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Human activity recognition is an important area of computer vision research. Its applications include surveil-
lance systems, patient monitoring systems, and a variety of systems that involve interactions between
persons and electronic devices such as human-computer interfaces. Most of these applications require an au-
tomated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This
article provides a detailed overview of various state-of-the-art research papers on human activity recognition.
We discuss both the methodologies developed for simple human actions and those for high-level activities.
An approach-based taxonomy is chosen that compares the advantages and limitations of each approach.
Recognition methodologies for an analysis of the simple actions of a single person are first presented in
the article. Space-time volume approaches and sequential approaches that represent and recognize activ-
ities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level
activities are presented and compared. Statistical approaches, syntactic approaches, and description-based
approaches for hierarchical recognition are discussed in the article. In addition, we further discuss the papers
on the recognition of human-object interactions and group activities. Public datasets designed for the eval-
uation of the recognition methodologies are illustrated in our article as well, comparing the methodologies’
performances. This review will provide the impetus for future research in more productive areas.
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1. INTRODUCTION

Human activity recognition is an important area of computer vision research today.
The goal of human activity recognition is to automatically analyze ongoing activities
from an unknown video (i.e. a sequence of image frames). In a simple case where a
video is segmented to contain only one execution of a human activity, the objective of
the system is to correctly classify the video into its activity category. In more general
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Fig. 1. The hierarchical approach-based taxonomy of this review.

cases, the continuous recognition of human activities must be performed by detecting
starting and ending times of all occurring activities from an input video.

The ability to recognize complex human activities from videos enables the construc-
tion of several important applications. Automated surveillance systems in public places
like airports and subway stations require detection of abnormal and suspicious activ-
ities, as opposed to normal activities. For instance, an airport surveillance system
must be able to automatically recognize suspicious activities like “a person leaving a
bag” or “a person placing his/her bag in a trash bin.” Recognition of human activities
also enables the real-time monitoring of patients, children, and elderly persons. The
construction of gesture-based human computer interfaces and vision-based intelligent
environments becomes possible with an activity recognition system as well.

There are various types of human activities. Depending on their complexity, we
conceptually categorize human activities into four different levels: gestures, actions,
interactions, and group activities. Gestures are elementary movements of a person’s
body part, and are the atomic components describing the meaningful motion of a per-
son. “Stretching an arm” and “raising a leg” are good examples of gestures. Actions are
single-person activities that may be composed of multiple gestures organized tempo-
rally, such as “walking,” “waving,” and “punching.” Interactions are human activities
that involve two or more persons and/or objects. For example, “two persons fighting” is
an interaction between two humans and “a person stealing a suitcase from another” is
a human-object interaction involving two humans and one object. Finally, group activ-
ities are the activities performed by conceptual groups composed of multiple persons
and/or objects: “A group of persons marching,” “a group having a meeting,” and “two
groups fighting” are typical examples.

The objective of this article is to provide a complete overview of state-of-the-art
human activity recognition methodologies. We discuss various types of approaches de-
signed for the recognition of different levels of activities. The previous review written
by Aggarwal and Cai [1999] covered several essential low-level components for the
understanding of human motion, such as tracking and body posture analysis. How-
ever, the motion analysis methodologies themselves were insufficient to describe and
annotate ongoing human activities with complex structures, and most of approaches in
1990s focused on the recognition of gestures and simple actions. In this new review, we
concentrate on high-level activity recognition methodologies designed for the analysis
of human actions, interactions, and group activities, discussing recent research trends
in activity recognition.

Figure 1 illustrates an overview of the tree-structured taxonomy that our review fol-
lows. We have chosen an approach-based taxonomy. All activity recognition methodolo-
gies are first classified into two categories: single-layered approaches and hierarchical
approaches. Single-layered approaches are those that represent and recognize human
activities directly based on sequences of images. Due to their nature, single-layered
approaches are suitable for the recognition of gestures and actions with sequential
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Fig. 2. Detailed taxonomy for single-layered approaches and the lists of selected publications corresponding
to each category.

characteristics. On the other hand, hierarchical approaches represent high-level hu-
man activities by describing them in terms of other simpler activities, which are gener-
ally called subevents. Recognition systems composed of multiple layers are constructed,
thus making them suitable for the analysis of complex activities.

Single-layered approaches are again classified into two types depending on how they
model human activities: that is, space-time approaches and sequential approaches.
Space-time approaches view an input video as a 3-D (XYT) volume, while sequential ap-
proaches interpret it as a sequence of observations. Space-time approaches are further
divided into three categories based on the features they use from the 3-D space-time vol-
umes: volumes themselves, trajectories, or local interest point descriptors. Sequential
approaches are classified depending on whether they use exemplar-based recognition
methodologies or model-based recognition methodologies. Figure 2 shows a detailed
taxonomy used for single-layered approaches covered in the review, together with a
number of publications corresponding to each category.

Hierarchical approaches are classified on the basis of the recognition methodolo-
gies they use: statistical approaches, syntactic approaches, and description-based ap-
proaches. Statistical approaches construct statistical state-based models concatenated
hierarchically (e.g., layered hidden Markov models) to represent and recognize high-
level human activities. Similarly, syntactic approaches use a grammar syntax such as
a stochastic context-free grammar (SCFG) to model sequential activities. Essentially,
they model a high-level activity as a string of atomic-level activities. Description-based
approaches represent human activities by describing subevents of the activities and
their temporal, spatial, and logical structures. Figure 3 presents lists of representative
publications corresponding to categories.

In addition, in Figures 2 and 3, we point to previous work that recognizes human-
object interactions and group activities by using different colors and by attaching
“O” (object) and “G” (group) tags to the right-hand side. The recognition of human-
object interactions requires the analysis of interplays between object recognition and
activity analysis. This article provides a survey on the methodologies focusing on the
analysis of such interplays for the improved recognition of human activities. Similarly,
the recognition of groups and the analysis of their structures is necessary for group
activity detection, and in this review we cover them as well.

This review is organized as follows: Section 2 covers single-layered approaches. In
Section 3 we review hierarchical recognition approaches for the analysis of high-level
activities. Section 4.1 discusses recognition methodologies for interactions between
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Fig. 3. Detailed taxonomy for hierarchical approaches and the lists of publications corresponding to each
category.

humans and objects, while concentrating especially on how previous work handled
interplays between object recognition and motion analysis. Section 4.2 presents work
on group activity recognition. In Section 5.1 we review available public datasets and
compare the systems tested on them. In addition, Section 5.2 covers real-time systems
for human activity recognition. Section 6 concludes the article.

1.1. Comparisons with Previous Reviews

There have been other related surveys on human activity recognition. Several previous
reviews on human motion analysis [Cedras and Shah 1995; Gavrila 1999; Aggarwal
and Cai 1999] discussed human action recognition approaches as a part of their review.
Kruger et al. [2007] reviewed human action recognition approaches while classify-
ing them on the basis of the complexity of features involved in the action recognition
process. Their review focused especially on the planning aspect of human action recog-
nitions, considering their potential application to robotics. The Turaga et al. [2008]
survey covered human activity recognition approaches, similar to ours. In their paper,
approaches are first categorized based on the complexity of the activities that they
want to recognize, and are then classified in terms of the recognition methodologies
they use.

However, most of the previous reviews have focused on the introduction and sum-
marization of activity recognition methodologies, but do not provide a means to lack
of compare different types of human activity recognition approaches. In this review,
we present interclass and intraclass comparisons between approaches, while provid-
ing an overview of human activity recognition approaches which are categorized on the
approach-based taxonomy presented above. To be able to compare the abilities of recog-
nition methodologies is essential for us to take advantage of them. Our goal is to enable
a reader (even one from a different field) to understand the context of the development
of human activity recognition and comprehend the advantages and disadvantages of
the different approach categories.

We use a more elaborate taxonomy and compare and contrast each approach
category in detail. For example, differences between single-layered approaches and
hierarchical approaches are discussed the highest-level of our review, while space-time
approaches are compared with sequential approaches in an intermediate level. We
compare the abilities of previous systems within each class as well, pointing out what
they are able to recognize and what they are not. Furthermore, our review covers
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recognition methodologies for complex human activities, including human-object
interactions and group activities, which previous reviews have not focused on. Finally,
we discuss the public datasets used by the systems, and compare the performance of
the recognition methodologies on the datasets.

