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Perceptual approaches have been widely used in many areas of visual information
processing. This paper presents an overview of perceptual based approaches for image
enhancement, segmentation and coding. The paper also provides a brief review of image
quality assessment (IQA) methods, which are used to evaluate the performance of visual
information processing techniques. The intent of this paper is not to review all the
relevant works that have appeared in the literature, but rather to focus on few topics that
have been extensively researched and developed over the past few decades. The goal is to
present a perspective as broad as possible on this actively evolving domain due to relevant
advances in vision research and signal processing. Therefore, for each topic, we identify
the main contributions of perceptual approaches and their limitations, and outline how
perceptual vision has influenced current state-of-the-art techniques in image enhance-
ment, segmentation, coding and visual information quality assessment.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ubiquitous use of digital visual media in our
everyday life calls for the development of smarter and
more efficient methods for modeling, analysing, proces-
sing and transmitting visual information. Machine vision
techniques have progressed significantly to the point they
are able to perform tasks that one could only dream of a
few years ago; thanks to smarter algorithms, a huge
increase in processing power, storage capabilities and
communication bandwidth available in today's computers
and networks. Nevertheless, these techniques fall short of
our expectation when compared to the ease with which
the human visual system (HVS) deals with complex scene
analysis, processing and abstraction. Therefore, we are
witnessing a growing interest in HVS inspired approaches
for digital visual information modeling, analysis,
All rights reserved.

: +33 149404061.
.fr (A. Beghdadi).
processing and communication. The salient characteristics
of the HVS can be exploited in the design of novel methods
for image processing and machine vision. For example, the
perceptual irrelevancy and visual masking effects can be
exploited to improve image compression and filtering
algorithms. On the other hand, the understanding of
processing and coding visual information by the HVS may
help one to develop new perceptual approaches that may
overcome the limitations of existing signal processing based
methods.

The HVS is a complex system dominated by a retino-
topic organization, parallel processing, feedforward, feed-
back and lateral connections. This article, however, does
not concern the structural or functional organization of the
HVS. The focus is rather on the perceptual aspects of
human vision. Section 2 introduces the main perceptual
characteristics that have been largely exploited in the field
of image processing. It briefly describes the concept of
contrast, visual masking, contrast sensitivity function, and
frequency selective channels. Section 3 presents an over-
view of image enhancement methods, including denoising
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techniques, contrast enhancement methods and artifact
reduction approaches. Section 4 describes perceptual
image segmentation algorithms and classifies them into
region-based, edge-based and perceptual grouping based
approaches. The improvement of image coding methods
based on perceptual approaches is tackled in Section 5,
focusing on perceptual lossy compression. Section 6 is
dedicated to some important issues regarding quality
assessment of visual information. The paper ends with
some concluding remarks presented in Section 7.
2. Perceptual characteristics of the human visual system

Over many decades, the understanding of the human
visual system (HVS) has attracted the curiosity of many
researchers working in image processing and machine
vision. Very often, however, the models used in computer
vision and image processing are simplifications derived
from psycho-physical experiments. In the following sub-
sections, we describe the basic human vision character-
istics that have been largely exploited in different image
processing tasks such as contrast enhancement, visual
masking, contrast sensitivity function (CSF), and frequency
and orientation selectivity. The biophysical mechanisms
underlying the different visual phenomena considered in
this article are beyond the scope of this article. For a more
comprehensive treatment of visual perception the reader
is referred to [1,2].

2.1. Image contrast

Contrast is one of the most important factors to con-
sider for image analysis and processing. However, the
definition of contrast is still controversial and there is no
consensus on how to define and measure objectively the
perceptual contrast. For optical images, contrast refers to
the ability of the human visual system to detect the
luminance difference between two or more stimuli. The
contrast depends on many physical and psycho-visual
factors [2]. Many experiments and studies have been
conducted in search for an objective contrast measure that
is consistent with the perceptual sensitivity of the HVS.
Weber (1834) was the first to investigate the visual
discrimination ability of the HVS [2]. Many years later,
Fechner (1861) formulated more explicitly the empirical
law of Weber and proposed methods for measuring the
discrimination ability of the HVS based on the notion of
Just Noticeable Differences (JNDs) [2]. The first physical
measure of contrast was then expressed as the relative
variation of luminance. Another measure of global contrast
was proposed by Michelson in 1927 [3]. This measure was
introduced to quantify the visibility of optical fringes.
While this contrast definition has no link with the HVS,
it has been widely used in many studies, including psycho-
visual experiments such as the measurement of contrast
sensitivity function [4]. In 1944, Moon and Spencer con-
sidered the case of a target on a non-uniform surround and
proposed a more realistic measure of contrast [5].

All these seminal experiments contributed much to
our knowledge of how the HVS perceives global contrast
in some limited environment. However, for natural and
complex images local contrast measures need to be
defined to account for non-stationarity and local struc-
tures of the signal. Since the early pioneering works of
Weber and Fechner, many studies have been conducted
and several measures of local contrast have been pro-
posed, which aim to mimic the key psychophysical char-
acteristics of the HVS [6–9]. Peli was the first to introduce
frequency in the measurement of contrast in both complex
and natural images. Following Peli's reasoning, Winkler
and Vandergheynst proposed an isotropic contrast mea-
sure based on directional wavelet decomposition [8] to
account for the energy responses of both in-phase and
quadrature components. It has been shown that this new
contrast measure overcomes some limitations of Peli's
definition. The anisotropy selectivity of the HVS was taken
into account in defining a band-limited local contrast in
[10]. These studies highlighted the need for defining a
contrast where both the directional and frequency selec-
tivity are taken into account. Many other contrast mea-
sures inspired by Peli's approach have been proposed [8–
11]. However, the extension of contrast measurement to
color images has attracted less attention. One of the
difficulties is related to the fact that the color contrast is
linked to color constancy phenomenon [12], which is not
well understood. A color contrast analysis based on a
model of the influence of color perception and the inter-
actions between local and global spatial structures of the
image was presented in [13]. In [14], a multilevel approach
based on Rizzi's method was proposed to measure percep-
tual contrast in color images.

Although the contributions of the chromatic channels
and spatial information have been considered in the
computation of local contrast, to the best of our knowl-
edge, there is no comprehensive model that allows the
prediction of global contrast from the local contrast
measures; though, some attempts have been made to
derive such models [11,14–16]. The basic idea of these
approaches is to compute a local contrast at various spatial
frequencies and then derive the global contrast by using a
weighting process. However, there is no finding from the
HVS or underlying visual model to support such operation.
The study performed in [16] revealed also the difficulty in
predicting the global impression of contrast in natural
images.

2.2. Visual masking

Visual masking refers to the inability of the HVS to
detect one stimulus, the target, in the presence of another,
the mask. It is a perceptual phenomenon that has been
studied extensively since it was first observed in the 1960s.
The visibility of the target depends on many factors, in
particular frequency, orientation and contrast of both the
mask and the target. The modeling of this phenomenon
has been carried out on some simple stimuli such as
sinusoidal patterns. Legge and Foley performed extensive
experiments on some simple visual scenarios [17]. They
studied the threshold contrast necessary to detect the
target when varying the contrast and frequency of the
mask. They established an empirical power law relating
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the target threshold contrast to the mask contrast. Other
more elaborated masking models have also been proposed
[18–20]. A comparative study of some masking models can
be found in [20]. For a more extensive discussion on this
important phenomenon, the reader is referred to [17–20].

2.3. Contrast sensitivity function

The contrast sensitivity of the HVS does not depend
only on the relative luminance between the background
and the stimulus, but also on many other factors, such as
spatial frequency, size, color, and orientation of stimulus.
The contrast frequency sensitivity of the HVS was inves-
tigated by Robson and Campbell, among others, in the
early 1960s [21,22]. It was found that the HVS acts
roughly as a band-pass filter. It was also observed that
while the temporal and spatial sensitivities are indepen-
dent at high frequencies, they are inseparable at low
frequencies. The early studies concentrated mainly on
luminance contrast sensitivity. The study of the chro-
matic CSF (CCSF), on the other hand, is more complex;
few studies have been devoted to it, which revealed that
the CCSF is rather different from the achromatic CSF [24].
Some practical methods for measuring the CCSF have also
been proposed [23].

2.4. Frequency and orientation selectivity

Since the pioneering work of Hubel and Wiesel [25],
many studies have been devoted to the understanding of
the functional architecture of the primary visual cortex of
mammalians [26–28]. These studies and other findings
revealed the existence of neurons that are sensitive to
orientation, size and spatial frequency. It is now acknowl-
edged that the HVS possesses both orientation selectivity
and spatial-frequency selectivity. To mimic this multi-
channel characteristic of the HVS, some transforms have
been proposed for image analysis and coding [29–31].
In particular, the cortex transform introduced by Watson
was found to be effective in many applications such
as image coding, image quality assessment and texture
analysis [32–34].

2.5. Information processing in visual system

The human visual organs use retina in the eye to collect
and process visual information. The vast number of inter-
connected neurons in retina transforms visual stimuli into
nerve impulses representing both static and dynamic
temporal imagery [108]. The retina samples visual imagery
at more than 126 million spatial locations using a layer of
photoreceptors comprising rods and cones [107]. Rod and
cone are synapsed by bipolar and horizontal cells due to
the lateral inhibition characteristic of the photoreceptor
connections. This causes contrast enhancement in the
visual imagery. The next layer in the retina comprised of
Amacrine cells which modulate the outputs of the bipolar
and horizontal cells. Finally, the Ganglion cells connect the
retinal output to the optic nerve. Ganglion cells are also
responsible for motion anticipation [104]. Early works
suggest that the retina approximates the Laplacian edge
detector and adaptive low-pass filtering resulting in noise
reduction [105].

