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Abstract—3D object recognition in cluttered scenes is a rapidly growing research area. Based on the used types of features, 3D object

recognition methods can broadly be divided into two categories—global or local feature based methods. Intensive research has been

done on local surface feature based methods as they are more robust to occlusion and clutter which are frequently present in a

real-world scene. This paper presents a comprehensive survey of existing local surface feature based 3D object recognition methods.

These methods generally comprise three phases: 3D keypoint detection, local surface feature description, and surface matching. This

paper covers an extensive literature survey of each phase of the process. It also enlists a number of popular and contemporary

databases together with their relevant attributes.

Index Terms—3D object recognition, keypoint detection, feature description, range image, local feature

Ç

1 INTRODUCTION

OBJECT recognition in cluttered scenes is a fundamental
research area in computer vision. It has numerous

applications, such as intelligent surveillance, automatic
assembly, remote sensing, mobile manipulation, robotics,
biometric analysis and medical treatment [1], [2], [3], [4], [5].
In the last few decades, 2D object recognition has been
extensively investigated and is currently a relatively mature
research area [6]. Compared to 2D images, range images
have shown to exhibit several advantages for object recogni-
tion. For instance, (i) range images provide more geometri-
cal (depth) information compared to 2D images. Range
images also encode surface metric dimensions unambigu-
ously. (ii) Features extracted from range images are com-
monly not affected by scale, rotation and illumination [7].
(iii) An estimated 3D pose of an object from range images is
more accurate compared to an estimated pose from 2D
images. Accordingly, range images have the potential to
overcome many of the difficulties faced by 2D images in the
context of object recognition [8]. These advantages make 3D
object recognition an active research topic [9]. Moreover, the
rapid technological development of low cost 3D acquisition
systems (e.g., Microsoft Kinect) make range images more
accessible [10], [11], [12]. Furthermore, advances in comput-
ing devices enable the processing of any computationally

intensive 3D object recognition algorithm to run in a fairly
acceptable manner. All these combined factors have contrib-
uted to the flourishment of research towards the develop-
ment of 3D object recognition systems.

Existing 3D object recognition methods can be divided
into two broad categories: global feature based methods
and local feature based methods [13], [14]. The global fea-
ture based methods process the object as a whole for recog-
nition. They define a set of global features which effectively
and concisely describe the entire 3D object (or model) [15].
These methods have been widely used in the context of 3D
shape retrieval and classification [16], [17]. Examples in this
category include geometric 3D moments [18], shape distri-
bution [19], viewpoint feature histogram [20], and potential
well space embedding [21]. They, however, ignore the
shape details and require a priori segmentation of the object
from the scene [11]. They are therefore not suitable for the
recognition of a partially visible object from cluttered scenes
[14]. On the other hand, the local feature based methods
extract only local surfaces around specific keypoints. They
generally handle occlusion and clutter better compared to
the global feature based methods [14]. This type has also
proven to perform notably better in the area of 2D object
recognition [22]. This conclusion has also been extended to
the area of 3D object recognition [23]. On that basis, the
focus of this paper is on 3D object recognition in cluttered
scenes with local surface features.

Several survey papers were published on 3D object recog-
nition and its related fields, such as 3D shape matching and
modeling. Among these, several survey papers on 3D object
recognition are also available. For instance, the articles in
[24], [25], [26], [27], [28] and [29]. Two reviews on 3D model-
ing and range image registration by [30] and [31] are also
worth mentioning. However, none of these papers specifi-
cally focuses on local feature based 3D object recognition.

Bronstein et al. [32] presented a review on keypoint
detection and local surface feature description methods.
They however, covered only four keypoint detectors and
seven feature descriptors. An article on the evaluation of
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keypoint detection methods has just been published [33].
However, this article only covers eight keypoint detection
methods. A large number of significant research contribu-
tions on local feature based methods is available and
there is no review article which comprehensively analyzes
these methods.

Compared with the existing literature, the main contribu-
tions of this paper are as follows:

i) To the best of our knowledge, this is the first survey
paper in the literature that focuses on 3D object recog-
nition based on local surface features.

ii) As opposed to previous reviews, e.g., in [32] and
[33], we adequately cover the contemporary litera-
ture of keypoint detection and local surface
description methods. We present a comprehensive
review of 29 keypoint detection and 38 feature
description methods.

iii) This paper also provides an insightful analysis on all
aspects of surface matching, including feature
matching, hypothesis generation and verification.

iv) Compared to the earlier surveys, this paper covers
the most recent and advanced work. It therefore, pro-
vides the reader with the state-of-the-art methods.

v) A comparative summary of attributes is reported in
tabular forms (e.g., Tables 3, 4 and 5).

The rest of this paper is organized as follows. Section 2
describes the background concepts and terminology of 3D
object recognition based on local surface features. Sections
3 and 4 provide a comprehensive survey of the existing
methods for 3D keypoint detection and local surface fea-
ture description, respectively. Section 5 presents a review
of 3D object recognition methods. Section 6 presents a brief
discussion on potential future research directions. Finally,
Section 7concludes this paper.

2 BACKGROUND CONCEPTS AND TERMINOLOGY

2.1 Background Concepts

A range image can be represented in three types, namely a
depth image, a point cloud or a polygonal mesh. Given a
range image, the goal of 3D object recognition is to correctly
identify objects present in the range image, and determine
their poses (i.e. positions and orientations) [34].

At a conceptual level, a typical local feature based 3D
object recognition system consists of three main phases:
3D keypoint detection, local surface feature description
and surface matching. In the 3D keypoint detection phase,
the 3D points with rich information content are identi-
fied as keypoints. The inherent scale of each keypoint is
also detected. Both the location and scale (i.e., neighbor-
hood size) of a keypoint define a local surface which is
used in the subsequent feature description phase [35]. In
the local surface feature description phase, the geometric
information of the neighborhood surface of the keypoint
is encoded into a representative feature descriptor. Dur-
ing the surface matching phase, the scene features are
matched against all model features in the library, result-
ing in a set of feature correspondences and hypotheses.
These hypotheses are finally verified to infer the identity
and pose of the object.

2.2 Databases and Evaluation

Many databases have been built to test various algorithms.
A set of popular 2.5D range image and 3D model databases
are enlisted together with their major attributes in Tables 1
and 2, respectively. The variations (var.), including occlu-
sion (o), clutter (c) and deformation (d), in each database
are also provided. The symbol ‘-’ denotes that the corre-
sponding item is not reported. In addition to range images/
models, registered 2D color (usually RGB) images are also
simultaneously provided in several databases (shown in
Tables 1 and 2).

There are series of evaluation criteria which are fre-
quently used to assess the performance of each phase of
a 3D object recognition system [3], [36], [37], [38]. Repeat-
ability score is a frequently used criteria for 3D keypoint
detector evaluation. It is computed as the ratio of the
number of corresponding keypoints to the minimum
number of keypoints in the two images [33], [39], [40],
[41], [42]. Recall vs 1 -Precision is a frequently used crite-
ria for local surface feature descriptor evaluation. It is
generated by varying the thresholds for feature matching
and calculating the feature recall and precision under
each threshold [3], [43], [44], [45], [46]. Recognition rate is
commonly used to evaluate the overall performance of a
recognition system [38], [44], [47], [48].

TABLE 1
Popular Range Image Databases
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3 3D KEYPOINT DETECTION

Keypoint detection is the first major phase of a local surface
feature based 3D object recognition system. The simplest
keypoint detection methods are surface sparse sampling
and mesh decimation [38], [63], [64]. However, these meth-
ods do not result in qualified keypoints in terms of repeat-
ability and informativeness. That is because they give no or
little consideration to the richness of discriminative infor-
mation of these detected keypoints [4]. Therefore, it is neces-
sary to detect keypoints according to their distinctiveness.

Based on whether the scale is predetermined or adap-
tively detected, keypoint detection methods can be classi-
fied into two categories: fixed-scale keypoint detection
methods and adaptive-scale keypoint detection methods.
We adopt the same classification as [33] in this paper.

