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Abstract—The Kalman filter (KF) has received a huge interest
from the industrial electronics community and has played a key
role in many engineering fields since the 1970s, ranging, without
being exhaustive, trajectory estimation, state and parameter esti-
mation for control or diagnosis, data merging, signal processing,
and so on. This paper provides a brief overview of the industrial
applications and implementation issues of the KF in six topics of
the industrial electronics community, highlighting some relevant
reference papers and giving future research trends.

Index Terms—Implementation issues, industrial applications,
Kalman filter (KF), state estimation.

I. INTRODUCTION

MANY industrial applications require measuring a large
number of physical variables to own a sufficient quantity

and quality of information on the system state and to ensure the
required level of performance. However, the measurement of
some physical quantities may not be possible or desired, mainly
because of the cost reduction and/or the increase in system
reliability. In this context, the Kalman filter (KF), whose 50th
anniversary occurred in 2010, has played a key role in many
industrial applications of the engineering professions since the
1970s, including without being exhaustive, trajectory estima-
tion, state prediction for control or diagnosis, data merging,
and so on.
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Many research studies have been dedicated to the implemen-
tation and performance improvement of the KF, namely, the nu-
merical stability improvement, the computation time reduction,
or the study of effective implementations. The main objective
of this paper, designed as a concluding paper to the Special
Section of these Transactions on the industrial applications
and implementation issues of the KF [1], is to highlight the
latest theoretical and experimental advances and to emphasize
practical implementation issues of this state estimator.

The scope of this paper is dedicated to the KF applications
in five topics covered by the industrial electronics society,
namely: 1) sensorless control, diagnosis, and fault-tolerant con-
trol of ac drives; 2) distributed generation and storage systems;
3) robotics, vision, and sensor fusion techniques; 4) applica-
tions in signal processing and instrumentation; and 5) real-time
implementation of a KF for industrial control systems. There-
fore, this paper is organized in seven sections: Section II gives a
brief overview of Kalman filtering theory, and Sections III–VI
are dedicated to the items cited above. Finally, conclusions and
future trends are discussed in the last section.

II. A BRIEF OVERVIEW OF KALMAN FILTERING THEORY

In his famous and now 50-year-old publication [2], Rudolf
Emil Kalman proposed an optimal recursive estimator of the
state of an uncertain dynamic system. Although it is based
on advanced results of probability theory, its final formulation
is remarkably simple and effective to implement on a digital
target. The first derivation was made for a discrete-time finite-
dimensional linear stochastic process

X[k+1] =AX[k] +BU[k] +GV[k] (1)

Y[k+1] =CX[k+1] +W[k+1] (2)

where X ∈ IRn is the state vector, U ∈ IRl is a deterministic
process input, and Y ∈ IRm is the measurement. The two
random variables V and W respectively represent the process
and the measurement noises: V bears the model uncertainty,
whereas W bears the sensor uncertainty and digital quanti-
zation effects. These noises are assumed to be zero mean,
white, and independent of each other, with respective covari-
ance matrices Q and R. All the matrices A, B, G, and C are
deterministic and may also depend on time. Since measurement
Y does not exhaustively inform us on the current situation of
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the process, the KF aims at providing an estimate of the process
state X . This filter is made of two groups of equations:

• the time update equations, which try to predict the state
value at time k + 1 based on transition equation (1) and
on the set of all the measurements until time k, Y[k] =
{Y[0], Y[1], . . . Y[k]}. This prediction is deduced from a
previously derived estimation of the state at time k, Xe[k]

Xp[k+1] = IE[X[k+1] | Y[k]] (3)

=AXe[k] +BU[k] (4)

Pp[k+1] = IE
[
X̃p[k+1]X̃

t
p[k+1] | Y[k]

]
(5)

=APe[k]A
t +Q (6)

with X̃p[k+1] =X[k+1] −Xp[k+1]. (7)

In (5) and (6), Pe[k] and Pp[k+1] are respectively the esti-
mation error covariance matrix at time k and the prediction
error covariance matrix at time k + 1. Both provide a
quantitative evaluation of the quality of this estimation and
of this prediction.

• the measurement update equations, which try to improve
the prediction Xp[k+1] due to the measurement available
at time k + 1

Xe[k+1] =Xp[k+1] +K[k+1]Ỹp[k+1] (8)

with Ỹp[k+1] =Y[k+1] − CXp[k+1]. (9)

This correction of the prediction will be optimal if the esti-
mation error is statistically orthogonal [3] to the measure-
ment prediction error Ỹp[k+1], which is sometimes called
the measurement innovation. This way, all the information
that the current measurement Y[k+1] has about the current
value of the state and that is not conveyed by the set of
the previous measurements Y[k] will be used to derive an
estimate of X[k+1], i.e.,

IE
[
X̃e[k+1]Ỹ

t
p[k+1]

]
= 0 =⇒

K[k+1] = Pp[k+1]C
t
(
CPp[k+1]C

t +R
)−1

. (10)

The covariance matrix of the estimation error can be then
computed as

Pe[k+1] = Pp[k+1] −K[k+1]CPp[k+1]. (11)

These equations are repeated at each time sample, the previ-
ous state estimate being first used to compute a state prediction
[see (4) and (6)] then a new state estimation [see (8), (10),
and (11)].