There are three primary visual pathways such as P-, M-
and K-koniocellular that terminate at the striate visual
cortex (V1), and process information in parallel. Each of
these areas in primary visual cortex (V's) maintains one
processed and topographically correct image map of infor-
mation that falls on the retina. There appears to be some
cross-talk among the channels at various cortical levels.
According to the concept of columnar organization, the
neighboring neurons in the visual cortex have similar
orientation tunings and consequently form an orientation
column [106]. It has been known that the initial phases of
neuron responses encode the location of visual stimuli
whereas the later phases encode the stimulus orientations.
Temporal edge location and its orientation at the neuronal
level in the primary visual cortex may be used for the
parallel–sequential image processing tasks such as seg-
mentation under control of visual attention.

3. Image enhancement

Image enhancement is probably one of the most
extensively studied problems in image processing. There
are many factors that affect the quality of the acquired,
transmitted or reconstructed image. Some factors are
directly related to the image acquisition process, such as
the illumination, whereas others are related to the physical
properties of the sensor and the observed scene. The
perceptual image quality is also affected by the common
limitations of coding and transmission technologies. In this
section, we briefly describe perceptual image enhance-
ment in its broadest sense, with a focus on three of the
most widely studied problems: image denoising, contrast
enhancement and coding artifact reduction.

3.1. Image denoising

The visibility of noise in images is an important issue
that has been well investigated. However, little attention
has been paid to the understanding of how the HVS
perceives noise in natural images. The HVS is able to
discriminate very quickly between two levels of noise in
a given image. Image denoising is one of the most widely
studied problems in image processing. The main difficulty
is how to reduce noise while preserving some important
image structures such as edges and fine texture details.
Although, many interesting approaches have been pro-
posed to address this difficulty, the problem is still open.
Indeed, in many cases there is still a large gap between the
predictions of the theoretical models and the empirical
results from human observation. The main difficulty is due
to the lack of an effective measure that controls the effect
of denoising on texture and fine details as perceived by a
human observer. For example, the SNR (signal-to-noise
ratio) does not reflect the level of denoising as perceived
by a human observer. Incorporating some characteristics of
the HVS appears as a promising solution to this difficult
problem.

In [35] a perceptual nonlinear filter based on local
contrast entropy was proposed. The idea is based on the
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fact that additive noise increases the local contrast
entropy. Therefore, by decreasing the local entropy at the
neighborhood of each pixel, a smoothing effect ensues. The
performance of the method was evaluated on gray-tone
images with additive white Gaussian noise (AWGN) and
salt & pepper noise. The results show that the method
compares favorably in both objective and subjective image
quality as well as in terms of computational speed,
compared with classical and weighted median filters. The
idea of exploiting the local contrast for noise filtering was
later pursued in [36], but with a more advanced perceptual
model of the HVS. This perceptual approach incorporates
some characteristics from the early stages of the human
visual system. A nonlinear filtering approach based on the
Holladay principle and, Moon and Spencer contrast [37]
was introduced and evaluated on gray-level images [37] .
The noisy pixels were filtered using a decision rule based
on the optical Just Noticeable Contrast (JNC) defined in
Moon and Spencer model. The performance of the model
was evaluated on some typical images contaminated by
AWGN (additive white Gaussian noise), and compared
with some other nonlinear filtering methods. However,
the minor performance advantage does not justify the
additional computational complexity. One of the main
advantages of this model, though, is that the denoising
level can be controlled by tuning only a single parameter.
Later, the multi-resolution concept was introduced for
reduction of perceptual irrelevancy based on the JNC
model [38]. However, the authors did not provide any
measure related to the noise visibility. Furthermore, the
consistency of the method is demonstrated on a gray-level
image only.

In [39] a perceptual variational framework was pro-
posed for color image denoising. The method is based on
anisotropic diffusion and exploits some properties of the
HVS, especially edge detection mechanisms in color per-
ception. The image is analyzed and processed in the
perceptually uniform color space CIE-Lanbn. The enhance-
ment is then formulated as an optimization problem with
a color consistency constraint to avoid over-diffusion of
color information. The method compares favorably with
the classical Perona–Malik filtering technique; however, it
is computationally complex and requires at each iteration
the evaluation of some parameters in the scale-space.
More recently, a similar method based on TV variational
model and some simple characteristics of the HVS has
been proposed for color image denoising [40]; here, the
diffusion parameter is adaptively selected according to
noise visibility. More recently, it has been shown that
incorporating the perceptual saliency in a variational
framework can improve image denoising performance
[49]. It was reported that the proposed method prevents
some artifacts, such as staircase effect, without affecting
the perceptual quality of other salient features.

There are many other methods that implicitly exploit
some properties of the HVS for color image denoising.
In [41], the image is decomposed and processed in the
perceptually color uniform space using bilateral filtering.
To avoid color distortions that may result from filtering,
only perceptually similar colors, as measured in the
CIE-Lab space, are taken into account in the averaging
operation. A new approach to color image denoising based
on wavelet decomposition and the CSF was proposed in
[44]. In this approach, the CSF is applied in the CIELAB
color space. The method was found to outperform two
other wavelet-based filtering techniques, in the presence
of AWGN, using three subjective and objective metrics.
Though the method seems to be interesting, it is compared
to only some wavelet-based methods.

In [42] the authors introduced a perceptual learning-
based approach for image denoising. The idea is to
combine a blind noise parameter estimation with the
BM3D (Block-Matching and 3D) denoising algorithm [43].
The input noise parameter used in the BM3D method is
then estimated using a learning process based on natural
scene statistics and image quality assessment. The pro-
posed approach statistically outperforms the BM3D algo-
rithm. However, the slight improvement in some cases
does not seem to justify the additional computational
complexity over the BM3D algorithm. Another adaptive
perceptual approach based on non-local means (NLM )
filtering was introduced in [45]. In this approach, the
anisotropic weighting function for the NLM denoising
filter is adapted to the local perceptual content of the
image. The idea is based on the observation that image
noise is highly noticeable in regions with few perceptually
significant characteristics and masked in textured regions.
A perceptual measure that accounts for the shape and
orientation of the local structures is then computed at
each pixel and used to tune the spreading factor of the
weighting function. However, the method was only com-
pared with NLM filtering. Furthermore, the relevance and
the use of the perceptual measure were not clearly
explained. In [46] a spatial adaptive denoising method
for raw CFA (Color Filtering Array) data acquired by CCD/
CMOS image sensors was introduced. It was shown that by
taking into account the statistical characteristics of sensor
noise and some simple features of the HVS, efficient
denoising could be achieved. In this approach, the smooth-
ing filter is adapted to the noise level and the image
texture. But this method is quite complex and the results
depend on many parameters and tunable thresholds.
Furthermore, the results are evaluated in terms of PSNR,
whereas the method is based on some HVS characteristics.
A comparison with other HVS-based methods based on
some perceptual measures would have been better.

There are also other denoising methods where the
characteristics of the HVS are exploited indirectly through
some perceptual measures [47,48]. In [47], the structural
similarity (SSIM) index was used to measure the similarity
between patches used in the weighting function. However,
the SSIM is a full reference image quality measure and as
such cannot be used directly since the original image is
unavailable. To overcome this difficulty, the noise is first
estimated from the noisy observed image. Then an esti-
mate of noise-free patches is performed by subtracting the
noise from the observed image; further adjustments of
some SSIM parameters are necessary before filtering is
performed. While it outperforms NLM filtering, the
method depends on many parameters and seems ineffec-
tive in the case of very low SNR. Furthermore, during the
estimation of similar patches, it is difficult to assess how
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much noise still remains in the filtered image. In [48], a
similar method where an image content metric based on
SVD (singular value decomposition) and some local image
features was introduced. It was shown that this metric is
well correlated with noise, contrast and sharpness. The
authors claimed that this metric could be used to optimize
the parameters for any image denoising method. However,
as in the previous method, the noise parameter is assumed
to be known or can be estimated from the noisy image.
This makes the method dependent on the noise estimation
method, and hence it may fail in the case of multiplicative
noise or low SNR images.

3.2. Contrast enhancement

The main objective of contrast enhancement is to
improve objective or perceptual quality of a given image
so that the features of the transformed image become
more visible than the feature of the original image.
Contrast enhancement can be expressed as an optimiza-
tion problem where the objective is to maximize the
average local contrast of an image. However, a mathema-
tical formulation of contrast enhancement that does not
incorporate some relevant properties of visual perception
tends to produce unrealistic results and unpredictable
visual artifacts. Historically, it is believed that Gabor was
the first to suggest a method for contrast enhancement
[50]. In the same period, Land and McCann introduced,
independently, the Retinex theory [51,52], which has
gained increasing interest in the image processing com-
munity. This theory is modeled on perception of lightness
and color in human vision. Land suggested decomposing
the lightness into three distinct components in order to
obtain photometric invariants of the observed object sur-
face. Two decades after the publication of the first paper
on Retinex, Land introduced the human perceptual recep-
tive field structures in the model [53]. Over the past two
decades, many improvements have been introduced by
incorporating new findings from the HVS, color science
and some new image representations such as multi-scale
models [54–57]. It is worth mentioning that Retinex has
been mainly developed for tackling the color constancy
problem. The Retinex model produces also the contrast
enhancement and illumination compensation of lightness
and color. Besides Retinex theory, many perceptually based
approaches have been proposed for contrast enhance-
ment. Here we give a brief description and discussion of
some representative HVS-inspired contrast enhancement
methods.