3.1 Fixed-Scale Keypoint Detection

Fixed-scale keypoint detection methods define a point,
which is distinctive within a predetermined neighborhood,
as a keypoint. The neighborhood size is determined by the
scale, which is an input parameter to the algorithm [35]. As
described in the following subsections, distinctiveness
measures can either be curvatures or other surface variation
(OSV) measures.

3.1.1 Curvature Based Methods

These methods use different curvatures as distinctiveness
measures to detect keypoints.

Mokhtarian et al. [65] detected keypoints using the
Gaussian and mean curvatures. They declared a point pp as a
keypoint if its curvature value was larger than the curvature
values of its 1-ring neighbors (k-ring neighbors are defined
as the points which are distant from pp by k edges). Yamany
and Farag [66] used simplex angles to detect keypoints. A
simplex angle ’ is related to the mean curvature. The key-
points are detected at the locations where the simplex
angles satisfy the constraint j sinð’Þj � t. Their threshold t is
crucial for the performance of their keypoint detection, and
choosing an appropriate threshold is still an unresolved
issue [66]. Gal and Cohen-Or [67] proposed a saliency grade
for keypoint detection. A saliency grade for a point pp is a lin-
ear combination of two terms. The first term is the sum of
the curvatures of its neighboring points, and the second
term is the variance of the curvature values in the neighbor-
hood. The points with high saliency grades are selected as
keypoints. Chen and Bhanu [68] detected keypoints based
on shape index values. That is, within a neighborhood, the
point pp is marked as a keypoint only if its shape index value
is a local optimum (maximum/minimum). Experimental

results showed that the detected keypoints were quite uni-
formly distributed over the surface [33]. However, this
method is sensitive to noise [33].

3.1.2 Other Surface Variation Measure Based Methods

These methods use other surface variation measures rather
than just curvatures to detect keypoints.

Matei et al. [69] used the smallest eigenvalue �3 of the
covariance matrix of the neighboring points to measure the
surface variation around a point pp. The points were sorted
according to their surface variations. Zhong [70] employed
the ratio of two successive eigenvalues to prune the points.
Only the points which satisfy the constraints �2

�1
< t21 and

�3
�2

< t32 are retained and further detected based on the
smallest eigenvalue �1. Guo et al. [44] first decimated a range
image and then chose the points, which satisfied the con-
straint �1

�2
> t from the decimated image, as keypoints. These

methods achieve good results in terms of repeatability. More-
over, they are particularly computationally efficient [33].

Glomb [71] introduced four propositions to extend the
popular Harris detector [72] from 2D images to 3D
meshes. They found that the Harris detector, which used
the derivative of a fitted quadratic surface, achieved the
best results. Following this proposition, Sipiran and Bus-
tos [40] proposed a “Harris 3D” detector. Given a point pp,
the neighboring points were first translated to the centroid
and then rotated to align the normal at pp with the z axis.
Next, these transformed points were fitted into a qua-
dratic surface, described mathematically by fðu; vÞ ¼ aT

u2; uv; v2; u; v; 1ð Þ. A symmetric matrix E was then defined
using the derivatives of this function. The Harris 3D oper-
ator value at the point pp was calculated as V ðppÞ ¼ det Eð Þ�
a tr Eð Þð Þ2, where detðEÞ and trðEÞ represented the deter-
minant and trace of the matrix E, respectively. a was a
parameter which needs to be tuned experimentally.
Finally, a fixed percentage of points with the largest val-
ues of V ðppÞ were selected as keypoints. Experimental
results showed that it was robust to several transforma-
tions including noise, change of tessellations, local scaling,
shot noise and presence of holes. It also outperformed [73]
(described in Section 3.2.4) and [15] (described in Sec-
tion 3.2.1) in many aspects, especially in the cases of high
levels of local scaling and shot noise.

Since only a fixed-scale is used to find the keypoints,
their implementation is straightforward. However, these
methods have several major drawbacks. First, it is possi-
ble that they may detect too few keypoints, particularly
on the less curved parts of the 3D object [4]. This would
be a problem for object recognition. Second, fixed-scale
methods determine the scale empirically. They do not

TABLE 2
Popular 3D Model Databases
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fully exploit the scale information encoded in the local
geometric structures to detect the inherent scale of a key-
point. Therefore, the neighborhood size cannot be adap-
tively determined [48].

3.2 Adaptive-Scale Keypoint Detection

Adaptive-scale keypoint detection methods first build a
scale-space for a given range image. They then pick the
points with extreme distinctiveness measures in both the
spatial and scale neighborhoods as keypoints. As a result,
both the locations and scales of the keypoints are detected.
According to the scale-space construction technique, these
methods can be divided into four categories: coordinate
smoothing (CS), geometric attribute smoothing (GAS), sur-
face variation and transform based methods.

3.2.1 Coordinate Smoothing Based Methods

These methods construct a scale-space by successively
smoothing the 3D coordinates of a range image. They are
broadly based on the 2D scale-space theory first introduced
in [74].

Akag€und€uz and Ulusoy [75] first obtained the scale-
space of a 3D surface by constructing a Gaussian pyramid
of the surface. They then computed the mean and Gaussian
curvature values at all points for all scales, and classified
each point as one of the eight surface types based on its
Gaussian and mean curvatures [24]. Within the classified
scale-space, each connected volume that had the same sur-
face type was detected. The center of the connected volume
was chosen as the location of a keypoint. The weighted
average of the scale values within each connected volume
was selected as the scale of that keypoint. This algorithm is
invariant to scale and rotation. The results showed that for
scale varying databases, the adaptive-scale features ensured
a superior recognition performance to the fixed-scale fea-
tures [13].

Castellani et al. [15] resampled the mesh M at NO levels
to yield a set of octave meshes Mjðj ¼ 1; 2; . . . ; NOÞ. They
then applied NS Gaussian filters on each octave meshMj to
obtain a set of filtering maps F j

iði ¼ 1; 2; . . . ; NSÞ. Next, they
projected F j

iðppÞ to the normal of pp to get a scalar map
Mj

iðppÞ, which was further normalized to an inhibited
saliency map M̂j

i . Finally, keypoints were detected as the
local maxima within the inhibited saliency map M̂j

i . Only
the potential keypoints which appeared in at least three
octaves were considered as validate keypoints. Experimen-
tal results showed that this method detected only a limited
number of keypoints, which were well-localized and often
at the extremities of long protrusions of the surface [15],
[33]. Darom and Keller [76] followed the work of [15]. They
however used density-invariant Gaussian filters to obtain
octave meshes, which was more robust to varying mesh res-
olutions and nonuniform sampling compared to [15].

Li and Guskov [77] projected the 3D points onto a series
of increasingly smoothed versions of the shape to build a
scale-space. They then computed the normal differences
between neighboring scales at each point pp. The points
whose normal differences were larger (or smaller) than all
of their spatial and scale neighbors were detected as key-
points. Experimental results showed that the keypoints at

coarse scales were more repeatable compared to their coun-
terparts at finer scales.

Lo and Siebert [78] detected keypoints on a depth
image using an enhanced version of the Scale Invariant
Feature Transform (SIFT) algorithm [22], namely 2.5D
SIFT. They created a discrete scale-space representation
of the depth image by using Gaussian smoothing and
Difference Of Gaussian (DOG) pyramid techniques. The
signal maxima and minima were detected within the
DOG scale-space. The keypoints were finally validated
and located by comparing the ratio of the principal curva-
tures (i.e., k1

k2
) with a predefined threshold. The 2.5D SIFT

achieved a superior matching performance compared to
the 2D SIFT [78].

Knopp et al. [23] first voxelized a mesh to a 3D voxel
image. Next, they calculated the second-order derivatives
Lðvv; sÞ at each voxel vv using box filters with increasing stan-
dard deviations s. They defined a saliency measure s for
each voxel vv and scale s based on the Hessian matrix. Local
extrema over the space sðvv; sÞ were used to detect the “3D
SURF” keypoints and their corresponding scales.