In some publications, Xp[k+1] and Xe[k+1] are written as
X[k+1|k] and X[k+1|k+1], but this notation increases the length
of the equations and may frighten some students. As they
can be considered as the a priori and the a posteriori state
estimates, since they can respectively be computed before and
after the availability of the measurement Y[k+1], they may be
also written as X−

[k+1] and X+
[k+1]. Unfortunately, the notation

of vectors and matrices is a major concern for the understanding
of discrete-time Kalman filtering.

This first derivation of the KF has been extended to linear
continuous-time finite-dimensional stochastic processes: If the
state equations can be written as

Ẋ(t) =AX(t) +BU(t) +GV (t) (12)

Y (t) =CX(t) +W (t) (13)

then an optimal state estimate X̂ can be obtained by a
Kalman–Bucy filter [4] defined as

˙̂
X(t) =AX̂(t) +BU(t) +K(t)

(
y(t)− CX̂(t)

)
(14)

K(t) =P (t)CtR−1 (15)

Ṗ (t) =AP (t) + P (t)At +Q− P (t)CtR−1CP (t). (16)

Finally, the original KF has been also extended to a discrete-
time nonlinear stochastic process. In such a framework, the
optimal KF [5] often cannot be computed, and approximations
such as the well-known extended KF must be used. The set
of all of these filters allows engineers and researchers to solve
many problems in a wide range of applications.

To illustrate this overview with a simple example, we may
consider the case of a target moving in a 1-D space whose
position x(t) is observed with both an acceleration sensor and a
position sensor. This motion observer is called a disturbance
observer in robotics [6] and an angle tracking observer in
electrical engineering [7]. From Taylor approximations, one
may modelize the target motion as a linear stochastic process

X[k+1] =AX[k] +Gv[k] (17)

Y[k+1] =CX[k+1] +W[k+1] (18)

with A =

⎛
⎝ 1 1 1

0 1 2
0 0 1

⎞
⎠ Gt =

⎛
⎝ 1

3
3

⎞
⎠ Ct =

⎛
⎝ 1 0

0 0
0 1

⎞
⎠
(19)

where the three components of the state are defined as x(kTs),
dx/dt(kTs)Ts, and d2x/dt2(kTs)T

2
s /2, with Ts being the sam-

pling period and where v[k] = d3x/dt3(kTs)T
3
s /6 is derived

from the third-order derivative of the position, sometimes called
the jerk and considered as a scalar zero-mean random variable
of variance Q. Since this process is observable, a KF can be
designed from this model using (4), (6), (8)–(11). For constant
values of Q and R, Kalman correction gain K goes to a constant
that does not depend on the initial value of the covariance
matrices and can be computed offline, reducing the computa-
tional cost of this KF to a few elementary arithmetic operations.
Since the measurement noises can reasonably be regarded as
uncorrelated, the R matrix is diagonal and can be written as
R = diag(σ2

p, σ
2
a). Finally, since the Kalman correction gain

is left unchanged when Q, R, and Pe(0) are all multiplied by
the same scalar [8], this means that the final value of K only
depends on σ2

p/Q and σ2
a/Q.

Other academical examples, more detailed explanations, and
implementation issues may be found in [9]–[11]. Historical
issues may be also found in [12] and [13], whereas actual
industrial applications of the KF in six fields of the industrial
electronics community are reviewed in the next sections.
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III. SENSORLESS CONTROL, DIAGNOSIS, PHM, AND

FAULT-TOLERANT CONTROL OF AC DRIVES

A. Motivation and Background

As in many application fields, KF has been used for more
than 20 years in intelligent electrical drives for state variable
estimation. Nowadays, standard requirements for industrial
drives of induction motors (IMs) or permanent-magnet syn-
chronous motors (PMSMs) include sensorless speed control,
which means that the system can be used without a position
sensor [14], [15]. The advantages of speed/position sensorless
control are reduced hardware complexity, lower cost, reduced
size of the machine drive, elimination of the sensor cable, better
noise immunity, increased reliability, and lower maintenance
requirements. Moreover, a motor without a position sensor is
more suitable in case of harsh operating environments.

For this, the rotor speed or position has to be estimated, and
many methods are now available. Numerous estimation meth-
ods have been developed so far, based on various techniques,
such as signal injection, based on rotor saliency, or algorithmic
methods, based on a motor mathematical model or on a black
box model [14]–[22]. Model-based methods are sometimes
called fundamental wave models [14]. Among the algorithmic
methods, some are using state estimators, including model ref-
erence adaptive system (MRAS) [18], or state observers, based
on a deterministic approach [14]–[16], [19]–[21], whereas oth-
ers are using a stochastic approach based on extended Kalman
filtering, which will be discussed in detail in the next sections.

B. Overview of Sensorless Control for IM

Some of the first applications of an extended Kalman filter
(EKF) for the rotor flux and speed estimation, as well as for
the rotor flux and rotor time constant estimation for IM drives,
can be found in [23]–[26], respectively. In these works, only
simulation results were presented.

In the first research works concerned with rotor flux and
speed estimation [23], [24], [27]–[29], the motion equation of
the drive system was omitted in the model used to build the
KF, and the motor speed was considered as a randomly varying
parameter. This led to a significant speed estimation error dur-
ing transients, particularly during instantaneous load variations,
although the performance was improved in steady state. A
similar approach was used in [30] and [31], where a reduced-
order EKF was applied for the rotor flux and speed estimation.

All these methods provide an estimation of the rotor flux
and speed based on the assumption that there is no change in
the resistances of the motor windings. Similarly, none of these
studies estimated the load torque; thus, the proposed solutions
showed some sensitivity to the variation of those parameters.
The state vector of the IM was extended to the rotor time
constant for the first time in [25], proposing a simultaneous
state and parameter estimation.

