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Visual object tracking is a significant computer vision task which can be applied to many domains, such
as visual surveillance, human computer interaction, and video compression. Despite extensive research on
this topic, it still suffers from difficulties in handling complex object appearance changes caused by factors
such as illumination variation, partial occlusion, shape deformation, and camera motion. Therefore, effective
modeling of the 2D appearance of tracked objects is a key issue for the success of a visual tracker. In the
literature, researchers have proposed a variety of 2D appearance models.

To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we
contribute this survey, which provides a detailed review of the existing 2D appearance models. In particular,
this survey takes a module-based architecture that enables readers to easily grasp the key points of visual
object tracking. In this survey, we first decompose the problem of appearance modeling into two different
processing stages: visual representation and statistical modeling. Then, different 2D appearance models are
categorized and discussed with respect to their composition modules. Finally, we address several issues of
interest as well as the remaining challenges for future research on this topic.

The contributions of this survey are fourfold. First, we review the literature of visual representations
according to their feature-construction mechanisms (i.e., local and global). Second, the existing statistical
modeling schemes for tracking-by-detection are reviewed according to their model-construction mechanisms:
generative, discriminative, and hybrid generative-discriminative. Third, each type of visual representations
or statistical modeling techniques is analyzed and discussed from a theoretical or practical viewpoint. Fourth,
the existing benchmark resources (e.g., source codes and video datasets) are examined in this survey.
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1. INTRODUCTION

One of the main goals of computer vision is to enable computers to replicate the basic
functions of human vision, such as motion perception and scene understanding. To
achieve the goal of intelligent motion perception, much effort has been spent on visual
object tracking, which is one of the most important and challenging research topics in
computer vision. Essentially, the core of visual object tracking is to robustly estimate
the motion state (i.e., location, orientation, size, etc.) of a target object in each frame of
an input image sequence.

In recent years, a large body of research on visual object tracking has been published
in the literature. Research interest in visual object tracking comes from the fact that
it has a wide range of real-world applications, including visual surveillance, traffic
flow monitoring, video compression, and human-computer interaction. For example,
visual object tracking is successfully applied to monitor human activities in residential
areas, parking lots, and banks (e.g., W* system [Haritaoglu et al. 2000] and VSAM
project [Collins et al. 2000]). In the field of traffic transportation, visual object tracking
is also widely used to cope with traffic flow monitoring [Coifman et al. 1998], traffic
accident detection [Tai et al. 2004], pedestrian counting [Masoud and Papanikolopoulos
2001], and so on. Moreover, visual object tracking is utilized by the MPEG-4 video
compression standard [Sikora 1997] to automatically detect and track moving objects
in videos. As a result, more encoding bytes are assigned to moving objects while fewer
encoding bytes are for redundant backgrounds. Visual object tracking also has several
human-computer interaction applications, such as hand gesture recognition [Pavlovie
et al. 1997] and mobile video conferencing [Paschalakis and Bober 2004].

Note that all these applications heavily rely on the information provided by a robust
visual object tracking method. If such information is not available, these applications
would be no longer valid. Therefore, robust visual object tracking is a key issue to
making these applications viable.

1.1. Overview of Visual Object Tracking

In general, a typical visual object tracking system is composed of four modules: object
initialization, appearance modeling, motion estimation, and object localization.

(1) Object Initialization. This may be manual or automatic. Manual initialization is
performed by users to annotate object locations with bounding boxes or ellipses.
In contrast, automatic initialization is usually achieved by object detectors (e.g.,
face or human detectors).

(i1) Appearance Modeling. This generally consists of two components: visual repre-
sentation and statistical modeling. Visual representation focuses on how to con-
struct robust object descriptors using different types of visual features. Statistical
modeling concentrates on how to build effective mathematical models for object
identification using statistical learning techniques.

(iii) Motion Estimation. This is formulated as a dynamic state estimation problem:
x = fla;_1,v-1) and z; = h(x;, wy), where x; is the current state, f is the state
evolution function, v;_1 is the evolution process noise, z; is the current observation,
h denotes the measurement function, and w; is the measurement noise. The task
of motion estimation is usually completed by utilizing predictors such as linear
regression techniques [Ellis et al. 2010], Kalman filters [Kalman 1960], or particle
filters [Isard and Blake 1998; Arulampalam et al. 2002].

(iv) Object Localization. This is performed by a greedy search or maximum a posterior
estimation based on motion estimation.
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Fig. 1. Illustration of complicated appearance changes in visual object tracking.

1.2. Challenges in Developing Robust Appearance Models

Many issues have made robust visual object tracking very challenging, including (i)
low-quality camera sensors (e.g., low frame rate, low resolution, low bit-depth, and
color distortion); (ii) challenging factors (e.g., nonrigid object tracking, small-size ob-
ject tracking, tracking a varying number of objects, and complicated pose estimation);
(iii) real-time processing requirements; (iv) object tracking across cameras with non-
overlapping views [Javed et al. 2008]; and (v) object appearance variations (as shown
in Figure 1) caused by several complicated factors (e.g., environmental illumination
changes, rapid camera motions, full occlusion, noise disturbance, nonrigid shape defor-
mation, out-of-plane object rotation, and pose variation). These challenges may cause
tracking degradations and even failures.

In order to deal with these challenges, researchers have proposed a wide range of
appearance models using different visual representations and/or statistical modeling
techniques. These appearance models usually focus on different problems in visual
object tracking and thus have different properties and characteristics. Typically, they
attempt to answer the following questions.

—What characterstic and/or properties should be tracked (e.g., bounding box, ellipse,
contour, articulation block, interest point, and silhouette, as shown in Figure 2)?

—What visual representations are appropriate and robust for visual object tracking?

—What are the advantages or disadvantages of different visual representations for
different tracking tasks?

—Which types of statistical learning schemes are suitable for visual object tracking?

—What are the properties or characteristics of these statistical learning schemes
during visual object tracking?

—How should the camera/object motion be modeled in the tracking process?

The answers to these questions rely heavily on the specific context/environment of
the tracking task and the tracking information available to users. Consequently, it is
necessary to categorize these appearance models into several task-specific categories
and discuss in detail the representative appearance models of each category. Motivated
by this consideration, we provide a survey to help readers acquire valuable tracking
knowledge and choose the most suitable appearance model for their particular tracking
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(f)

Fig. 2. Tllustration of object tracking forms. (a) bounding box, (b) ellipse, (c) contour, (d) articulation block,
(e) interest point, () silhouette.
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Fig. 3. The organization of this survey.
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tasks. Furthermore, we examine several interesting issues for developing new appear-
ance models.

2. ORGANIZATION OF THIS SURVEY

Figure 3 shows the organization of this survey, which is composed of two
modules: visual representation and statistical modeling. The visual represen-
tation module concentrates on how to robustly describe the spatiotemporal
characteristics of object appearance. In this module, a variety of visual representa-
tions are discussed, as illustrated by the tree-structured taxonomy in the left part of
Figure 3. These visual representations can capture various visual information at differ-
ent levels (i.e., local and global). Typically, the local visual representations encode the
local statistical information (e.g., interest point) of an image region, while the global vi-
sual representations reflect the global statistical characteristics (e.g., color histogram)
of an image region. For a clear illustration of this module, a detailed literature review

of visual representations is given in Section 3.

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 4, Article 58, Publication date: September 2013.



A Survey of Appearance Models in Visual Object Tracking 58:5

Table I. Summary of Related Literature Surveys

Authors Topic Journal/conference title
[Geronimo et al. 2010] Pedestrian Detection IEEE Trans. PAMI.
[Candamo et al. 2010] Human Behavior Recognition IEEE Trans. Intell. Transport. Syst.
[Cannons 2008] Visual Tracking Tech. rep.

[Zhan et al. 2008] Crowd analysis Machine Vision App.

[Kang and Deng 2007] Intelligent Visual Surveillance IEEE/ACIS Int. Conf. Comput. Inf. Sci.
[Yilmaz et al. 2006] Visual object tracking ACM Comput. Sur.

[Forsyth et al. 2006] Human Motion Analysis Found. Trends Comput. Graph. Vis.
[Sun et al. 2006] Vehicle Detection IEEE Trans. PAMI.

[Hu et al. 2004] Object Motion and Behaviors IEEE Trans. Syst. Man, Cybern. C, Appl. Rev.
[Arulampalam et al. 2002] Bayesian Tracking IEEE Trans. Signal Process.

As shown in the right part of Figure 3, the statistical modeling module is inspired
by the tracking-by-detection idea, and thus focuses on using different types of statisti-
cal learning schemes to learn a robust statistical model for object detection, including
generative, discriminative, and hybrid generative-discriminative ones. In this module,
various tracking-by-detection methods based on different statistical modeling tech-
niques are designed to facilitate different statistical properties of the object/non-object
class. For a clear illustration of this module, a detailed literature review of statistical
modeling schemes for tracking-by-detection is given in Section 4.

Moreover, a number of source codes and video datasets for visual object tracking
are examined to make them easier for readers to conduct tracking experiments in
Section 5. Finally, the survey is concluded in Section 6. In particular, we additionally
address several interesting issues for the future research in Section 6.

2.1. Main Differences from Other Related Surveys

In the recent literature, several related surveys (e.g., [Gerénimo et al. 2010; Candamo
et al. 2010; Cannons 2008; Zhan et al. 2008; Kang and Deng 2007; Yilmaz et al. 2006;
Forsyth et al. 2006; Sun et al. 2006; Hu et al. 2004; Arulampalam et al. 2002]) of visual
object tracking have been made to investigate the state-of-the-art tracking algorithms
and their potential applications, as listed in Table I. Among these surveys, the topics
of the surveys [Cannons 2008; Yilmaz et al. 2006] are closely related to this article.
Specifically, both of the surveys [Cannons 2008; Yilmaz et al. 2006] focus on low-level
tracking techniques using different visual features or statistical learning techniques,
and thereby give very comprehensive and specific technical contributions.

The main differences between these two surveys [Cannons 2008; Yilmaz et al. 2006]
and this survey are summarized as follows. First, this survey focuses on the 2D appear-
ance modeling for visual object tracking. In comparison, the surveys of Cannons [2008]
and Yilmaz et al. [2006] concern all the modules shown in Figure 3. Hence, this survey
is more intensive, while theirs are more comprehensive. Second, this survey provides a
more detailed analysis of various appearance models. Third, the survey of Yilmaz et al.
[2006] splits visual object tracking into three categories: point tracking, kernel track-
ing, and silhouette tracking (see Figure 7 [Yilmaz et al. 2006] for details); the survey of
Cannons [2008] gives a very detailed and comprehensive review of each tracking issue
in visual object tracking. In contrast to these two surveys, this survey is formulated as
a general module-based architecture (shown in Figure 3) that enables readers to easily
grasp the key points of visual object tracking. Fourth, this survey investigates a large
number of state-of-the-art appearance models which make use of novel visual features
and statistical learning techniques. In comparison, the other surveys [Cannons 2008;
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Yilmaz et al. 2006] pay more attention to classic and fundamental appearance models
used for visual object tracking.

2.2. Contributions of this Survey

The contributions of this survey are as follows. First, we review the literature of vi-
sual representations from a feature-construction viewpoint. Specifically, we hierar-
chically categorize visual representations into local and global features. Second, we
take a tracking-by-detection criterion for reviewing the existing statistical modeling
schemes. According to the model-construction mechanisms, these statistical model-
ing schemes are roughly classified into three categories: generative, discriminative,
and hybrid generative-discriminative. For each category, different types of statistical
learning techniques for object detection are reviewed and discussed. Third, we provide
a detailed discussion on each type of visual representations or statistical learning tech-
niques with their properties. Finally, we examine the existing benchmark resources for
visual object tracking, including source codes and databases.

3. VISUAL REPRESENTATION
3.1. Global Visual Representation

A global visual representation reflects the global statistical characteristics of object
appearance. Typically, it can be investigated in the following main aspects: (i) raw
pixel representation; (ii) optical flow representation; (iii) histogram representation;
(iv) covariance representation; (v) wavelet filtering-based representation; and (vi) ac-
tive contour representation. Table II lists several representative tracking methods
using global visual representations (i.e., rows 1-14).