Contrast enhancement (CE) methods can be classified
by means of various criteria. One way to classify CE
techniques is to divide them into two classes, depending
on the domain where the image is analyzed and processed
(spatial domain or spatial-frequency domain) and the way
of transforming the contrast (direct or indirect) [58,59].
Direct methods involve mainly three steps. The first step
involves the estimation of the original contrast. In the
second step, the contrast is amplified using a mapping
function [59,60] or an optimization function as done in
[61]. Finally, the pixel intensity value is transformed
according to this new contrast value.
Although much research effort has been devoted to the
development of methods for contrast enhancement for
gray-tone images, there has been less effort devoted to
color images. Although the basic notions of color percep-
tion are relatively well understood, processing color
images is not an easy task. This is due to the complex
interaction between many physical and psycho-visual
factors that influence color perception. Indeed, processing
color images may lead to unpredictable results. Particular
care must be taken when processing the color compo-
nents. One of the most studied problems in color proces-
sing is color constancy. The Retinex model is one of the
first appealing solutions for solving this difficult problem.
Since its introduction, many methods based on Retinex
theory have been developed for color contrast enhance-
ment [61–63].

An interesting perceptual approach for contrast-
enhancement of gray-level and color images was intro-
duced in [64]. The contrast enhancement problem is posed
as a constrained optimization problem using a perceptual
criteria derived from Weber law governing the supra-
threshold contrast sensitivity of the HVS. The global
function to be optimized is derived from the perceived
local contrast; it expresses the relative global increase of
contrast. This function is maximized under some con-
straints such as saturation and color shift. However, for
gray-level images, the method is compared only to some
classical histogram-based methods. For color images, the
method is compared to multi-scale Retinex, a curvelet-
based enhancement method [65] and Fattal's method [66],
although the comparison is mainly based on the optimiza-
tion function used in the contrast enhancement method.

In [75], a contrast enhancement method was intro-
duced based on some basic characteristics of the HVS.
The basic idea is to segment the image intensity into
three regions, namely De Vries Rose region, Weber–
Fechner region and the saturation region. The enhance-
ment is then adapted to each region, thus avoiding any
over-enhancement or noise amplification. The method is
extended to human visual system based multi-histogram
equalization approach to create a general framework for
image enhancement. The authors also proposed a quanti-
tative measure of image enhancement, restricted to gray-
level images. However, the proposed objective measures
do not incorporate any relevant perceptual features of
the HVS. In [67], an HVS-based local contrast enhance-
ment method for the visualization of highly contrasted
images was introduced. The idea is to segment the image
into light and dark regions and then process indepen-
dently the luminance and color components according to
this segmentation. To overcome the limitations of the
dynamic range of cameras and display devices, another
HVS-based method for image enhancement was proposed
in [68]. The authors developed some interesting solutions
inspired by the way the hue and color saturation are
processed by human perception under critical illumination
environments.

Perceptual contrast enhancement in the compressed
domain was investigated in [71,72]. The developed
method is based on Peli's contrast measure and the
contrast enhancement method developed in [58].
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Enhancing contrast in the compressed domain offers many
advantages. Indeed, many images and videos are available
in compressed form. It is therefore more efficient to
process the data in their compressed form to save compu-
tational overheads when performing the inverse trans-
form. The other advantage is to exploit the frequency
distribution of the coefficients in the design of the
enhancement process. But, all the JPEG compressed
domain methods suffer from coding artifact amplification,
especially in homogeneous regions. In [73], a more elabo-
rated method for enhancing gray-level and color images
was developed. The idea of processing images in the
compressed domain has also been extended to the Retinex
model in [74]

3.3. Coding artifact reduction

In spite of the rapid development of huge capacity and
high speed storage devices, lossy compression techniques
of multimedia data, and especially images, are still increas-
ingly used. However, many of the proposed lossy image
compression methods suffer from some drawbacks at low
bit-rates [76–78]. In the following, we focus on the two
well-known annoying artifacts, namely blocking and ring-
ing effects. Block based compression methods suffer from
blocking effect which results in visible discontinuities
across block boundaries. This is mainly due to independent
processing of blocks. In JPEG it is due to independent
coarse quantization of blocks. Although blocking effects
are reduced in wavelet transform based compression
methods, such as JPEG 2000 [76] and SPIHT [77], another
annoying effect called ringing appears around contours
[78]. This is due to the coarse quantization and truncation
of the high frequency wavelet coefficients. This effect is
generally accompanied by blurring distortion around con-
tours and fine details [78]. Some metrics have been
proposed to estimate such distortions [79,80]. However,
blocking and ringing are difficult to model and to suppress.
Many ad hoc methods have been proposed in the literature
to reduce these effects [81]. In this survey, we limit the
discussion to some techniques based on some relatively
well-understood HVS properties.

In [84], the authors proposed a deblocking approach
based on HVS properties, dedicated to highly compressed
images. The approach is based on a combination of edge
detection, activity masking and brightness masking.
Depending on the visibility level defined by a threshold,
a processing step is applied on the block in order to reduce
the artifact. A technique of blocking artifacts reduction
based on fuzzy edge-sensitivity has been proposed in [85].
It relies on orientation and frequency selectivity, two
essential characteristics of the HVS. Filtering is then
applied by integrating a fuzzy logic technique. Wong and
Bishop proposed a deblocking algorithm which relies on a
human perceptual significance based on local phase char-
acteristics [88]. The local phase coherence is then used to
adapt the deblocking process.

In [83], Chetouani et al. proposed a strategy for redu-
cing the visibility of blocking artifacts without knowledge
of the method of compression. A visibility map is obtained
by analyzing the visibility of the borders of adjacent
regions using the CSF, Cortex transform and masking.
Finally, the deblocking process is adaptively applied
depending on perceptual visibility of the region. A similar
approach has been proposed in [87], where the visibility
map is replaced with a map computed by summing the
horizontal and vertical profiles of gradient vector magni-
tudes. The obtained map is then used to feed a recursive
filter designed to reduce the blocking artifacts. The pro-
posed method outperforms the state-of-the-art methods
in terms of perceptual quality but at the expense of an
increased computational complexity.

Besides works dedicated to blocking artifact reduction,
several authors focused on approaches combining reduc-
tion of ringing and blocking. For instance, Do et al.
proposed to use the JNC and luminance adaptation as
perceptual properties in order to balance the total varia-
tion regularization [86]. The latter is constrained by
information extracted from the image. Recently, in [89],
the same authors proposed an approach consisting of
three steps: (i) blocking–ringing artifacts detection, (ii)
perceptual distortion measure and (iii) blocking–ringing
artifacts reduction. Several other approaches have been
developed, many of them are dedicated to video, which is
not the focus of this survey [82,90]. Through this brief
survey of recent works on coding artifacts reduction
methods, it appears that the use of some simple HVS
characteristics in the design of the algorithms and the
artifact measures good results could be achieved. However,
more elaborated models that can account for other rele-
vant HVS features and other coding artifacts are still
missing.

3.4. Tone mapping and enhancement of high dynamic range
images

Over the last three decades, there have been significant
advances in image acquisition and display devices and
computer graphics technologies. These new technologies
have had a significant impact on a wide range of applica-
tions including 3D medical imaging, virtual reality (VR),
visualization, etc. However, conventional display devices,
computer graphics and image acquisition systems have
limited dynamic range; they can only support 24 bits per
color pixel (8 bits for each primary value of RGB) to display
image and video information. Tone mapping is very crucial
for representing the salient visual information in high
dynamic range images. The natural world provides a wide
range of colors and tones to our visual system, thus
allowing it to adapt in order to acquire the best appear-
ance of the scene. However, the natural world provides a
wide range of colors and tones to our visual system
allowing thus an adaptation to obtain the best appearance.
This visual appearance of natural scenes is highly depen-
dent on perceptual effects happening in the early stages of
human vision. To solve the aforementioned limitation, a
concept (i.e., format) called high dynamic range (HDR),
opposed to low dynamic range (LDR), has been developed
to account for a higher range of tones. This field is
attracting interest from various applications. Nevertheless,
it is still mandatory to narrow the dynamic range to be
able to visually explore the content. This operation, known
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as tone mapping, relies on observer models that allow the
transformation of the luminance of a scene into a desired
display image. It is worth mentioning that tone mapping
(TM) technique can also be considered as another indirect
approach for contrast enhancement. For example, the TM
methods proposed in [69,70] yield good results in terms of
color contrast enhancement. This is mainly due to the fact
that these methods try to mimic the adaptation and local
contrast enhancement mechanisms of the HVS.

TMOs (tone mapping operators) have been first used in
computer graphics community where Trumblin and Rush-
meier [91] introduced a pioneering framework consisting
of the combination of a scene observer model with an
inverse display observer one. Theoretically, when the
framework is properly constructed such operators should
guarantee the realism of the displayed image. Nonetheless,
visual appearance is still, to date, a very complex problem
that can only be approached thanks to computational
models. Several TMOs have been developed since then
and can be classified as local or global operators [92].
Global operators apply the same operation to every pixel
of an image while local ones adapt their scales to different
areas of an image. Most of the TMOs can be generalized as
a transfer function taking luminance or color channels of
an HDR scene as input and processing it to output pixel
intensities that can be displayed on LDR devices.