The rotor resistance was also estimated in [32]. However, the
rotor resistance estimation was performed by the injection of
low-amplitude high-frequency signals into the flux reference in
the direct vector control of the IM, causing fluctuations in the
motor flux, torque, and speed.

Another approach was developed in [33], where the au-
thors estimate the motor speed by taking the motion equation
into consideration for the design of the EKF. The authors
also propose estimating the rotor resistance and mechanical
load torque, thus demonstrating improved results over a wide
speed range. However, these results are sensitive to stator
resistance variations, indicating the necessity of an approach
to estimate both winding resistances of the motor and the load
torque.

Studies achieving the simultaneous estimation of stator and
rotor resistances in the sensorless control of IMs are very few
and show well-known difficulties in steady state due to a lack of
identifiability of the IM model parameters. Several approaches
combining extended state observers, neural networks, high-
frequency signal injection methods, or MRAS techniques with
switching models depending on the actual operation state of the
drive were proposed, e.g., [34]. The main drawback of these
techniques is that the algorithm identifying the resistances can
only be used when the sensorless speed control system is in
steady state and not when the load torque is largely varying or
when the speed reference is changed. Therefore, the proposed
solutions can compete with a speed-sensor-equipped drive only
if accuracy in steady state is not essential and operation under
high loads and low speeds is not a requirement.

Studies achieving the simultaneous estimation of stator and
rotor resistances for the sensorless control of IMs were reported
in [35], where two EKF algorithms were consecutively used
at every time step, without the need for signal injection or for
algorithm changes, as in most previous studies. This technique
was called a “braided” technique. The two EKF algorithms have
exactly the same configuration and are derived from the same
extended model, except for one state, i.e., the stator resistance
in one replaced by the rotor resistance in the other. The braided
EKF technique exploits the persistency of excitation required
for parameter convergence in steady state, fulfilled by the sys-
tem noise (or modeling error), as well as the fast convergence of
EKFs. An improvement of this technique was reported in [36],
where a so-called bi-input EKF was proposed. This algorithm
consists of a single EKF algorithm using consecutively two
inputs based on two extended IM models developed for simul-
taneous stator and rotor resistances. Such a solution, requiring
less memory and computation time, is more suitable for real-
time implementation.

C. Overview of Sensorless Control for PMSM

Due to their ability to perform state estimation of nonlin-
ear systems, EKFs have also found wide application for the
estimation of rotor position and speed in synchronous motor
drives. Initial attempts to combine flux linkage and position
estimation for brushless PMSM machines were frustrated by
the real-time processing power available at that time [37]–[39].
Subsequent advances in DSP technology have allowed these
estimation principles to be effectively implemented in [40]
and [41], including stator resistance estimation joined to an
algorithm to counter the effects of flux linkage estimation
errors caused by an incorrect value of resistance as the motor
temperature rises during continuous operation.
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Although last-generation floating-point DSPs can easily
overcome the EKF real-time calculations, they are not suitable
for low-cost PMSM applications. Moreover, long computation
requirements disturb other program service routines such as
fault diagnosis or custom programs implemented in industrial
products. Therefore, some efforts have been made to reduce
the computation time of EKF algorithms for PMSM by using
a reduced-order EKF [42]–[44]. A third-order EKF using back
electromotive force (EMF) detection algorithm is also proposed
in [42] and [43], but the output state equation used is complex.
In [44], a second-order EKF is proposed to estimate stator resis-
tance and flux linkage but not for a sensorless control purpose.

Some recent achievements on the use of EKF for online esti-
mation of state variables in sensorless interior PMSM (IPMSM)
control applications are reported in [45] and [46]. In [45], the
EKF is used for the permanent-magnet flux identification of
an IPMSM, combined with a rotor speed and stator resistance
estimation performed with an MRAS technique. The authors
showed that the convergence and stability problems generally
encountered when simultaneously estimating the flux, speed,
and stator parameters are avoided this way. In [46], the ease
of implementation and the robustness to parameter uncertainty
of an EKF and of an adaptive sliding-mode observer are com-
pared. The authors claim that for IPMSM drives, this latter
solution is much simpler.

EKF has been also proposed for the joint estimation of me-
chanical variables and parameters of systems with complex me-
chanical parts, including elastic couplings [47]–[52]. In these
works, the estimations of the load side speed, torsional and load
torque, and the load side inertia have been effectively estimated
using linear and nonlinear EKFs. In [49], an original method
was proposed for the simultaneous estimation of mechanical
state variables and of the load side inertia. The elements of
the covariance matrix Q are adapted according to the estimated
value. In [50] and [51], an evolutionary algorithm associated
with a μ-analysis for the stability analysis of the closed-loop
system was used to tune the observer and controller. The
μ-analysis theory helps to cancel known unstable set of param-
eters before running iterations in the optimization algorithm.

D. Diagnosis, PHM, and Fault-Tolerant Control Overview

In order to guarantee a safe and efficient operation of con-
trol systems against various failures, computer-based failure
detection algorithms have been developed. Various approaches
have been applied, e.g., observer-based techniques and artificial
intelligence techniques. In this context, the KF has played a
major role. See, for example, [25] and [53]–[55].