—Raw Pixel Representation. As the most fundamental features in computer vision, raw
pixel values are widely used in visual object tracking because of their simplicity and
efficiency. Raw pixel representation directly utilizes the raw color or intensity values
of the image pixels to represent the object regions. Such a representation is simple
and efficient for fast object tracking. In the literature, raw pixel representations
are usually constructed in the following two forms: vector-based [Silveira and Malis
2007; Ho et al. 2004; Li et al. 2004; Ross et al. 2008] and matrix-based [Li et al. 2007;
Wen et al. 2009; Hu et al. 2010; Wang et al. 2007; Li et al. 2008]. The vector-based
representation directly flattens an image region into a high-dimensional vector and
often suffers from a small-sample-size problem. Motivated by attempting to alleviate
the small-sample-size problem, the matrix-based representation directly utilizes 2D
matrices or higher-order tensors as the basic data units for object description due to
its relatively low-dimensional property.

However, raw pixel information alone is not enough for robust visual object track-
ing. Researchers attempt to embed other visual cues (e.g., shape or texture) into the
raw pixel representation. Typically, the color features are enriched by fusing other
visual information, such as edge [Wang et al. 2007] and texture [Allili and Ziou 2007].

—Optical Flow Representation. In principle, optical flow represents a dense field of
displacement vectors of all the pixels inside an image region and is commonly used to
capture the spatiotemporal motion information of an object. Typically, optical flow has
two branches: constant-brightness-constraint (CBC) optical flow [Lucas and Kanade
1981; Horn and Schunck 1981; Werlberger et al. 2009; Sethi and Jain 1987; Salari
and Sethi 1990; Santner et al. 2010] and non-brightness-constraint (NBC) optical
flow [Black and Anandan 1996; Sawhney and Ayer 1996; Hager and Belhumeur
1998; Bergen et al. 1992; Irani 1999; Wu and Fan 2009]. The CBC optical flow has
a constraint on brightness constancy, while the NBC optical flow deals with the
situations with varying lighting conditions.
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Table Il. Summary of Representative Visual Representations

Item No. ‘ References ‘ Global/local ‘ Visual representations
1 [Ho et al. 2004; Li et al. 2004; Ross et al. 2008] | Global Vector-based raw pixel
representation
2 [Li et al. 2007] Global Matrix-based raw pixel
representation
Multi-cue raw pixel
3 [Wang et al. 2007] Global representation (i.e., color,
position, edge)
Optical flow
4 [Werlberger et al. 2009; Santner et al. 2010] Global representation (constant-
brightness-constraint)
5 [Black and Anandan 1996; Wu and Fan 2009] Global Optlcal'ﬂow representathlon
(non-brightness-constraint)
[Bradski 1998] . .
6 Global
[Comaniciu et al. 2003; Zhao et al. 2010] oba Color histogram representation
Multi-cue spatial-color histogram
7 [Georgescu and Meer 2004] Global representation (i.e., joint
histogram in (%, y, R, G, B))
Multi-cue spatial-color
8 [Adam et al. 2006] Global histogram representation
(i.e., patch-division histogram)
Multi-cue spatial-texture histogram
9 [Haralick et al. 1973; Gelzinis et al. 2007] Global representation (i.e., Gray-Level
Co-occurrence Matrix)
[Haritaoglu and Flickner 2001] Multi-cue shape—.textflre histogram
10 i Global representation (i.e., color,
[Ning et al. 2009] R
gradient, texture)
- Affine-invariant
11 [Porikli et al. 2006; Wu et al. 2008] Global R .
covariance representation
12 [Li et al. 2008; Hong et al. 2010] Global Log-Euclidean
[Wu et al. 2012; Hu et al. 2012] covariance representation
13 | [He et al. 2002; Li et al. 2009] Global Wavelet filtering-based
representation
[Paragios and Deriche 2000; Cremers 2006] . .
14 ’ Global
[Allili and Ziou 2007; Sun et al. 2011] oba Active contour representation
15 | [Lin et al. 2007] Local Local feature-based
represnetation (local templates)
Local feature-based represnetation
1 ; . Local
6 [Tang and Tao 2008; Zhou et al. 2009] oca (SIFT features)
17 [Donoser and Bischof 2006; Tran and Davis 2007] | Local Local feature-based represnetation
(MSER features)
Local feature-based represnetation
18 . Local
[He et al. 2009] ocal (SURF features)
19 (Grabner et al. 2007; Kim 2008] Local Local feature-based represnetation
(Corner features)
[Collins et al. 2005; Grabner and Bischof 2006] Local feature-based represnetation
20 [Yu et al. 2008] Local (feature pools
u ’ of Harr, HOG, LBP etc.)
[Toyama and Hager 1996] Local feature-based representations
21 [Mahadevan and Vasconcelos 2009] Local (Saliency detection-based features)
[Yang et al. 2007; Fan et al. 2010] Y
. Local feature-based represnetation
22 [Ren and Malik 2007; Wang et al. 2011] Local .
(Segmentation-based features)
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—Histogram Representation. Histogram representations are popular in visual object
tracking because of their effectiveness and efficiency in capturing the distribution
characteristics of visual features inside the object regions. In general, they have two
branches: single-cue and multi-cue.

(i) A single-cue histogram representation often constructs a histogram to capture
the distribution information inside an object region. For example, Bradski [1998]
uses a color histogram in the Hue Saturation Value (HSV) color space for object
representation and then embeds the color histogram into a continuously adaptive
mean shift (CAMSHIFT) framework for object tracking. However, the direct use
of color histogram may result in the loss of spatial information. Following the
work in Bradski [1998], Comaniciu et al. [2003] utilize a spatially weighted color
histogram in the RGB color space for visual representation and subsequently
embed the spatially weighted color histogram into a mean shift-based tracking
framework for object state inference. Zhao et al. [2010] convert the problem of
object tracking into that of matching the RGB color distributions across frames.
As aresult, the task of object localization is taken by using a fast differential EMD
(Earth Mover’s Distance) to compute the similarity between the color distribution
of the learned target and the color distribution of a candidate region.

(i) A multi-cue histogram representation aims to encode more information to en-
hance the robustness of visual representation. Typically, it contains three main
components: (a) spatial color; (b) spatial texture; (c) shape texture.

(a) Spatial Color. Two strategies are adopted, including joint spatial-color mod-
eling and patch-division. The goal of joint spatial-color modeling is to describe
the distribution properties of object appearance in a joint spatial-color space
(e.g., %, 5, R, G, B) [Yang et al. 2005; Georgescu and Meer 2004; Birchfield
and Rangarajan 2005]). The patch-division strategy is to encode the spa-
tial information into the appearance models by splitting the tracking region
into a set of patches [Adam et al. 2006; Nejhum et al. 2010]. By consider-
ing the geometric relationship between patches, it is capable of capturing
the spatial layout information. For example, Adam et al. [2006] construct
a patch-division visual representation with a histogram-based feature de-
scription for object tracking, as shown in Figure 4. The final tracking posi-
tion is determined by combining the vote maps of all patches (represented
by grayscale histograms). The combination mechanism can eliminate the in-
fluence of the outlier vote maps caused by occlusion. For the computational
efficiency, Porikli [2005] introduces a novel concept of an integral histogram
to compute the histograms of all possible target regions in a Cartesian data
space. This greatly accelerates the speed of histogram matching in the pro-
cess of mean shift tracking.

(b) Spatial Texture. An estimate of the joint spatial-texture probability is made
to capture the distribution information on object appearance. For exam-
ple, Haralick et al. [1973] propose a spatial-texture histogram represen-
tation called Gray-Level Co-occurrence Matrix (GLCM), which encodes the
co-occurrence information on pairwise intensities in a specified direction and
distance. Note that the GLCM in Haralick et al. [1973] needs to tune differ-
ent distance parameter values before selecting the best distance parameter
value by experimental evaluations. Following Haralick et al. [1973], Gelzinis
et al. [2007] propose a GLCM-based histogram representation that does not
need to carefully select an appropriate distance parameter value. The pro-
posed histogram representation gathers the information on the co-occurrence
matrices computed for several distance parameter values.
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Fig. 4. Tllustration of patch-division visual representation ([Adam et al. 2006], ©2006 IEEE). The left part
shows the previous and current frames, and the right part displays the patchwise histogram matching
process between two image regions.

(¢c) Shape Texture. The shape or texture information on object appearance is in-
corporated into the histogram representation for robust visual object track-
ing. For instance, Haritaoglu and Flickner [2001] incorporate the gradient
or edge information into the color histogram-based visual representation.
Similar to Haritaoglu and Flickner [2001], Wang and Yagi [2008] construct
a visual representation using color and shape cues. The color cues are com-
posed of color histograms in three different color spaces: RGB, HSV, and nor-
malized rg. The shape cue is described by gradient orientation histograms.
To exploit the textural information of the object, Ning et al. [2009] propose
a joint color-texture histogram for visual representation. The local binary
pattern (LBP) technique is employed to identify the key points in the object
regions. Using the identified key points, they build a confidence mask for
joint color-texture feature selection.

—Covariance Representation.In order to capture the correlation information of object
appearance, covariance matrix representations are proposed for visual representa-
tion [Porikli et al. 2006; Tuzel et al. 2006]. According to the Riemannian metrics [Li
et al. 2008; Hu et al. 2012], the covariance matrix representations can be divided
into two branches: affine-invariant Riemannian metric-based and log-Euclidean
Riemannian metric-based.

(i) The affine-invariant Riemannian metric [Porikli et al. 2006; Tuzel et al. 2006]
is based on the following distance measure: p(C1, Cy) = \/ 2?21 In%1 i(C1, Co),

where {);(Cy, Cg)}?=1 are the generalized eigenvalues of the two covariance
matrices C; and Cy: 1;C1x; = Cox;, j € {1, ..., d}, and X; is the jth generalized
eigenvector. Following the work in Porikli et al. [2006] and Tuzel et al. [2006],
Austvoll and Kwolek [2010] use the covariance matrix inside a region to detect
whether the feature occlusion events take place. The detection task can be
completed by comparing the covariance matrix-based distance measures in a
particular window around the occluded key point.
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Fig. 5. Illustration of an active contour representation. The left part shows the signed distance map of a
human contour and the right part displays the contour tracking result.

(i1) The log-Euclidean Riemannian metric [Arsigny et al. 2006] formulates the
distance measure between two covariance matrices in a Euclidean vector
space. Mathematically, the log-Euclidean Riemannian metric for two covariance
matrices C; and C; is formulated as: d(C;, C;) = | log(C;) — log(C;)|l, where log
is the matrix logarithm operator. For the descriptive convenience, the covariance
matrices under the log-Euclidean Riemannian metric are referred to as the
log-Euclidean covariance matrices. Inspired by Arsigny et al. [2006], Li et al.
[2008] employ the log-Euclidean covariance matrices of image features for visual
representation. Since the log-Euclidean covariance matrices lie in a Euclidean
vector space, their mean can be easily computed as the standard arithmetic
mean. Due to this linear property, classic subspace learning techniques (e.g.,
principal component analysis) can be directly applied onto the log-Euclidean
covariance matrices. Following the work in Li et al. [2008] and Hu et al. [2012],
Wu et al. [2009, 2012] extend the tracking problem of using 2D log-Euclidean co-
variance matrices to that of using higher-order tensors and aim to incrementally
learn a low-dimensional covariance tensor representation. Inspired by Li et al.
[2008] and Hu et al. [2012], Hong et al. [2010] propose a simplified covariance
region descriptor (called Sigma set), which comprises the lower triangular
matrix square root (obtained by Cholesky factorization) of the covariance matrix
(used in [Li et al. 2008]). The proposed covariance region descriptor characterizes
the second order statistics of object appearance by a set of vectors. Meanwhile, it
retains the advantages of the region covariance descriptor [Porikli et al. 2006],
such as low dimensionality, robustness to noise and illumination variations, and
good discriminative power.