2. SINGLE-LAYERED APPROACHES

Single-layered approaches recognize human activities directly from video data. Such
approaches consider an activity as a particular class of image sequences, and recognize
the activity from an unknown image sequence (i.e., an input) by categorizing it into
its class. Various representation methodologies and matching algorithms have been
developed to enable the recognition system to make an accurate decision as to whether
an image sequence belongs to a certain activity class or not. For recognition from
continuous videos, most single-layered approaches have adopted a sliding windows
technique that classifies all possible subsequences. Single-layered approaches are most
effective when a particular sequential pattern that describes an activity can be captured
from training sequences. Due to their nature, the main objective of the single-layered
approaches has been to analyze relatively simple (and short) sequential movements of
humans, such as walking, jumping, and waving.

In this review, we categorize single-layered approaches into two classes: space-time
approaches and sequential approaches. Space-time approaches model a human activity
as a particular 3-D volume in a space-time dimension or a set of features extracted from
the volume. The video volumes are constructed by concatenating image frames along a
time axis, and are compared in order to measure their similarities. On the other hand,
sequential approaches treat a human activity as a sequence of particular observations.
More specifically, they represent a human activity as a sequence of feature vectors
extracted from images and they recognize activities by searching for such a sequence.
We discuss space-time approaches in Section 2.1 and compare sequential approaches
in Section 2.2.

2.1. Space-Time Approaches

An image is 2-dimensional data formulated by projecting a 3-D real-world scene, and it
contains spatial configurations (e.g., shapes and appearances) of humans and objects.
A video is a sequence of those 2-D images placed in chronological order. Therefore, a
video input containing an execution of an activity can be represented as a particular
3-D XYT space-time volume constructed by concatenating 2-D (XY) images along time
(T).

Space-time approaches are those that recognize human activities by analyzing the
space-time volumes of activity videos. A typical space-time approach for human activity
recognition is as follows. Based on the training videos, the system constructs a model
3-D XYT space-time volume representing each activity. When an unlabeled video is
provided, the system constructs a 3-D space-time volume corresponding to the new
video. The new 3-D volume is compared with each activity model (i.e., template volume)
to measure the similarity in shape and appearance between the two volumes. The
system finally deduces that the new video corresponds to the activity that has the
highest similarity. This example can be viewed as a typical space-time methodology
using the 3-D space-time volume representation and the template-matching algorithm
for recognition. Figure 4 shows example 3-D XYT volumes corresponding to the human
action of punching.

In addition to the pure 3-D volume representation, there are several variations
of the space-time representation. First, the system may represent an activity as a
trajectory (instead of a volume) in a space-time dimension or other dimensions. If the
system is able to track feature points such as estimated joint positions of a human,
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Fig. 4. Example XYT volumes constructed by concatenating (a) entire images and (b) foreground blob images
obtained from a punching sequence.

the movements of the person performing an activity can be represented more explicitly
as a set of trajectories. Second, instead of representing an activity with a volume or a
trajectory, the system may represent an action as a set of features extracted from the
volume or the trajectory. 3-D volumes can be viewed as rigid objects, and extracting
common patterns from them enables their representation.

Researchers have also focused on developing various recognition algorithms using
space-time representations to correctly match volumes, trajectories, or their features.
We have already seen a typical example of an approach that uses template-matching,
which constructs a representative model (i.e., a volume) per action using training data.
Activity recognition is done by matching the model with the volume constructed from
inputs. Neighbor-based matching algorithms (i.e., discriminative methods) have also
been applied widely. In the case of neighbor-based matching, the system maintains
a set of sample volumes (or trajectories) to describe an activity. The recognition is
performed by matching the input with all (or a portion) of them. Finally, statistical
modeling algorithms have been developed that match videos by explicitly modeling a
probability distribution of an activity.

Accordingly, we have classified space-time approaches into several categories. A
representation-based taxonomy and a recognition-based taxonomy have been jointly
applied for the classification. That is, each of the activity recognition publications with
space-time approaches are assigned to a slot corresponding to a specific (representa-
tion, recognition) pair. The left part of Figure 2 shows a detailed hierarchy tree of
space-time approaches.

2.1.1. Action Recognition with Space-Time Volumes. The core of the recognition using
space-time volumes is in the similarity measurement between two volumes. The sys-
tem must be able to compute how similar human movements described in the two
volumes are. In order to calculate the correct similarities, various types of space-time
volume representations and recognition methodologies have been developed. Instead
of concatenating entire images along time, some approaches only stack the foreground
regions of a person (i.e., silhouettes) to track shape changes explicitly [Bobick and Davis
2001]. An approach to compare volumes in terms of their patches has been proposed as
well [Shechtman and Irani 2005]. Ke et al. [2007] used over-segmented volumes, auto-
matically calculating a set of 3-D XYT volume segments that corresponds to a moving
human. Rodriguez et al. [2008] generated filters capturing characteristics of volumes,
in order to match volumes more reliably and efficiently. In this section, we cover each of
these approaches while focusing on our taxonomy of “what types of space-time volume
they use” and “how they match volumes to recognize activities.”
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Fig. 5. Examples of space-time action representation: motion-history images from Bobick and Davis [2001]
(©2001 IEEE). This representation can be viewed as an weighted projection of a 3-D XYT volume into a 2-D
XY dimension.

Bobick and Davis [2001] constructed a real-time action recognition system using tem-
plate matching. Instead of maintaining the 3-dimensional space-time volume of each
action, they represented each action with a template composed of two 2-dimensional
images: a 2-dimensional binary motion-energy image (MEI) and a scalar-valued motion-
history image (MHI). The two images are constructed from a sequence of foreground
images, which essentially are weighted 2-D (XY) projections of the original 3-D XYT
space-time volume. By applying a traditional template-matching technique to a pair of
(MEI, MHI), their system was able to recognize simple actions like sitting, arm waving,
and crouching. Further, their real-time system has been applied to the interactive play
environment of children called the Kids-Room. Figure 5 shows example MHIs.

Shechtman and Irani [2005] have estimated motion flows from a 3-D space-time vol-
ume to recognize human actions. They have computed a 3-D space-time video-template
correlation, measuring the similarity between an observed video volume and main-
tained template volumes. Their similarity measurement can be viewed as a hierarchi-
cal space-time volume correlation. At every location of the volume (i.e., (x, y, ¢)), they
extracted a small space-time patch around the location. Each volume patch captures
the flow of a particular local motion, and the correlation between a patch in a template
and a patch in video at the same location gives a local match score to the system.
By aggregating these scores, the overall correlation between the template volume and
a video volume is computed. When an unknown video is given, the system searches
for all possible 3-D volume segments centered at every (x, y, t) that best matches the
template (i.e., sliding windows). Their system was able to recognize various types of
human actions, including ballet movements, pool dives, and waving.

Ke et al. [2007] used segmented spatio-temporal volumes to model human activities.
Their system applies a hierarchical meanshift to cluster similarly colored voxels,
and obtains several segmented volumes. The motivation is to find the actor volume
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segments automatically and to measure their similarity to the action model. Recog-
nition is done by searching for a subset of over-segmented spatio-temporal volumes
that best matches the shape of the action model. Support vector machines (SVM) have
been applied to recognize human actions while considering both shapes and flows of
the volumes. As a result, their system recognized simple actions such as hand waving
and boxing from the KTH action database [Schuldt et al. 2004] as well as tennis plays
in TV broadcast videos with more complex backgrounds.

Rodriguez et al. [2008] have analyzed 3-D space-time volumes by synthesizing filters:
they adopted the maximum average correlation height (MACH) filters that have been
used for an analysis of images (e.g., object recognition), to solve the action recognition
problem. That is, they have generalized the traditional 2-D MACH filter for 3-D XYT
volumes. For each action class, one synthesized filter that fits the observed volume is
generated and the action classification is performed by applying the synthesized action
MACH filter and analyzing its response on the new observation. They have further
extended the MACH filters to analyze vector-valued data using the Clifford Fourier
transform. They have not only tested their system on the existing KTH dataset and
the Weizmann dataset [Blank et al. 2005], but also on their own dataset constructed
by gathering clips from movie scenes. Actions such as kissing and hitting have been
recognized.

Table I compares the abilities of the space-time volume-based action recognition
approaches. The major disadvantage of space-time volume approaches is the diffi-
culty in recognizing actions when multiple persons are present in the scene. Most of
the approaches apply the traditional sliding-window algorithm to solve this problem.
However, this requires a large number computations for the accurate localization of
actions. Furthermore, they have difficulty recognizing actions that cannot be spatially
segmented.

