Unfortunately, they cannot always be satisfied with both sides.
In all analytic methods of object detection, tracking, background
subtraction, 3-D sensing, learning, classification, video text de-
tection, behavior detection, and event recognition, there are still
many challenges to achieve better accuracy [39], [40]. IVS is
often required with extensive computation of visual informa-
tion, but also given the detection task of objects or events. Even
without considering the efficiency, the accuracy of current IVSs
is still very low. Those systems often suffer from high false
alarm rates due to environmental uncertainties when they op-
erate in an outdoor environment.
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D. Distributed and Networked

Nowadays, there are hundreds of thousands of cameras dis-
tributed any one of many cites. Distributed smart cameras rep-
resent important future IVS systems. However, networked and
centralized analysis and control become more important than
ever for efficient use of all of the video sources. Simultaneously,
factors of coding, encryption, packetization, authentication, and
transcoding have to take into consideration for data security in
the networks. One attempt of credibility and authenticity of dig-
itally signed videos in traffic is found in [42]. It is realized by
comparison of the hash values of the frames stored in the data-
base of the surveillance centre with the values obtained from the
interested subjects.

E. Standards and Performance Evaluation

Standards in IVA and IVS become obviously important now
due the rapid increasing of related products and markets. There
are rare standards available yet in the field. For applications
as successful as by traditional surveillance, it is crucial that
IVS should be deployed easily, without requiring computer
vision expertise to customize them for every installation. Since
late 2008, the Open Network Video Interface Forum (ONVIF)
becomes a global open standard for the interface of physical
IP-based security products, which can achieve interoperability
between network video products regardless of manufacturer.
Another competitive standard released almost at the same time
is Physical Security Interoperability Alliance (PSIA), which
make efforts for security system and device integration to be as
simple as the “plug and play” interoperability. Venetianer and
Deng recently discussed some of the major challenges involved
in software testing [3]. They provide a concept of utilizing
fuzzy evaluation to handle boundary conditions. The standards
are necessary not only for hardware, but also for software
performance. The Imagery Library for Intelligent Detection
Systems (iLids) is the U.K. government’s standard for video
detection [8]. The first four iLids scenarios were released in
November 2006, and there have been annual evaluations for
these scenarios since then.

F. Hardware and Software for Video Processing

Researchers are pursuing new generation of hardware devices
and software strategies so that artificial vision can understand
much of what biological vision can. Kohler et al. recently de-
signed a smart camera with an array of elementary motion de-
tectors, where the motion-detection directions and the angle be-
tween correlated receptors are reconfigurable online [109]. It
allows a flexible and simultaneous detection of complex mo-
tion fields such as translation, rotation, and zooming. The com-
pact device benefits many motion-based applications such as
obstacle avoidance, distance control, and speed regulation.

G. Information Fusion and Cloud Computing

Alignment and fusion of different media sources are often re-
quired for an IVS, e.g., audiovisual information fusion [110],
human–computer interfaces, and multiple cameras and instru-
ments. Krotosky and Trivedi present an analysis of color-, in-
frared-, and multimodal-stereo approaches to pedestrian detec-
tion [98]. Traditional video systems require infrastructures in-

cluding expensive servers to store and process a huge amount
of videos. Using cloud computing to collect and process multi-
media streams can benefit on many points, e.g., cross terminal,
cross content, adaptive to different networks, integration of in-
telligent processing algorithms, resource integration, sharing,
and easy to video searching and is especially useful for real-time
IVS for large scenes or intelligent city domain [111], [112].

H. Cyberphysical System (CPS)

IVS and IVA provide effective means of sensing in intelligent
environments [113], which is much related with the recent con-
cepts of CPS or Internet of Things (IoT). The former describes a
system featuring a tight combination and coordination between
computational and physical elements, while the latter refers to
the networked interconnection of everyday objects whose pur-
pose would be to make all things communicable. Here, IVA can
be a part of ambient intelligence for either IoT or CPS [105],
[114]. Especially in embedded systems, the emphasis tends to
be more on the computational elements (IVA) and less on phys-
ical elements (IVS). A fully embedded video CPS (IVS+IVA)
is typically designed as a network of interacting elements with
multimedia input and output instead of as standalone devices.
The video obtained by IVS might be combined with other in-
formation from the IoT.

I. More Intelligence

Integration of IVA with artificial intelligence methods can
certainly yield better performance. Actually, fuzzy logic, neural
network, and genetic algorithms have been attempted for re-
solving a complex task in whole. However, the available arti-
ficial intelligence itself is still at a relatively low level, which
affects much in improving IVA performance. Computer intelli-
gence might be always imperfect for vision understanding, and
thus it is important to incorporate human knowledge in IVS. Of
course, more intelligence of video processing is ever-increas-
ingly expected for IVA in the future.

VII. CONCLUSION

This paper has summarized the recent development of in-
telligent video systems and analytics. Typical contributions
are addressed for a variety of applications. Representative
works are listed for readers to have a general overview of the
state-of-the art. A bundle of methods are investigated in regard
to solutions of video analysis, including video system design,
real-time analysis, detection, tracking, background subtraction,
learning, classification, 3-D sensing, motion and behavior de-
tection, and event recognition. Future research challenges and
directions have been outlined in the end. In short, the current
video systems might not be as good as people expect at the
moment, the applications of the technology however do spread
rapidly. Thousands of companies, emerged in the past decade,
are especially developing products of intelligent video systems
driven by both academic and industrial demands. It is expected
that the IVS would be maturely applied rapidly in this decade.
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