—Wavelet Filtering-Based Representation. In principle, a wavelet filtering-based
representation takes advantage of wavelet transforms to filter the object region
in different scales or directions. For instance, He et al. [2002] utilize a 2D Ga-
bor wavelet transform (GWT) for visual representation. Specifically, an object
is represented by several feature points with high GWT coefficients. Moreover,
Li et al. [2009] propose a tracking algorithm based on three-layer simplified
biologically inspired (SBI) features (i.e., image layer, S1 layer, and C1 layer).
Through the flattening operations on the four Gabor energy maps in the C1 layer,
a unified SBI feature vector is returned to encode the rich spatial frequency
information.

—Active Contour Representation. In order to track the nonrigid objects, active contour
representations have been widely used in recent years [Paragios and Deriche 2000;
Cremers 2006; Allili and Ziou 2007; Vaswani et al. 2008; Sun et al. 2011]. Typically,
an active contour representation (shown in Figure 5) is defined as a signed distance
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map .

0, (x,y) eC,
O(x,y) =1 dx,y,C), (x,y) € Rous, (1)
—d(x,y,C), (x,y)€ Ry,

where R;, and R,,, respectively, denote the regions inside and outside the contour
C, and d(x, y, C) is a function returning the smallest Euclidean distance from point
(x, y) to the contour C. Moreover, an active contour representation is associated with
an energy function which comprises three terms: internal energy, external energy,
and shape energy. The internal energy term reflects the internal constraints on the
object contour (e.g., the curvature-based evolution force), the external energy term
measures the likelihood of the image data belonging to the foreground object class,
and the shape energy characterizes the shape prior constraints on the object contour.

3.1.1. Discussion. Without feature extraction, the raw pixel representation is simple
and efficient for visual object tracking. Since only considering the color information on
object appearance, the raw pixel representation is susceptible to complicated appear-
ance changes caused by illumination variation.

The constant-brightness-constraint (CBC) optical flow captures the field information
on the translational vectors of each pixel in a region with the potential assumption
of locally unchanged brightness. However, the CBC assumption is often invalid in the
complicated situations caused by image noise, illumination fluctuation, and local defor-
mation. To address this issue, the non-brightness-constraint optical flow is developed
to introduce more geometric constraints on the contextual relationship of pixels.

The single-cue histogram representation is capable of efficiently encoding the sta-
tistical distribution information of visual features within the object regions. Due to its
weakness in characterizing the spatial structural information of tracked objects, it is
often affected by background distractions with similar colors to the tracked objects. In
order to capture more spatial information, the spatial-color histogram representation
is introduced for visual object tracking. Usually, it encodes the spatial information
by either modeling object appearance in a joint spatial-color feature space or taking
a patch-division strategy. However, the preceding histogram representations do not
consider the shape or texture information of object appearance. As a consequence, it
is difficult to distinguish the object from the background with similar color distribu-
tions. To alleviate this issue, the shape-texture histogram representation is proposed to
integrate shape or texture information (e.g., gradient or edge) into the histogram rep-
resentation, leading to the robustness of object appearance variations in illumination
and pose.

The advantages of using the covariance matrix representation are as follows: (i) it
can capture the intrinsic self-correlation properties of object appearance; (ii) it provides
an effective way of fusing different image features from different modalities; (iii) it is
low dimensional, leading to the computational efficiency; (iv) it allows for comparing
regions of different sizes or shapes; (v) it is easy to implement; (vi) it is robust to
illumination changes, occlusion, and shape deformations. The disadvantages of using
the covariance matrix representation are as follows: (i) it is sensitive to noisy corruption
because of taking pixel-wise statistics; (ii) it loses much useful information, such as
texture, shape, and location.

A wavelet filtering-based representation is to encode the local texture information of
object appearance by wavelet transform, which is a convolution with various wavelet
filters. As a result, the wavelet filtering-based representation is capable of character-
izing the statistical properties of object appearance in multiple scales and directions
(e.g., Gabor filtering).
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Fig. 6. Illustration of several local features (extracted by using the software which can be downloaded at
http://www.robots.ox.ac.uk/~vgg/research/affine/ and http://www.klab.caltech.edu/~harel/share/gbvs.php.)

An active contour representation is designed to cope with the problem of nonrigid
object tracking. Usually, the active contour representation adopts the signed distance
map to implicitly encode the boundary information of an object. On the basis of level
set evolution, the active contour representation can precisely segment the object with
a complicated shape.

3.2. Local Feature-Based Visual Representation

As shown in Figure 6, local feature-based visual representations mainly utilize interest
points or saliency detection to encode the object appearance information. In general,
the local features based on the interest points can be mainly categorized into seven
classes: local template-based, segmentation-based, SIFT-based, MSER-based, SURF-
based, corner feature-based, feature pool-based, and saliency detection-based. Several
representative tracking methods using local feature-based visual representations are
listed in rows 15-22 of Table II.

—Local Template-Based. In general, local template-based visual representations repre-
sent an object region using a set of part templates. In contrast to the global template-
based visual representation, they are able to cope with partial occlusions effectively
and model shape articulations flexibly. For instance, a hierarchical part-template
shape model is proposed for human detection and segmentation [Lin et al. 2007].
The shape model is associated with a part-template tree that decomposes a human
body into a set of part-templates. By hierarchically matching the part-templates with
a test image, the proposed part-template shape model can generate a reliable set of
detection hypotheses, which are then put into a global optimization framework for
final human localization.

—Segmentation-Based. Typically, a segmentation-based visual representation incor-
porates the image segmentation cues (e.g., object boundary [Ren and Malik 2007])
into the process of object tracking, which leads to reliable tracking results. Another
alternative is based on superpixel segmentation, which aims to group pixels into
perceptually meaningful atomic regions. For example, Wang et al. [2011] construct
a local template-based visual representation with the superpixel segmentation, as
shown in Figure 7. Specifically, the surrounding region of an object is segmented into
several superpixels, each of which corresponds to a local template. By building a local
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Fig. 7. Illustration of the local template-based visual representation using superpixels.

template dictionary based on the mean shift clustering, an object state is predicted
by associating the superpixels of a candidate sample with the local templates in the
dictionary.

—SIFT-Based. Usually, a SIFT-based visual representation directly makes use of the
SIFT features inside an object region to describe the structural information of ob-
ject appearance. Usually, there are two types of SIFT-based visual representations:
(i) individual SIFT point-based and (ii) SIFT graph-based. For (i), Zhou et al. [2009]
set up a SIFT point-based visual representation and combine this visual represen-
tation with the mean shift for object tracking. Specifically, SIFT features are used to
find the correspondences between the regions of interest across frames. Meanwhile,
the mean shift procedure is implemented to conduct a similarity search via color his-
tograms. By using a mutual support mechanism between SIFT and the mean shift,
the tracking algorithm is able to achieve a consistent and stable tracking perfor-
mance. However, the tracking algorithm may suffer from background clutter which
may lead to a one-to-many SIFT feature matching. In this situation, the mean shift
and SIFT feature matching may make mutually contradictory decisions. For (ii), the
SIFT graph-based visual representations are based on the underlying geometric con-
textual relationship among SIFT feature points. For example, Tang and Tao [2008]
construct a relational graph using SIFT-based attributes for object representation.
The graph is based on the stable SIFT features which persistently appear in sev-
eral consecutive frames. However, such stable SIFT features are unlikely to exist in
complex situations, such as shape deformation and illumination changes.

—MSER-Based. An MSER-based visual representation needs to extract the MSER
(maximally stable extremal region) features for visual representation [Sivic et al.
2006]. Subsequently, Tran and Davis [2007] construct a probabilistic pixelwise oc-
cupancy map for each MSER feature and then perform the MSER feature matching
for object tracking. Similar to Tran and Davis [2007], Donoser and Bischof [2006]
also use MSER features for visual representation. To improve the stability of MSER
features, they take temporal information across frames into consideration.

—SURF-Based. With the scale-invariant and rotation-invariant properties, the SURF
(Speeded Up Robust Feature) is a variant of SIFT [Bay et al. 2006]. It has similar
properties to those of SIF'T in terms of repeatability, distinctiveness, and robustness,
but its computational speed is much faster. Inspired by this fact, He et al. [2009]
develop a tracking algorithm using a SURF-based visual representation. By judging
the compatibility of local SURF features with global object motion, the tracking
algorithm is robust to appearance changes and background clutters.
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—Corner Feature-Based. Typically, a corner feature-based visual representation makes
use of corner features inside an object region to describe the structural properties of
object appearance and then matches these corner features across frames for object lo-
calization. For instance, Kim [2008] utilizes corner features for visual representation
and then performs dynamic multilevel corner feature grouping to generate a set
of corner point trajectories. As a result, the spatiotemporal characteristics of object
appearance can be well captured. Moreover, Grabner et al. [2007] explore the
intrinsic differences between the object and non-object corner features by building
a boosting discriminative model for corner feature classification.

—Local Feature-Pool-Based. Recently, local feature-pool-based visual representations
have been widely used in ensemble learning-based object tracking. Usually, they need
to set up a huge feature pool (i.e., a large number of various features) for constructing
a set of weak learners, which are used for discriminative feature selection. Therefore,
different kinds of visual features (e.g., color, local binary pattern [Collins et al. 2005],
histogram of oriented gradients [Collins et al. 2005; Liu and Yu 2007; Yu et al. 2008],
Gabor features with Gabor wavelets [Nguyen and Smeulders 2004], and Haar-like
features with Haar wavelets [Babenko et al. 2009]) can be used by FSSL in an inde-
pendent or interleaving manner. For example, Collins et al. [2005] set up a color fea-
ture pool whose elements are linear combinations of the following RGB components:
{(a1, B1, y1)la1, B1, 1 € {—2, —1,0, 1, 2}}. As a result, an object is localized by selecting
the discriminative color features from this pool. Grabner and Bischof [2006] construct
an ensemble classifier by learning several weak classifiers trained from the Haar-like
features [Viola and Jones 2002], histograms of oriented gradient (HOG) [Dalal and
Triggs 2005], and local binary patterns (LBP) [Ojala et al. 2002]. Babenko et al. [2009]
utilize the Haar-like features to construct a weak classifier and then apply an online
multiple instance boosting to learn a strong ensemble classifier for object tracking.

—Saliency Detection-Based. In principle, saliency detection is inspired by the focus-of-
attention (FoA) theory [Palmer 1999; Wolfe 1994] to simulate the human perception
mechanism for capturing the salient information of an image. Such salient infor-
mation is helpful for visual object tracking due to its distinctness and robustness.
Based on saliency detection, researchers apply the biological vision theory to visual
object tracking [Toyama and Hager 1996; Mahadevan and Vasconcelos 2009]. More
recently, Yang et al. [2007, 2010] construct an attentional visual representation
method based on the spatial selection. This visual representation method takes
a two-stage strategy for spatial selective attention. At the first stage, a pool
of attentional regions (ARs) are extracted as the salient image regions. At the
second stage, discriminative learning is performed to select several discriminative
attentional regions for visual representation. Finally, the task of object tracking is
taken by matching the ARs between two consecutive frames.

3.2.1. Discussion. The aforementioned local feature-based representations use local
templates, segmentation, SIFT, MSER, SURF, corner points, local feature pools, or
saliency detection, respectively. Due to the use of different features, these represen-
tations have different properties and characteristics. By representing an object re-
gion using a set of part templates, the local template-based visual representations
are able to encode the local spatial layout information of object appearance, resulting
in the robustness to partial occlusions. With the power of image segmentation, the
segmentation-based visual representations are capable of well capturing the intrinsic
structural information (e.g., object boundaries and superpixels) of object appearance,
leading to reliable tracking results in challenging situations. Since the SIFT features
are invariant to image scaling, partial occlusion, illumination change, and 3D camera
viewpoint change, the SIFT-based representation is robust to appearance changes in
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illumination, shape deformation, and partial occlusion. However, it cannot encode pre-
cise information on the objects, such as size, orientation, and pose. The MSER-based
representation attempts to find several maximally stable extremal regions for feature
matching across frames. Hence, it can tolerate pixel noise but suffers from illumination
changes. The SURF-based representation is on the basis of the Speeded Up Robust
Features, which has the properties of scale invariance, rotation invariance, and com-
putational efficiency. The corner-point representation aims to discover a set of corner
features for feature matching. Therefore, it is suitable for tracking objects (e.g., cars
or trucks) with plenty of corner points and sensitive to the influence of nonrigid shape
deformation and noise. The feature pool-based representation is strongly correlated
with feature selection-based ensemble learning that needs a number of local features
(e.g., color, texture, and shape). Due to the use of many features, the process of feature
extraction and feature selection is computationally slow. The saliency detection-based
representation aims to find a pool of discriminative salient regions for a particular ob-
ject. By matching the salient regions across frames, object localization can be achieved.
However, its drawback is to rely heavily on salient region detection, which is sensitive
to noise or drastic illumination variation.