2.1.2. Action Recognition with Space-Time Trajectories. Trajectory-based approaches are
recognition approaches that interpret an activity as a set of space-time trajectories. In
trajectory-based approaches, a person is generally represented as a set of 2-dimensional
(XY) or 3-dimensional (XYZ) points corresponding to his/her joint positions. Human
body part estimation methodologies, especially stick figure modeling, have been widely
used to extract the joint positions of a person at each image frame. As a human performs
an action, changes in his/her joint position are recorded as space-time trajectories,
constructing 3-D XYT or 4-D XYZT representations of the action. Figure 6 shows
example trajectories. The early work done by Johansson [1975] suggested that the
tracking of joint positions is itself sufficient for humans to distinguish actions, and
this paradigm has been studied for the recognition of activities in depth [Webb and
Aggarwal 1982; Niyogi and Adelson 1994].

Several approaches used the trajectories themselves (i.e., sets of 3-D points) to rep-
resent and recognize actions directly [Sheikh et al. 2005; Yilmaz and Shah 2005b].
Sheikh et al. [2005] represented an action as a set of 13 joint trajectories in a 4-D
XYZT space. They have used an affine projection to obtain normalized XYT trajectories
of an action in order to measure the view-invariant similarity between two sets of tra-
jectories. Yilmaz and Shah [2005b] presented a methodology to compare action videos
obtained from moving cameras, also using a set of 4-D XYZT joint trajectories.

Campbell and Bobick [1995] recognized human actions by representing them as
curves in low-dimensional phase spaces. In order to track joint positions, they took
advantage of the 3-D body-part models of a person. Based on the 3-D XYZ models esti-
mated for each frame, they have defined body phase space as a space where each axis
represents an independent parameter of the body (e.g., ankle-angle or knee-angle) or its
first derivative. In their phase space, a person’s static state at each frame corresponds
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XYTVisualzation

Fig. 6. An example of trajectories of human joint positions when performing the human action of walking
[Sheikh et al. 2005] (©2005 IEEE). Figure (a) shows trajectories in XYZ space, and (b) shows those in XYT
space.

to a point, and an action corresponds to a set of points (i.e., a curve). The authors have
projected the curve in the phase space into multiple 2-D subspaces, and maintained
the projected curves to represent the action. Each curve is modeled as a cubic poly-
nomial form, indicating that the authors assume the actions to be relatively simple
in the projected subspace. Among all possible curves of 2-D subspaces, their system
automatically selects the top % stable and reliable ones to be used for the recognition
process.

Once an action representation, that is, a set of projected curves, has been constructed,
Campbell and Bobick recognized the action by also converting an unseen video into a
set of points in the phase space. Without explicitly analyzing the dynamics of the
points from the unseen video, their system simply verifies whether the points are on
the maintained curves (i.e., trajectories in the subspaces) when projected. Various types
of basic ballet movements have been successfully recognized with markers attached to
a subject to track joint positions.

Instead of maintaining trajectories to represent human actions, Rao and Shah’s
[2001] methodology extracts meaningful curvature patterns from the trajectories. They
have tracked the position of a hand in 2-D image space using the skin pixel detection,
obtaining a 3-D XYT space-time curve. Their system extracts the positions of peaks of
trajectory curves, representing an action as a set of peaks and intervals between them.
They verified that these peak features are view-invariant. Automated learning of the
human actions is possible in their system by incrementally constructing several action
prototypes as representations of human actions. These prototypes can be considered
action templates, and the overall recognition process can be regarded as a template-
matching process. As a result, by analyzing the peaks of trajectories, their system was
able to recognize human actions in an office environment such as “opening a cabinet”
and “picking up an object.”

Again, Table I compares the trajectory-based approaches. The major advantage of
such approaches is their ability to analyze the details of human movements. Fur-
thermore, most of these methods are view-invariant. However, in order to do so, such
methods generally require a strong low-level component that is able to correctly esti-
mate the 3-D XYZ joint locations of persons appearing in a scene. The problem of the
3-D body-part detection and tracking is still an unsolved problem and researchers are
actively working in this area.

2.1.3. Action Recognition Using Space-Time Local Features. The approaches discussed in
this section use local features extracted from 3-D space-time volumes to represent and
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Fig. 7. Example 3-D space-time local features extracted from a video of the human action of walking [Laptev
and Lindeberg 2003] (©2003 IEEE), and features from a mouse movement video [Dollar et al. 2005] (©2005
IEEE). Figure (a) shows a concatenated XYT surfaces of a person’s legs and detected interest points using
Laptev and Lindeberg [2003] methods. Figure (b) shows the same interest points placed on a sequence of
original images. Figure (c) shows cuboid features extracted using Dollar et al. [2005] methods.

recognize activities. The motivation behind these approaches is the fact that a 3-D
space-time volume essentially is a rigid 3-D object. This implies that if a system is able
to extract appropriate features describing characteristics of each action’s 3-D volumes,
the action can be recognized by solving an object-matching problem.

In this section, we discuss each of the approaches using 3-D space-time features, with
a special focus on three aspects: which 3-D local features the approaches extract, how
they represent an activity in terms of the extracted features, and what methodology
they use to classify activities. In general, we are able to describe the activity recognition
approaches using local features by presenting the above three components. Similar to
the object recognition process, the system first extracts specific local features that
have been designed to capture the local motion information of a person from a 3-D
space-time volume. These features are then combined to represent the activities while
considering their spatio-temporal relationships or ignoring their relations. Finally,
recognition algorithms are applied to classify the activities.

We use the terminology local features, local descriptors, and interest points inter-
changeably, similar to the case of object recognition problems. Several approaches ex-
tract these local features at every frame and concatenate them temporally to describe
the overall motion of human activities [Chomat and Crowley 1999; Zelnik-Manor and
Irani 2001; Blank et al. 2005]. The other approaches extract sparse spatio-temporal
local interest points from 3-D volumes [Laptev and Lindeberg 2003; Dollar et al. 2005;
Niebles et al. 2006; Yilmaz and Shah 2005a; Ryoo and Aggarwal 2009b]. Example 3-D
local interest points are illustrated in Figure 7. These features have been particularly
popular because of their reliability under noise, camera jitter, illumination changes,
and background movements.

Chomat and Crowley [1999] proposed the idea of using local appearance descriptors
to characterize an action, thereby enabling action classification. Motion energy recep-
tive fields together with Gabor filters are used to capture motion information from a
sequence of images. More specifically, local spatio-temporal appearance features that
describe motion orientation are detected per frame. Multi-dimensional histograms are
constructed based on the detected local features, and the posterior probability of an
action occurring given the detected features is calculated by applying the Bayes rule to
the histograms. This system first calculates the local probability of an activity occurring
at each pixel location and then integrates them for the final recognition of the actions.
Even though only simple gestures such as come, go, left, and right are recognized due
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to the simplicity of their motion descriptors, they have shown that local appearance
detectors may be utilized for the recognition of human activities.

Zelnik-Manor and Irani [2001] proposed an approach utilizing local spatio-temporal
features at multiple temporal scales. Multiple temporally scaled video volumes were
analyzed to handle execution speed variations of an action. For each point in a 3-D
XYT volume, their system estimates a normalized local intensity gradient. Similar to
Chomat and Crowley [1999], they computed a histogram of these space-time gradient
features per video and presented a histogram-based distance measurement, ignoring
the positions of the extracted features. An unsupervised clustering algorithm was
applied to these histograms to learn actions, and human activities including outdoor-
sport video sequences like basketball and tennis were automatically recognized.

Similarly, Blank et al. [2005] also calculated local features at each frame. Instead of
utilizing optical flows for the calculation of local features, they calculated appearance-
based local features at each pixel by constructing a space-time volume whose pixel
values are solutions to the Poisson equation. The solution to the Poisson equation
has proved to be able to extract a wide variety of useful local shape properties, and
their system has extracted local features capturing space-time saliency and space-time
orientation using the equation. Each sequence of an action is represented as a set of
global features, which are the weighted moments of the local features. The authors
have applied a simple nearest neighbor classification with a Euclidean distance to
recognize the actions. Simple actions such as walking, jumping, and bending in their
Weizmann dataset as well as basic ballet movements were recognized successfully.