The KF relies on a system model with uncertainties that are
assumed to be Gaussian white centered random variables with
known covariance properties. Nevertheless, this assumption is
not generally satisfied and the tuning of the covariance matrices
is not obvious. This point is especially sensible for diagnostic.
In fact, the covariance matrices can provide information about
the quality of the estimates. However, if the covariance matrices
of the noise and state are not well defined, the estimation error
covariance matrix is therefore meaningless. In practice, two
methods exist for the tuning of the KF: The first one relies on

the evaluation of the state and measurement noises, allowing to
assess the quality of the estimates with the covariance matrices.
However, this approach is often difficult, if not impossible [53].
The second one relies on the tuning of the dynamic convergence
with or without autotuning methods [35], [44], [56]–[58]. In
practice, this latter method is often used. In [49] and [59], some
guidelines for a more systematic way of covariance matrix
selection have been proposed, including genetic algorithms.
Therefore, the evaluation of covariance matrices Q and R,
which take into account the physical approach, i.e., the model
approximation (discretization and parameters’ uncertainties)
and the measurement noises (quantification error), is still an
open issue.

The conventional KF and its extended version have become
a standard tool in the last 40 years. Generally, diagnosis leads
to parameter estimation and the problem is often nonlinear.
The linearization of the nonlinear system allows applying the
conventional linear KF. However, the performance of the EKF
decreases when the system includes strong nonlinearities. In
such cases, designers prefer to use unscented Kalman filters
(UKFs) for their superiority [10], [60]–[63].

Diagnosis has been recently extended to fault-tolerance con-
trol. Monitoring and controlling systems under a wide variety of
faults are more and more mandatory. Several failures may occur
in electrical systems, and so far, redundant or conservative
designs have been used in applications in which continuity
of operations is a key feature. This is the case for aircraft
control, home, and civil appliances (such as gas turbines [64],
air conditioning/heat pumps [62], engine cooling fans, and
electric vehicles [65]) where reliability is a key issue. The
objective of fault-tolerant control is to propose solutions that
provide fault accommodation to the most frequent faults and
thereby reduce the cost of handling them. In submerged pumps
or hostile environments where accessibility to the drive and to
the sensors is tedious and continuity of operations is neverthe-
less mandatory, even in case of fault occurrence, a sensorless
algorithm is essential to maintain the availability and therefore
increase the reliability.

In [65], the authors presented and experimentally tested a
PMSM drive that is robust to mechanical sensor failure. In order
to increase the reliability, two virtual sensors [a two-stage EKF
(OTSEKF) and a back EMF adaptive observer (AO)] and a
maximum likelihood voting algorithm are combined with the
actual sensor to provide a fault-tolerant controller (FTC). Fig. 1
shows the results of the FTC where the outputs of the voting
algorithm are used in the field-oriented controller. For these
operating points, the OTSEKF is engaged in the sensorless
controller when a position sensor fault appears. The transitions
between the sensor outputs and the estimations are smooth. The
errors between the estimated and the actual position and speed
are small and confirm the validity of the FTC. The lower curves
represent stator currents isd and isq , where neither oscillations
nor spikes are observed during the switching modes.

Today, diagnosis is extended to prognostic health monitoring
(PHM) to accelerate the estimation of faulty conditions. PHM
has been applied to ac machines in order to detect damages such
as broken bars and unbalanced stator supply as soon as possible.
Generally, an offline polynomial approach is used, based on a
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Fig. 1. Experimental results of a PMSM FTC in the event of a power failure
at no load from [65].

database of healthy and faulty modes. The evolution function is
defined as

x = A+Bμ+ Cμ2 + · · · (20)

where x is a vector composed of n features of the machine (e.g.,
current mean power and direction of the current vector), and μ
is the severity degree. However, this method does not take into
account new measurements and the parameter variations. This
is the reason observers are best suited for such purpose. In [66],
a KF has been designed to estimate the evolution of the number
of broken bars or the unbalanced stator supply of an induction
machine. The proposed method consists of two steps: 1) an
update of the state space model at time k; and 2) a prediction
of the state at time k + n. Therefore, this method consists in
determining the best parameters of the state space model before
beginning the prediction, and the use of an observer recursively
increases the knowledge as new measurements are received.

Fig. 2 shows one result for the prediction of the unbalanced
stator supply presented in [66]. It clearly shows that the KF
prediction of a 40% unbalanced stator supply is close to the real
value, as compared to a conventional polynomial approach.

E. New Trends

One key issue to sensorless control of ac drives, fault de-
tection, diagnosis, and isolation mechanism is related to ob-
servability. Deterministic or stochastic model-based methods
are all more or less sensitive to parameter variations and cause
problems with observability and stability at low speed or in
regenerative operation mode. The operating conditions must

Fig. 2. Extrapolation and estimation with a KF from paper [66] (O. Ondel, E.
Boutleux, E. Blanco, and G. Clerc). Ω1 healthy mode, Ω2 unbalanced stator
supply 5%, Ω3 unbalanced stator supply 10%, Ω4 unbalanced stator supply
20%, and Ω5 unbalanced stator supply 40%.

excite the system in the frequency range of the parameters to
be identified. However, operating conditions may lead to the
unobservability of some variables or parameters. For a stator
frequency close to zero, the induced rotor voltage takes very
small values, and thus, the estimation of the speed of an IM [67]
or the estimation of the rotor position of a PMSM [68] becomes
impossible. In addition, the simultaneous estimation of the rotor
speed and the rotor resistance of an IM fails under constant
flux operation or at no-load condition in steady state with
a very low and zero speed [25], [54]. Therefore, monitoring
the thermal behavior of the induction machine in real time is
difficult [55] because secondary phenomena (such as parameter
uncertainties, signal acquisition errors, and noise at the very
low speed range) are not taken into account in the machine
model used for the estimator design. Moreover, in steady state
at zero speed, the input variables of the motor (stator currents)
do not satisfy the persistent excitation condition. In practice,
the KF seems to operate well in such conditions without any
divergence compared with extended Luenberger observers and
sliding-mode or AOs where the gains go to the infinity. These
observations need further investigation, particularly for fault-
tolerant control against position sensor failure [65]. To illustrate
this observation, an EKF and an AO were compared in [65] for
the position and speed estimation of a buried-mounted mag-
net synchronous machine according the benchmark defined in



AUGER et al.: INDUSTRIAL APPLICATIONS OF THE KALMAN FILTER: A REVIEW 5463

Fig. 3. Position and speed estimation of a PMSM with an EKF and an AO.