3.3. Discussion on Global and Local Visual Representations

In general, the global visual representations are simple and computationally efficient
for fast object tracking. Due to the imposed global geometric constraints, the global
visual representations are susceptible to global appearance changes (e.g., caused by
illumination variation or out-of-plane rotation). To deal with complicated appearance
changes, a multi-cue strategy is taken by the global features to incorporate multiple
types of visual information (e.g., position, shape, texture, and geometric structure) into
the appearance models.

In contrast, the local visual representations are able to capture the local structural
object appearance. Consequently, the local visual representations are robust to global
appearance changes caused by illumination variation, shape deformation, rotation, and
partial occlusion. Since they require the keypoint detection, the interest point-based lo-
cal visual representations often suffer from noise disturbance and background distrac-
tion. Moreover, the local feature pool-based visual representations, which are typically
required by discriminative feature selection, need a huge number of local features (e.g.,
color, texture, and shape), resulting in a very high computational cost. Inspired by the
biological vision, the local visual representations using biological features attempt to
capture the salient or intrinsic structural information inside the object regions. This
salient information is relatively stable during the process of visual object tracking.
However, salient region features rely heavily on salient region detection which may
be susceptible to noise or drastic illumination variation, leading to potentially many
feature mismatches across frames.

4. STATISTICAL MODELING FOR TRACKING-BY-DETECTION

Recently, visual object tracking has been posed as a tracking-by-detection problem,
where statistical modeling is dynamically performed to support object detection.
According to the model-construction mechanism, statistical modeling is classified
into three categories, including generative, discriminative, and hybrid generative-
discriminative.

The generative appearance models mainly concentrate on how to accurately fit the
data from the object class. However, it is very difficult to verify the correctness of
the specified model in practice. Besides, the local optima are always obtained during
the course of parameter estimation (e.g., expectation maximization). By introducing
online-update mechanisms, they incrementally learn visual representations for the
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Table I11l. Summary of Representative Tracking-by-Detection Appearance Models Based on Generative Learning

Techniques
Item Mixture Kernel density Subspace Used generative
References . . . . .
No. models estimation learning learning techniques
Gaussian mixture
color-based model (GMM) in the
1 [McKenna et al. 1999] GMM — — hue-saturation
color space
Spatial-color
appearance model
9 [Yu and Wu 2006] Spatio-color . . using GMM
[Wang et al. 2007] GMM Spatial-color mixture
of Gaussians
(SMOG)
three-component
mixture models:
3 [Jepson et al. 2003; WSL — — W-component,
Zhou et al. 2004]
S-component,
L-component
Mean shift using a
spatially weighted
4 [Comaniciu et al. 2003] - Color-driven N color histogram Mean
[Leichter et al. 2010] shift using
multiple reference
color histograms
Affine kernel fitting
5 [Leichter et al. 2009] — Shape-integration — using color and
boundary cues
6 [Collins 2003] . Scale-aware . Mean shift considering
[Yang et al. 2005] scale changes
EM-based maximum
7 [Nguyen et al. 2007] — Scale-aware — likelihood estimation for
kernel-based tracking
s [Yilmaz 2007] - Non-symmetric . Asymmetric }{ernel
kernel mean shift
9 [Shen et al. 2007] — Global — Annealed mean shift
mode seeking
. Sequential
10 [Han et al. 2008] — Seql%entlalh kerr}el — kernel-based
density estimation .
tracking
[Black and Jepson 1996;
Ho et al. 2004] Vector-based Principal component
11 [Ross et al. 2008; Wen — — linear subspace analysis Partial least
et al. 2012] learning square analysis
[Wang et al. 2012]
[Wang et al. 2007; Li Tensor-based 2D principle '
12 et al. 2007] - o linear subspace component analysis
[Wen et al. 2009; Hu i Tensor subspace
et al. 2010] learning analysis
Continued
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Table lll. Continued

Item Mixture | Kernel density Subspace Used generative
References . . . . .
No. models estimation learning learning techniques
Local linear
13 [Lim et al. 2006; Nonlinear embedding Kernel
Chin and Suter 2007] subspace learning principle component
analysis
[Mei and Ling 2009; Li
et al. 2011] .
sparse
14 [Zhang et al. 2012; Jia — — Sparse representation ! p .
et al. 2012] approximation
[Bao et al. 2012]
N Metric-weighted
on-sparse
15 [Li et al. 2012] — — P . least-square
representation .
regression
3D-DCT
16 [Li et al. 2013] — — . Signal compression
representation
[Lee and Kriegman 2005; . bi-subspace or
Multiple .
17 Fan et al. 2008] — — b multi-subspace
subspaces
[Kwon and Lee 2010] P learning
Hou et al. 2001
[Hou et 2 . ] Active appearance Shape and appearance
18 [Sclaroff and Isidoro 2003] — — del 3D b fitti
models mes n,
[Matthews and Baker 2004] e

foreground object region information while ignoring the influence of the background.
As a result, they often suffer from distractions caused by the background regions
with similar appearance to the object class. Table III lists representative tracking-by-
detection methods based on generative learning techniques.

In comparison, discriminative appearance models pose visual object tracking as a
binary classification issue. They aim to maximize the separability between the object
and non-object regions discriminately. Moreover, they focus on discovering highly in-
formative features for visual object tracking. For computational consideration, online
variants are proposed to incrementally learn discriminative classification functions for
the purpose of object or non-object predictions. Thus, they can achieve effective and ef-
ficient predictive performances. Nevertheless, a major limitation of the discriminative
appearance models is to rely heavily on training sample selection (e.g., by self-learning
or co-learning). Table IV lists representative tracking-by-detection methods based on
discriminative learning techniques.

The generative and discriminative appearance models have their own advantages
and disadvantages and are complementary to each other to a certain extent. Therefore,
researchers propose hybrid generative-discriminative appearance models (HGDAMs)
to fuse the useful information from the generative and the discriminative models. Due
to taking a heuristic fusion strategy, HGDAMs cannot guarantee that the performance
of the hybrid models after information fusion is better than those of the individual
models. In addition, HGDAMSs may add more constraints and introduce more parame-
ters, leading to more inflexibility in practice. Table V lists representative tracking-by-
detection methods based on hybrid generative-discriminative learning techniques.

4.1. Mixture Generative Appearance Models

Typically, this type of generative appearance model adaptively learns several compo-
nents for capturing the spatiotemporal diversity of object appearance. They can be
classified into two categories: WSL mixture models and Gaussian mixture models.
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Table V. Summary of Representative Tracking-by-Detection Methods Using Hybrid Generative-Discriminative
Learning Techniques

Ttem No. References Slnglfz-la}.rer Mult.l-layer Used le:elrnlng
combination combination techniques
1 [Kelm et al. 2006] \/ X Multi-conditional learning
Combination of PCA
i . X
2 [Lin et al. 2004] \/ and Fisher LDA
Combination of boosting
. X
3 [Grabner et al. 2007] \/ and robust PCA
Discriminative subspace learning
. X
4 [Yang et al. 2009] \/ using positive and negative data
5 [Everingham and X \/ Combination of a tree-structured classifier
Zisserman 2005] and a Lambertian lighting model
Combination of SVM learning
. X
6 [Shen et al. 2010] \/ and kernel density estimation
Three-layer combination of
relevance vector machine and GMM:
7 [Lei et al. 2008] X \/ learner combination (Layer 1)
classifier combination (Layer 2)
decision combination (Layer 3)
Combination of the constellation
. X
8 [Yu et al. 2008] \/ model and fisher kernels

—WSL Mixture Models. In principle, the WSL mixture model [Jepson et al. 2003]
contains the following three components: W-component, S-component, and L-
component. These three components characterize the interframe variations, the
stable structure for all past observations, and outliers, such as occluded pixels, re-
spectively. As a variant of Jepson et al. [2003], another WSL mixture model [Zhou
et al. 2004] is proposed that directly employs the pixelwise intensities as visual fea-
tures instead of using the filter responses (e.g., [Jepson et al. 2003]). Moreover, the
L-component is discarded in modeling the occlusion using robust statistics, and an
F-component is added as a fixed template that is observed most often.

—Gaussian Mixture Models. In essence, the Gaussian mixture models [McKenna et al.
1999; Stauffer and Grimson 2000; Han and Davis 2005; Yu and Wu 2006; Wang
et al. 2007] utilize a set of Gaussian distributions to approximate the underlying
density function of object appearance, as shown in Figure 8. For instance, an object
appearance model [Han and Davis 2005] using a mixture of Gaussian density func-
tions is proposed for automatically determining the number of density functions and
their associated parameters, including mean, covariance, and weight. Rectangular
features are introduced by averaging the corresponding intensities of neighboring
pixels (e.g., 3 x 3 or 5 x 5) in each color channel. To capture a spatialtemporal de-
scription of the tracked objects, Wang et al. [2007] present a Spatial-color Mixture
of Gaussians (referred to as SMOG) appearance model, which can simultaneously
encode both spatial layout and color information. To enhance its robustness and
stability, Wang et al. further integrate multiple cues into the SMOG appearance
model, including three features of edge points: their spatial distribution, gradient
intensity, and size. However, it is difficult for the Gaussian mixture models to select
the correct number of components. For example, adaptively determining the com-
ponent number % in a GMM is a difficult task in practice. As a result, the mixture
models often use ad-hoc or heuristic criteria for selecting %, leading to the tracking
inflexibility.
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Gaussian mixture model

Fig. 8. Illustration of Gaussian mixture generative appearance models.

Mode seeking
—_—

Fig. 9. Illustration of the mode seeking process by mean shift.

4.2. Kernel-Based Generative Appearance Models (KGAMs)

Kernel-based generative appearance models (KGAMs) utilize kernel density estimation
to construct kernel-based visual representations and then carry out the mean shift
for object localization, as shown in Figure 9. According to the mechanisms used for
kernel construction or mode seeking, they may be split into the following six branches:
color-driven KGAMs, shape-integration KGAMs, scale-aware KGAMs, nonsymmetric
KGAMs, KGAMs by global mode seeking, and sequential-kernel-learning KGAMs.

—Color-Driven KGAMs. Typically, a color-driven KGAM [Comaniciu et al. 2003] builds
a color histogram-based visual representation regularized by a spatially smooth
isotropic kernel. Using the Bhattacharyya coefficient as the similarity metric, a
mean shift procedure is performed for object localization by finding the basin of
attraction of the local maxima. However, the tracker [Comaniciu et al. 2003] only
considers color information and therefore ignores other useful information, such as
edge and shape, resulting in the sensitivity to background clutters and occlusions.
Another color-driven KGAM [Leichter et al. 2010] is developed to handle multiview
color variations by constructing the convex hull of multiple view-specific reference
color histograms.

—Shape-Integration KGAMs. In general, shape-integration KGAMs aim to build a ker-
nel density function in the joint color-shape space. For example, a shape-integration
KGAM [Leichter et al. 2009] is proposed to capture the spatiotemporal properties
of object appearance using color and boundary cues. It is based on two spatially
normalized and rotationally symmetric kernels for describing the information about
the color and object boundary.
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—Scale-Aware KGAMs. In essence, scale-aware KGAMs are for capturing the spa-
tiotemporal distribution information on object appearance at multiple scales. For
instance, a scale-aware KGAM [Collins 2003] using the difference of Gaussian-based
mean shift features is presented to cope with the problem of kernel scale selection
by detecting local maxima of the Difference-of-Gaussian (DOG) scale-space filters
formulated as follows.