Perceptual models have been widely used in tone
mapping. For global approaches, Larson et al. proposed a
TMO based on the idea of preservation of perceived
contrast relying on the Blackwell's psychophysical contrast
sensitivity model [93]. At the display side, the monotonic
tone reconstruction avoids the change of scene contrast.
Based on threshold visibility, color appearance and visual
acuity, Pattanaik et al. [99] proposed tone mapping opera-
tor where the stimulation measured at the retina is used
for adaptation of every image pixel in addition to the
supra-threshold colorfulness [94]. Dealing with color
appearance, Ferwerda et al. [100] measured changes in
threshold of this appearance by using separate TVI
(threshold versus intensity) functions for rods and cones
and interpolation for the mesopic luminance range. In the
same vein, Reinhard and Devlin [101] based their devel-
opment on a computational model of photoreceptor beha-
vior with a chromatic transform allowing a flexibility of
the white point.

In local approaches, a contrast approximation similar to
Peli's local band-limited contrast was used by Reinhard
et al. [95] and Ashikhmin [96]. In [95], a global tone
mapping is applied to reduce the range of displayable
luminance. In order to have different exposures for differ-
ent areas of the image, a photographic dodging and
burning techniques are applied. The automated version
presented in [98] takes advantage of low contrast region
detection thanks to a center-surround function at different
scales. The contrast used in the previous approaches can
be easily replaced by the one defined by Mantiuk et al.
[97] for HDR images. As stated by the authors, the
pyramidal contrast representation ensures proper recon-
struction of low frequencies and does not reverse global
brightness levels. Moreover, the introduction of a trans-
ducer function, giving the response of the HVS for the full
range of contrast amplitudes, is especially useful for HDR
images.

Recently, two works have been dedicated to the eva-
luation of TMOs. In [102], authors conducted a psycho-
physical experiment in order to discriminate seven TMO
approaches (3 local and 4 global) using attributes such
as contrast, brightness, details reproduction in dark and
bright regions, and naturalness. Similarly, in [103], authors
run a psychophysical experiment involving several criteria
on fourteen TMOs. The result of this work was the definition
of an overall image quality function dedicated to tone
mapping described as a linear combination of the used
attributes.

4. Perceptual image segmentation

The objective of image segmentation is to obtain a
compact representation from an image, sequence of
images, or a set of features. Robust image segmentation
is one of the most critical tasks in automatic image
processing. Image segmentation has been an active field
of research for many decades [109,110]. Many surveys on
image segmentation have appeared in the literature
[111,112,116]. Image segmentation methods can be roughly
grouped into three categories, as suggested by Fu and Mui
[111]: (i) region-based segmentation, (ii) edge-based seg-
mentation, and (iii) feature clustering. Here we focus only
on perceptual approaches for image segmentation.

Perceptual image segmentation involves extraction and
grouping of perceptually relevant information for complex
scene segmentation [113]. Though human perception of
images is heavily influenced by the colors of the pixels, the
perception of each pixel also depends on neighboring
pixels. Similar to any segmentation technique, perceptual
image segmentation requires the extraction of low-level
image features. These low level features are then corre-
lated with high-level image semantics for efficient image
segmentation. For example, the authors in [113] propose
low-level image features and segmentation techniques
that are based on perceptual models and principles about
the processing of color and texture information. The
approach is based on spatially adaptive color and texture
features and has been proven effective for photographic
images including low resolution, degraded, and com-
pressed images. Such perceptual image segmentation
models can also help in obtaining more robust perceptual
image quality measures [114]. The authors in [114] propose
a Segmentation-based Perceptual Image Quality Assess-
ment (SPIQA) metric which quantifies image quality while
minimizing the disparity between human judgment and
predicted image. One novel feature of SPIQA is that it
exploits inter- and intra-region attributes in an image that
closely resembles how the human visual system (HVS)
perceives distortions.

Another extension of perceptual image segmentation is
obtained in [115] wherein Fuzzy sets are defined on the H,
S and V components of the HSV color space. The model
uses a fuzzy logic model that aims to follow the human
intuition of color classification. Experimental results sug-
gest that the proposed algorithm obtains improved classi-
fication over other basic color classification techniques,



Fig. 1. Schematic of image segmentation steps in visual information processing.
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especially in more challenging outdoor natural scene
segmentation. In summary, the primary motivation of
perceptual image segmentation relates to segmentation
using color and texture since imaged objects are often
described at perceptual level by distinctive color and
texture characteristics [116]. The authors in [116] provide
thorough evaluation and review of the most relevant
algorithms for image segmentation using color and tex-
ture features. Furthermore, SPIQA metric can be used for
automated perceptual image segmentation and prediction
of image quality simultaneously.

Most perception-based image segmentation techniques
primarily involve bottom-up processing. However, top-
down feedback of information can modulate the feature
processing and clustering appropriately for better image
segmentation as shown in Fig. 1.

Fig. 1 shows an overall machine-centric visual informa-
tion processing approach. The schematic includes both low
level and high level visual processing tasks. The low level
vision tasks involve extraction of different types of fea-
tures such as color, intensity, shape, texture and scale.
These features are then processed further in the visual
cortex as discussed above. In the machine centric imple-
mentation, different clustering techniques such as k-
means, fuzzy c-mean, self-organizing map (SOM), and
expectation maximization (EM) are used to cluster the
features into segments. The role of image semantics is very
important in perceptual image segmentation. Image
semantics in the form of descriptors, labels or boundary
can help to refine image segmentation. The image seg-
ments obtained from low level vision processing are then
processed for object detection, recognition and classifica-
tion steps. These high level vision tasks are processed in
the V1 areas with the aid of long term and short memory
and attention. This information flow from retina (sensor)
to V1 for object segmentation and processing is known as
bottom-up information processing. Feedback from the
high-level vision processing is also fed back all the way
to retina for iterative multi-scale refinement of perceptual
image segmentation process. The feedback flow is also
known as top-down information flow. Often times effec-
tive computational modeling of visual information proces-
sing necessitates integration of bottom-up and top-down
flows.
4.1. Region-based segmentation

The region-based segmentation algorithms stem from
the fact that quantifiable features inside a structure in an
image appear homogeneous. The region-based segmenta-
tion algorithms aim to search for the image pixels with
similar feature values. Robust region based segmentation
in noise is challenging. In the HVS, there are two major
stages for information processing, segmentation and
recognition [117]. The first stage is early vision that
involves focusing of attention in visual system to obtain
the necessary information. The subsequent processing step
in visual system then segments out potential candidates
from noisy backgrounds for high-level processing. The
second stage of recognition is identification. After infor-
mation is preprocessed for segmentation in the first stage,
much smaller amount of information is sent up in the
visual stream for identification. During identification stage,
knowledge from higher-level cortex is fed back to revise
the information processing in early vision. Many theories
of object segmentation involve comparing visual informa-
tion with several characteristic views of object stored in
memory. Such theories implicitly assume that stages of
visual processing have solved visual segmentation among
other tasks. Different biologically inspired models have
been suggested in literature for image segmentation.

Human visual perception can be very resilient in
segmenting objects from noisy images. Burgi and Pun
proposed a human perception inspired static image seg-
mentation method in noise [118]. In this method the
authors use the idea of asynchronous processing such
that strong luminance elicits reactions from the visual
system before weaker ones. The method involves trans-
formation of a static image into a data flow in which
information flow attracts attention for object segmenta-
tion and detections. However, this method has been
evaluated on a very limited set of gray-tone images.
Furthermore, the results depends on many tunable para-
meters. The other weakness of the proposed method is
due to the fact that the asynchrony analysis relies on only
the pixel intensity and does not incorporate other rele-
vant spatial features. In [119] a model of human pre-
attentive texture perception that can predict the salience
of texture boundaries in gray-scale image, is proposed.
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The model attempts to simulate outputs of V1 area of
visual cortex for image segmentation.

A novel framework for joint processing of color and
shape information in natural images is proposed in [120].
Based on the information processing in the HVS, this work
proposes a hierarchical non-linear spatio-chromatic opera-
tor which yields spatial and chromatic opponent channels.
The authors extend two popular object recognition meth-
ods such as the hierarchical model of visual processing and
a SIFT bag-of-words approach to incorporate color infor-
mation along with shape information. They use the frame-
work in scene categorization and segmentation.

4.2. Edge-based segmentation

Edge detection techniques involve characterization of
abrupt intensity changes in scenes caused by physical
processes in the world. An important goal of edge detec-
tion is the reduction of image information for further
processing. Early works on edge detection attempted to
characterize intensity changes using different types of
derivative operators, and at different resolutions (scales)
[121]. In one such work, a theory of multiscale edge
detection is presented [122]. The authors analyze natural
image intensity at different scales using second derivative
of a Gaussian filters. The intensity changes due to edge are
then represented by oriented primitives called zero-
crossing segments. Evidence is given that the zero-
crossing representation is complete. They also show that
edges in images are spatially localized and these edges
arise from surface discontinuities caused by reflectance or
illumination boundary changes. Consequently, the zero-
crossing segments in different color components are not
independent, and rules are deduced for combining them
into a description of the image. This description is called
the raw primal sketch. The theory explains several basic
psychophysical findings, and the operation of forming
oriented zero-crossing segments from the output of
center-surround filters acting on the image forms the basis
for a physiological model of simple cells. Subsequent
works investigate the effect on edge extraction when the
theory of HVS based thresholding [123] is made to operate
on the intensity domain of a gray scale image. The
performance of the systems is also quantitatively analyzed
using the ‘entropy’ metric.