Fig. 3(a) and (b). Fig. 3(c) and (e) shows the speed estimations
when the motor speed is considered as a constant value for
the design of both observers. These figures show that both
observers have the same tracking capabilities, but the EKF does
not fail at zero speed and rated torque compared with the AO,
as shown in Fig. 3(f).

To overcome the unobservability of model-based methods,
high-frequency signal injection has been introduced for IM and
PMSM drives [14], [15], [17]. However, some consider that the
requirement to superimpose additional ac components to the
input signals of the estimator can be overcome by the use of
a nondeterministic approach based on Kalman filtering. Model
uncertainties and nonlinearities inherent in ac motors and signal
noises are well suited to the stochastic nature of the EKF, which
is basically a recursive observer providing an online state and
parameter estimation of a nonlinear dynamical system from
noisy measurement signals in a wide speed range [35], [41],
[53], [56], [69]. The EKF is also known for its high conver-
gence rate, which significantly improves performance during
transients. These properties are the major advantages of the
EKF over other estimation methods (e.g., high-frequency signal
injection methods) and are the reasons why this method finds a
wide application in sensorless state variable estimation in spite
of its computational complexity (and relatively long compu-
tation time), which is a disappearing problem with the recent
developments in high-performance processing technology (see
Section VI). Therefore, data fusion of estimates from model-
based methods and high-frequency signal injection methods
such as in [70] could be a promising trend.

Moreover, the robustness of the “observer + controller +
process” system is still an open issue. In fact, the estimates
could be used in the controller in order to optimize the whole
system performance. Generally, this leads to the interconnec-
tion of nonlinear systems; thus, the stability of the whole system
is not trivial.

Finally, numerical stability issues of the KF are well known.
Better numerical stability can be achieved by using square-
root decompositions [11]. Two widely used factored forms of

Fig. 4. Simulation results from paper [69] (V. Smidl and Z. Peroutka).
Electrical rotor speed estimation error for all investigated EKF algorithms.

the KF are used in order to reduce these phenomena, i.e., the
UD and RC decompositions [11]. These forms improve the
estimations’ accuracy and decrease the risk of divergence.
The computational time consumption, estimation accuracy, and
instability of the KF are also still open issues. New high-level
theoretical and applied research studies are regularly published,
such as [69], [71], and [72], and see [11] for survey.

Fig. 4 shows the results of a fixed-point implementa-
tion of the EKF used for the sensorless control of a
PMSM drive presented in [69]. Three square-root algorithms,
namely, the Bierman–Thornton, Carlson–Schmidt–Givens, and
Carlson–Schmidt–Householder algorithms, have been imple-
mented and compared on both simulation and experimental
results. The performances of the three algorithms were eval-
uated and compared with a regular implementation based on
full covariance matrices. It was confirmed that the square-root
algorithms improve the behavior of the sensorless control in
critical operating conditions such as low speeds and speed
reversal. In particular, the Carlson–Schmidt–Givens algorithm
was found to be relevant for the considered drive.

IV. DISTRIBUTED GENERATION AND STORAGE SYSTEMS

As shown in the previous sections, KFs have been used for a
long time in electrical engineering applications such as param-
eter estimation of electric machines [25], [73]. The application
of KF and EKF in new electrical concepts such as distributed
generation and storage systems is presented in this section.

A. Distributed Generation and Microgrids

KFs have been also used previously in power electronics
control applications such as fundamental voltage waveform
tracking at the point of common coupling of distributed genera-
tors forming a microgrid system [74]. One application consists
in using KFs in the current control loop of grid-connected
inverters as a way to cancel the current harmonics injected to the
grid [75]. Some examples of phase-locked loops (PLLs) based
on KFs are presented in order to quickly estimate the amplitude
and the frequency of the grid [74]. The KF can be used to
transform the current signals into ideal sinusoidal waveforms in
spite of the grid-voltage distortion. These signals are the inputs
of PLLs to be transformed to the synchronous reference frame,
thus ensuring a fast low distorted operation of the PLL [74].
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B. Energy Storage Systems

Another important application is the estimation of the state-
of-charge (SoC) of batteries used in energy storage systems
[76]. Hybrid electric vehicles, for example, require battery
management systems that should be able to estimate the battery
SoC, the capacity fade, and the available instantaneous power.
Such an estimator must adapt to changes caused by aging in
the characteristics of battery cells and must provide an accurate
estimation of their lifetime, which highly depends on the user’s
driving style. It should be noticed that the terminal voltage
adopted in this kind of applications is not the open-circuit
voltage, which is commonly used in offline SoC estimation.
The relationship between the terminal voltage and the SoC is
supposed to be

Vout = k0 −
k1

SoC
− k2SoC + k3 ln(SoC)−Riout (21)

where iout is the output current, R is the output impedance, and
k0, . . . , k4 are some coefficients.