DOG(x’a)—;exp — I — 1 exp —ﬂ (2)
7 2702/1.6 202/1.6 2702(1.6) 202(1.6))°

where o is a scaling factor. Based on a new probabilistic interpretation, another
scale-aware KGAM [Nguyen et al. 2007] is proposed to solve a maximum likelihood
problem, which treats the coordinates for the pixels as random variables. As a result,
the problem of kernel scale selection is converted to that of maximum likelihood
optimization in the joint spatial-color space.

—Nonsymmetric KGAMs. Conventional KGAMs use a symmetric kernel (e.g., a circle
or an ellipse), leading to a large estimation bias in the process of estimating the
complicated underlying density function. To address this issue, a nonsymmetric
KGAM [Yilmaz 2007] is developed based on the asymmetric kernel mean shift
with adaptively varying the scale and orientation of the kernel. In contrast to
the symmetric mean shift (only requiring the image coordinate estimate), the
nonsymmetric KGAM needs to simultaneously estimate the image coordinates, the
scales, and the orientations in a few number of mean shift iterations. Introducing
asymmetric kernels can generate a more accurate representation of the underlying
density so that the estimation bias is reduced. Furthermore, the asymmetric kernel
is just a generalization of the previous radially symmetric and anisotropic kernels.

—KGAMs by Global Mode Seeking. Due to the local optimization property of the
mean shift, large interframe object translations lead to tracking degradations
or even failures. In order to tackle this problem, Shen et al. [2007] propose an
annealed mean shift algorithm motivated by the success of the annealed importance
sampling, which is essentially a way of assigning the weights to the states obtained
by multiple simulated annealing runs [Neal 2001]. Here, the states correspond to
the object positions while the simulated annealing runs are associated with different
bandwidths for the kernel density estimation. The proposed annealed mean shift
algorithm aims to make a progressive position evolution of the mean shift as the
bandwidths monotonically decrease (i.e., the convergence position of mean shift
with the last bandwidth works as the initial position of the mean shift with the next
bandwidth), and finally seeks the global mode.

—Sequential-Kernel-Learning KGAMs. Batch-mode kernel density estimation needs
to store the nonparametric representations of the kernel densities, leading to a
high computational and memory complexity. To address this issue, Han et al. [2008]
develop a sequential kernel density approximation (SKDE) algorithm for real-time
visual object tracking. The SKDE algorithm sequentially learns a nonparametric
representation of the kernel density and propagates the density modes over time.

—Discussion. The color-driven kernel-based tracking algorithms mainly take the
color information into consideration. However, complicated factors may give rise
to drastic tracking degradations, including scale changes, background clutters,
occlusions, and rapid object movements. To address this issue, various algorithmic
extensions have been made. The aim of scale-aware tracking algorithms is to
capture the multiscale spatial layout information of object appearance. Thus, they
are capable of effectively completing the tracking task under the circumstance of
drastic scaling changes. Moreover, the edge or shape information is very helpful
for accurate object localization or resisting background distraction. Motivated
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Fig. 10. Illustration of linear PCA subspace models. The left part shows a candidate sample, and the right
part displays a linear combination of eigenbasis samples.

by this consideration, shape-driven kernel-based tracking algorithms have been
developed to integrate the edge or shape information into the kernel design process.
Normally, the kernel-based tracking algorithms utilize symmetric kernels (e.g.,
a circle or an ellipse) for object tracking, resulting in a large estimation bias for
complicated underlying density functions. To tackle this problem, nonsymmetric
kernel-based tracking algorithms are proposed to construct a better representation
of the underlying density. Conventional kernel-based tracking algorithms tend to
pursue the local model seeking, resulting in tracking degradations or even failures
due to their local optimization properties. To address this issue, researchers borrow
ideas from both simulated annealing and annealed importance sampling to obtain
a feasible solution to global mode seeking. In practice, the factors of computational
complexity and memory consumption have a great effect on real-time kernel-based
tracking algorithms. Thus, sequential techniques for kernel density estimation have
been developed for online kernel-based tracking.

4.3. Subspace Learning-Based Generative Appearance Models (SLGAMs)

In visual object tracking, a target is usually associated with several underlying sub-
spaces, each of which is spanned by a set of basis templates. For convenience, let t
denote the target and (a; as...ay) denote the basis templates of an underlying sub-
space. Mathematically, the target t can be linearly represented in the following form.

T=cija; +coag+---+cyay =(ajaz...ay)cica...cn)’, (3)

where (c1 cg...cy) is the coefficient vector. Therefore, subspace learning-based genera-
tive appearance models (SLGAMs) focus on how to effectively obtain these underlying
subspaces and their associated basis templates by using various techniques for sub-
space analysis. For instance, some SLGAMs utilize eigenvalue decomposition or linear
regression for subspace analysis, and others construct multiple subspaces to model the
distribution characteristics of object appearance. According to the used techniques for
subspace analysis, they can be categorized into two types: conventional and unconven-
tional SLGAMs.

4.3.1. Conventional Subspace Models. In general, conventional subspace models can be
split into the following two branches: linear subspace models and nonlinear subspace
models.

—Linear Subspace Models. In recent years, linear subspace models (LSMs) have been
widely applied to visual object tracking. According to the dimension of the used
feature space, LSL can be divided into (i) lower-order LSMs and (ii) higher-order
LSMs. The lower-order LSMs [Black and Jepson 1996; Ho et al. 2004; Li et al. 2004;
Skocaj and Leonardis 2003; Wen et al. 2012] need to construct vector-based subspace
models (e.g., eigenspace by principal component analysis shown in Figure 10), while
the higher-order LSMs needs to build matrix-based or tensor-based subspace models
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(e.g., 2D eigenspace by 2D principal component analysis and tensor eigenspace by
tensor analysis).

For (i), several incremental principal component analysis (PCA) algorithms are
proposed to make linear subspace models more efficient. For instance, an incre-
mental robust PCA algorithm [Li et al. 2004] is developed to incorporate robust
analysis into the process of subspace learning. Similar to Li et al. [2004], Skocaj and
Leonardis [2003] embed the robust analysis technique into the incremental subspace
learning framework, which makes a sequential update of the principal subspace. The
learning framework considers the weighted influence of both individual images and
individual pixels within an image. Unlike the aforementioned robust PCA algorithm
based on weighted residual errors, the incremental subspace learning algorithms
[Levy and Lindenbaum 2000; Brand 2002] utilize incremental singular value decom-
position (SVD) to obtain a closed-form solution to subspace learning. However, these
incremental PCA algorithms cannot update the sample mean during subspace learn-
ing. To address this issue, a subspace model based on R-SVD (i.e., rank-R singular
value decomposition) is built with a sample mean update [Ross et al. 2008]. More-
over, Wang et al. [2012] apply partial least square analysis to learn a low-dimensional
feature subspace for object tracking. In theory, the partial least square analysis is
capable of modeling relations between sets of variables driven by a small number of
latent factors, leading to robust object tracking results.

For (ii), a set of higher-order LSMs are proposed to address the small-sample-
size problem, where the number of samples is far smaller than the dimension of
samples. Therefore, many researchers have begun to build matrix-based or tensor-
based subspace models. For instance, Wang et al. [2007] directly analyze the 2D
image matrices and construct a 2DPCA-based appearance model for object tracking.
In addition to the foreground information, they also consider background information
to avoid the distractions from the background clutters. Moreover, Li et al. [2007, 2010]
and Wen et al. [2009] take advantage of online tensor decomposition to construct a
tensor-based appearance model for robust visual object tracking.

—Nonlinear Subspace Models. If the training data lie on an underlying nonlinear man-
ifold, the LSM-based tracking algorithms may fail. Therefore, researchers attempt
to employ nonlinear subspace learning to capture the underlying geometric infor-
mation from target samples. For the robust human tracking, a nonlinear subspace
model [Lim et al. 2006] is built using nonlinear dimension reduction techniques @i.e.,
local linear embedding). As a nonlinear generalization of PCA, a nonlinear subspace
model [Chin and Suter 2007] based on kernel principal component analysis (KPCA)
is constructed to capture the kernelized eigenspace information from target samples.

4.3.2. Unconventional Subspace Models. In general, unconventional subspace models can
also be used for visual object tracking. Roughly, they can be divided into three cate-
gories: sparse/nonsparse representation, autoregressive modeling, and multi-subspace
learning.

—Sparse/ Nonsparse Representation. Typically, a set of target samples is associated
with an underlying subspace spanned by several templates. The likelihood of a can-
didate sample belonging to the object class is often determined by the residual be-
tween the candidate samples and the reconstructed samples derived from a linear
representation. To ensure a sparse linear representation, an ¢;-regularized optimiza-
tion procedure is adopted to obtain a sparse linear representation solution [Mei and
Ling 2009]. Based on the sparse representation technique in Mei and Ling [2009],
dJia et al. [2012] propose a tracking method that further improves the tracking accu-
racy by using the block-division spatial pooling schemes (e.g., average pooling, max
pooling, and alignment pooling). Moreover, Zhang et al. [2012] present a multitask
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sparse optimization framework based on a ¢, ;-regularized least-square minimiza-
tion cost function. Instead of treating test samples independently, the framework
explores the interdependencies between test samples by solving an £, ,-regularized
group sparsity problem. When p = g = 1, the framework degenerates to the popular
¢ tracker [Mei and Ling 2009].

To achieve a real-time performance of the ¢; tracker [Mei and Ling 2009], a subspace
model [Li et al. 2011] based on compressive sensing is built by solving an orthogo-
nal matching pursuit (OMP) optimization problem (i.e., random projections), which
is about 6,000 times faster than that of Mei and Ling [2009]. Similar to Li et al.
[2011], Zhang et al. [2012] make use of compressive sensing (random projections)
to generate a low-dimensional compressive feature descriptor, leading to a real-time
tracking performance. Alternatively, Bao et al. [2012] take advantage of the popular
accelerated proximal gradient (APG) approach to optimize the ¢;-regularized least
square minimization problem, which has a quadratic convergence property to ensure
the real-time tracking performance. Another way of improving the efficiency of the
¢1 tracker [Mei and Ling 2009] is to reduce the number of ¢; minimizations in the
process of evaluating test samples [Mei et al. 2011]. This task is accomplished by
estimating the minimal error bound of the likelihood function in particle filtering,
resulting in a moderate improvement in tracking efficiency. From a viewpoint of sig-
nal compression, Li et al. [2013] construct a compact 3D-DCT object representation
based on a DCT subspace spanned by cosine basis functions. With the power of fast
Fourier transform (FFT), the proposed 3D-DCT object representation is capable of ef-
ficiently adapting to spatiotemporal appearance variations during tracking, leading
to robust tracking results in complicated situations.

On the other hand, the sparsity of the linear representation is unnecessary for
robust object tracking as long as an adequate number of template samples are pro-
vided, as pointed out in Li et al. [2012]. Therefore, a nonsparse metric weighted linear
representation (with a closed-form solution) is proposed to effectively and efficiently
model the intrinsic appearance properties of the tracked object [Li et al. 2012].

—Autoregressive Modeling. Since tracking is a time-dependent process, the target
samples from adjacent frames are mutually correlated. To characterize the time
dependency across frames, a variety of appearance models are proposed in recent
years. For instance, a dynamical statistical shape representation is proposed to cap-
ture the temporal correlation information on human silhouettes from consecutive
frames [Cremers 2006]. The proposed representation learns a linear autoregressive
shape model, where the current silhouette is linearly constrained by the previous
silhouettes. The learned shape model is then integrated into the level-set evolution
process, resulting in robust segmentation results.