Later works on edge based segmentation are motivated
by models of the HVS and involve detection of visually
relevant luminance features [124]. The technique detects
edges (sharp luminance transitions) and narrow bars
(luminance cusps) and marks them with the proper
polarity. This results in a polarity-preserving feature map
representing the edges with pairs of light and dark lines or
curves on corresponding sides of the contour. The algo-
rithm is implemented with parameters that are directly
derived from visual models and measurements on human
observers. The method in [125] takes into account the
basic characteristics of the HVS such as masking the
gradient image with luminance and also masking the
activity in local image for edge labeling. An implementa-
tion of this method on a Canny detector is described as an
example. The results show that the edge images obtained
are more consistent with the perceptive edge images. In
another HVS related approach the authors present a
technique exploiting visibility of edges by human eyes
[126]. The authors obtain threshold function according to
the optical characteristics of the sensor and a contrast
sensitivity function. The information is applied to edge
detection using a binarization technique. In another
complimentary method the authors compute the edge
visibility for the HVS [127]. Two important processes in
the HVS are taken into account: visual adaptation and
contrast sensitivity. The primary contribution is a biolo-
gically inspired unified framework which mimics human
vision and computes both edge localization and edge
visibility.

In more recent works, information used in the edge-
based methods combine different image cues from HVS to
complete the segmentation. Examples in this category
include the watershed algorithms [128]. These algorithms
combine the image intensity with the edge information
and use the mathematical morphology operations to
obtain the segmentation. In the watershed algorithms,
gray scale images are considered as reliefs and the edge
magnitude is treated as elevation. Watershed lines are
defined to be the pixels with local maximum edge magni-
tude. A region of the image in Watershed is defined as the
pixels enclosed by the same line. The segmentation pro-
cedure is to construct watersheds during the successive
flooding of the gray value relief. Watershed algorithms
tend to present over-segmentation problems, especially
when the images are noisy or the desired objects them-
selves have low signal-to-noise ratio. In [129] the authors
introduce a HVS-based algorithm which integrates image
enhancement, edge detection and logarithmic ratio filter-
ing techniques to develop an effective edge detection
method. The algorithm performs well in tracking and
segmenting dark gray levels in an image and preserves
object's topology and shape.

Finally, clustering is collection of features that belong
together. Currently, there is no broad theory available
for clustering based segmentation. A broad family of
approaches to segmentation involves integrating features
such as brightness, color, or texture over local image
patches as shown in Fig. 1. Clustering these features using
different types of neural network such as SOM and other
modeling techniques such as mixture fitting (e.g., EM),
mode-finding, or graph partitioning yields segmentation
[130]. Threshold-based algorithms generally assume that
image regions have distinctive quantifiable features such
as the image intensity, texture, color, reflectance, lumi-
nance or the gradient magnitude [131]. The procedure of
segmentation is to search for the pixels whose values are
within the ranges defined by the thresholds. Thresholds
used in these algorithms can be selected manually or
automatically. Both manual and automated selection of
threshold values may need a priori knowledge and some-
times trial experiments. Automatic threshold selection
often combines the image information to obtain adaptive
threshold values for edge extraction. Examples include
different local and global edge extraction algorithms such
as Canny, Otsu, Laplacian, Hough transform and object
background models.
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Due to noise and partial volume effect in the image, the
edges and hence the segments may be incomplete or
discontinuous. It is then necessary to apply post-processing
techniques such as morphological operations to connect the
breaks or eliminate the holes. Object background models, on
the other hand, are based on histogram thresholding. These
models assume that there is a uniform background and
objects are irregularly placed on this background [132].
Hence, finding an appropriate threshold between object and
background obtains background–foreground segmentation.
The simple background–foreground segmentation technique
can be modified to account for pyramidal structure yielding
multi-resolution segmentation [133]. There are many exam-
ples where image feature histograms may not have clear
separation among foreground and background and hence, the
simple thresholding methods may not be effective. Probabil-
istic methods are good candidates for these cases where
image intensity is insufficient for foreground–background
segmentation.

In [134], authors propose an automatic thresholding
method following inspiration from the HVS which pre-
serves edge structure in images. Edge thresholds based on
human visual perception is obtained first, and then these
edge thresholds are used to find several edge intervals.
From these edge intervals, the threshold value at which
most edge information is preserved in the thresholded
image is obtained. Another novel thresholding method
that uses human visual perception is presented in [135].
The method first utilizes statistical characteristics of an
image to choose two gray levels as candidate thresholds by
using the properties of human visual perception, and then
determines the one having minimum standard deviation
sum as the optimal threshold. Choice of candidate thresh-
olds reduces search space of thresholds and accelerates
threshold selection.

4.3. Cooperative and perceptual grouping based
segmentation

Image segmentation based on spatially adaptive color
and texture features following human perception grouping
has been an active area of research [136,137]. The image
features are first obtained independently, and then
grouped to implement an overall segmentation as shown
in Fig. 1. Texture feature estimation requires a finite
neighborhood which limits the spatial resolution of tex-
ture segmentation. The color segmentation, on the other
hand, provides accurate and precise edge localization. The
authors use an adaptive clustering algorithm for color and
texture features to obtain integrated image segmentation.
The images are assumed to be of relatively low resolution
and may be degraded or compressed.

Quality metrics for evaluating the segmentation result,
from both region-based and boundary-based perspectives,
are integrated into an objective function. The objective
function encodes the HVS properties into a Markov random
fields (MRF) framework, where the JND model is employed
when calculating the difference between the image contents.
The MRF is attractive for modeling texture and context of
images [137,138]. A modified MRF model, also known as
multi-scale random field (MSRF) model [139], uses
unsupervised segmentation scheme. MSRF forms hybrid
structure of quadtree and pyramid graph for scale represen-
tation. EM algorithm is used for solving sequential maximi-
zation of a posteriori whose solution calculates the required
parameters of MSRF model. Supervised scheme for segmen-
tation is used in [140] wherein the authors apply oriented
Gabor filters, inspired by HSV, for extracting texture features.
Texture feature vector is represented as Gaussian distribu-
tion. A posteriori probability scheme is formulated as Gibbs
distribution for assigning a partition label to a pixel. The
maximization of a posterior probability is obtained using
Hopfield neural network with a deterministic relaxation
modeling.

On the perceptual point of view, higher perceptual
grouping levels are involved during object detection and
recognition tasks. The authors in [141] present an image
segmentation model based on visual attention mechanism.
The model simulates the bottom-up human visual selec-
tive attention mechanism, extracts early vision features
of the image and constructs the saliency map. The image
is segmented by separating the salient regions and the
background. The model builds on Itti–Koch saliency-based
models [142]. A model for image segmentation according
to the early visual area in primate visual cortex, which
combines multiple features to build the prediction of
image segmentation for object recognition, is proposed
in [143]. The methodology consists of parallel and multiple
feature fusion blocks and performs well in figure-ground
segmentation.

The segmentation of moving objects is comparatively
more challenging. Motion can provide an important clue
for perceptual object grouping and hence segmentation.
Optical flow is an important cue for moving object segmen-
tation and detection. Without knowledge of the background
positions, the background motion may not be computed
effectively. Similarly, without knowing the background flow
one may not determine which positions belong to the
background region. Humans can effortlessly perceive objects
in a scene using only kinetic boundaries, and can perform the
perceptual grouping task even when other shape cues are
not provided. The authors in [144] discuss a biologically
inspired model derived from mechanisms found in visual
areas in the brain such as V1 and others as suggested in Fig. 1
that achieves robust detection along motion boundaries. The
model includes both the detection of motion discontinuities
and occlusion regions based on how neurons in visual cortex
respond to spatial and temporal contrast. In particular, they
show that mutual interactions between the detection of
motion discontinuities and temporal occlusions allow a
considerable improvement of the kinetic boundary detection
and hence segmentation.

The application of human visual attention is imple-
mented in a model to improve the recognition accuracy of
character recognition problems known as Completely
Automated Public Turing Test to Tell Computers and
Humans Apart (CAPTCHA) [145]. The technique focuses
on segmenting different CAPTCHA characters to show the
importance of visual preprocessing in recognition. Tradi-
tional character recognition systems show a low recogni-
tion rate for CAPTCHA characters due to their noisy
backgrounds and distorted characters.
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5. Perceptual coding

The field of still image compression has been the focus
of important research efforts for decades leading to the
definition of several coding algorithms, where a few of
them became international standards. The process started
with the information theory introduced by Shannon in
1948 [146], the Huffman code in 1952 [147], the Discrete
Cosine Transform (DCT) by Ahmed in 1974 [148], the
arithmetic coding by Rissanen in 1979 [149] and finally
leading to the widely used JPEG standard (ISO 10918) in
1992 [150] for lossy coding. Since then three other stan-
dards have emerged such as JPEG-LS (ISO 14495) in 1998
[151], JPEG 2000 (ISO 15444) in 2000 [152] and JPEG XR
(ISO 29199) in 2009 [153]. In the meantime, numerous
works have been performed either on defining optimized
coding schemes, or introducing optimization processes in
mathematical, informational and perceptual domains.

The process of the major part of lossy coding algo-
rithms is performed in three main stages. First, a forward
transform is applied on the input image; second, a quanti-
zation of the coefficients in the transform domain is
performed and finally, an entropy coding is performed to
reduce redundancy.

The performance of classical image coding algorithms
for reduction of information redundancies and bit budget-
ing is undoubtedly attractive. Nevertheless, it is by far the
only criterion used in benchmarking coding technologies.
Furthermore, reduction of statistical redundancies is often
not in line with perceptual aspects. It is now clearly
established that the reduction of perceptually redundant
information, for a given bit-budget, increases the perfor-
mance while preserving the visual quality. For instance,
the human contrast sensitivity indicates that the HVS is
not able to perceive spatial frequencies beyond a given
cut-off. Therefore, it may not be useful to preserve this
information of very high spatial frequency for an image.
Human perception has been and still is the focus of many
image coding studies for understanding and exploiting
some phenomena such as masking and spatial/temporal
sensitivity. There are several ways to incorporate human
perception into image coding schemes. Nonetheless, as
illustrated on Fig. 2, the quantization is one of the most
addressed stages in literature [154–176].