On the other hand, there are approaches that extract sparse local features from
video volumes to represent activities. Laptev and Lindeberg [2003] recognized human
actions by extracting sparse spatio-temporal interest points from videos. They extended
the previous local feature detectors [Harris and Stephens 1988] commonly used for
object recognition, in order to detect interest points in a space-time volume. This scale-
invariant interest-point detector searches for spatio-temporal corners in a 3-D space
(XYT), which captures various types of non-constant motion patterns. Motion patterns
such as a change in direction of an object; splitting and merging of an image structure;
and/or collision and bouncing of objects are detected as a result (Figure 7(a) and (b)).
In their work, these features were used to distinguish a walking person from complex
backgrounds. Furthermore, Schuldt et al. [2004] classified multiple actions by applying
SVMs to Laptev and Lindeberg’s [2003] features, illustrating their applicability for
activity recognition. A new database called the KTH actions dataset, containing action
videos (e.g., jogging and hand waving) was introduced, and has been widely adopted.
We discuss this dataset further in Section 5.1.1.

The paradigm of recognizing actions by extracting sparse local interest points from a
3-D space-time volume was adopted by several researchers. They have focused on the
fact that sparse local features characterizing local motion are sufficient to represent
actions, as Laptev and Lindeberg [2003] have suggested. These approaches are partic-
ularly motivated by the success of the object recognition methodologies using sparse
local appearance features, such as SIFT descriptors [Lowe 1999]. Instead of extracting
features at every frame, these approaches extract features only when there exists a
salient appearance or shape change in 3-D space-time volume. Most of these features
have been verified to be invariant to scale, rotation, and translations, similar to object
recognition descriptors.

Dollar et al. [2005] proposed a new spatio-temporal feature detector for the recog-
nition of human (and animal) actions. Their detector is especially designed to extract
space-time points with local periodic motions, obtaining a sparse distribution of in-
terest points from a video. Once detected, their system associates a small 3-D volume
called cuboid to each interest point (Figure 7(c)). Each cuboid captures pixel appearance
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values of the interest point’s neighborhoods. They have tested various transformations
to be applied to cuboids to extract final local features, and have chosen the flattened
vector of brightness gradients that shows the best performance. A library of cuboid
prototypes is constructed per each dataset by clustering cuboid appearances with
k-means. As a result, each action is modeled as a histogram of cuboid types detected
in 3-D space-time volume while ignoring their locations (i.e., bag-of-words paradigm).
They have recognized facial expressions, mouse behaviors, and human activities (i.e.,
the KTH dataset) via their method.

Niebles et al. [2006, 2008] presented an unsupervised learning and classification
method for human actions using the feature extractor above [Dollar et al. 2005]. Their
recognition method is a generative approach, modeling an action class as a collection of
spatio-temporal feature appearances. A probabilistic Latent Semantic Analysis (pLLSA)
commonly used in the field of text mining has been applied to recognize actions statis-
tically. Each feature in the scene is categorized into an action class by calculating its
posterior probability of being generated by the action. As a result, Niebles et al. were
able to recognize simple actions from public datasets [Schuldt et al. 2004; Blank et al.
2005] as well as figure-skating actions.

In this context, various spatio-temporal feature extractors have been developed re-
cently. Yilmaz and Shah [2005a] proposed an action recognition approach to extract
sparse features called action sketches from a 3-D contour concatenation, which were
confirmed to be view-invariant. Scovanner et al. [2007] designed the 3-D version of the
SIFT descriptor, similar to the cuboid features [Dollar et al. 2005]. Liu et al. [2009]
presented a methodology to prune cuboid features so as to choose important and mean-
ingful features. Bregonzio et al. [2009] proposed an improved detector for extracting
cuboid features, and presented a feature selection method similar to Liu et al. [2009].
Rapantzikos et al. [2009] extended the cuboid features to color and motion informa-
tion as well, in contrast to previous features using intensities only (e.g., Laptev and
Lindeberg [2003]; Dollar et al. [2005]).

In most approaches using sparse local features, spatial and temporal relationships
among detected interest points are ignored. The approaches that we discussed above
show that simple actions can be recognized successfully, even without any spatial and
temporal information among features. This is similar to the success of object recognition
techniques that ignore the local features’ spatial relationships, typically called bag-of-
words. The bag-of-words approaches were particularly successful for simple periodic
actions.

Recently, action recognition approaches that consider spatial configurations among
the local features are getting an increasing amount of interest. Unlike the approaches
following the bag-of-words paradigm, these approaches attempt to model spatio-
temporal distribution of the extracted features for better recognition of actions. Wong
et al. [2007] extended the basic pLSA by constructing a pLSA with an implicit shape
model (pLSA-ISM). In contrast to the pLSA used by Niebles et al. [2006], the Wong
et al. pLSA-ISM captures the relative spatio-temporal location information of the fea-
tures from the activity center, successfully recognizing and localizing activities in the
KTH dataset.

Savarese et al. [2008] proposed a methodology to capture spatio-temporal prox-
imity information among features. For each action video, they measured feature
co-occurrence patterns in a local 3-D region, constructing histograms called ST-
correlograms. Liu and Shah [2008] also considered correlations among features. Simi-
larly, Laptev et al. [2008] constructed spatio-temporal histograms by dividing an entire
space-time volume into several grids. The method roughly measures how local descrip-
tors are distributed in the 3-D XYT space by analyzing which feature falls into which
grid. Both methods were tested on the KTH dataset as well, obtaining successful
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recognition results. Notably, similar to Rodriguez et al. [2008], Laptev et al. [2008] was
tested on realistic videos obtained from various movie scenes.

Ryoo and Aggarwal [2009b] introduced the spatio-temporal relationship match (STR
match), which explicitly considers spatial and temporal relationships among detected
features so as to recognize activities. Their method measures structural similarity be-
tween two videos by computing pairwise spatio-temporal relations among local features
(e.g., before and during), enabling the detection and localization of complex-structured
activities. Their system not only classified simple actions (i.e., those from the KTH
datasets), but also recognized interaction-level activities (e.g., hand-shaking and push-
ing) from continuous videos.

The space-time approaches that extract local descriptors have several advantages.
By its nature, background subtraction or other low-level components are generally not
required, and the local features are scale-, rotation-, and translation-invariant in most
cases. They were particularly suitable for recognizing simple periodic actions such as
walking and waving, since periodic actions will repeatedly generate feature patterns.

2.1.4. Comparison. Table I compares the abilities of the space-time approaches re-
viewed in this article. Space-time approaches are suitable for the recognition of peri-
odic actions and gestures, and many have been tested on public datasets (e.g., the KTH
dataset [Schuldt et al. 2004] and the Weizmann dataset [Blank et al. 2005]). Basic ap-
proaches using space-time volumes provide a straightforward solution, but often have
inherent difficulties in handling speed and motion variations. Recognition approaches
using space-time trajectories are able to perform detailed-level analysis and are view-
invariant in most cases. However, 3-D modeling of body parts from videos, which is still
an unsolved problem, is required for applying a trajectory-based approach.

The spatio-temporal local feature-based approaches are getting an increasing
amount of attention due to their reliability under noise and illumination changes.
Furthermore, some approaches [Niebles et al. 2006; Ryoo and Aggarwal 2009b] are
able to recognize multiple activities without background subtraction or body-part mod-
eling. The major limitation of the space-time feature-based approaches is that they are
not suitable for modeling more complex activities. The relations among features are
important for a nonperiodic activity that takes a certain amount of time, which most
of the previous approaches ignored. Several researchers have worked on approaches to
overcome such limitations [Wong et al. 2007; Savarese et al. 2008; Laptev et al. 2008;
Ryoo and Aggarwal 2009b]. Viewpoint invariance is another issue that space-time local
feature-based approaches must handle.

2.2. Sequential Approaches

Sequential approaches are the single-layered approaches that recognize human ac-
tivities by analyzing sequences of features. Such approaches consider an input video
as a sequence of observations (i.e., feature vectors), and deduce that an activity has
occurred in the video if they are able to observe a particular sequence characterizing
the activity. Sequential approaches first convert a sequence of images into a sequence
of feature vectors by extracting features (e.g., degrees of joint angles) that describe
the status of a person per image frame. Once feature vectors have been extracted, se-
quential approaches analyze the sequence to measure how likely it is that the feature
vectors were produced by the person performing the activity. If the likelihood between
the sequence and the activity class (or the posterior probability of the sequence be-
longing to the activity class) is high enough, the system decides that the activity has
occurred.

We classify the sequential approaches into two categories by using a methodology-
based taxonomy: exemplar-based recognition approaches and state model-based
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Fig. 8. An example matching between two “stretching a leg” sequences with different nonlinear execution
rates. Each number represents a particular status (i.e., pose) of the person.

recognition approaches. Exemplar-based sequential approaches describe classes of
human actions by using training samples directly. They maintain either a repre-
sentative sequence per class or a set of training sequences per activity, and match
them with a new sequence to recognize its activity. On the other hand, state model-
based sequential approaches represent a human action by constructing a model that
is trained to generate sequences of feature vectors corresponding to the activity. By
calculating the likelihood (or posterior probability) that a given sequence is generated
by each activity model, the state model-based approaches are able to recognize the
activities.