The SoC can be estimated by using the Coulomb counting
method, which is based on the fact that the energy contained
in an electric charge is equal to the integral over time of the
current delivered to the charge. Thus, the battery mathematical
model of Coulomb counting can be expressed as

d

dt
SoC = − η

Cn
iout (22)

where η is the efficiency of discharge, and Cn is the nominal
electric capacitance of the battery. Equations (21) and (22)
constitute a dynamic model of the battery, (21) being the
measurement equation and (22) being the state equation. The
input signal of this system is the current iout and the output
signal is the terminal voltage Vout, whereas the SoC is the
only state variable. However, there are some problems with
the above mathematical battery model. The first one is that
data-fitting algorithms cannot give results in real time. The
second one is that the coefficients in (21) depend on the ambient
temperature. Experimental data obtained in a laboratory are
obtained for one temperature condition only. In a practical ap-
plication, temperature may change continuously. As a result, we
need to find a strategy to estimate the instantaneous SoC. The
conventional KF [77]–[82] can be a good solution for the online
SoC estimation because it tries to get accurate information from
nonaccurate data. In a series of three papers [78]–[80], a method
based on extended Kalman filtering was proposed. This method
is applied to a lithium-ion polymer battery pack, taking its
nonlinearities into account.

Fig. 5 shows a result presented in [82] of the SoC estimation
provided by an EKF, as compared to a correctly initialized Ah
counting. This figure shows that the EKF quickly converges
to the real value, although the initial value of the SoC is
underestimated by 35% and that the steady-state error is lower
than ±2%.

In the same spirit as the new trends presented in Section III,
UKF has been also applied to self-adjust the model parameters
of the battery and to provide a better SoC estimation [83]. As
stated in Section III-D, the main drawback of the KF is the

Fig. 5. SoC estimation for an urban/suburban driving cycle from paper [82]
(D. Di Domenico, Y. Creff, E. Prada, P. Duchêne, J. Bernard, and V. Sauvant-
Moynot).

Fig. 6. Two-stage EKF.

importance of a good determination of the Q and R matrices,
which are not accurately known in practice. To improve the
performance of the KF for SoC estimation, an adaptive EKF
can be designed to estimate the covariance matrices [84].

Finally, the computation time and divergence of the KF
are still issues for such embedded applications. Generally, the
temporal equation of the estimated parameters θ[k] is unknown
and therefore leads to a dynamical model as follows [85]:

x[k] = f (x[k − 1], θ[k − 1], u[k − 1]) +W x[k]
θ[k] = g (θ[k − 1], u[k − 1]) +WΘ[k]
y[k] =h (x[k], θ[k], u[k]) + η[k]. (23)

Based on the fact that x[k] is not used in the prediction equation
of θ[k], [78]–[80] propose the application of a dual extended KF
for joint state and parameter estimation. Furthermore, alterna-
tive approaches can be used to enhance parallel execution, such
as interleaved EKF [86] or multistage EKF [85] (see Fig. 6).

V. APPLICATIONS IN SIGNAL PROCESSING,
INSTRUMENTATION, ROBOTICS, AND VISION

A. Applications in Signal Processing and Instrumentation

Within the signal processing community, Kalman filtering
remains a very active topic. Contrary to what some people say,
new high-level theoretical research studies are regularly pub-
lished, such as [88]–[92]. Some of them focus on the approx-
imation of the first- and second-order statistical moments of a
nonlinear transformation of a random variable, a key problem
for the estimation of the state of nonlinear dynamic systems.
Recent applications of Kalman filtering have been also pub-
lished in a very large diversity of subjects, e.g., identification



AUGER et al.: INDUSTRIAL APPLICATIONS OF THE KALMAN FILTER: A REVIEW 5465

Fig. 7. Human–robot interactions in open environment.

of time series models (autoregressive, autoregressive–and-
moving-average, sum of sinusoids, etc.), moving target lo-
calization and tracking, denoising and signal enhancement,
deconvolution, wireless sensor networks and distributed esti-
mation, biomedical applications, to name a few.

Instrumentation is of course one of the main purposes
of Kalman filtering. In this area, several recent publications
have shown the benefit to use KFs for sensor fusion, sensor
calibration, frequency measurement, ultrasonic time-of-flight
estimation, network-based clock synchronization, and Global
Positioning Systems, among many others.

B. Applications in Robotics and Vision

Kalman filtering technology is also applied to robotics and
vision. Future human–robot interaction will need sensor net-
works. To obtain effective information from various sensors,
KF-based sensor integration has been very much researched
[93]–[101]. An in-depth survey on the use of KFs for vision-
based mobile robots is presented in [102]. Such intelligent
machines and robots are required to have abilities of recognition
and adaptation to open environment. Human–robot interactions
in an open environment are considered, as shown in Fig. 7.
In an open environment, robots are expected to cooperate and
support human where the environmental situation is changed
momentarily.

Since the environment may have infinite modes, it is nec-
essary to classify modes for which a robot must be adapted.
It is natural that environmental modes should be classified
according to the distance between a robot and its environment.
To adapt to a closed environment, a robot should have haptic
ability. This means that the motion control should be based on
force control. On the opposite, a robot has enough time to adapt
to a remote environment. It becomes possible to design the
motion control relying on position control, and its references
are generated by a motion planning layer.