Coordinate smoothing based methods directly apply the
2D scale-space theory to 3D geometric data by replacing
pixel intensities with 3D point coordinates. Consequently,
the extrinsic geometry and topology of a 3D shape are
altered, and the causality property of a scale-space is vio-
lated [79]. The causality property is an important axiom for
a scale-space representation. It implies that any structure
(feature) in a coarse scale should be able to find its cause in
the finer scales [80].

3.2.2 Geometric Attribute Smoothing Based Methods

These methods construct a scale-space by successively
smoothing the geometric attributes of a range image. Since
the filtering is applied to the geometric attributes rather
than the range image itself, no modification is made to the
extrinsic geometry of the 3D shape. Therefore, the causality
property of the scale-space is preserved.

Novatnack and Nishino [81] represented a surface
using its normals and parameterized the surface on a 2D
plane to obtain a dense and regular 2D representation.
They then constructed a scale-space of the normal field
by successively convolving the 2D normal map with geo-
desic Gaussian kernels of increasing standard deviations.
Keypoints and their corresponding scales were detected
by identifying the points in the scale-space where the
corner responses were maxima along both the spatial
and scale axes. This work was one of the first to consider
a geometric scale space that can directly be used on
range images, preceding several methods including [82]
and [83]. Experimental results showed that the keypoints
could be detected and localized robustly, and the num-
ber of detected keypoints was sufficiently large [48], [84].
One major limitation of this method is that it requires
accurate estimations of the surface normals to construct
the 2D scale-space [41], [85].

Flint et al. [86] convolved the 3D voxel image of a range
image with a set of Gaussian kernels to build a density
scale-space. The keypoints were detected over the scale-
space using the determinant of the Hessian matrix. Tests on

GUO ET AL.: 3D OBJECT RECOGNITION IN CLUTTERED SCENESWITH LOCAL SURFACE FEATURES: A SURVEY 2273



a number of scenes showed that, this THRIFT method can
repeatably extract the same keypoints under a range of
transformations. However, it is sensitive to the variations of
point density [87]. Moreover, regular resampling in a 3D
space throughout the data is very time-consuming [88].

Hua et al. [89] first mapped a 3D surface to a canonical
2D domain by using a non-linear optimization method.
They then encoded the surface curvatures and conformal
factors into the rectangular 2D domain, resulting in a shape
vector image. Next, they built a vector-valued scale-space
on the shape vector image through a geodesic distance-
weighted inhomogeneous linear diffusion and a Difference
of Diffusion (DoD) computation. They detected keypoints
as the points that had maxima/minima DoD values across
the scales in both the curvature and conformal factor chan-
nels. Experiments showed that this method achieved a very
high repeatability. It was also superior to the regular
anisotropic diffusion and isotropic diffusion methods [89].
However, it is difficult to apply this method to large and
topologically complicated surfaces [83], [90] and certain
high-genus surfaces (i.e., surfaces which have a large num-
ber of holes.) [89].

Zou et al. [90] proposed a Geodesic Scale-Space (GSS)
based on the convolution of a variable-scale geodesic Gauss-
ian kernel with the surface geometric attributes. Keypoints
were detected by searching the local extrema in both the
spatial and scale domains in the GSS. These keypoints were
further pruned based on their contrasts and anisotropies.
Experiments demonstrated that this method was robust to
noise and varying mesh resolutions. However, the cost of
computing geodesic distances is extremely high when the
scale increases [83].

Zaharescu et al. [91] first defined a scalar field (photomet-
ric or geometric attribute) for each point pp. They then con-
volved the scalar field with a set of geodesic Gaussian
kernels and performed DOG calculations to obtain their
scale-space. MeshDOG keypoints were claimed as the max-
ima in the DOG scale-space. These keypoints were finally
pruned by a set of operations including non-maximum sup-
pression, thresholding and corner detection. This method
offers a canonical formula to detect both photometric and
geometric keypoints on a mesh surface. It is capable to
detect a sufficient number of repeatable keypoints. It is how-
ever, sensitive to varying mesh resolutions [33], [83].

Zou et al. [82] formalized an Intrinsic Geometric Scale-
Space (IGSS) of a 3D surface by gradually smoothing the
Gaussian curvatures via shape diffusion. Keypoints were
identified as extrema in the normalized Laplacian of the IGSS
with respect to both the spatial and scale domains. The IGSS
representation is invariant to conformal deformations (i.e.,
transformations which preserve both the size and the sign of
angles). Experimental results showed that the detected key-
points spread across various scales andwere robust to noise.

Hou and Qin [83] downsampled the surface as the scale
increased, and built a scale-space of the scalar field (e.g., cur-
vature and texture) on the surface by using a Gaussian ker-
nel. Keypoints were finally detected as local extrema in the
scale-space. The capability of simultaneous sampling in both
the spatial and scale domains makes this method efficient
and stable. Experimental results showed that this method
significantly reduced the processing time compared to GSS.

It is also more stable under different mesh resolutions than
MeshDOG.Anothermerit is its invariance to isometric defor-
mations (i.e., transformations which preserve distance).

3.2.3 Surface Variation Based Methods

These methods first calculate surface variations at a set of
varying neighborhood sizes. They then detect keypoints by
finding the maxima of surface variations in the local neigh-
borhood with different neighborhood sizes. They are based
on the assumption that the neighborhood size can be
regarded as a discrete scale parameter, and increasing the
local neighborhood size is similar to applying a smoothing
filter [92]. These methods avoid making direct changes to
the 3D surfaces, and they are straightforward to implement.

Pauly et al. [92] measured the surface variation d by using
the eigenvalues �1, �2 and �3 of the covariance matrix of the
neighboring points, that is d ¼ �3

ð�1 þ �2 þ �3Þ. Local maxima in
the surface variation space were determined as keypoints.
Experiments demonstrated that the surface variation corre-
sponded well to the smoothed surface using the standard
Gaussian filtering. Two major drawbacks of this method are
that, surface variation is sensitive to noise, and a heuristic
pre-smoothing procedure is required to detect the maxima
in the surface variation space [41], [88].

Ho and Gibbins [88] used the standard deviation of the
shape index values of the neighboring points to measure
the surface variation. The detected keypoints on the Dragon
model are illustrated in Fig. 1a. Experimental results
showed that this method was effective and robust to minor
noise. It achieved high repeatability results even with noisy
surfaces. Later, Ho and Gibbins [85] estimated the curved-
ness at different scales, and picked the points that had
extreme values in the scale-space as keypoints. Similarly,
Ioanou et al. [93] proposed a multi-scale Difference of Nor-
mals (DoN) operator for the segmentation of large unorga-
nized 3D point clouds. The DoN operator provides a
substantial reduction in points, which reduces the computa-
tional cost of any subsequent processing phase of the scene
(when processing is performed on the segmented parts).

Unnikrishnan and Hebert [41] proposed an integral oper-
ator Bðpp; rÞ to capture the surface variation at a point ppwith
a neighborhood size r. In fact, Bðpp; rÞ displaces a point pp
along its normal direction nn, and the magnitude of displace-
ment is proportional to the mean curvature. They then
defined the surface variation dðpp; rÞ as:

d pp; rð Þ ¼ 2 pp�B pp; rð Þk k
r

exp � 2 pp�B pp; rð Þk k
r

� �
: (1)

Fig. 1. Keypoints detected on the Dragon model. (a) Keypoints detected
by [88]. Different sizes of the spheres correspond to different scales of
the keypoints. (b), (c), (d) Keypoints and their neighborhoods detected
at three scales by [41]. Each colored patch corresponds to the neighbor-
hood of a keypoint, the sizes of blue spheres correspond to the scales.
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An illustration of the keypoints detected at three scales is
given in Figs. 1b, 1c, and 1d. This method is very effective in
determining the characteristic scales of 3D structures even in
the presence of noise. However, its repeatability is relatively
low and the number of detected keypoints is small [33].
Stuckler and Behnke [87] used Euclidean distances instead
of geodesic distances to calculate the surface variation.