Several perceptually uniform quantization strategies
have been proposed. For instance, Ibrahim Sezan et al.
studied the visibility of quantization noise and proposed
an efficient model based on their findings [154]. However,
the various studies addressed only low dynamic range and
specific luminance conditions. Other studies about percep-
tually optimized quantization have been targeted toward
specific transforms. In the following, the exploration
Fig. 2. Generic perceptual coder—quantization optimization.
of the various perceptual coding approaches is addressed
depending on their targeted scheme. For the sake of
clarity and continuity, approaches have been grouped,
when possible, according to the major image compression
standards, i.e., JPEG (DCT) and JPEG 2000 (DWT) and
JPEG XR. Additional approaches have been addressed
separately.
5.1. DCT-oriented approaches

Transform coding is able to achieve optimum statistical
compression ratios. Several works have been performed in
combining the DCT transform coding and visual percep-
tion resulting in a higher compression ratio and good
reconstruction of the original image. Many of them
addressed quantization of the DCT in order to improve
related works (i.e., JPEG) from a perceptual point of view.
The motivation came from the fact that the quantization
matrix is not defined by the standard. The model described
in [177] focused on the statistical nature of the coefficients
where redundancy has been removed while keeping a
good visual quality. Ngan et al. [156] relied on the HVS
function, of the shape Hðf Þ ¼ ðaþ bf Þexpð�cf Þ defined by
Nill in [178], where f is the frequency and a, b, c are
coefficients allowing to tune the model, in order to
transpose the cosine transform coefficients into the per-
ceptual domain. Similarly, Safranek proposed a JPEG com-
pliant encoder that removes perceptually irrelevant
coefficients [160]. Supra-threshold image compression
has been explored by Pappas et al. in [179] for minimizing
perceptual image distortion measures that are matched to
the HVS. More recently, Sreelekha and Sathidevi [180]
used a CSF thresholding and a masking in the JPEG
standard encoding process allowing to remove percep-
tually insignificant coefficients. These approaches pro-
vided some improvement to the JPEG-like compression
schemes but the tradeoff between quality and bit-rate is
often difficult to reach.

An important approach known as DCTune has been
introduced by Watson [157,158] for visual optimization of
DCT-based compression. It relies on luminance and con-
trast masking to generate quantization matrices adapted
to individual images and their viewing conditions.
This image dependent perceptual method defines the
masked threshold mk ¼maxðtk; jckjwðtkÞ1�wÞ as the max-
imum between the luminance threshold tk and a non-
linear combination of DCT coefficient tk together with
luminance and contrast masking where the exponent w
controls the adaptive aspect of the proposed approach. An
extension to color images has been given in [159] by using
a YCC color space demonstrating thus a more severe
compression of chromatic channels while having accepta-
ble visual results. One negative aspect lies in the fact that
the quantization matrices and the scalar value of each DCT
block are embedded in the codestream resulting in an
increase of the compressed image. Tran and Safranek [161]
took into account the local variations in masking based on
an image segmentation scheme allowing for local adapta-
tion. The drawback of this approach lies in the cost of the
segmentation information needed at the decoding side.
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The approach proposed in [181] aims at designing a
JPEG perceptual quantization matrix based on the rate-
distortion algorithm designed by Wu and Gersho and
the integration of visual weightings. Macq [182] derived
perceptual weighting factors depending on quantization
noise introduced on transform coefficients. The extracted
weighting factors present the advantage of varying as a
function of the display and the viewing conditions while
being independent of the image content. Tong and Venet-
sanopoulos proposed a perceptual model based on texture
and luminance masking properties used for scaling of the
JPEG quantization matrix [183]. Therefore, masking is
studied through a classification of blocks into plain, edge,
and texture similar to [161]. In [168], authors designed a
perceptual quantization table of a DCT-based image coder
by taking advantage of the Daly's perceptual model
together with a uniform quantizer. To cope with the later,
vector quantization has been used for perceptual coding as
the approach introduced by Macq and Shi [184] applying
the LBG (Linde–Buzo–Gray) procedure in the DCT domain
using an optimization of the perceptually weighted signal-
to-noise ratio. The performance of such an approach is
dependent of the nature of the used perceptual metric.

In order to prevent high perceptual errors on individual
images, Malo et al. proposed to bound the maximum
perceptual error (MPE) for each frequency and amplitude
in the coder [167]. They used a non-linear perceptual
metric based on the contrast sensitivity function leading
to the conclusion that bounding the perceptual distortion
in each particular block of the image may be more
important than minimizing the average perceptual distor-
tion over a set of images. Höntsch and Karam proposed a
DCT-based, locally adaptive, perceptual-based image coder
by fixing the objective of minimizing the bit-rate depend-
ing on the targeted perceptual distortion [165,169]. There-
fore, masking properties derived in a locally adaptive way
based on local characteristics of images are used. Hence,
thresholds of local distortion sensitivity are extracted and
used to adaptively control the quantization and dequanti-
zation stages of the coding process in order to comply with
the initial target. In order to avoid sending side informa-
tion that increases bit-budget, the estimation of the locally
available amount of masking can be performed at the
decoder side. The aforementioned approaches achieve an
important improvement of compression ratio in compar-
ison to [157] while keeping a similar complexity.

With the aim of optimizing the JPEG color image
coding, Westen et al. proposed a new HVS model based
on a set of oriented filters combining background lumi-
nance dependencies, luminance and chrominance fre-
quency sensitivities, and, luminance and chrominance
masking effects [185]. In order to cope with the orientation
difference of the filters in the model domain and the DCT
block transform, they proposed a general method to
combine these domains by calculating a local sensitivity
for each DCT (color) block. This leads to a perceptual
weighting factor for each DCT coefficient in each block.

Different machine learning techniques have been suc-
cessfully used in image coding. For instance, support
vector machine (SVM) has been exploited by Gómez-Pérez
et al. [186] where an extension of the work described in
[187] using an adaptive ϵ�insensitivity has been proposed.
The perceptual dimension lies in the fact that constant
ϵ�insensitivity is perceptually valid in the spatial domain
rather than in the DCT domain.

Recently, Ma et al. proposed a perceptual coding algo-
rithm using DCT based on the idea that some macroblocks
of the image can be coded at a lower resolution without
impacting their visual quality [188]. In this method, more
bits are available for the most prominent macroblocks. The
downsampled blocks are obtained by minimizing the error
between the original and the upsampled blocks in the DCT
domain.

5.2. DWT-oriented approaches

DWT compression is often a lossy process and the
invisibility of coding artifact is a real challenge. Many
works have been devoted to perceptually optimize the
wavelet-based coding. For example, the study performed
by Safranek and Johnston can be considered as one of the
early works [155]. It is based on a subband decomposition
and quantization step sizes obtained from frequency and
luminance sensitivity, and contrast masking. However, for
a fixed display luminance, spatial variations in the local
mean luminance of the image produce local variations in
visual thresholds. An extension of this work is proposed in
[189] by using an algorithm that locally adapts the quanti-
zer step size at each pixel according to an estimate of the
masking measure. Compared to [155], the methods in
[189] offer better performance without requiring addi-
tional information. Lai and Kuo propose an unconventional
wavelet-based compression method where instead of
using the amplitude of wavelet coefficients, the contrasts
of each resolution are coded [163]. Therefore, the visual
error is uniformly distributed over the image and
decreases with visual artifacts at low bit-rate.

CSF has been widely used in image coding schemes. For
DWT, most of the implementations are based on a single
invariant weighting factor per subband. Extensive experi-
ments run by Nadenau and Reichel and described in
[164,190] allowed the introduction of four different ways
of integrating the CSF in a JPEG 2000 scheme. Similarly,
Stoica et al. proposed a weighting approach extracted from
CSF that accounts for viewing distance when applying the
perceptual optimization in the JPEG 2000 coder [172]. Both
approaches improve the visual quality of JPEG 2000
compressed image while increasing the complexity cre-
ated by the image-dependent optimization. In 2006, Liu
et al. presented a standard compliant distortion-based
JPEG 2000 encoding scheme using a locally adaptive HVS
model [173]. This encoding scheme incorporates different
masking effects and a perceptually weighted MSE taking
into account the spatial and spectral summation of indi-
vidual quantization errors. The major drawback of this
approach as well as most of them is that perceptual
considerations are used for side tuning to obtain a given
visual quality while the coder is not built following human
vision properties.

Zeng et al. used self-masking and neighborhood mask-
ing for the preservation of detailed edges in the framework
of JPEG 2000 [191]. The masking function is applied before
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the quantization process with the aim of adjusting visual
significance of individual coefficients. In the Embedded
Block Coding with Optimal Truncation Points (EBCOT)
coder described by Taubman in [192], the perceptual
optimization lies in the distortion function used in the
R-D (Rate-Distortion) process. Such perceptual optimization
allows measurement of the sensitivity to quantization
errors. However, the masking model used in EBCOT does
not take into account the viewing conditions. In 2004, Tan
et al. proposed a perceptual coder for monochrome images
following the EBCOT structure and using a perceptual
distortion measure taking advantage of an advanced vision
model. The authors show a variant of the contrast gain
control (CGC) model composed of three steps such as
linear transform, masking response and detection. In [193],
a monochromatic multichannel vision model has been
extended to color and used to approximate perceived
errors in the R-D optimization in the JPEG 2000 frame-
work. In the same context, Liu proposed a new color JND
estimator and used it within JPEG 2000 to improve the
perceptual quality of compressed images [194,195]. The
approach does not require any side information and
reduce the prediction error in DWT + DPCM compression.