From the motion control point of view, it is very important to
construct robust control. Feedback control of fine information
from sensors decides the performance of robust control. Since a
robust motion controller is based on acceleration control [103],
an acceleration sensor is useful to obtain wideband internal
information of a robot. Generally, the bandwidth of an accel-
eration sensor does not cover the dc range. Thus, the position

sensor information and the acceleration sensor information are
integrated to cover from dc to a larger frequency band range. It
is possible to obtain wideband acceleration information with a
KF. As a result, purity of the acceleration information makes
a motion control system using a disturbance observer more
robust [6].

On the opposite, from the motion planning point of view, it is
important to recognize the outer environment. A measurement
of the relative distance is necessary for controlling a mobile
robot. In particular, simultaneous localization and mapping has
been widely researched [93]–[97]. Vision systems are useful for
the perception of remote environment [98].

In addition, recognition of human motion is also an important
issue for future human support. For such purposes, sensor
fusion techniques based on Kalman filtering are researched
widely [99], [100]. Once human motion is acquired by sensor
fusion and stored in a motion database, skilled experts can re-
produce it at anytime and anywhere. Recognition, preservation,
and reproduction of human motion will have a wide area of ap-
plications, including skill teletraining, skill transfer, and so on.

As stated above, sensor fusion techniques will be widely
applied in future robotic applications. In particular, constructing
a sensor network is more and more important for future human
support technology. Sensor networks and robotic systems will
support and extend human physical activities.

VI. REAL-TIME IMPLEMENTATION OF A KF FOR

INDUSTRIAL CONTROL SYSTEMS

A. Overview

Due to its high computational complexity, the digital real-
time implementation of the KF has always been a challenging
issue. The three main difficulties that have to be addressed are:

• the minimization of the effect of the computational round-
off errors on the stability of the KF, when computing the
covariance matrices;

• the reduction of the computational load of the KF;
• the minimization of the execution time of the KF.
To address these issues, two types of solutions are possible:
• the modification of the algorithm to be implemented;
• the use of an efficient digital architecture to implement the

estimator, being either a processor or a dedicated hardware
architecture.

In this section, a brief description of the aforementioned
issues will be presented along with the possible solutions to
tackle them. Practical references will be given to help the reader
to go further. To illustrate our presentation, special attention
will be given to a popular estimation case in the field of in-
dustrial electronics. It consists in the estimation of mechanical
quantities of an ac drive. The aforementioned issues are of
course not the only ones that can impact the performances
of a KF. Determination of the noise covariance matrices and
initialization of the covariance matrices are also key elements
of a KF tuning. However, the errors made in the choice of the
parameters of these matrices are much more related to the poor
knowledge that the designer has on the actual system rather than
rounding errors. This is the reason why these points will not be
discussed further in this section.
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B. Effects of Computational Roundoff Errors
on KF Performances

Since the early ages of the KF, engineers have observed the
high sensitivity of the KF with regard to the roundoff errors
in the computation of the covariance matrices, which are the
solution of a matrix Riccati difference equation [11]. Indeed,
due to roundoff errors, this matrix can lose its symmetry and
can also have a negative eigenvalue. All these phenomena have
a direct impact on the Kalman gain and, as a consequence, slow
down the convergence of the estimator. One way to make the
numerical solution of the Riccati equation more robust against
roundoff errors is to use factorization methods (Cholesky or
modified Cholesky factor decomposition). These methods are
also known as square-root filtering. Several decompositions
have been proposed, which differ in the way the factorization
is achieved [11]. The additional cost in terms of computational
load has of course to be taken into account [104], but the gain
in terms of robustness of the filter is significant. In a recent
paper [69], the authors have compared the implementation of
a sensorless PMSM drive on a low-cost 32b fixed-point TI DSP
(TMS320F2812) using three different square-root algorithms.
It has been demonstrated that the Carlson–Schmidt–Givens
algorithm offers the best compromise between performances
and execution time.

As mentioned in the introduction, numerical issues can be
also addressed by using powerful hardware architectures. Thus,
an accurate implementation of a KF on a floating-point DSP
is also another natural way to reduce the impact of computa-
tional roundoff errors [40], but the counterpart of using such a
processor is a significant increase in the execution time and an
increase in the hardware cost.

C. Reduction of the Computational Load

The computational load of a KF is an important issue for
at least two main reasons, i.e., the number of arithmetic op-
erations to be executed at each sampling period, which is
in O(n3) [105], and the nature of the operations (additions
and multiplications of matrices and, most of all, one matrix
inversion). Therefore, researchers have naturally tried to reduce
the computing load by taking benefits of the specificities of
the matrices involved in the algorithm (symmetries, sparsity).
Thus, in [56], the authors have reached a cost reduction of
2.7 compared with the standard solution for a fifth-order EKF
used to estimate the speed and flux vector components of an
IM. A similar approach has been recently proposed in [106]
for a fourth-order KF used to estimate mechanical quantities
of a synchronous motor. In this case, the implementation was
achieved in a field-programmable gate array (FPGA). However,
a direct consequence of these searches or specificities in the
matrices involved in the filtering process is an increase in the
development time.

To reduce the computational cost, the KF can be also
subdivided into parallel KFs, so-called “multistage KF” or
“interconnected KF.” In 1969, Friedland [107] introduced a
two-stage Kalman estimator for the first time. The main idea is
to decouple the KF into two parallel filters, i.e., a full-order filter

and another one for the augmented state. The computational
cost is reduced by computing two small interconnected KFs
rather than a full KF although the algorithms are performed
sequentially. Therefore, the two-stage Kalman estimator has
added a new dimension to the design of algorithms and
architectures.