2.2.1. Exemplar-Based Approaches. Exemplar-based approaches represent human ac-
tivities by maintaining a template sequence or a set of sample sequences of action
executions. When a new input video is given, the exemplar-based approaches compare
the sequence of feature vectors extracted from the video with the template sequence
(or sample sequences). If their similarity is high enough, the system is able to deduce
that the given input contains an execution of the activity. Humans may perform an
identical activity in different styles and/or different rates, and the similarity must be
measured considering such variations. The dynamic time warping (DTW) algorithm,
originally developed for speech processing, has been widely adopted for matching two
sequences with variations [Darrell and Pentland 1993; Gavrila and Davis 1995; Veer-
araghavan et al. 2006]. The DTW algorithm finds an optimal nonlinear match be-
tween two sequences with a polynomial amount of computations. Figure 8 shows a
conceptual matching between two sequences (i.e., strings) with different execution
rates.

Darrell and Pentland [1993] proposed a DTW-based gesture recognition methodol-
ogy using view models to represent the dynamics of articulated objects. Their system
maintains multiple models (i.e., template images) of an object in different conditions,
which they called views. Each view-model abstracts a particular status (e.g., rotation
and scale) of an articulated object such as a hand. Given a video, the correlation scores
between image frames and each view are modeled as a function of time. Means and
variations of these scores of training videos are used as a gesture template. The tem-
plates are matched with a new observation using the DTW algorithm, so that speed
variations of action executions are handled. Their system successfully recognized hello
and good-bye gestures, and was able to distinguish them from other gestures such as
a come closer gesture.

Gavrila and Davis [1995] also developed the DTW algorithm to recognize human
actions, utilizing a 3-D (XYZ) model-based body-part tracking methodology. The moti-
vation is to estimate a 3-D skeleton model at each image frame and to analyze his/her
movement by tracking them. Multiple cameras were used to obtain 3-D body-part mod-
els of a human, which is composed of a collection of segments and their joint angles (i.e.,
the stick figure). This stick figure model with 17 degree-of-freedom (DOF) is tracked
throughout the frames, recording the values of joint angles. These angle values are
treated as features characterizing human movement at each frame. The sequences of
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angle values are analyzed using the DTW algorithm to compare them with a reference
sequence pretrained per action, similar to Darrell and Pentland [1993]. Gestures in-
cluding waving hello, waving-to-come, and twisting have been recognized with their
system.

Yacoob and Black [1998] have treated an input as a set of signals (instead of discrete
sequences) describing sequential changes of feature values. Instead of directly match-
ing the sequences (e.g., DTW), they have decomposed signals using singular value
decompositions (SVD). That is, they used principle component analysis (PCA)-based
modeling to represent an activity as a linear combination of a set of activity basis that
is essentially a set of eigen vectors. When a new input is provided to the system, their
system calculates the coefficients of the activity basis while considering transformation
parameters such as scale and speed variations. The similarity between the input and
an action template is measured by comparing the coefficients of the two. Their approach
showed successful recognition results for walking-related actions and lip movements
by utilizing different types of features.

Efros et al. [2003] presented a methodology for recognizing actions at a distance,
where each human is around 30 pixels tall. In order to recognize actions in such
environments where the detailed motions of humans are unclear, they used motion
descriptors based on optical flows obtained per frame. Their system first computes the
space-time volume of each person being tracked, and then calculates 2-D (XY) optical
flows at each frame by tracking humans via a temporal difference image similar to
Yacoob and Black [1998]. They used blurry motion channels as a motion descriptor,
converting optical flows into a spatio-temporal motion descriptor per frame. That is,
they are interpreting a video of a human action as a sequence of motion descriptors
obtained from the optical flows of a human. The basic nearest neighbor classification
method was applied to a sequence of motion descriptors for the recognition of actions.
First, frame-to-frame similarities between all possible pairs of frames from two se-
quences (i.e., a frame-to-frame similarity matrix) are calculated. The recognition is
done by detecting diagonal patterns in the frame-to-frame similarity matrix. Their
system was able to classify ballet movements, tennis plays, and soccer plays, even from
moving cameras.

Lublinerman et al. [2006] presented a methodology that recognizes human activities
by modeling them as linear-time-invariant (LTI) systems. Their system converts a
sequence of images into a sequence of silhouettes, extracting two types of contour
representations: silhouette width and Fourier descriptors. An activity is represented
as a LTT system capturing the dynamics of changes in silhouette features. SVMs have
been applied to classify a new input which has been converted to the parameters of a
LTI model. Four types of simple actions, slow walk, fast walk, walk on an incline and
walk with a ball have been correctly recognized as a consequence.

Veeraraghavan et al. [2006] described an activity as a function of time that describes
parameter changes similar to Yacoob and Black [1998]. The main contribution of Veer-
araghavan et al.’s system is in the explicit modeling of inter- and intra-personal speed
variations of activity executions and the consideration of such methods for matching
activity sequences. Focusing on the fact that humans may be able to change the speed
of an execution of a part of the activity while it may not be possible for other parts, they
learn nonlinear characteristics of activity speed variations. More specifically, their sys-
tem learns the nature of time-warping transformation per activity. They are modeling
an action execution with two functions: (i) a function of feature changes over time and
(i1) a function space of possible time warping. They have developed an extension of a
DTW matching algorithm to take the time-warping function into account when match-
ing two sequences. Human actions including picking up an object, throwing, pushing,
and waving have been recognized with high recognition accuracy.
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Fig. 9. An example hidden Markov model for the action stretching an arm. The model is one of the simplest
cases among HMMs, which is designed to be strictly sequential. Each actor image in the figure represents a
pose with the highest observation probability b, for its state w;.

2.2.2. State Model-Based Approaches. State model-based approaches are the sequential
approaches that represent a human activity as a model composed of a set of states.
The model is statistically trained so that it corresponds to sequences of feature vectors
belonging to its activity class. More specifically, the statistical model is designed to
generate a sequence with a certain probability. Generally, one statistical model is
constructed for each activity. For each model, the probability of the model generating an
observed sequence of feature vectors is calculated to measure the likelihood between the
action model and the input image sequence. Either the maximum likelihood estimation
(MLE) or the maximum a posteriori probability (MAP) classifier is constructed as a
result, in order to recognize activities.

Hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) have been
widely used for state model-based approaches. In both cases, an activity is represented
in terms of a set of hidden states. A human is assumed to be in one state at each
time frame, and each state generates an observation (i.e., a feature vector). In the next
frame, the system transitions to another state considering the transition probability be-
tween states. Once transition and observation probabilities are trained for the models,
activities are commonly recognized by solving the evaluation problem. The evaluation
problem is the problem of calculating the probability of a given sequence (i.e., new in-
put) generated by a particular state-model. If the calculated probability is high enough,
the state model-based approaches are able to decide that the activity corresponding to
the model occurred in the given input. Figure 9 shows an example of a sequential HMM.

Yamato et al.’s [1992] work is the first in applying standard HMMs to recognize activ-
ities. They adopted HMMs which were originally widely used for speech recognition. At
each frame, their system converts a binary foreground image into an array of meshes.
The number of pixels in each mesh is considered a feature, thereby extracting a feature
vector per frame. These feature vectors are treated as a sequence of observations gener-
ated by the activity model. Each activity is represented by constructing one HMM that
corresponds probabilistically to particular sequences of feature vectors (i.e., meshes).
More specifically, the parameters of HMMs (transition probabilities and observation
probabilities) are trained with a labeled dataset with the standard learning algorithm
for HMMs. Once each of the HMM:s is trained, they are used to recognize activities by
measuring the likelihoods between a new input and the HMMs by solving the eval-
uation problem. As a result, various types of tennis plays, such as backhand stroke,
forehand stroke, smash, and serve, have been recognized with Yamato et al.’s system.
They have shown that the HMMs are able to reliably model feature changes during
human activities, encouraging other researchers to pursue further investigations.

Starner and Pentland [1995] also used standard HMMs, in order to recognize
American Sign Language (ASL). Their method tracks the location of hands and extracts
features that describes shapes and positions of the hands. Each word of ASL is modeled
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as one HMM, generating a sequence of features describing hand shapes and positions,
similar to the case of Yamato et al. [1992]. Their method uses the Viterbi algorithm
for each HMM to estimate the probability that the HMM generated the observations.
The Viterbi algorithm provides an efficient approximation of the likelihood distance,
enabling an unknown observation sequence to be classified into the most suitable
word.