Mian et al. [4] proposed a keypoint detection method
together with a keypoint quality measurement technique.
They first rotated the neighboring points so that the normal
at pp was aligned with the positive z axis. Next, they per-
formed principal component analysis (PCA) on the covari-
ance matrix of the neighboring points, and used the ratio
between the length along the first two principal axes (i.e., x
and y) to measure the surface variation d. They detected the
keypoints by comparing their surface variations with a
threshold. The scale for a keypoint was determined as the
neighborhood size r for which the surface variation d

reached the local maximum. This method can detect suffi-
cient keypoints. These keypoints are repeatable and are also
robust to noise. However, one major limitation of this
method is its computational inefficiency [33].

3.2.4 Transform Based Methods

These methods consider a surfaceM as a Riemannian mani-
fold, and transform this manifold from the spatial domain
to another domain (e.g., spectral domain). Subsequently,
they detect keypoints in the transformed domain rather
than the original spatial domain.

Hu and Hua [94] extracted keypoints in the Laplace-Bel-
trami spectral domain. Let f 2 C2 be a real function defined
on a Riemannian manifold M. Using the Laplacian eigen-
value equation, f can be written as f ¼PN

i¼1 ciFi, where Fi

is the ith eigenvector and ci is related to the ith eigenvalue.
The geometry energy of a point pp corresponding to the ith
eigenvalue is defined as EiðppÞ ¼ ci �Fi ppð Þk k2. The point
whose geometry energy is larger than these of its neighbor-
ing points within several neighboring frequencies, is
picked up as a keypoint. Meanwhile, the spatial scale of a
keypoint is provided by the “frequency” information in the
spectral domain. An illustration of the detected keypoint
on the Armadillo models is given in Fig. 2. Experimental
results showed that the keypoints were very stable and
invariant to rigid transformations, isometric deformations
and different mesh triangulations [94].

Sun et al. [73] restricted the heat kernel to the temporal
domain to detect keypoints. Let M be a compact Rieman-
nian manifold, the heat diffusion process over M is gov-
erned by the heat equation. They restricted the heat kernel
Ktðpp; qqÞ to the temporal domain Ktðpp; ppÞ, and used the local

maxima of the function Ktðpp; ppÞ to find keypoints. Here, the
time parameter t is related to the neighborhood size of pp,
and therefore the time parameter provides the information
of its inherent scale. This method is invariant to isometric
deformations. It usually captures the extremities of long
protrusions on the surface [84], as shown in Fig. 3. It is able
to detect highly repeatable keypoints and also robust to
noise [95]. However, it is sensitive to varying mesh resolu-
tions, and the number of detected keypoints is very small.
Besides, it also requires a large computer memory [33].

3.3 Summary

Table 3 gives a summary of the keypoint detection methods.
These methods are listed chronologically by year of publica-
tion and alphabetically by first author within a given year.

� Most of the recent papers are on adaptive-scale
keypoint detection methods. Note again that an
adaptive-scale method is able to detect the associ-
ated inherent scale of a keypoint. This capability
improves the performance of both feature descrip-
tion and object recognition methods.

� Existing methods use different measures to define
the neighborhood of a point. These measures include
the Euclidean distance, the geodesic distance and the
k-rings. The methods based on geodesic distances
(e.g., [81], [83], [89], [90]) are invariant to isometric
deformations. However, the calculation of a geodesic
distance is very time consuming. The Euclidean
distance is computationally efficient, but it is sensi-
tive to deformations. In contrast, k-rings (as in [71],
[76], [88], [91], [96]) provide a good approximation of
the geodesic distance between two points on a uni-
formly sampled mesh. They are also computation-
ally efficient.

� Many 3D keypoint detection methods are inspired
by their successful 2D ancestors. For example, the
Harris 3D [40], 2.5D SIFT [78], and 3D SURF [23]
detectors are respectively extensions of the 2D Harris
[72], SIFT [22], SURF [97] detectors. The successful
use of scale space with the SIFT detector [22] also
motivated the progress of scale space construction in
the case of range images. Analysing the basic ideas
behind the successful 2D keypoint detectors may
also give us some hints for the development of future
3D keypoints.

4 LOCAL SURFACE FEATURE DESCRIPTION

Once a keypoint has been detected, geometric information
of the local surface around that keypoint can be extracted

Fig. 2. Keypoints detected on the Armadillo models with different poses,
originally shown in [94].

Fig. 3. Keypoints detected on the Armadillo model, originally shown in
[73].
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and encoded into a feature descriptor. According to the
approaches employed to construct the feature descriptors,
we classify the existing methods into three broad catego-
ries: signature based, histogram based, and transform
based methods.

4.1 Signature Based Methods

These methods describe the local neighborhood of a key-
point by encoding one or more geometric measures com-
puted individually at each point of a subset of the
neighborhood [3].

Stein and Medioni [98] first obtained a circular slice
around the keypoint pp using the geodesic radius r. They
then constructed a local reference frame (LRF) by using the
normal nn and the tangent plane at the point pp. Using this
frame, they encoded the relationship (angular distance)
between the normal at the point pp and the normal at each
point on the circular slice into a 3D vector ðf;c; uÞ. Next, a
straight line segment was fitted to this 3D curve, and the
curvatures and torsion angles of the 3D segment were
encoded as the “splash” descriptor. An illustration of the
method is given in Fig. 4a. Experimental results showed
that this method is robust to noise.

Chua and Jarvis [99] obtained a contour z on the surface
by intersecting the surface with a sphere of radius r cen-
tered at the keypoint pp. Then, they fitted a plane to these

contour points and translated the plane to pp. They pro-
jected all points on z onto this fitted plane to obtain a curve
z0. Thus, they characterized each point on z by two param-
eters: the signed distance d between the point and its corre-
spondence on z0, and the clockwise rotation angle u from a
reference direction nn2. nn2 was defined as the unit vector
from pp to the projected point on z0 that had the largest pos-
itive distance, as shown in Fig. 4b. The “point signature”
descriptor was expressed by a discrete set of values dðuÞ.
This method does not require any surface derivative and is
therefore robust to noise. However, it also has several limi-
tations. First, the reference direction nn2 may not be unique.
In such a case, multiple signatures could be obtained from
the same point pp [4]. Second, the point signature is sensi-
tive to varying mesh resolutions [31]. Moreover, computing
the intersection of a sphere with the surface is not easy,
especially when the surface is represented as a point cloud
or a mesh [30].

TABLE 3
Methods for 3D Keypoint Detection

Fig. 4. Illustration of signature based methods. (a) Splash. (b) Point sig-
nature. (c) HMM, originally shown in [15]. (d) LPHM.
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Sun and Abidi [100] generated geodesic circles around
the keypoint pp using the points that had the same geodesic
distances to pp. They also constructed an LRF using the nor-
mal nn and the tangent plane at pp. They then projected these
geodesic circles onto the tangent plane to get a set of 2D con-
tours. These 2D contours together with the normal and
radius variations of the points along the geodesic circles
formed the “point’s fingerprint” descriptor. The advantages
of this method are: it carries more discriminative informa-
tion than the methods which only use one contour (e.g.,
point signature) or a 2D histogram (e.g., spin image which
is described in Section 4.2.1); and the computational cost is
cheaper than the methods which use a 2D image representa-
tion [100].

Li and Guskov [77] defined N1 �N2 grids which sam-
pled a disc around a keypoint pp on its tangent plane.
They then projected the normals at the neighboring points
onto the tangent plane and computed the weighted sum
of the surface normals in each grid, resulting in an
N1 �N2 matrix A. Next, they applied a discrete cosine
transform and a discrete Fourier transform to A, resulting
in a new matrix eA. They used the elements from the
upper left corner (most significant Fourier coefficients) ofeA to form a “Normal Based Signature (NBS)”. Object rec-
ognition performance of the NBS descriptor outperformed
the spin image on the Stuttgart database [101].