Friedland’s filter is devoted to the estimation of the state
of a linear process in the presence of a constant but unknown
bias vector; hence, many researchers have contributed to this
area in order to extend this approach [108]–[111]. In 1999,
Hsieh and Chen [109] proposed an optimal two-stage Kalman
estimator that recovered the performance of the regular KF.
This modified KF is “optimal” in the sense that the equations
are mathematically equivalent to the regular equations of the
KF. Later, this optimal two-stage Kalman estimator has been
extended to general nonlinear systems [111].

Effective implementation of interconnected KF in the ac
drive community is related to sensorless speed control of in-
duction machines [85] and fault-tolerant control of permanent-
magnet machines [65].

D. Minimization of the Execution Time

Nowadays, most of the digital implementations of KFs for
industrial systems are using DSP components. Indeed, these
components are well adapted to intensive matrix/vector com-
putation by integrating a multiply and accumulate ALU. Thus,
in [73], one of the first DSP-based implementations of a KF
for sensorless permanent-magnet synchronous drive was pre-
sented. A fourth-order EKF was implemented in a fixed-point
TI TMS320C25, with a total execution time equal to 283.5 μs.
Around eight years later, Bolognani et al. [40] implemented
a similar algorithm on a much more powerful floating-point
TI DSP in only 143 μs.

However, in order to drastically decrease the execution time
of such complex estimators, designers have no other options
than parallelizing the tasks that can be executed concurrently.
Along this line, since the early 1990s, some authors pro-
posed systolic array implementations of the KF [112], [113].
A systolic architecture consists in a highly regular, parallel,
pipelined, and expandable array of simple operators with only
local data transfers. Based on advanced concepts of applied
mathematics, the proposed systolic arrays were potentially
powerful (with high computing density); however, only a few
implementations were actually achieved. This was due to the
necessity of implementing systolic arrays in dedicated silicon
components (application-specific integrated circuit), which are
known to be very expensive solutions. In addition, they were
also found to be poorly flexible and, as a consequence, difficult
to reuse in other applications than the one it was designed for.
However, a renewal of this approach is possible due to the ever-
increasing capacities in terms of resources of FPGAs and their
flexible development tools.

Indeed, with FPGAs, designers have the possibility to easily
implement a dedicated hardware architecture that matches the
salient features of an algorithm. Thus, significant reduction
of execution time can be achieved [114]. The first implemen-
tation of a KF in an FPGA was published in [115]. It was
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Fig. 8. Magnitude of the frequency response of the speed loop of a 200-kVA
aircraft brushless synchronous starter/generator.

designed as a coprocessor, also termed as hardware accelerator.
It was applied to a fourth-order multitracking radar system.
The obtained execution time was equal to only 0.4 μs. Even
if the model of the studied plant was quite simple, the result in
terms of execution time is by far lower than any programmed
solution. This was due to the design of a fully hardware par-
allel architecture. Implementing a dedicated hardware parallel
architecture is the main advantage of using FPGAs compared
with processor solutions in order to accelerate computation.
In addition, this kind of hardware architecture can now be
easily programmed using hardware description languages or
directly from Simulink via the use of specific toolboxes (DSP
Builder from Altera or SysGenerator from Xilinx). In [116],
authors presented and tested experimentally an FPGA-based
extended KF for a sensorless synchronous motor drive. The
EKF execution time is equal to 2.8 μs only on a low-cost
Spartan-6 FPGA. In addition, it was also demonstrated that the
reduction of the speed estimation time increases the bandwidth
of the speed loop, as shown in Fig. 8. This gain is all the more
important that the base speed of the motor is high, as in aircraft
applications.

Finally, full hardware or software implementations of the KF
are not the only solutions available today. Indeed, designers
have also the possibility to take the benefits of the recent, very
powerful, and low-cost FPGA-based system-on-chip platforms
to implement sophisticated KF algorithms. Since recently, it has
been possible to find on the market a component that includes a
dual hardware core ARM9 processor along with a dense FPGA
fabric (tens of thousands of logic cells, hundreds of DSP units,
and memory blocks). The design challenge in this case is to
find optimized partitioning between the tasks to implement
in software and those to implement in hardware. Along this
line, Hw/Sw partitioning of an EKF for drive applications
optimized by a genetic algorithm has been recently presented
in [116]. One of the main interests of this paper was to integrate
heterogeneous constraints at the early stages of the optimized
partitioning process. These constraints include both control
constraints (phase margin and bandwidth of the control loops)
and hardware constraints (resources of the FPGA fabric and
memory space).

VII. CONCLUSION

This paper has summarized the research efforts made over
the past two decades about the application and the digital
implementation of KFs in a significant number of industrial
fields. In summary, one of the main issues of this recursive state
estimator was the computational load requirement. Therefore,
two research directions have been mainly investigated. The first
one, which started in the 1970s, focused on factorization meth-
ods and fast algorithms. This paper was primarily motivated by
aerospace applications. The second approach, which appeared
later, focused on the design and implementation of highly
sophisticated numerical architectures embedded on FPGAs.

Nowadays, the integration of KFs or variants of the KF (e.g.,
UKFs) into industrial systems is not very widespread for two
main reasons, i.e., the complexity of the algorithm compared
with the classical Luenberger observers and the computational
load requirement to be embedded on a low computational
power processor. However, due to the availability of new low-
cost and highly elaborate processors (such as floating-point
DSPs targeted at real-time process control applications and
system-on-chips), the KF is likely to spread more and more and
still has a bright future ahead of it.
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