—Multi-Subspace Learning. In order to capture the distribution diversity of target
samples, several efforts establish the double or multiple subspaces for visual rep-
resentation. For example, Fan et al. [2008] present a bi-subspace model for visual
tracking. The model simultaneously considers two visual cues: color appearance and
texture appearance. Subsequently, the model uses a co-training strategy to exchange
information between two visual cues. For video-based recognition and tracking, Lee
and Kriegman [2005] present a generic appearance model that seeks to set up a
face appearance manifold consisting of several submanifolds. Each submanifold cor-
responds to a face pose subspace. Furthermore, Kwon and Lee [2010] construct a
set of basic observation models, each of which is associated with a specific appear-
ance manifold of a tracked object. By combining these basic observation models, a
compound observation model is obtained, resulting in a robustness to combinatorial
appearance changes.
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—Active Appearance Models (AAMs). Usually, AAMs [Hou et al. 2001; Sclaroff and
Isidoro 2003; Matthews and Baker 2004] need to incorporate two components:
(a) shape and (b) appearance. For (a), the shape s of an AAM can be expressed
as a linear combination of a base shape sy and several shape vectors (s;)?_; such that
s = 8o + >_;_1 PiSi, where the shape s denotes (x1, y1, X2, ¥2, . .., %, ¥») that are the
coordinates of the v vertices making up the mesh. For (b), the appearance of the AAM
can be represented as a linear combination of a base appearance Ag(x) and several
appearance images (A;(x))7; such that A(x) = Ao(x) + Yo AAi(x), wherex € spis a
pixel lying inside the base mesh sy. Therefore, given a test image, the AAM needs to
minimize the following cost function for the model fitting.

Z [Ao(x) + ZkiAi(x) — I(W(x; P))i| , (4)

xeSo i=1

where W(x; p) denotes a piecewise affine warp that transforms a pixel x € sy into
AAM.

4.3.3. Discussion. The lower-order linear subspace models (LSMs) usually learn vector-
based visual representations for visual object tracking. For tracking efficiency, several
incremental LSMs (e.g., incremental PCA) are developed for online visual object track-
ing. Since the vector-based visual representations suffer from the small-sample-size
problem, researchers construct higher-order matrix-based or tensor-based visual rep-
resentations. However, these LSMs potentially assume that object appearance sam-
ples lie on an underlying linear manifold. In practice, this assumption is often violated
because of complex extrinsic/intrinsic appearance changes. Motivated by this consid-
eration, nonlinear subspace models are developed for visual representation. However,
the problem with these nonlinear subspace models is that they are computationally
expensive due to the nonlinear subspace learning (e.g., nonlinear dimension reduction).

In recent years, unconventional subspace models have been proposed for visual object
tracking. These models either enforce the sparsity constraints on the linear represen-
tation solution or have different assumptions of subspace properties. However, the
sparsity-constrained linear representation typically induces a high optimization com-
plexity, which motivates researchers to develop an efficient optimization method (e.g.,
APG and OMP) for a real-time tracking performance. Without the conventional single-
subspace assumption, bi-subspace or multi-subspace algorithms are proposed to more
precisely model the distribution diversity of the target samples, but at the cost of an
additional computation.

4.4. Boosting-Based Discriminative Appearance Models

In the last decade, boosting-based discriminative appearance models (BDAMs) have
been widely used in visual object tracking because of their powerful discriminative
learning capabilities. According to the learning strategies employed, they can be
categorized into self-learning and co-learning BDAMs. Typically, the self-learning
BDAMs utilize the discriminative information from a single source to guide the task of
object/non-object classification, while the co-learning BDAMs exploit the multisource
discriminative information for object detection. More specifically, the self-learning
BDAMs first train a classifier over the data from the previous frames and subsequently
use the trained classifier to evaluate possible object regions at the current frame.
After object localization, a set of so-called positive and negative samples are selected
to update the classifier. These positive and negative samples are labeled by the
previously trained classifier. Due to tracking errors, the training samples obtained in
the tracking process may be polluted by noise. Therefore, the labels for the training
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Fig. 11. Illustration of online boosting for feature selection.

samples are unreliable. As the tracking process proceeds, the tracking error may
be accumulated, possibly resulting in the drift problem. In contrast, the co-learning
BDAMs often takes a semisupervised strategy for object/non-object classification (e.g.,
co-training by building multiple classifiers).

On the other hand, BDAMs also take different strategies for visual representation,
that is, single-instance and multi-instance ones. The single-instance BDAMs require
precise object localization. If a precise object localization is not available, these tracking
algorithms may use suboptimal positive samples to update their corresponding object
or non-object discriminative classifiers, which may lead to a model drift problem. More-
over, object detection or tracking has its own inherent ambiguity, that is, precise object
locations may be unknown even for human labelers. To deal with this ambiguity, the
multi-instance BDAMs are proposed to represent an object by a set of image patches
around the tracker location. Thus, they can be further classified into single-instance or
multi-instance BDAMs.

4.4.1. Self-Learning Single-Instance BDAMs. Based on online boosting [Oza and Russell
2001], researchers have developed a variety of computer vision applications, such as
object detection [Viola and Jones 2002] and visual object tracking [Grabner et al. 2006;
Grabner and Bischof 2006]. In these applications, the variants of boosting are invented
to satisfy different demands.

—Conventional BDAMs. As shown in Figure 11, the conventional BDAMs first make
a discriminative evaluation of each feature from a candidate feature pool and then
select the top-ranked features to conduct the tracking process [Grabner et al. 2006;
Grabner and Bischof 2006]. To accelerate the feature selection process, Liu and
Yu [2007] utilize gradient-based feature selection to construct a BDAM, but this
BDAM requires an initial set of weak classifiers to be given in advance, leading to
difficulty in general object tracking. These BDAMs often perform poorly in capturing
the correlation information between features, leading to the redundancy of selected
features and the failure to compensate for the tracking error caused by other features.
To address this issue, a feature weighting strategy is adopted to attach all the fea-
tures from the feature pool with different weights and then perform weighted fusion
for object tracking. For instance, Avidan [2007] constructs a confidence map by pixel
classification using an ensemble of online-learned weak classifiers, which are trained
by a feature weighting-based boosting approach. Since it needs to store and compute
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all the features during feature selection, the feature weighting-based boosting ap-
proach is computationally expensive. Furthermore, Parag et al. [2008] build a feature
weighting-based BDAM for object tracking, where the weak classifiers themselves
are adaptively modified to adapt to scene changes. Namely, the parameters of the
weak classifiers are adaptively changed instead of replaced when the new data arrive.
The common property of the feature weighting-based BDAMs is that they depend on
a fixed number of weak classifiers. However, this property may restrict the flexibility
of the trackers in practice.

—Dynamic Ensemble-Based BDAMs. The conventional BDAMs need to construct a
fixed number of weak learners in advance and select these weak learners itera-
tively as the boosting procedure proceeds. However, due to the time-varying prop-
erty of visual object tracking, they are incapable of effectively adapting to dynamic
object appearance changes. To address this problem, a dynamic ensemble-based
BDAM [Visentini et al. 2008] is proposed to dynamically construct and update the
set of weak classifiers according to the ensemble error value.

—Noise-Insensitive BDAMs. To make visual object tracking more robust to noise corrup-
tion, a set of BDAMSs are proposed in the literature. For instance, Leistner et al. [2009]
point out that the convex loss functions typically used in boosting are highly sen-
sitive to random noise. To enhance robustness, Leistner et al. [2009] develop a
generic BDAM called online GradientBoost, which contains a set of noise insen-
sitive loss functions. In essence, this BDAM is an extension of the GradientBoost
algorithm [Friedman 2001] and works similarly to the AnyBoost algorithm [Mason
et al. 1999].

—Particle Filtering Integration-Based BDAMs. To make visual object tracking more
efficient, researchers embed feature selection into the particle filtering process. For
example, Wang et al. [2005] and Okuma et al. [2004] propose two online feature
selection-based BDAMs using particle filtering, which generate the candidate state
set of a tracked object, and the classification results of AdaBoost is used to determine
the final state.

—Transfer Learning-Based BDAMs. Typically, most existing BDAMs have an underly-
ing assumption that the training samples collected from the current frame follow a
similar distribution to those from the last frame. However, this assumption is often
violated when the drift problem takes place. To address the drift problem, a number of
novel BDAMs [Wu et al. 2012; Luo et al. 2011] are proposed to categorize the samples
into two classes: auxiliary samples (obtained in the last frames) and target samples
(generated in the current frame). By exploring the intrinsic proximity relationships
among these samples, the proposed BDAMs are capable of effectively transferring
the discriminative information on auxiliary samples to the discriminative learning
process using the current target samples, leading to robust tracking results.

4.4.2. Co-Learning Single-Instance BDAMs. In general, the self-learning BDAMs suffer
from the model drift problem due to their error accumulation caused by using the self-
learning strategy. In order to address this problem, researchers adopt the semisuper-
vised learning techniques [Zhu 2005] for visual object tracking. For instance, Grabner
et al. [2008] develop a BDAM based on semisupervised online boosting. Its main idea
is to formulate the boosting update process in a semi-supervised manner as a fused de-
cision of a given prior and an online classier, as illustrated in Figure 12. Subsequently,
Liu et al. [2009] make use of the co-training strategy to online learn each weak clas-
sifier in boosting instead of only the final strong classifier. The co-training strategy
dynamically generates a series of unlabeled samples for progressively modifying the
weak classifiers, leading to robustness to environmental changes. It is proven that the
co-training strategy can minimize the boosting error bound in theory.
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4.4.3. Multi-Instance BDAMs. To deal with the underlying ambiguity of object localiza-
tion, multiple instance learning is used for object tracking, as illustrated in Figure 13.
In principle, it represents an object by a set of image patches around the tracker
location.

—Self-Learning Multi-Instance BDAMs. For example, Babenko et al. [2009] represent
an object by a set of image patches which correspond to an instance bag, with each
instance being an image patch. Based on online multiple instance boosting, a tracking
system is developed to characterize the ambiguity of object localization in an online
manner. The tracking system assumes that all positively labeled instances are truly
positive, but this assumption is sometimes violated in practice. Furthermore, the
tracking system trains the weak classifiers based only on the current frame and is
likely to be overfitting. Instead of equally treating the samples in each bag [Babenko
et al. 2009], Zhang et al. [2012] propose an online weighted multiple instance tracker
which incorporates the sample importance information (i.e., the samples closer to the
current tracker location are of greater importance) into the online multi-instance
boosting learning process, resulting in robust tracking results. To characterize the
cumulative loss of the weak classifiers across multiple frames instead of the current
frame, Li et al. [2010] propose an online multi-instance BDAM using the strong
convex elastic net regularizer instead of the ¢; regularizer and further prove that
the proposed multiple instance learning (MIL) algorithm has a cumulative regret
(evaluating the cumulative loss of the online algorithm) of O(~/T) with T being the
number of boosting iterations.
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—Co-Learning Multi-Instance BDAMs. Zeisl et al. [2010] and Li et al. [2013] combine
the advantages of semisupervised learning and multiple instance learning in the
process of designing a BDAM. Semisupervised learning can incorporate more prior
information, and multiple instance learning focuses on the uncertainty about where
to select positive samples for model updating.

4.4.4. Discussion. As mentioned previously, BDAMs can be roughly classified into self-
learning-based and co-learning-based ones. Self-learning-based BDAMs adopt the self-
learning strategy to learn object/non-object classifiers. They utilize previously learnt
classifiers to select positive and negative training samples and then update the current
classifiers with the selected training samples. As a result, tracking errors may be
gradually accumulated. In order to tackle this problem, co-learning-based BDAMSs are
developed to capture the discriminative information from many unlabeled samples in
each frame. They generally employ semisupervised co-learning techniques to update
the classifiers with both labeled and unlabeled samples in an interleaved manner,
resulting in more robust tracking results.

On the other hand, conventional BDAMs take a single-instance strategy for visual
representation, that is, one image patch for each object. The drawback of this single-
instance visual representation is to rely heavily on exact object localization, without
which the tracking performance could be greatly degraded because of the suboptimal
training sample selection. To address this issue, MIL is introduced to visual object
tracking. It takes into account the inherent ambiguity of object localization, represent-
ing an object by a set of image patches around the tracker location. As a result, the
MIL-based tracking algorithms can achieve robust tracking results but may lose accu-
racy if the image patches do not precisely capture the object appearance information.

However, all BDAMs need to construct a huge local feature pool for feature selection,
leading to a low computational speed. Additionally, they usually obtain a local optimal
solution to object tracking because of their focus on local features rather than global
features.

4.5. SVM-Based Discriminative Appearance Models (SDAMs)

SDAMs aim to learn margin-based discriminative SVM classifiers for maximizing in-
terclass separability. SDAMs are able to discover and remember informative samples as
support vectors for object/non-object classification, resulting in a strong discriminative
power. Effective kernel selection and efficient kernel computation play an importance
role in designing robust SDAMs. According to the used learning mechanisms, SDAMs
are typically based on self-learning SDAMs and co-learning SDAMs.