Watson et al. proposed an interesting method on
perceptually characterizing visual thresholds for wavelet
quantization errors [162]. The authors measured visual
detection thresholds for samples of DWT uniform quanti-
zation noise in Y, Cb, and Cr color channels. A mathema-
tical model is derived for DWT noise detection thresholds
with the level, orientation, and display visual resolution as
parameters. The obtained model allows the definition of
perceptually lossless quantization matrices. More recently,
in a similar work performed by Larabi et al. [196],
psychophysical experiments involving noise at various
subbands and in different channels, allowed the definition
of visual detection thresholds for digital cinema applica-
tions. One important conclusion of this work was the
insufficiency of the 250 Mbps limit, defined for JPEG
2000 digital cinema profile, to achieve visually lossless
compression. Ramos and Hemami conducted a psycho-
physical investigation about distortions visibility caused by
wavelet coefficients quantization [166]. From these experi-
ments, they propose a quantization strategy producing a
minimum noticeable distortion leading to a perceptual
improvement of wavelet-coded images. Based on the work
of Watson et al. [162], Albanesi and Guerrini proposed a
HSV-based quantization strategy for both lossy and loss-
less coding [170]. A related work introduced by Liu and
Chou [197] discusses an adaptive quantization using noise
detection threshold associated with each coefficient in
each subband of the color channels. Recently, Sreelekha
and Sathidevi proposed a coding approach where contrast
thresholds are applied at the quantization step. The
novelty of this work is the facts that contrast thresholds
are used on both luminance and chromatic channels, and
are adapted to image content [198,176].

A review of different approaches in literature suggests
that perceptual optimization is often linked to the metric
used to visually minimize the impact of quantization
errors. Consequently, Gershikov and Porat proposed a
weighted mean square error (MSE) metric in order to
achieve perceptually optimal coding [199]. They assume by
already obtaining a set of weighting factors corresponding
to the perceptual impact of each subband of the transform.
In the same fashion, Wang et al. considered the well
known SSIM metric in order to generate maps to derive
local perceptual quality indicator [174]. The extracted map
is used in an iterative process where in each pass the
remaining bits are allocated to visually important regions.
This reallocation aims at decreasing the effect of spatial
quality distribution within an image. However, even
though using SSIM will certainly allow to preserve struc-
tural information, this metric is not always in accordance
with human perception. A different perceptual optimiza-
tion approach has been introduced by Wang and Bovik in
[200]. This method takes an advantage of the high spatial
resolution of the HVS around a fixation point, also called
foveation point, linked to the fovea. They then integrate
this process in an image coding algorithm which re-orders
the bitstream to optimize foveated visual quality indepen-
dent of the bit-rate. This re-ordering is achieved by using a
specific quality metric exploiting the foveation phenom-
enon. This bio-inspired approach allows mimicking the
foveal vision of the HVS. Nevertheless, it does not address
jointly the problem of wavelet coefficient selection and
quantization parameter definition.

A perceptual dithering approach has been used for
image coding in [201]. They considered a hierarchical
wavelet transform where the sibling subbands of the same
level are decorrelated by applying a series of rotations. The
change on the wavelet coefficients is made prior to
quantization. The perceptual model used in this work
relies on background luminance perceptibility and spatial
masking effects [202].

5.3. Perceptually lossless or near-lossless

In addition to fully lossy and the lossless compression, a
third approach has emerged and is known as near-lossless
or perceptually lossless compression. It relies on the fact
that some losses are not perceptible by a human observer.
Although this notion is highlighted by all works dealing
with perceptual optimization of image coding but it still
requires further discussions. Instead of improving the
visual quality of coding results, perpetually lossless
approaches target the absence of visual difference
between original and compressed images. The JPEG-LS
standard [151] proposes such a feature even though the
results are not always convincing for the near-lossless part.
A perceptual optimization of the JPEG-LS standard has
been introduced by Chou and Liu [203] by making coding
errors imperceptible or minimally noticeable. Hence, a JND
model is used on the three color channels of each pixel
allowing to perceptually tune the quantization step size in
the predictive coding mode. A similar approach has been
proposed in [204]. During the last decade, medical imaging
has been the focus of the lossless coding efforts especially
using a JPEG 2000-like compression. An approach dedi-
cated to wavelet-based coding has been introduced by Wu
et al. [205,206]. It uses a contrast gain control model
defined as a perceptual metric incorporating a CSF filtering
and masking, in order to apply a visual pruning of visually



A. Beghdadi et al. / Signal Processing: Image Communication 28 (2013) 811–831824
insignificant information. In this work, it has been demon-
strated that perceptually lossless coding achieves better
results than lossless or nearly-lossless compression. How-
ever, medical images coding may be highly influenced by
the nature of the diagnosis to be delivered as well as
individual situation.

5.4. JPEG XR

JPEG XR [153,207] is the latest compression standard of
the JPEG family developed as a potential coder for
extended range images. It uses a hierarchical two stages
Lapped Bi-orthogonal Transform (LBT) which is based on a
flexible concatenation of two operators such as the DCT-
like Photo Core Transform (PCT) and the Photo Overlap
Transform (POT). Due to its novelty and the lack of market
adoption, a few studies have been devoted to perceptual
optimization of JPEG XR. In the same fashion as the other
JPEG standards, Shonberg et al. tackled the problem of
spatial bit allocation in order to improve the perceived
quality of a compressed image [175]. The idea is to use
fewer bits for image features that are less crucial to visual
quality. This is achieved by varying the step sizes used for
quantization of the transform coefficients of each fre-
quency band and color component of each macroblock in
the image. The advantage of this approach is that no
changes are required at the decoding side. However, the
choice of the metric deciding whether a feature is visually
important or not is critical. Authors have chosen MS-SSIM
which does not really belong to the perceptual metrics.
Nevertheless, a subjective validation has been used to
corroborate the objective quality decision.

5.5. Other approaches

Recently, Masmoudi et al. proposed in [208–210] an
approach inspired by coding strategies of the mammalians
visual system generating a compressed neural code for a
visual stimulus. They rely on the bio-plausible Virtual
Retina model developed by Wohrer and Kornprobst [211]
that has been adapted for coding purposes. The proposed
coder can be summarized by three processing steps each
mimicking a layer of the retina. These are time-dependent
edge detector (outer layers) followed by a non-linear
contrast gain control (inner layers) and finally a conversion
of the input stimulus into spikes (ganglionic layer). With
this architecture, authors have demonstrated scalability
and bit allocation efficiency by using the time-dependent
behavior of the retina. At last, a dithering process is
integrated in the proposed bio-inspired coder to account
for the retinal noise occurring in the inner layer. This
improvement allows for a faster recognition of the fine
details of the image during decoding process.

In [212], Niu et al. described a perceptual coding
strategy based on edges. It focuses on the preservation of
scale-invariant second-order statistics of natural images to
guarantee the perceptual quality. In this work, edge
geometry is not explicitly coded. In order to describe
optimal edge geometry, coding is performed in two stages
such as a background layer of the image is coded first and
is transmitted allowing to estimate trajectories of
significant edges at the decoder side. The second stage is
a refinement one using a residual coding technique based
on edge dilation and sequential scanning in the edge
direction. In [213], an interesting review is done for
perception oriented video coding. Even though the pur-
pose of this survey is focused on image, this paper
provides very important opening that may apply on
perception-based image coding.

There are various challenges for image coding, but
often, not in the core coding itself. Indeed, it has been
demonstrated that having a unique coder for every appli-
cation is a utopian approach. Therefore, application-
dependent coding scheme is preferred for many reasons.
First because it implies to have a coding scheme adapted to
the application with an appropriate domain transform, an
adapted quantization and a set of embedded tools. For
instance, security applications may need to have specific
ROI-based coding, intra- and inter-super-resolution stage
and metrics to characterize the Detection, Recognition,
Identification (DRI) indexes. On the other hand, new
applications have emerged such as high dynamic range
imaging requiring appropriate coding schemes with
appropriate perceptual model. Most of the psychophysical
models have been constructed on 8-bit displays and this
raises the question of models' validity for such extended
range data. Finally, a tradeoff has to be found between the
fully bio-inspired schemes lacking in terms of real time
application and simplistic perceptual models failing in
capturing perceptual features fundamentally important
for a human observer.

6. Visual information quality assessment

In any processing or transmission of visual information,
the ultimate judge is the human observer. Generally, the
performance evaluation of image processing tools is based
on some objective and/or subjective criteria. Although,
many objective performance evaluation measures have
been developed for image processing and coding, the
subjective evaluation remains the most reliable solution.
Therefore, a large effort has been devoted to developing
more robust objective measures that are consistent with
human visual system (HVS) performance.