Malassiotis and Strintzis [102] first constructed an LRF
by performing an eigenvalue decomposition on the covari-
ance matrix of the neighboring points of a keypoint pp.
They then placed a virtual pin-hole camera at a distance d
on the z axis and looking toward pp. The x and y axes of the
camera coordinate frame were also aligned with the x and
y axis of the LRF at pp. They projected the local surface
points onto the image plane of the virtual camera and
recorded the distance of these points from the image plane
as a ”snapshot” descriptor. The snapshot descriptor is
robust to self-occlusion and very efficient to compute.
Snapshot achieved better pairwise range image alignment
results compared to spin image. Mian et al. [4] also defined
an LRF for a local surface and then fitted the local surface
with a uniform lattice. They used depth values of the local
surface to form a feature descriptor, which was further
compressed using a PCA technique.

Castellani et al. [15] first built a clockwise spiral path-
way around the keypoint pp. The pathway is illustrated in
Fig. 4c. Along this pathway, they extracted a set of attrib-
utes including the saliency level, the maximal curvature,
the minimal curvature and the surface normal deviation.
They then used a discrete time Hidden Markov Model
(HMM) to encode the information of the local surface.
This HMM descriptor is robust to rotation, nonuniform
sampling and varying mesh resolutions. Experimental
results showed that its matching performance was better
than the spin image and the 3D shape context (described
in Section 4.2.1).

Novatnack and Nishino [103] first mapped each neigh-
boring point qq into a 2D domain using a geodesic polar coor-
dinate frame dðqqÞ; u qqð Þ½ �. Here, dðqqÞ is the geodesic distance
between qq and pp, and uðqqÞ is the polar angle of the tangent
of the geodesic between qq and pp. After this mapping, they
constructed the “Exponential Map (EM)” descriptor by

encoding the surface normals of the neighboring points into
this 2D domain.

Masuda [104] defined a local log-polar coordinate frame
ðr; uÞ on the tangent plane of the keypoint pp. They then pro-
jected the neighboring points qq onto the tangent plane, and
stored the depth nn � ðqq � ppÞ in the log-polar coordinate
frame, resulting in a “Log-Polar Height Map (LPHM)”
descriptor. This method is illustrated in Fig. 4d. Since an
LPHM feature is not invariant to the rotation around the
surface normal nn, they applied a Fourier transform to the
LPHM in the u axis, and used the Fourier Power Spectrum
to form a new descriptor (namely, FPS). Experimental
results showed that this method performed well for range
image registration. In comparison with the spin image, this
method does not depend on the uniform sampling of the
mesh [104].

Steder et al. [105], [106] first aligned the local patch
around the keypoint pp with the normal of pp . They then
overlaid a star pattern onto this aligned patch, where each
beam corresponded to a value in the “Normal Aligned
Radial Feature (NARF)” descriptor. The NARF descriptor
captures the variation of pixels under each beam. In order
to make the descriptor invariant to rotation, they extracted a
unique orientation from the descriptor and shifted the
descriptor according to this orientation. The NARF descrip-
tor outperformed spin image on feature matching.

do Nascimento et al. [107] extracted a local patch around
the keypoint pp from an RGB-D image. They aligned the local
patch with a dominant direction and scaled it using the
depth information. They fused the geometrical and intensity
information of the local patch by encoding the intensity var-
iations and surface normal displacements into a “Binary
Robust Appearance and Normal Descriptor (BRAND)”. The
BRAND outperformed SIFT, SURF, spin image, and CSHOT
in terms of matching precision and robustness.

4.2 Histogram Based Methods

These methods describe the local neighborhood of a key-
point by accumulating geometric or topological measure-
ments (e.g., point numbers, mesh areas) into histograms
according to a specific domain (e.g., point coordinates, geo-
metric attributes) [3]. These methods can further be divided
into spatial distribution histogram (SDH), geometric attri-
bute histogram (GAH) and oriented gradient histogram
(OGH) based methods.

4.2.1 Spatial Distribution Histogram

These methods describe the local neighborhood of a key-
point by generating histograms according to the spatial
distributions (e.g., point coordinates) of the local surface.
They first define an LRF/axis for the keypoint, and parti-
tion the 3D local neighborhood into bins according to the
LRF. They then count the spatial distribution measure-
ments (e.g., point numbers, mesh areas) up in each bin to
form the feature descriptor.

Johnson and Hebert [64] used the normal nn of a key-
point pp as the local reference axis and expressed each
neighboring point qq with two parameters: the radial dis-
tance a and the signed distance b. That is, a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kqq�ppk2�ðnn� qq�ppÞð Þ2
p

and b ¼ nn � ðqq � ppÞ. They then discretized
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the a� b space into a 2D array accumulator, and counted
up the number of points that fell into the bin indexed by
ða;bÞ. The 2D array was further bilinearly interpolated to
obtain a “spin image” descriptor. An illustration of this
method is shown in Fig. 5a. The spin image is invariant
to rigid transformations and is robust to clutter and
occlusion [64]. It has been employed in many applica-
tions, and has been considered to be the de facto bench-
mark for the evaluation of local surface features [3], [44].
However, the spin image has several drawbacks, e.g., (i)
It is sensitive to varying mesh resolutions and nonuni-
form sampling [4]; (ii) Its descriptive power is limited
since the cylindrical angular coordinate is omitted. Sev-
eral variants of the spin image can also be found in the
literature, including a face-based spin image [108], a spin
image signature [109], a multi-resolution spin image
[110], a spherical spin image [111], a scale invariant spin
image [76], a Tri-Spin-Image (TriSI) descriptor [46] and a
color spin image [112].

Frome et al. [63] extended the 2D shape context method
[113] to a 3D surface, namely “3D Shape Context (3DSC)”.
They used the normal nn at a keypoint pp as the local reference
axis. The spherical neighborhood was then divided equally
along both the azimuth and elevation dimensions, but loga-
rithmically along the radial dimension, as illustrated in
Fig. 5b. The 3DSC descriptor was generated by counting up
the weighted number of points falling into each bin. They
also applied a spherical harmonic transform to the 3DSC to
generate a “Harmonic Shape Context (HSC)” descriptor.
They tested the two descriptors in vehicle recognition
experiments. It was reported that both the 3DSC and HSC
achieved higher recognition rates in noisy scenes compared
to the spin image, while the 3DSC outperformed the HSC
and spin image in cluttered scenes. In a follow up work,
Tombari et al. [114] proposed a unique shape context (USC)
by associating each keypoint with a repeatable and unam-
biguous LRF. Experimental results showed that the USC
significantly decreased the memory requirement and
improved the accuracy of feature matching compared to the
3DSC. Recently, Sukno et al. [115] proposed an “asymmetry
patterns shape context (APSC)” to provide azimuth rotation
invariance to the 3DSC. Experimental results showed that
APSC achieved comparable performance to 3DSC. Another
generalization of the 2D shape context is the “intrinsic shape
context (ISC)” descriptor [116], which is invariant to isomet-
ric deformations.

Mian et al. [38] chose a pair of vertices which satisfied
certain geometric constraints to construct an LRF. They then
constructed a local 3D grid over the range image, and
summed the surface areas which intersected each bin of the

grid, to generate a “3D tensor” descriptor. This method is
very robust to noise and varying mesh resolutions. Experi-
mental results showed it outperformed the spin image. One
limitation of this method is the combinatorial explosion of
the vertex pairs for the construction of the LRF [70].

Zhong [70] first constructed an LRF by performing PCA
on the covariance matrix of the neighboring points. They
then divided the spherical angular space into relatively uni-
formly and homogeneously distributed cells using a dis-
crete spherical grid. They also evenly divided the radial
distances. The “intrinsic shape signature (ISS)” descriptor
was constructed by summing the density weights of all
points that fell into each cell. Experimental results showed
that ISS outperformed the spin image and 3DSC in the pres-
ence of noise, occlusion and clutter.