—Self-Learning SDAMs. In principle, the self-learning SDAMs are to construct SVM
classifiers for object/non-object classification in a self-learning fashion. For example,
Avidan [2004] proposes an offline SDAM for distinguishing a target vehicle from a
background. Since the SDAM needs substantial prior training data in advance, ex-
tending the algorithm to general object tracking is a difficult task. Following the work
in Avidan [2004], Williams et al. [2005] propose a probabilistic formulation-based
SDAM which allows for propagating observation distributions over time. Despite
its robustness, the proposed SDAM needs to fully encode the appearance variation
information, which is impractical in the tracking process. Tian et al. [2007] utilize
an ensemble of linear SVM classifiers to construct a SDAM. These classifiers can
be adaptively weighted according to their discriminative abilities during different
periods, resulting in robustness to large appearance variations. These SDAMs need
to heuristically select positive and negative samples surrounding the current tracker
location to update the object/non-object SVM classifier.
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To avoid the heuristic and unreliable step of training sample selection (usually
requiring accurate estimation of object location), two strategies are adopted in the
literature. One is based on a structured output support vector machine (SVM) [Hare
et al. 2011; Yao et al. 2012], and the other is based on ranking SVM [Bai and Tang
2012]. The key idea of these two strategies is to integrate the structured constraints
(e.g., relative ranking or VOC overlap ratio between samples) into the max-margin
optimization problem. For instance, Hare et al. [2011] propose an SDAM based on a
kernelized structured SVM, which involves an infinite number of structured loss (i.e.,
VOC overlap ratio)-based constraints in the structured output spaces. In addition,
Bai and Tang [2012] therefore pose visual object tracking as a weakly supervised
ranking problem, which captures the relative proximity relationships between sam-
ples towards the true target samples.

—Co-Learning SDAMs. In general, the co-learning SDAMs rely on semisuper-
vised/multikernel learning to construct SVM classifiers for object/non-object clas-
sification. For instance, Tang et al. [2007] adopt the co-training SVM technique to
design a semisupervised tracker. The disadvantage of this tracker is that it requires
several initial frames to generate adequate labeled samples, resulting in the inflex-
ibility in practice. Lu et al. [2010] and Yang et al. [2010] design SVM classifiers
using multikernel learning (MKL) for visual object tracking. MKL aims to learn an
optimal linear combination of different kernels based on different features, including
the color information and spatial pyramid histogram of visual words.

4.5.1. Discussion. With the power of max-margin learning, the SDAMs have a good
generalization capability of distinguishing foreground and background, resulting in an
effective SVM classifier for object localization. However, the process of constructing
the SDAMs requires a set of reliable labeled training samples, which is a difficult task
due to the influence of some complicated factors, such as noisy corruptions, occlusions,
illumination changes, etc. Therefore, most existing SDAMs take a heuristic strategy
for training sample collection (e.g., spatial distance based or classification score based),
which may lead to the instability or even drift of the tracking process. To address this
issue, the structured SVM is applied to model the structural relationships (i.e., VOC
overlap ratio) between samples, resulting in a good tracking performance in terms of
generalization and robustness to noise. During tracking, a hard assignment of a sample
to a class label usually leads to the classification error accumulation. To alleviate the
issue, the ranking SVM (a weakly supervised learning method) is also introduced
into the tracking process, where the relative ranking information between samples is
incorporated into the constraints of max-margin learning.

The common point of the preceding SDAMs is to take a self-learning strategy
for object/non-object classification without considering the discriminative information
from unlabeled data or multiple information sources. Motivated by this, the co-learning
SDAMs are developed to integrate such discriminative information into the SVM learn-
ing process by semisupervised/multikernel learning.

4.6. Randomized Learning-Based Discriminative Appearance Models (RLDAMs)

More recently, randomized learning techniques (e.g., Random Forest [Breiman 2001;
Shotton et al. 2008; Lepetit and Fua 2006] and Ferns [Ozuysal et al. 2009]) have been
successfully introduced into the vision community. In principle, randomized learning
techniques can build a diverse classifier ensemble by performing random input selec-
tion and random feature selection. In contrast to boosting and SVM, they are more com-
putationally efficient and easier to extend for handling multiclass learning problems. In
particular, they can be parallelized so that multicore and GPU implementations (e.g.,
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[Sharp 2008]) can be performed to greatly reduce runtime. However, their tracking
performance is unstable for different scenes because of their random feature selection.

Inspired by randomized learning, a variety of RLDAMs are proposed in the field
of visual object tracking, including online random forests [Saffari et al. 2009; Santner
et al. 2010], random naive Bayes classifiers [Godec et al. 2010], and MIForests [Leistner
et al. 2010]. For instance, Godec et al. [2010] develop a visual object tracking algorithm
based on online random naive Bayes classifiers. Due to the low computational and
memory costs of random naive Bayes classifiers, the developed tracking algorithm has a
powerful real-time capability for processing long-duration video sequences. In contrast
to online Random Forests [Saffari et al. 2009], the random naive Bayes classifiers
have a higher computational efficiency and faster convergence in the training phase.
Moreover, Leistner et al. [2010] present an RLDAM named MIForests which uses
multiple instance learning to construct randomized trees and represents the hidden
class labels inside target bags as random variables.

4.7. Discriminant Analysis-Based Discriminative Appearance Models (DADAMs)

Discriminant analysis is a powerful tool for supervised subspace learning. In princi-
ple, its goal is to find a low-dimensional subspace with a high interclass separability.
According to the learning schemes used, it can be split into two branches: conventional
discriminant analysis and graph-driven discriminant analysis. In general, conventional
DADAMs are formulated in a vector space, while graph-driven DADAMs utilize graphs
for supervised subspace learning.

4.7.1. Conventional DADAMs. Typically, conventional discriminant analysis techniques
can be divided into one of the following two main branches.

—Unimodal DADAMs. In principle, unimodal DADAMs have a potential assumption
that the data for the object class follow a unimodal Gaussian distribution. For in-
stance, Lin et al. [2004] build a DADAM based on incremental Fisher linear discrim-
inant analysis (IFLDA). This DADAM models the object class as a single Gaussian
distribution and models the background class as a mixture of Gaussian distributions.
Nguyen and Smeulders [2006] use linear discriminant analysis (LDA) for discrimina-
tive learning in the local texture feature space obtained by Gabor filtering. However,
there is a potential assumption that the distributions of the object and the back-
ground classes are approximately Gaussian ones with an equal covariance. Li et al.
[2008] construct a DADAM using the incremental 2DLDA on the 2D image matri-
ces. Since matrix operations are directly made on these 2D matrices, the DADAM is
computationally efficient. Moreover, another way of constructing unimodal DADAMs
is by discriminant metric learning, which aims to linearly map the original feature
space to a new metric space by a linear projection [Wang et al. 2010; Jiang et al. 2011,
2012]. After discriminant metric learning, the similarity between intraclass samples
are minimized, while the distance between interclass samples are maximized, re-
sulting in an effective similarity measure for robust object tracking. Note that the
above DADAMs are incapable of dealing well with the object and background classes
having multimodal distributions.

—Multimodal DADAMs. In essence, multimodal DADAMs model the object class and
the background class as a mixture of Gaussian distributions. For example, Xu et al.
[2008] take advantage of adaptive subclass discriminant analysis (SDA) (i.e., an
extension to the basic SDA [Zhu and Martinez 2006]) for object tracking. The adaptive
SDA first partitions data samples into several subclasses by a nearest-neighbor
clustering and then runs the traditional LDA for each subclass.
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Fig. 14. Illustration of transductive learning: (a) shows the decision hyperplane obtained by the conventional
supervised learning; and (b) displays the decision hyperplane (further adjusted by the unlabeled samples)
of transductive learning.

4.7.2. Graph-Driven DADAMs. Researchers utilize the generalized graph-based discrim-
inative learning (i.e., graph embedding and graph transductive learning) to construct
a set of DADAMs for visual object tracking. Typically, these DADAMs mainly have the
following two branches.

—Graph-Embedding-Based DADAMs. In principle, the goal of graph-embedding-based
DADAMs is to set up a graph-based discriminative model which utilizes the graph-
based techniques to embed the high-dimensional samples into a discriminative
low-dimensional space for the object/non-object classification. For instance, Zhang
et al. [2007] design a DADAM based on graph-embedding-based LDA, which makes
a basic assumption that the background class is irregularly distributed with multiple
modalities, while the object class follows a single Gaussian distribution. However,
this basic assumption does not hold true in the case of complex intrinsic and extrinsic
object appearance changes.

—Graph Transductive Learning-Based DADAMs. In general, graph transductive
learning-based DADAMSs aim to utilize the power of graph-based semisupervised
transductive learning for the likelihood evaluation of the candidate samples belong-
ing to the object class. They make use of the intrinsic topological information between
the labeled and unlabeled samples to discover an appropriate decision hyperplane
for object/non-object classification, as shown in Figure 14. For instance, Zha et al.
[2010] develop a tracker based on graph-based transductive learning. The tracker
utilizes the labeled samples to maximize the interclass separability and the unla-
beled samples to capture the underlying geometric structure of the samples.

4.7.3. Discussion. The goal of DADAMSs is to learn a decision hyperplane to separate
the object class from the background class. However, the traditional DADAMs perform
poorly when both the object class and the background class have multimodal sta-
tistical distributions. To overcome this limitation, multimodal discriminant analysis is
adopted to explore the training data distributions by data clustering. To make a nonlin-
ear extension to the conventional DADAMSs, graph-based DADAMSs are proposed. These
DADAMSs try to formulate the problem of discriminant analysis as that of graph learn-
ing, such as graph embedding and graph transductive learning. However, a drawback
is that these algorithms need to retain a large amount of labeled/unlabeled samples
for graph learning, leading to their impracticality for real tracking applications.
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4.8. Codebook Learning-Based Discriminative Appearance Models (CLDAMs)

In principle, CLDAMsSs need to constructed the foreground and background codebooks
to adaptively capture the dynamic appearance information from the foreground and
background. Recently, Yang et al. [2010a] constructed two codebooks of image patches
using two different features—RGB and LBP features—leading to the robustness in
handling occlusion, scaling, and rotation. To capture more discriminative information,
an adaptive class-specific codebook [Gall et al. 2010] is built for instance tracking. The
codebook encodes the information on spatial distribution and appearance of object parts
and can be converted to a more instance-specific codebook in a probabilistic way (i.e.,
probabilistic votes for the object instance). Inspired by the tracking-by-detection idea,
Andriluka et al. [2008] establish object-specific codebooks, which are constructed by
clustering local features (i.e., shape context feature descriptors and Hessian-Laplace
interest points) extracted from a set of training images. These codebooks are then
embedded into a part-based model for pedestrian detection.

Therefore, CLDAMs often consider the discriminative information not only from the
background but also from other object instances. However, it is very difficult to construct
a universal codebook for different scenes or objects. As a result, it is necessary to
collect different training samples for different scenes or objects, leading to inflexibility
in practice. In addition, determining the codebook size is a difficult task in practice.

4.9. Hybrid Generative-Discriminative Appearance Models (HGDAMs)

As discussed in Ulusoy and Bishop [2005], the generative and the discriminative mod-
els have their own advantages and disadvantages and are complementary to each
other to some extent. Consequently, much effort has been made to propose a variety of
hybrid generative-discriminative models for combining the benefits of both the genera-
tive and the discriminative models in visual object tracking. These hybrid generative-
discriminative models aim to combine the generative and the discriminative models in
a single-layer or multilayer manner.

4.9.1. HGDAMs via Single-Layer Combination. HGDAMs via single-layer combination aim
to fuse the generative and the discriminative models at the same layer. They attempt to
fuse the confidence scores of the generative and the discriminative models to generate
better tracking results than just using them individually. Typically, they have two
kinds of combination mechanisms: decision-level combination and intermediate-level
combination.