Bobick and Wilson [1997] also recognized gestures by using state models. They repre-
sented a gesture as a 2-D XY trajectory describing the location changes of a hand. Each
curve is decomposed into sequential vectors, which can be interpreted as a sequence
of states computed from a training example. Furthermore, each state is made fuzzy in
order to consider speed and motion variance in executions of the same gesture. This is
similar to a fuzzy version of a sequential Markov model (MM). Transition costs between
states, which correspond to the transition probabilities in the case of HMMs, are also
defined in their system. For the recognition of gestures with their model, a dynamic
programming algorithm is designed. Their system measures an optimal matching cost
between the given observation (i.e., motion trajectory) and each prototype using the
dynamic programming algorithm. Applying their framework, they have successfully
recognized two different types of gestures: wave and point.

In addition, approaches using variants of HMMs have also been developed for human
activity recognition [Oliver et al. 2000; Park and Aggarwal 2004; Natarajan and Neva-
tia 2007]. Similar to previous frameworks for action recognition using HMMs [Yamato
et al. 1992; Starner and Pentland 1995; Bobick and Wilson 1997], they constructed
one model (HMM) for each activity they wanted to recognize, and used visual features
from the scene as observations directly generated by the model. The methods with
extended HMMs are designed to handle more complex activities (usually combinations
of multiple simple actions) by extending the structure of the basic HMM.

Oliver et al. [2000] constructed a variant of the basic HMM, the coupled HMM
(CHMM), to model human-human interactions. The major limitation of the basic HMM
is its inability to represent activities composed of motions of two or more agents. A
HMM is a sequential model and only one state is activated at a time, preventing it
from modeling the activities of multiple agents. Oliver et al. introduced the concept of
the CHMM to model complex interactions between two persons. Basically, a CHMM
is constructed by coupling multiple HMMs, where each HMM models the motion of
one agent. They have coupled two HMMs to model human-human interactions. More
specifically, they coupled the hidden states of two different HMMs by specifying their
dependencies. As a result, their system was able to recognize complex interactions
between two persons, such as a concatenation of “two persons approaching, meeting,
and continuing together.”

Park and Aggarwal [2004] used a DBN to recognize gestures of two interacting
persons. They recognized gestures such as “stretching an arm” and “turning a head
left,” by constructing a tree-structured DBN to take advantage of the dependent nature
among the motions of body parts. A DBN is an extension of an HMM, composed of
multiple conditionally independent hidden nodes that generate observations at each
time frame directly or indirectly. In Park and Aggarwal’s work, a gesture is modeled
as state transitions of hidden nodes (i.e., body-part poses) in one time point to the
next time point. Each pose is designed to generate a set of features associated with
the corresponding body part. Features including locations of skin regions, maximum
curvature points, and the ratio and orientation of each body-part have been used to
recognize gestures.

Natarajan and Nevatia [2007] developed an efficient recognition algorithm using
coupled hidden semi-Markov models (CHSMMs), which extend previous CHMMSs by
explicitly modeling the duration of an activity staying in each state. In the case of
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Table 1l. Comparing Sequential Approaches

Required Execution Target
Type Approaches low-levels variations |Probabilistic activities
Darrell and Pentland ’93 None Vv Gesture-level
Gavrila and L. Davis 95 | Body-part estimation N4 Gesture-level
Exemplar Yacoob and Black '98 Body-part estimation Vv Gesture-level
-based Efros et al.’03 Tracking Linear only Action-level
Lublinerman et al. ’06 |Background subtraction| Linear only Action-level
Veeraraghavan et al. ’06 |Background subtraction N Action-level
Yamato et al. 92 Background subtraction | Model-based Vv Action-level
Starner and Pentland 95 Tracking Model-based Vv Gesture-level
Bobick and Wilson 97 Tracking Model-based Gesture-level
State model Oliver et al. ’00 Background subtraction|Model-based 4 Interaction-level
-based Park and Aggarwal 04 |Background subtraction | Model-based J Gesture-level
Natarajan and Nevatia’07| Action recognition |Model-based v Interaction-level
Lv and Nevatia 07 3-D pose model Model-based J Action-level

The column “required low-levels” specifies the low-level components necessary for the approach to be ap-
plicable. “Execution variations” shows whether the system is able to handle variations in the execution
of human activities (e.g., speed variations). ‘Probabilistic’ indicates that the system makes a probabilistic
inference, and ‘target activity’ shows the type of human activities the system aims to recognize. Notably, [Lv
and Nevatia 2007]’s system is view-invariant.

basic HMMs and CHMMSs, the probability of a person staying in an identical state
decays exponentially as time increases. In contrast, each state in a CHSMM has its
own duration that best models the activity that the CHSMM represents. As a result,
they were able to construct a statistical model that captures the characteristics of ac-
tivities that the system wants to recognize better compared to HMMs and CHMMs.
Similar to Oliver et al. [2000], they tested their system for the recognition of human-
human interactions. Due to the CHSMMs’ ability to model the duration of the activity,
the recognition accuracy using CHSMMs was better than other simpler statistical
models. Lv and Nevatia [2007] also designed a CHMM-like structure called the ac-
tion net to construct a view-invariant recognition system using synthetic 3-D human
poses.

2.2.3. Comparison. In general, sequential approaches consider sequential relation-
ships among features in contrast to most of the space-time approaches, thereby en-
abling detection of more complex activities (i.e., nonperiodic activities such as sign
languages). In particular, the recognition of the interactions of two persons, whose se-
quential structure is important, was attempted in Oliver et al. [2000] and Natarajan
and Nevatia [2007].

Compared to the state model-based sequential approaches, exemplar-based ap-
proaches provide more flexibility for the recognition system, in the sense that multiple
sample sequences (which may be completely different) can be maintained by the system.
Further, the dynamic time-warping algorithm generally used for the exemplar-based
approaches provides a nonlinear matching methodology that considers execution rate
variations. In addition, exemplar-based approaches are able to cope with less training
data than the state model-based approaches.

On the other hand, state-based approaches are able to make a probabilistic analysis
of the activity. A state-based approach calculates a posterior probability of an activity
occurring, enabling it to be easily incorporated with other decisions. One of the limi-
tations of the state-based approaches is that they tend to require a large number of
training videos as the activity they want to recognize becomes more complex. Table II
is provided for comparing the systems.

ACM Computing Surveys, Vol. 43, No. 3, Article 16, Publication date: April 2011.



16:20 J. K. Aggarwal and M. S. Ryoo

3. HIERARCHICAL APPROACHES

The main idea behind hierarchical approaches is to enable the recognition of high-level
activities based on the recognition results of other simpler activities. The motivation is
to let the simpler subactivities (also called subevents) that can be modeled relatively
easily to be recognized first, and then to use them for the recogizing higher-level activi-
ties. For example, a high-level interaction like “fighting” may be recognized by detecting
a sequence of several punching and kicking interactions. Therefore, in hierarchical ap-
proaches, a high-level human activity (e.g., fighting) that the system aims to recognize
is represented in terms of its subevents (e.g., punching), which may themselves be
decomposable until atomicity is obtained. That is, subevents serve as observations
generated by a higher-level activity. The paradigm of hierarchical representation not
only makes the recognition process computationally tractable and conceptually under-
standable, but also reduces redundancy in the recognition process by reusing recognized
subevents multiple times.

In general, common activity patterns of motion that appear frequently during high-
level human activities are modeled as atomic-level (or primitive-level) actions, and
high-level activities are represented and recognized by concatenating them hierarchi-
cally. In most hierarchical approaches, these atomic actions are recognized by adopting
single-layered recognition methodologies which we presented in the previous section.
For example, the gestures “stretching hand” and “withdrawing hand” occur often in
human activity, implying that they can become good atomic actions for representing
human activities such as shaking hands or punching. Single-layered approaches such
as sequential approaches using HMMs can be safely adopted for recognition of those
gestures.

The major advantage of hierarchical approaches over nonhierarchical approaches
(i.e., single-layered approaches) is their ability to recognize high-level activities
with more complex structures. Hierarchical approaches are especially suitable for a
semantic-level analysis of interactions between humans and/or objects as well as com-
plex group activities. This advantage is a result of two abilities of hierarchical ap-
proaches: the ability to cope with less training data and the ability to incorporate prior
knowledge into the representation.