Guo et al. [44] first constructed a unique, unambiguous
and robust LRF by calculating the covariance matrix of all
points lying on the local surface rather than just mesh verti-
ces (in contrast to [3], [70]). They then extracted a
“Rotational Projection Statistics (RoPS)” descriptor for the
keypoint pp by rotationally projecting the neighboring points
onto 2D planes and calculating a set of statistics (including
low-order central moments and entropy) of the distribution
of these projected points. Experimental results showed that
RoPS was very robust to noise, varying mesh resolutions
and holes. RoPS outperformed spin image, local surface
patches (LSP), THRIFT, SHOT and MeshHOG in terms of
feature matching. Guo et al. [117] then extended the RoPS
descriptor to encode both shape and color (e.g., RGB) infor-
mation of a local surface.

4.2.2 Geometric Attribute Histogram

These methods describe the local neighborhood of a key-
point by generating histograms according to the geometric
attributes (e.g., normals, curvatures) of the local surface.

Yamany and Farag [66] used simplex angles to estimate
the curvature values on a free-form surface. They gener-
ated the “surface signature” by accumulating the simplex
angles into a 2D histogram. One dimension of the histo-
gram is the distance d from the keypoint pp to a neighboring
point qq. Another dimension is the angle arccos ðn�ðq � pÞ

q � pk k Þ,
where nn is the surface normal at pp. It was demonstrated
that the surface signature was more descriptive compared
to the splash, point signature and spin image [66].

Chen and Bhanu [68] proposed “local surface patches”
by accumulating the number of points into a 2D histogram.
One dimension of the histogram is the shape index values
of the neighboring points, and another dimension is the
angles between the normal of the keypoint pp and these of
the neighboring points. Experimental results showed that
LSP was as effective as spin image for 3D object recognition
but it was more computationally efficient.

Flint et al. [86] proposed a “THRIFT” descriptor by accu-
mulating the number of points into a 1D histogram accord-
ing to the surface normal angles. They calculated two
normals for each point on the local surface by fitting two
planes with two different windows. That is, a normal nns

was calculated from a small window and another normal nnl

from a larger window. The surface normal angle of a point
is calculated as the angle between its two normals. Later,

Fig. 5. Illustration of spatial distribution histogram based methods. (a)
Spin image. (b) 3D shape context.
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Flint et al. [39] used the angles between the normal of the
keypoint and these of the neighboring points to generate a
weighted histogram.

Taati et al. [51] first performed PCA on the covariance
matrix of the neighboring points of each point qq on the sur-
face to obtain an LRF and three eigenvalues. They then cal-
culated a set of position properties, direction properties and
dispersion properties for each point qq based on the LRF and
these eigenvalues. Next, they selected a subset of these
properties using a feature selection algorithm. Finally, they
accumulated these selected properties of all the neighboring
points of a keypoint pp into a histogram (i.e., the “variable
dimensional local shape descriptor (VD-LSD)”). The VD-
LSD formulation offers a generalized platform that sub-
sumes a large class of descriptors, including the spin image,
3D tensor and point signature [51]. Taati and Greenspan
[47] also provided a way to choose the optimal descriptors
for 3D object recognition based on the geometry of the mod-
els and the characteristics of the sensing device. Experimen-
tal results showed that VD-LSD outperformed the spin
image on several data sets in terms of recognition rate.

Rusu et al. [118] proposed “point feature histograms”
(PFH) to encode a local surface. For each pair of points in
the neighborhood of a keypoint pp, a Darboux frame was first
defined. They then calculated four measures using the
angles between the points’ normal and the distance vector
between them, in the same manner as in [119]. They accu-
mulated these measures of all pairs of points into a 16-bin
histogram (i.e., PFH). In order to improve the computational
efficiency of PFH, Rusu et al. [120] proposed a “simplified
point feature histogram (SPFH)” by accumulating only
these measures between the keypoint and its neighbors.
They finally used these SPFH values of the neighboring
points of pp to obtain “fast point feature histograms (FPFH)”.
FPFH retains the majority discriminative power of the PFH
with a reduced computational complexity.

Tombari et al. [3] first constructed an LRF for a keypoint
pp, and divided the neighborhood space into 3D spherical
volumes. They then generated a local histogram for each
volume by accumulating the number of points according to
the angles between the normal at the keypoint and these at
the neighboring points. They concatenated all local histo-
grams to form an overall “Signature of Histograms of Orien-
Tations (SHOT)” descriptor. The SHOT descriptor is highly
descriptive, computationally efficient and robust to noise.
Experimental results showed that SHOT outperformed the
spin image and point signature at all levels of noise. One
shortcoming of this method is its sensitivity to varying point
densities. Further, Tombari et al. [53] developed a “Color-
SHOT (CSHOT)” by combining the histograms of shape-
related measures with the histograms of texture-related
measures. Experimental results showed that combining the
texture information into a geometric feature descriptor
would gain additional benefits to its performance.

Tang et al. [121] represented the normal vector orientation
as an ordered pair of azimuthal and zenith angles. They pro-
posed a “Histogram of Oriented Normal Vectors (HONV)”
by concatenating local histograms of azimuthal angles and
zenith angles. Object detection and classification results on
the RGB-D database showed that HONV outperformed the
Histograms of Oriented Gradients (HOG) descriptor.

4.2.3 Oriented Gradient Histogram

These methods describe the local neighborhood of a key-
point by generating histograms according to the oriented
gradients of the local surface.

Hua et al. [89] first mapped a 3D surface to a 2D canoni-
cal domain and encoded the shape characteristics (i.e.,
mean curvatures and conformal factors) of the surface into
a two-channel shape vector image. For each channel, a
descriptor was generated using the same technique as SIFT
[22]. That is, the 2D plane was divided into 16 subregions,
and an eight-element histogram was generated for each sub-
region according to the orientations of the gradients, as
shown in Fig. 6a. They concatenated all the histograms of
the two channels to form the overall descriptor. Experimen-
tal results confirmed that this descriptor was very robust
and suitable for surface matching purpose.

Lo and Siebert [78] first divided the local patch of a key-
point pp into nine elliptical subregions, as shown in Fig. 6b.
For each of the nine elliptical subregions, they generated a
nine-element histogram of the surface types according to
the shape index values. They also generated an eight-
element histogram according to the gradient orientations.
They finally concatenated all histograms from the nine sub-
regions to form a “2.5D SIFT” descriptor. Experimental
results showed that the 2.5D SIFT produced consistently
more reliable feature matches compared to the SIFT algo-
rithm. However, the 2.5D SIFT requires a complicated pre-
processing step (e.g., recovering the 3D poses of all
keypoints) [14]. More recently, another extension of the
SIFT method was proposed by [76], namely “Local Depth
SIFT (LD-SIFT)”. Experimental results showed that LD-SIFT
outperformed the spin image representation.

Zaharescu et al. [91] first defined a scalar function f on
the mesh vertices and calculated the gradients rf . The
function f can be the curvature, normal, heat, density or tex-
ture. They then constructed an LRF for each keypoint pp and
projected the gradient vectors onto the three orthonormal
planes of the LRF. They divided each plane into four polar
subregions, and generated an eight-element histogram for
each subregion according to the orientations of the
gradients rf . An illustration is shown in Fig. 6c. The
“MeshHOG” descriptor was finally obtained by concatenat-
ing the histograms of all the subregions of the three planes.
Its effectiveness has been demonstrated by feature matching
on rigid and nonrigid objects. However, the MeshHOG can-
not be applied to objects with large deformations.

Bayramoglu and Alatan [14] first divided the local patch
of a keypoint pp into 16 subregions using the same technique
as the SIFT [22], as shown in Fig. 6a. They then generated an
eight-element histogram for each subregion according to

Fig. 6. Illustration of the oriented gradient histogram based methods. (a)
The method in [89] and SI-SIFT. (b) 2.5D SIFT. (c) MeshHOG. (d) The
method in [83].
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the gradient orientations of the shape index values. The 16
histograms were finally concatenated to form a “SI-SIFT”
descriptor. Experimental results indicated that the SI-SIFT
was robust to clutter and occlusion. It improved the perfor-
mance of the LSP and 2.5D SIFT.