Indeed in many tasks where the final results are
presented as images, observers are asked to judge the
perceptual quality of the pictorial representation of the
results. However, subjective evaluation of image proces-
sing methods is not practical for applications that involve
automatic control and adjustment of machine parameters.
It is, therefore, desirable to develop objective methods for
evaluating image processing algorithms. However, in spite
of the great number of objective measures developed for
evaluating the quality of image processing techniques,
such as noise filtering, segmentation, compression, etc.,
the most widely used assessment method is still based on
subjective evaluation. Nevertheless, it is believed that by
exploiting some perceptual criteria and computational
models of the HVS one can derive efficient objective image
quality measures. This field of research is growing rapidly
and has now attained a high level of maturity. Since the
work of Mannos and Sakrisson [214], numerous methods
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have been proposed for image distortion evaluation: some
are inspired by perceptual mechanisms of the HVS,
whereas others are based on more traditional signal
processing techniques [215–217]. The choice of one metric
over another is rather a hard task. There is no universal
criteria on how to choose or to adapt a given image quality
to a specific application. Depending on the available
information from the original (undistorted) image, quality
assessment techniques can be grouped into three cate-
gories: full-reference (FR), reduced reference (RR), and no-
reference (NR), also called blind. FR methods require the
original image to evaluate the quality of the distorted
image, whereas RR methods require only a set of features
extracted from both the original and the degraded image.
When a priori knowledge on the distortion characteristics
is available, NR methods can be used without referring to
the original image. A brief review of image quality assess-
ment (IQA) methods is provided herein; for a more
comprehensive survey on Image Quality Metrics (IQM),
the reader is referred to [218–222]. Many FR objective
measures have been proposed in the literature such as
PSNR or weighted PSNR [217]. However, such metrics
reflect the global properties of the image quality but are
inefficient in predicting local structural degradations. Since
image quality is subjective, the evaluation based on sub-
jective experiments is the most accepted approach. Unfor-
tunately, subjective image quality assessment necessitates
the use of several procedures, which have been formalized
by the ITU recommendation [223]. These procedures are
complex, time consuming and non-deterministic. It should
also be noted that perfect correlation with the HVS could
never be achieved due to the natural variations in the
subjective quality evaluation. These drawbacks led to the
development of other practical and objective measures
[224,225]. Basically, there are two approaches for objective
Image Quality Assessment. The first and more practical is
the distortion-oriented approach, which includes the MSE,
PSNR and other similar measures. However, for this class
of IQA measures, the quality metric does not correlate with
the subjective evaluation for many types of degradations.
The second class corresponds to the HVS-model oriented
measures. Unfortunately, there is no satisfactory visual
perception model that can account for all the experimental
findings on the HVS. All the proposed models have para-
meters that depend on many environmental factors and
require delicate tuning in order to correlate with the
subjective assessment. The need for a reliable and consis-
tent objective image quality measure has not been met yet.

There are many visual information processing methods
which involve assessment of image quality of the outputs:
image compression, image denoising, contrast enhance-
ment, quantization and segmentation are among the
methods where the performance evaluation is based on
the perceptual quality of the results. It is worth noting that
IQA involves higher level perceptual and cognitive factors
that are not easy to model. Therefore, the efficiency
depends strongly on the image characteristics used in
the design of the IQA method. In some approaches, a set
of image characteristics is used for evaluating the quality
of the image processing results, some of which include
gray-level histogram, entropy of the gray-level histogram,
edge thickness, dynamic range, local variance of gray-level,
mean edge gray-level, local contrast, and visibility map.
A plethora of objective measures have been proposed
for assessing the quality of image processing methods
[226–232]. But at the end all the developed measures
often have to be combined with subjective evaluation in
order to evaluate the performance of the image process-
ing tasks in terms of image quality and accuracy of the
obtained results. Therefore, it is desirable to develop
evaluation methods that incorporate some perceptual
criteria in the design of objective measures [228–232].
For example, in the case of image segmentation, such as
edge detection, gray-level thresholding or region-based
segmentation, the outputs are considered as simplified
representations of the visual content of the image. There-
fore, the objective of image segmentation evaluation is to
quantify the visual quality of these representations as
compared with the original image by using some percep-
tual criteria. However, at present time, there is no uni-
versal measure for evaluating image segmentation such as
thresholding, edge detection or region segmentation.

The most intuitive and popular approaches are based on
the a priori knowledge of the segmentation results or the
ground truth. Unfortunately, in many applications the
ground truth is not available. The development of objective
measures without ground truth is still an active field of
research. There are some works in the area of psycho-visual
image segmentation evaluation; however, the procedure is
often very complex, time consuming and depends on many
unpredictable factors [233,234]. A new perceptual approach
for image segmentation evaluation has been proposed in
[235]. In this approach, it is argued that image segmenta-
tion could be considered as a perceptual process, which
tends to transform the visual content of the image so as to
provide a simplified representation of it. It becomes then
possible to use IQM for performance evaluation of the
segmented image output. In the case of image enhance-
ment, namely contrast enhancement or denoising, the
situation is quite different in the sense that the output is
supposed to exhibit higher perceptual image quality. Some
interesting HVS-based quantitative measures for evaluating
image enhancement were presented in [236–238]. While
many image quality metrics have been developed for image
distortion estimation, there are only a few ad hoc objective
measures for the image enhancement evaluation [237–239].
Very often we content ourselves by perceptual evaluation.
To evaluate contrast enhancement methods, a measure
based on the spectral energy analysis, introduced in [240],
has been proposed [239]. The basic idea is to evaluate
the amount of energy increase in the different bands
and orientations, taking into account the directional and
frequency selectivity of the HVS [241,242,29].

Through this brief overview it appears that image
quality assessment is still an open problem; it is not
possible to develop reliable image quality metrics for all
known distortions. Image quality is a multidimensional
problem and the best way is to proceed in two steps. First,
one has to develop for each distortion an IQM, which
correlates well with subjective evaluation. Then, a fusion
strategy of the different IQMs could be used in order to
derive global measure able to work for all the considered
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distortions as done in [243]. The problem of IQA could be
also considered as a classification and identification pro-
blem. Indeed, to overcome the limitations of IQMs, in [244]
the authors proposed a strategy where the degradation
type contained in an image is first identified by using a
classification scheme then the quality of that image is
estimated using the most appropriate IQM for that specific
degradation. This approach is not new and is used in many
fields of research. For image processing performance
evaluation we believe that the use of HVS-inspired appro-
aches presents an interesting alternative to the classical
evaluation metrics.

7. Conclusion

This paper considered the perceptual aspects of human
vision used to improve the performance of image proces-
sing techniques such as enhancement, segmentation, cod-
ing and quality assessment. The main purpose of this
paper is to provide the reader with the most important
techniques which rely on perceptual modeling. The Intro-
duction section begins with a discussion on information
processing in human vision system, tackling the most
important characteristics of the human visual system,
namely image contrast, visual masking, contrast sensitivity
function, and orientation and frequency selectivity. Image
enhancement has been the focus of many studies and
perceptual enhancement has been tackled at three levels:
image denoising, contrast enhancement, and coding arti-
fact reduction including tone mapping and enhancement
of high dynamic range images. Perception is also used for
segmentation purposes where the aim is to obtain a
relatively small number of segmented regions, where each
region can be seen as a main object or a meaningful part of
an object. A review of the main image segmentation
methods has been grouped into region-, edge- and percep-
tual grouping-based methods. Among these different seg-
mentation techniques, perception-based image segmen-
tation holds more promise due to its close resemblance to
human vision processing. However, there is still a wide gap
in meaningfully harnessing the limited understanding of
human perception for effective high quality image seg-
mentation. Another important field having benefited from
the development of perceptual models is image coding.
The latter always seeks the right tradeoff between com-
pression rate and artifact invisibility. Therefore, the coding
literature has been explored according to the transforms
and standards of the state-of-the-art in order to provide a
comprehensive description of the use of perceptual fea-
tures in coding schemes. Finally, image quality is an
important issue in image processing in its broad sense.
Consequently, a section has been dedicated to this impor-
tant topic with a special focus on its use for performance
evaluation of some image processing tasks and lossy
compression methods. Our review suggests that image
quality assessment is still an open problem that concerns
many issues related to visual information processing and
communication.

An important issue when using perceptual approaches
in image processing is to avoid applying available models
without any consideration of the context, content or
nature of the image. Very often, the employed models
are derived from some psycho-visual experiments con-
ducted under limited and specific laboratory environ-
ments. For example, Weber–Fechner law is still used to
estimate the visibility of a pixel in a small neighborhood,
despite the real situation being far from the ideal config-
uration of Weber–Fechner experiments, where a target is
seen over a uniform background. On the other hand, the
JNC model of Moon and Spencer cannot be used in its
original form, where there is a non-uniform background.
The situation is even more complex when it concerns high
dynamic range images for which color models developed
under the 8-bits assumptions may not be valid. The color
issue is also of great importance in image processing and
analysis. Despite decades of intensive studies on under-
standing and modeling color vision, it is not yet comple-
tely understood. However, the use of few common color
models for image processing and coding is relatively
satisfactory. Another important point that should be taken
into account when using perceptual approaches is that
the new commonly available image acquisition systems
have spatial resolution and responses that go beyond the
limitations of the HVS. Therefore, it may be useless to
define some perceptual measures on the raw data. One
way to circumvent these limitations is to derive an appro-
priate representation of the acquired images by using, for
instance, pyramidal decomposition and define the local
measures on the low level of this decomposition. There-
fore, caution is required to make perceptual models
relevant and useful for image processing tasks. Perceptual
data fusion and decision making in the HVS are another
issue that is not yet well understood. Substantial effort is
needed for developing effective models that may be used
in the design of perceptual approaches for image proces-
sing. Finally, we believe that the best way to exploit our
knowledge of visual perception mechanisms is to avoid the
race of mimicking the entire properties and cognitive
mechanisms of the HVS. Instead, one can develop
HVS-inspired methods by combining some well-
established computational models of perceptual vision
using appropriate signal and image processing tools.
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