First, the amount of training data required for recognizing activities with hierar-
chical models is significantly less than that for single-layered models. Even though in
some cases it may also be possible for nonhierarchical approaches to model complex
human activities, they generally require a large amount of training data. For exam-
ple, single-layered HMMs need to learn a large number of transition and observation
probabilities, since the number of hidden states increases as the activities get more
complex. By encapsulating structurally redundant subevents shared by multiple high-
level activities, hierarchical approaches model the activities with a lesser amount of
training and recognize them more efficiently.

In addition, the hierarchical modeling of high-level activities makes recognition sys-
tems to incorporate human knowledge (i.e., prior knowledge of the activity) much
easier. Human knowledge can be included in the system by listing semantically mean-
ingful sub-activities composing a high-level activity and/or by specifying their rela-
tionships. As mentioned above, when modeling high-level activities, non-hierarchical
techniques tend to have complex structures and observation features which are not
easily interpretable, preventing a user from imposing prior knowledge. On the other
hand, hierarchical approaches model a high-level activity as an organization of seman-
tically interpretable subevents, making the incorporation of prior knowledge much
easier.

Using our approach-based taxonomy, we categorize hierarchical approaches into
three groups: statistical approaches, syntactic approaches, and description-based
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Punching

Upper-layer
Arm stretch : 0.8 Arm withdraw : 0.85
Arm stay stretched : 0.15 Arm stay withdrawn: 0.10
Arm stay withdrawn : 0.05 Arm stay stretched : 0.05
Arm stretch Arm withdraw
Lower-layer
Arm stay stretched Arm stay withdrawn

OC--—0) (OO0
' S

Fig. 10. An example hierarchical hidden Markov model (HHMM) for recognizing the activity of punching.
The model is composed of two layers. In the lower layer, HMMs are used to recognize various atomic-
level activities, such as stretching and withdrawing. The upper layer HMM treats recognition results of
the lower layer HMMs as an input, recognizing that punching stretching, and withdrawing occurred in a
sequence.

approaches. Figure 3 illustrates our taxonomy tree, as well as the lists of selected
previous work corresponding to the categories.

3.1. Statistical Approaches

Statistical approaches use statistical state-based models to recognize activities. In
the case of hierarchical statistical approaches, multiple layers of state-based models
(usually two layers) such as HMMs and DBNs are used to recognize activities with se-
quential structures. At the bottom layer, atomic actions are recognized from sequences
of feature vectors, just as in single-layered sequential approaches. As a result, a se-
quence of feature vectors is converted to a sequence of atomic actions. The second-level
models treat this sequence of atomic actions as observations generated by the second-
level models. For each model, a probability of the model generating a sequence of
observations (i.e., atomic-level actions) is calculated to measure the likelihood between
the activity and the input image sequence. Either the maximum likelihood estimation
(MLE) or the maximum a posteriori probability (MAP) classifier is constructed as a
result. Figure 10 shows an example model of a statistical hierarchical approach, which
is designed to recognize “punching.”

Oliver et al. [2002] presented layered hidden Markov models (LHMMs), which is
one of the most fundamental forms of the hierarchical statistical approaches (e.g.,
Figure 10). In this approach, the bottom layer HMMs recognize atomic actions of a
single person by matching the models with the sequence of feature vectors extracted
from videos. The upper layer HMMs treat recognized atomic actions as observations
generated by the upper layer HMMs. That is, essentially they are representing a high-
level activity as a sequence of atomic actions by making each state in the upper layer
HMM to probabilistically correspond to one atomic action. By its nature, all subevents
of an activity are required to be strictly sequential in each LHMM. Human-human
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interactions in a conference room environment including “a person giving a presen-
tation” and “face-to-face conversation” have been recognized based on the detection
of atomic-level actions (e.g., “nobody”, “one active person”, and “multiple persons
present”). Each layer of the HMM is designed to be trained separately with fully
labeled data, enabling flexible retraining.

The paradigm of multilayered HMMs has been explored by various researchers.
Nguyen et al. [2005] also constructed hierarchical HMMs of two layers to recognize
complex sequential activities. Similar to Oliver et al. [2002], they have constructed
two levels of HMMs to recognize human activities such as ‘a person having a meal’
and ‘a person having a snack’. Zhang et al. [2006] constructed multi-layered HMMs
to recognize group activities occurring in a meeting room. Their framework is also
composed of two-layered HMMSs. Their system recognized atomic actions of speaking,
writing, and idling using the lower-layer HMMs. With the upper layer HMMs, group
activities such as monologue, discussion, and presentation have been represented and
recognized in terms of the atomic actions. Yu and Aggarwal [2006] used a block-based
HMM for the recognition of a person climbing a fence. This block-based HMM can also
be interpreted as a 2-layered HMM.

In addition, hierarchical approaches using DBNs have been studied for the recogni-
tion of complex activities. DBNs may contain multiple levels of hidden states, suggest-
ing that they can be formulated to represent hierarchical human activities. Gong and
Xiang [2003] have extended traditional HMMs to construct dynamic probabilistic net-
works (DPNs) to represent activities of multiple participants. Their method was able to
recognize the group activities of trucks loading and unloading cargo. Dai et al. [2008]
constructed DBNs to recognize group activities in a conference room environment
similar to Zhang et al. [2006]. High-level activities such as break, presentation, and
discussion were recognized based on the atomic actions of talking, asking, and so on.
Damen and Hogg [2009] constructed Bayesian networks using a Markov chain Monte
Carlo (MCMC) for hierarchical analysis of bicycle-related activities (e.g., drop-and-
pick). They used Bayesian networks to model relations between atomic-level actions;
and these Bayesian networks were iteratively updated using the MCMC to search for
the structure that best explains ongoing observations.

Shi et al. [2004] proposed a hierarchical approach using a propagation network
(P-net). The structure of a P-net is similar to that of a HMM: an activity is represented
in terms of multiple state nodes, their transition probabilities, and the observation
probabilities. Their work also decomposes actions into several atomic actions, and
constructs a network describing the temporal order needed among them. The main
difference between a P-net and a HMM is that the P-net allows activation of multiple
state nodes simultaneously. This implies that a P-net is able to model a high-level
activity composed of concurrent as well as sequential sub-events. If the subevents
are activated in a particular temporal order specified through the graph, the system
is able to deduce that the activity occurred. Shi et al. have represented an activity
of a person performing a chemical experiment using a P-net, and have successfully
recognized it.

Statistical approaches are especially suitable when recognizing sequential activi-
ties. With enough training data, statistical models are able to reliably recognize corre-
sponding activities even in the case of noisy inputs. The major limitation of statistical
approaches is their inherent inability to recognize activities with complex temporal
structures, such as an activity composed of concurrent subevents. For example, HMMs
and DBNs have difficulty modeling the relationship of an activity A occurred during,
started with, or finished with an activity B. The edges of HMMs or DBNs specify the
sequential order between two nodes, suggesting that they are suitable for modeling
sequential relationships, not concurrent relationships.
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Punching -> stretch withdraw :0.8
| stretch stay_withdrawn : 0.1
| stay_stretched withdraw : 0.1

Fighting -> Punching :0.3
| Punching Fighting 107

Fig. 11. A simplified example of production rules of an SCFG for representing and recognizing a fighting
interaction. Fighting is defined as any number of consecutive punching actions which can be decomposed
into stretching and withdrawal similar to Figure 10.

3.2. Syntactic Approaches

Syntactic approaches model human activities as a string of symbols, where each symbol
corresponds to an atomic-level action. Similar to the case of hierarchical statistical ap-
proaches, syntactic approaches also require atomic-level actions to be recognized first,
using any of the previous techniques. Human activities are represented as a set of pro-
duction rules generating a string of atomic actions, and they are recognized by adopting
parsing techniques from the field of programming languages. Context-free grammars
(CFGs) and stochastic context-free grammars (SCFGs) have been used by previous
researchers to recognize high-level activities. The production rules of CFGs naturally
lead to a hierarchical representation and recognition of the activities. Figure 11 is an
example SCFG.

Ivanov and Bobick [2000] proposed a hierarchical approach for the recognition of
high-level activities using SCFGs. They divided the framework into two layers: the
lower layer using HMMs for the recognition of simple (i.e., atomic) actions, and the
higher layer using stochastic parsing techniques for the recognition of high-level activ-
ities. Ivanov and Bobick have encoded a large number of stochastic productions rules
which are able to explain all activity possibilities in their environment. The higher
layer parses a string of atomic actions generated by the lower layer, recognizing ac-
tivities probabilistically. The Earley—Stolcke parsing algorithm is extended to handle
uncertain observations. Moore and Essa [2002] also used SCFGs for the recognition
of activities, focusing on multitask activities. By extending Ivanov and Bobick [2000],
they introduced more reliable error detection and recovery techniques for recognition.
They were able to recognize human activities happening in a blackjack card game, such
as “a dealer dealt a card to a player”, with a high accuracy.