Hou and Qin [83] first defined a scalar function f on the
mesh vertices and calculated the gradientsrf . They param-
eterized each neighboring point qq by a polar coordinate sys-
tem dðqqÞ; u qqð Þ½ �. Here, dðqqÞ is the geodesic distance from pp to
qq, uðqqÞ is the projected polar angle of qq from the orientation
of pp in the local tangent plane. They then divided the 2D
parametrization plane into nine subregions, and generated
an eight-element histogram for each subregion according to
the orientations of the gradients rf , as shown in Fig. 6d.
The descriptor was finally obtained by concatenating the
nine histograms. Matching results showed that this method
achieved higher recall and precision than the MeshHOG. It
worked well even under large isometric deformations.

4.3 Transform Based Methods

These methods first transform a range image from the spa-
tial domain to another domain (e.g., spectral domain), and
then describe the 3D surface neighborhood of a given point
by encoding the information in that transformed domain.

Hu and Hua [94] first performed a Laplace-Beltrami
transform on the local surface to get the spectrum of the
local surface. They then generated a histogram according to
the spectral values of the local surface. This histogram was
used as the feature descriptor. Experiments demonstrated
that this descriptor was very powerful in matching similar
shapes. The descriptor is also invariant to rigid transforma-
tions, isometric deformations and scaling.

Sun et al. [73] proposed a “Heat Kernel Signature
(HKS)”. They considered a mesh M as a Riemannian mani-
fold and restricted the heat kernel Ktðpp; qqÞ to the temporal
domain as Ktðpp; ppÞ. The HKS descriptor Ktðpp; ppÞ can be
interpreted as a multi-scale notion of the Gaussian curva-
ture, where the time parameter t provides a natural notion
of scale. The HKS is an intrinsic attribute of the shape. It is
stable against perturbations of the shape and invariant to
isometric deformations. In a follow up work, a scale invari-
ant HKS [122] was proposed for nonrigid shape retrieval
[123], and a photometric HKS was also introduced [61].

Knopp et al. [23] developed an extended version of the
2D Speeded Up Robust Feature (SURF) [97], namely “3D
SURF”. They first voxelized a mesh to a 3D voxel image,
and applied a Haar wavelet transform to the voxel image.
They then defined an LRF for each keypoint pp by using the
Haar wavelet responses in the neighborhood. Next, they
divided the neighborhood volume into Nb �Nb �Nb bins.
For each bin, a vector vv ¼ ðP dx;

P
dy;

P
dzÞ was calcu-

lated, where dx, dy and dz are respectively the Haar wavelet
responses along the x, y and z axes. They finally combined
all the vectors of the Nb �Nb �Nb bins to form the 3D
SURF descriptor.

4.4 Summary

Table 4 presents a summary of the local surface feature
description methods. The methods are listed chronologi-
cally by year of publication and alphabetically by first
author within a given year.

� Histogram based methods are the most frequently
investigated methods among the three categories.
Both geometric attribute histogram based methods
and oriented gradient histogram based methods are
dependent on the calculation of the first-order and/
or second-order derivatives of the surface. Therefore,
they are relatively sensitive to noise.

� The majority of these methods achieve invariance to
rigid transformations by resorting to an LRF. They
first define an LRF for a keypoint and then express
the local neighborhood with respect to that frame.
Therefore, the repeatability and robustness of the
LRF play an important role in the performance of a
feature descriptor [44].

� Some methods address isometric deformations by
resorting to geodesic distances (or their k-ring
approximations) rather than Euclidean distances.
Examples include [83], [91] and [116]. Other methods
however, achieve deformation invariance by
converting a surface to a certain intrinsic domain,
including the Laplace-Beltrami spectrum domain
[94] and the temporal domain [73].

� Determining the neighborhood size is important for
any local feature descriptor. A large neighborhood
enables a descriptor to encode more information
while being more sensitive to occlusion and clutter.
Several methods proposed an adaptive-scale key-
point detector dedicated with the descriptor, such as
[4], [78], [91], [103]. However, any keypoint detection
method can be combined with a local feature
description method to yield an optimal performance.

5 SURFACE MATCHING

Most of the existing surface matching methods contain three
modules, i.e., feature matching, hypothesis generation and
verification. It first establishes a set of feature correspond-
ences between the scene and the model by matching the
scene features against the model features. It then uses these
feature correspondences to vote for candidate models and
generate transformation hypotheses. Next, these candidates
are verified to obtain the identities and poses of the objects
present in the scene.

5.1 Feature Matching

The task of feature matching is to establish a set of feature
correspondences. There are three popular strategies for fea-
ture matching, i.e., threshold based, nearest neighbor (NN)
based and nearest neighbor distance ratio (NNDR) based
strategies [6]. It is demonstrated that NN and NNDR based
strategies achieve better feature matching performance than
a threshold based strategy [6].

Once an appropriate matching strategy is selected, effi-
cient search over the model feature library is another
important issue. The simplest way is to perform a brute-
force search, which compares a scene feature with all
model features. The computational complexity of this
approach is OðNfÞ, where Nf is the number of model fea-
tures. A faster alternative is to adopt an appropriate data
structure or indexing method. For example, [64] used a
slicing based algorithm [99], [125] used a 2D index table,
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[63], [38] and [98] used hash tables, [70] used a locality sen-
sitive tree, [44], [46] and [56] used a k-d tree method to per-
form feature matching.

5.2 Hypothesis Generation

The tasks of hypothesis generation are twofold. The first
task is to obtain candidate models which are potentially
present in the scene. The second task is to generate transfor-
mation hypotheses for each candidate model.

If only the positions of the keypoints are used, three
feature correspondences are required to deduce a trans-
formation between a candidate model and the scene, as in
[47], [48] and [98]. If both the positions and surface nor-
mals of the keypoints are used, two feature correspond-
ences are sufficient to deduce a transformation, as in
[126]. Moreover, if an LRF has been established for each
keypoint, one correspondence is sufficient to derive a
transformation, as in [3], [4], [38], [44] and [70]. However,
feature correspondences contain both true and false
matches. In order to obtain accurate transformation

hypotheses, several techniques have been intensively
investigated, including geometric consistency, pose clus-
tering, constrained interpretation tree, Random Sample
Consensus (RANSAC), game theory, generalized Hough
transform, and geometric hashing.

Geometric consistency. This technique is based on the
assumption that correspondences that are not geometrically
consistent will produce transformations with large errors.
Therefore, geometric consistency can reduce mismatched
correspondences and improve the robustness of the hypoth-
esized transformations.

Given a list of feature correspondences C ¼ fC1;
C2; . . . ; CNcg, this technique first chooses a seed correspon-
dence Ci from the list C and initializes a group Gi ¼ fCig. It
then finds the correspondence Cj that is geometrically con-
sistent with the group Gi. This procedure for group Gi con-
tinues until no more correspondences can be added to it.
Therefore, it results in a group of geometrically consistent
correspondences for each seed correspondence Ci. The
group Gi is used to calculate a transformation hypothesis.

TABLE 4
Methods for Local Surface Feature Description
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Multiple hypotheses may be generated for the list C by
selecting a set of seed correspondences. Examples of the
methods based on this technique include [11], [64], [68]
and [98].

Pose clustering. This technique is based on the assumption
that if the scene and the model do match, these transforma-
tion hypotheses are expected to cluster in the transforma-
tion space near the ground truth transformation.

Given a list of feature correspondences C ¼ fC1;
C2; . . . ; CNcg, this technique first calculates a transformation
for every k correspondences. Here, k is the minimal number
of correspondences that are required to determine a trans-
formation. Therefore, a total of CNc

k transformations can be
calculated. This technique then performs clustering on the
transformations. The cluster centers are considered transfor-
mation hypotheses. Examples of the methods based on this
technique include [4], [9], [44], [46], [70] and [127].

Constrained interpretation Tree. This technique aims to
find a tree of consistent interpretations for the transfor-
mation hypotheses. That is, as the number of nodes
grows in the tree, the commitment to a particular
hypothesis increases [128].