—HGDAM:s via Decision-Level Combination. In principle, such HGDAMs focus on how
to effectively fuse the confidence scores from the generative and the discriminative
models. For instance, a linear fusion strategy [Kelm et al. 2006] is taken to combine
the log-likelihood of discriminative and generative models for pixel classification. It
is pointed out [Kelm et al. 2006] that the performance of the combined generative-
discriminative models is associated with a balance between the purely generative and
purely discriminative ones. In addition, Lin et al. [2004] propose a HGDAM that is a
generalized version of the Fisher Linear Discriminant Analysis. This HGDAM con-
sists of two components: the observation submodel and the discriminative submodel.

—HGDAMs via Intermediate-Level Combination. In principle, the HGDAMs via
intermediate-level combination aim to simultaneously utilize both low-level features
and high-level confidence scores from the generative and the discriminative models.
For instance, Yang et al. [2009] impose three data-driven constraints on the
proposed object appearance model: (1) negative data, (2) bottom-up pairwise data
constraints, and (3) adaptation dynamics. As a result, the object appearance model
can greatly ameliorate the problem of adaptation drift and can achieve good tracking
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performances in various nonstationary scenes. Furthermore, Grabner et al. [2007]
propose a HGDAM based on a boosting algorithm called Eigenboosting, which re-
quires visual features to be discriminative with reconstructive abilities at the same
time. In principle, eigenboosting aims to minimize a modified boosting error-function
in which the generative information (i.e., eigenimages generated from Haar-like
binary basis-functions using robust PCA) is integrated as a multiplicative prior.

4.9.2. HGDAMSs via Multilayer Combination. In principle, the goal of the HGDAMSs via
multilayer combination is to combine the information from the generative and
discriminative models at multiple layers. In general, such HGDAMs can be divided
into two classes: HGDAMs via sequential combination and HGDAMs via interleaving
combination.

—HGDAMs via Sequential Combination. In principle, the HGDAMSs via sequential
combination aim to fuse the benefits of the generative and discriminative models in
a sequential manner. Namely, they use the decision output of one model as the input of
the other model. For example, Everingham and Zisserman [2005] combine generative
and discriminative head models. A discriminative tree-structured classifier is trained
to make efficient detection and pose estimation over a large pose space with three
degrees of freedom. Subsequently, a generative head model is used for the identity
verification. Moreover, Shen et al. [2010] develop a generalized kernel-based HGDAM
which learns a dynamic visual representation by online SVM learning. Subsequently,
the learned visual representation is incorporated into the standard MS tracking pro-
cedure. Furthermore, Lei et al. [2008] propose a HGDAM using sequential Bayesian
learning. The proposed tracking algorithm consists of three modules. In the first
module, a fast relevance vector machine algorithm is used to learn a discriminative
classifier. In the second module, a sequential Gaussian mixture model is learned for
visual representation. In the third module, a model combination mechanism with a
three-level hierarchy is discussed, including the learner combination (at level one),
classifier combination (at level two), and decision combination (at level three).

—HGDAMSs via Interleaving Combination. In principle, the goal of the HGDAMs via
interleaving combination is to combine the discriminative-generative information
in a multilayer interleaving manner. Namely, the decision output of one model is
used to guide the learning task of the other model and vice versa. For instance, Yu
et al. [2008] utilize a co-training strategy to combine the information from a SVM
classifier and a generative multi-subspace model [Lee and Kriegman 2005] in a
multilayer interleaving manner.

5. BENCHMARK RESOURCES FOR VISUAL OBJECT TRACKING

To evaluate the performance of various tracking algorithms, one needs the same test
video dataset, the ground truth, and the implementation of the competing tracking
algorithms. Table VI lists the current major resources available to the public.
Another important issue is how to evaluate tracking algorithms in a qualitative or
quantitative manner. Typically, qualitative evaluation is based on intuitive perception
by human. Namely, if the calculated target regions cover more true object regions and
contain fewer non-object pixels, the tracking algorithms are considered to achieve better
tracking performances; otherwise, the tracking algorithms perform worse. For a clear
illustration, a qualitative comparison of several representative visual representations
is provided in Table VII in terms of computational speed as well as handling occlu-
sion, illumination variation, and shape deformation capabilities. Moreover, Table VIII
provides a qualitative comparison of several representative statistical modeling-based
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Table VII. Qualitative Comparison of Visual Representations
Visual What . .. Shape
Ttem No. representations to track Speed | Occlusion| Ilumination deformation
Vector-based raw pixel
1 representation rectangle| high x x x
[Ross et al. 2008]
Matrix-based raw
2 pixel representation rectangle| high X X X
[Li et al. 2007]
Multi-cue raw pixel
representation
3 (i.e., color, position, edge) [Wang rectangle moderate v x x
et al. 2007]
Multi-cue spatial-color histogram
representation .
4| (ie., joint histogram in (x, y, R, G, B)) [rectangle high x x v
[Georgescu and Meer 2004]
Multi-cue spatial-color histogram
representation .
5 (i.e., patch-division histogram) rectangle| high v X v
[Adam et al. 2006]
covariance representation
6 [Porikli et al. 2006; Li et al. 2008] |rectangle moderate X J Vv
[Hu et al. 2012; Wu et al. 2012]
7 Wavelet ﬁlte[ll"j?ftl;a;szt(l) ég})resentatlon rectangle| slow J J J
[Cremers 2006; Sun et al. 2011]
8 Active contour representation contour slow v * v
Local feature-based
9 (;:iﬁes:;:;g:ez) rectangle|moderate Vv v J
[Lin et al. 2007]
Local feature-based represnetation |.
10 (MSER features) 1rregular slow Vv X J
[Tran and Davis 2007] regions
[Zhou et al. 2009] .
11 Local feature-based represnetation 1nte.3rest slow Vv Vv N
(SIFT features) points
Local feature-based represnetation | .
interest
12 (SURF features) . moderate N Vv Vv
[He et al. 2009] points
Local feature-based represnetation | .
13 (Corner features) 1nte.3rest moderate Vv J Vv
[Kim 2008] points
Local feature-based represnetation .
14 (Saliency detection-based features) saliency slow Vv v v
patches

[Fan et al. 2010]

Note: Symbols ./ and x mean that the visual representation can or cannot cope with the situations of
occlusions, illumination changes, and shape deformations, respectively.
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Table VIII. Qualitative Comparison of Representative Statistical Modeling-Based Appearance Models

Statistical

It . . M Onli e
em modeling-based Domain Speed emory " m.e . Discriminability
No. usage |adaptability
appearance models
1 Linear subspace mamf.old fast low strong weak
models learning
9 Nonlinear subspace manlf_‘old slow high weak moderate
models learning
P -
3 Mixture models .arame%tnc . moderate low strong moderate
density estimation
4 Kernel-based models No?paral?letr{c fast low weak weak
density estimation
5 Boosting-based ensemble learning | moderate low strong strong
appearance models
6 SVM-based Max1mum. margin slow high strong strong
appearance models learning
classifier ensemble
Randomized learning | based on random
7 based appearance input selection and fast high strong weak
models random feature
selection
Discriminant analysis .
supervised subspace
8 based appearance . fast low strong weak
learning
models
Codebook learning
9 based appearance Vector quantization slow high strong strong
models

appearance models in terms of computational speed, memory usage, online adaptabil-
ity, and discriminability.

In contrast, a quantitative evaluation relies heavily on the ground truth annotation.
If objects of interest are annotated with bounding boxes, a quantitative evaluation
is performed by computing the positional errors of four corners between the tracked
bounding boxes and the ground truth. Alternatively, the overlapping ratio between the
tracked bounding boxes (or ellipses) and the ground truth can be calculated for the

quantitative evaluation: r = AN%  where A; is the tracked bounding box (or ellipse)

and Aq is the ground truth. The task of ground truth annotation with bounding boxes or
ellipses is difficult and time consuming. Consequently, researchers take a point-based
annotation strategy for the quantitative evaluation. Specifically, they either record
object center locations as the ground truth for simplicity and efficiency or mark several
points within the object regions by hand as the ground truth for accuracy (e.g., seven
mark points are used in the dudek face sequence [Ross et al. 2008]). This way, we can
compute the positional residuals between the tracking results and the ground truth
for the quantitative evaluation.

6. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have presented a survey of 2D appearance models for visual object
tracking. The presented survey takes a module-based organization to review the
literature of two important modules in 2D appearance models: visual represen-
tations and statistical modeling schemes for tracking-by-detection, as shown in
Figure 3. The visual representations focus more on how to robustly describe the
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spatiotemporalcharacteristics of object appearance, while the statistical modeling
schemes for tracking-by-detection put more emphasis on how to capture the gener-
ative/discriminative statistical information of the object regions. These two modules
are closely related and interleaved with each other. In practice, powerful appearance
models depend on not only effective visual representations but also robust statistical
models.

In spite of great progress in 2D appearance models in recent years, there are still
several issues remaining to be addressed.

—Balance between Tracking Robustness and Tracking Accuracy. Existing appearance
models are incapable of simultaneously guaranteeing tracking robustness and track-
ing accuracy. To improve the tracking accuracy, more visual features and geometric
constraints are incorporated into the appearance models, resulting in a precise object
localization in the situations of particular appearance variations. However, these vi-
sual features and geometric constraints can also lower the generalization capabilities
of the appearance models in the aspect of undergoing other appearance variations.
On the other hand, to improve the tracking robustness, the appearance models relax
some constraints on a precise object localization, thus allowing for more ambiguity
of the object localization. Thus, balancing tracking robustness and tracking accuracy
is an interesting research topic.

—Balance between Simple and Robust Visual Features. In computer vision, designing
both simple and robust visual features is one of the most fundamental and important
problems. In general, simple visual features have a small number of components. As a
result, they are computationally efficient but have a low discriminability. In contrast,
robust visual features often have a large number of components. Consequently, they
are computationally expensive and have sophisticated parameter settings. Therefore,
how to keep a good balance between simplicity and robustness plays an important
role in visual object tracking.

—2D and 3D Information Fusion. 2D appearance models are computationally efficient
and simple to implement. Due to the information loss of 3D-to-2D projections, 2D
appearance models cannot accurately estimate the poses of the tracked objects, lead-
ing to sensitivity to occlusion and out-of-plane rotation. In contrast, 3D appearance
models are capable of precisely characterizing the 3D pose of the tracked objects, re-
sulting in robustness to occlusion and out-of-plane rotation. However, 3D appearance
models require a large parameter-search space for 3D pose estimation, resulting in
expensive computational costs. Therefore, combining the advantages of 2D and 3D
appearance models is a challenging research topic. To accelerate the pose estimation
process of the 3D appearance models, a possible solution is to use the tracking results
of the 2D appearance models as the initialization of the 3D appearance models. How-
ever, how to effectively transfer from 2D tracking to 3D tracking is still an unsolved
problem.

—Intelligent Vision Models. Inspired by the biological vision, a number of high-level
salient region features are proposed to capture the salient semantic information of
an input image. These salient region features are relatively stable during the process
of tracking, while they rely heavily on salient region detection which may be affected
by noise or drastic illumination variation. Unreliable saliency detection leads to
many feature mismatches across frames. Consequently, it is necessary to build an
intelligent vision model that can robustly track these salient region features across
frames like what human vision offers.

—Camera Network Tracking. Typically, the appearance models are based on a single
camera, which provides a very limited visual information of the tracked objects.
In recent years, several appearance models using multiple overlapping cameras
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are proposed to fuse different visual information from different viewpoints. These
appearance models usually deal with the problem of object tracking in the same scene
monitored by different cameras. Often they cannot complete the tracking task of the
same object in different but adjacent scenes independently. In this case, tracking in
a large camera network needs to be established for a long-term monitoring of the
objects of interest. However, how to transfer the target information from one camera
subnetwork to another is a crucial issue that remains to be solved.

—Low-Frame-Rate Tracking. Due to the hardware limits of processing speed and mem-
ory usage, mobile devices or microembedded systems usually produce video data with
a low frame rate (e.g., abrupt object motion), which makes the tracking job challeng-
ing. In this situation, the appearance models need to have good generalization and
adaptation capability of online coping with the object appearance variations during
tracking. Therefore, it is crucial to construct a robust appearance model with efficient
visual modeling and effective statistical modeling for real-time applications.
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