This technique creates an interpretation tree for each
model. It contains no feature correspondence at the root of
the tree. It then builds each successive level of the tree by
picking a model feature and adding the scene features that
are highly similar to that model feature to the tree as nodes.
Therefore, each node in the tree contains a hypothesis. The
hypothesis at a node is formed by the feature correspond-
ences at that node and all its parent nodes. Examples of the
methods based on this technique include [34] and [48].

RANSAC. This technique randomly selects a minimal set
of feature correspondences to calculate a rigid transforma-
tion which aligns the model with the scene, and counts the
number of inlier point pairs which are consistent with this
transformation. This process repeats until the number of
inliers meets a predefined threshold, or all possible sets
have been tested. The transformation which results in the
largest number of inliers is considered to be the transforma-
tion hypothesis. Examples of the methods based on this
technique include [47], [126] and [129].

Game Theory. This technique uses a selection process
derived from game theory to select a set of feature corre-
spondences which satisfy a global rigidity constraint. All
feature correspondences derived from feature matching are
first let to compete in a non-cooperative game. The competi-
tion induces a selection process in which incompatible fea-
ture correspondences are driven to extinction whereas a set
of reliable feature correspondences survive. These remain-
ing feature correspondences are used to calculate several
transformation hypotheses. Examples of the methods based
on this technique include [130] and [56].

Generalized hough transform. This technique performs vot-
ing in a space called parametric Hough space (e.g., rotation
[131], translation [131], and position [132]) using the feature
correspondences. Each point of the Hough space corre-
sponds to the existence of a transformation between the
model and the input scene. The peaks in the Hough accu-
mulator are considered to be transformation hypotheses.
Examples of the methods based on this technique include
[23], [131], [132] and [133].

Geometric hashing. This technique uses a hash table to
record the coordinates of all model points with respect to a
reference basis during preprocessing. The process is then
repeated for every basis. During recognition, a basis is
selected and the other points are expressed in this coordi-
nate system and are then used to index into the hash table.
Each index produces a model basis and the basis with the
maximum support is used to calculate the transformation
hypothesis. Examples of the methods based on this tech-
nique include [134].

5.3 Verification

The task of verification is to distinguish true hypotheses from
false hypotheses. The existing verification methods can be
divided into individual and global verificationmethods.

Individual verification methods. These methods first indi-
vidually align a candidate model with the scene using a
transformation hypothesis. This alignment is further refined
using a surface registration method, such as the Iterative
Closest Point (ICP) algorithm [135]. If the accuracy of align-
ment is greater than a predefined threshold, the hypothesis
is accepted. Subsequently, the scene points that correspond
to this model are recognized and segmented.

Several approaches have been proposed to measure the
accuracy of alignment. Johnson and Hebert [64], [124] used
the ratio ta between the number of corresponding points to
the number of points on the model. One limitation of this
approach is that objects with occlusions larger than 1-ta can-
not be recognized [11]. Mian et al. [38] used the same mea-
sure in [64] and another measure which was proportional to
the accuracy of alignment and the similarity between the
features. Chen and Bhanu [68] used the residual error of the
ICP algorithm to measure the accuracy of alignment. They
also used two types of active space violations for further
verification. Bariya et al. [34], [48] calculated the overlap
area between the candidate model and the scene, and used
the ratio between this overlap area and the total visible sur-
face area of the model as a measure of the accuracy of align-
ment. Guo et al. [44] used the residual error of the ICP
algorithm, together with the ratio between the number of
corresponding points to the number of points on the scene,
to perform verification. It is very challenging for these
approaches to determine the optimal thresholds in order to
improve the recognition rate while maintaining a low num-
ber of false positives [11], [44].

Global Verification Methods. Rather than considering each
candidate model individually (as in the case of individual
verification methods), these methods take into account the
whole set of hypotheses by considering the verification pro-
cess as a global (or partially global) optimization problem.

Papazov and Burschka [126] proposed an acceptance
function which consists of a support term and a penalty
term to define the quality of a transformation hypothesis.
The support and penalty terms are respectively propor-
tional to the number of corresponding points and the num-
ber of points on the model which occlude the scene. These
hypotheses were then filtered using the two terms, and the
remaining hypotheses were used to construct a conflict
graph. The final hypothesis was selected by performing a
non-maximum suppression on this conflict graph based on
the acceptance function. This approach takes into account
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the interaction between hypotheses, which makes it more
possible to get a global optimal transformation. Aldoma
et al. [11] determined a cost function which encompasses
geometrical cues including model-to-scene/scene-to-model
fitting, occlusion and model-to-model interactions. They
obtained optimal hypotheses by minimizing this cost func-
tion over the solution space. One major advantage of this
approach is that, it can detect significantly occluded objects
without increasing the number of false positives.

5.4 Summary

Table 5 shows a list of major systems for local feature based
3D object recognition. ‘RR’ is the abbreviation for
‘recognition rate’. It can be succinctly interpreted from the
analysis of this section that:

� Recent papers usually report their performance
using the criterion of recognition rate, while the ear-
lier developed systems demonstrate the performance
without any quantitative recognition results (e.g.,
[64], [98], [99]). Many recent systems achieve high
recognition rates which are above 95 percent (e.g.,

[38], [44], [47] and [48]). This reveals the promising
capability of 3D object recognition systems.

� The UWA database is the most frequently used data-
base. The best recognition rate reported on this data-
base is already 100 percent [11]. The Queen’s
databases is more challenging compared to the
UWA database since the former is more noisy and
the points are not uniformly distributed. The best
recognition rate reported on the Queen’s LIDAR
database is 95.4 percent [44]. The Ca’ Foscari Venezia
database contains several objects with large flat and
featureless areas. The best recognition rate reported
on this database is 96.0 percent [44].

6 FUTURE RESEARCH DIRECTIONS

Based on the contemporary research, this section presents a
brief discussion of future research directions.

� Benchmarking protocol. There is a need for a bench-
marking protocol of existing 3D keypoint detection,
local surface feature description and surface match-
ing methods. This will facilitate the benchmarking of

TABLE 5
Major Systems for Local Surface Feature Based 3D Object Recognition
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the state-of-the-art algorithms in this area. It will also
help in improving the interpretation of the research
results and will offer clear comparisons between the
existing algorithms.

� Nonrigid object recognition. One crucial scope of
improvement in object recognition performance is to
better handle deformations. There could be a num-
ber of directions that one might focus on. One direc-
tion would be to extract local features that are
invariant to shape deformations. Another direction
would be to map different shapes into a canonical
form which is a deformation-invariant representa-
tion of the shape [136], and to perform object recog-
nition in this canonical form.

� Fusion of photometric and geometric information. The
fusion of photometric and geometric information
(e.g., in an RGB-D database)is expected to achieve
improved results, especially in scenarios where
pure geometric or pure photometric features
based methods fail to work. Different types of
fusion can be adopted depending on the process-
ing stage at which the fusion takes place.

� Object recognition from 3D videos. Since a 3D video
contains both spatial and temporal information,
and scans an objects from a set of views. It is
expected that using spatiotemporal/multiview
information to detect keypoints and construct
local surface feature descriptors will help to
improve the performance of many systems for 3D
object recognition in cluttered scenes.

� 3D object recognition on kinect data. Kinect data
become increasingly popular due to many reasons
including its high speed and low cost. Since the Kin-
ect data is quite different from traditional data (e.g.,
the UWA database), traditional algorithms may face
new challenges when tested on the Kinect database.
Several methods on object classification in seg-
mented Kinect images have been proposed [137],
more results on object recognition in cluttered low
depth resolution (e.g., Kinect) images are expected.

7 CONCLUSION

This paper has presented a unique survey of the state-of-
the-art 3D object recognition methods based on local surface
features. A comprehensive taxonomy of the 3D object recog-
nition methods published since 1992 has also been pre-
sented. Merits and demerits of the various feature types
and their extraction methods are also analyzed.
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