Minnen et al. [2003] adopted SCFGs for activity recognition as well. Their system
focuses on the segmentation problem of multiple objects. They have shown that the
semantic-level processing of activities using CFGs may help the segmentation and
tracking of objects. The concept of the hallucinations is introduced to compensate for
the failures of atomic-level recognition explicitly. Taking advantage of the CFG parsing
techniques while considering hallucinations, they recognized the activity of a person
working on the Tower of Hanoi problem, and were able to correctly recognize the
activities without any information on the objects’ appearance by depending solely on
the motion information of the activities.

Joo and Chellappa [2006] designed an attribute grammar for recognition, which is
an extension of the SCFG. Their grammar attaches semantic tags and conditions to the
production rules of the SCFG, enabling the recognition of more descriptive activities.
That is, their grammar is able to describe feature constraints as well as the temporal
constraints of atomic actions. Only when the observations satisfy the syntax of the
SCFG (i.e., only when the string can be generated by following the production rules)
and the feature constraints are satisfied as well does their system decide that the
activity has occurred. Thus events in a parking lot were recognized by tracking cars
and humans. Atomic actions including parking, picking up, and walk though are first
detected based on changes in the location of cars and humans. By representing the
typical activity in a parking lot, normal and abnormal activities are distinguished.
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Push_interaction(pl, p2) = {

list( def(i’, Stretch(p1’s arm)),

list( def(‘j’, Stay_stretched(p2’s arm)),
list( def(‘k’, Touching(pl, p2)),
def(*I’, Depart(p2. p1)) ).
and( meets(‘i’, J°),
. : and( during(‘k’, “this’),
k = Touching(pl, p2) 1= Depatt(p2, pl)= and( meets(‘k’, I°),
' and( starts(‘i’, “this’),
finishes(‘)’, “this’) ))))

(a) ’ (b)

Fig. 12. (a) Time intervals of an interaction push and its subevents, and (b) its programming language-
like representation following the Ryoo and Aggarwal [2006] syntax (©2009 Springer); (a) is a conceptual
illustration describing the activity’s temporal structure, whose sub-events are organized sequentially as well
as concurrently. Following the CFG, we convert this into a formal representation as shown in (b).

this = Push_interactions(p1, p2)

: i = Stretch(pl’s arm) j=Stay_Stretched(pl’s am::')

One of the limitations of syntactic approaches is in the recognition of concurrent
activities. Syntactic approaches are able to probabilistically recognize hierarchical ac-
tivities composed of sequential subevents, but are inherently limited for activities
composed of concurrent subevents. Since syntactic approaches model a high-level ac-
tivity as a string of atomic-level activities that compose them, the temporal ordering of
atomic-level activities has to be strictly sequential. In addition, synthetic approaches
assume that all observations are parsed by applying their production rules. For these
systems, a user must provide a set of production rules for all possible events, even for
a large domain. Therefore, they tend to have difficulty when an unknown observation
(e.g., a pedestrian) interferes with the system. In order to overcome such a limitation,
there was an attempt by Kitani et al. [2007] to develop an algorithm to learn grammar
rules from observations automatically.

3.3. Description-Based Approaches

A description-based approach is a recognition approach that explicitly maintains hu-
man activities’ spatio-temporal structures. It represents a high-level human activity
in terms of simpler activities that compose the activity (i.e., subevents), describing
their temporal, spatial, and logical relationships. That is, description-based approaches
model a human activity as an occurrence of its subevent (which might be composed
of their own subevents) that satisfies certain relations. Therefore, recognition of the
activity is performed by searching the subevents satisfying the relations specified in
its representation. All description-based approaches are inherently hierarchical (since
they use subevents to represent human activities), and they are able to handle activities
with concurrent structures.

In description-based approaches, a time interval is usually associated with an oc-
curring subevent to specify necessary temporal relationships among subevents. Allen’s
temporal predicates [Allen 1983; Allen and Ferguson 1994] have been widely adopted
for these approaches, to specify relationships between time intervals [Pinhanez and
Bobick 1998; Siskind 2001; Nevatia et al. 2003; Vu et al. 2003; Ryoo and Aggarwal
2006a; Gupta et al. 2009]. Seven basic predicates that Allen has defined are: before,
meets, overlaps, during, starts, finishes, and equals. Note that the predicates before and
meets describe sequential relationships while the other predicates are used to specify
concurrent relationships. Figure 12(a) illustrates a conceptual temporal structure of
the human-human interaction pushing represented in terms of time intervals.

In a description-based approach, a CFG is often used as a formal syntax for the rep-
resentation of human activities [Nevatia et al. 2004; Ryoo and Aggarwal 2006a]. Notice
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that the description-based approaches’ use of CFGs is completely different from that of
syntactic approaches: Syntactic approaches directly use CFGs for the recognition, im-
plying that the CFGs themselves describe the semantics of the activities. On the other
hand, a description-based approach adopts a CFG as a syntax to formally represent the
activities. The activity semantics are usually encoded in a structure similar to that of a
programming language (e.g., Figure 12(b)), and the CFG only plays a role to ensure that
the activity representation fits its grammar. In general, the recognition is performed
by developing an approximation algorithm to solve the constraint satisfaction problem
(which is NP-hard).

Pinhanez and Bobick [1998] directly adopted the concept of Allen’s interval alge-
bra constraint network (IA-network) [Allen 1983] to describe the temporal structure
of activities. In an IA-network, subevents are specified as nodes and their temporal
relationships are described with typed edges between them. Pinhanez and Bobick de-
veloped a methodology to convert an IA-network into a {past, now, future} network
(PNF-network). The PNF-network that they proposed is able to describe the identical
temporal information contained in the [A-network, while making it computationally
tractable.

Pinhanez and Bobick developed a polynomial time algorithm to process the PNF-
network. Their system recognizes the top-level activity by checking which subevents
have already occurred and which have not. They have shown that their representation
is expressive enough to recognize cooking activities occurring in a kitchen environment,
such as picking up a bowl. Atomic-level actions were labeled manually from the video
in the experiments; the system was able to recognize the activities even when one of
the atomic actions was not provided. One of the drawbacks of the system is that a
subnetwork corresponding to a subevent has to be specified redundantly if it is used
multiple times. Another limitation is that all subevent relations have to be expressed
in a network form.

Intille and Bobick [1999] designed a description-based recognition approach to ana-
lyze plays in American football. Even though their system was limited to using conjunc-
tions of relatively simple temporal predicates (before and around), they have shown
that complex human activities can be represented by listing the temporal constraints in
a format similar to those of programming languages, instead of a network form. Intille
and Bobick represented human activities via three levels of hierarchy: atomic-level,
individual-level, and team-level activities.

A Bayesian belief network is constructed for the recognition of the activity, based on
its temporal structure representation. The root node of the belief network corresponds
to the high-level activity that the system aims to recognize. The other nodes correspond
to the occurrence of the subevents or describe the temporal relationships between the
subevents. The nodes become true if the subevents occur and the relationships are
satisfied. Only when all nodes are probabilistically satisfied and propagated to the root
node, is the activity said to be detected. Similar to Pinhanez and Bobick [1998], Intille
and Bobick have used manually labeled data.

Siskind [2001] also proposed a hierarchical description-based approach for human
activity recognition. Notably, it was able to represent and recognize high-level activities
with more than three levels. Siskind’s methodology uses force dynamics for the recog-
nition of simple actions, and uses the description-based approach called event logic to
recognize high-level activities. It particularly focused on the recognition of an activity
with a liquid characteristic, whose occurrences are true for all subintervals of a par-
ticular time interval. The approach computes the recognized activity’s time interval by
calculating the union and intersection of subevents’ time intervals, assuming liquidity.
This suggests that the recognized activity itself can be used as a subevent of another
activity, but is permitted to be used only once.
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Nevatia et al. [2003] designed a representation language called VERL to describe
human activities. They classified human activities into three categories, similar to
Intille and Bobick [1999], enabling the representation of human activities that have
three levels of hierarchy: primitive events, single-thread composite events, and mul-
tithread composite events. Allen’s temporal predicates, spatial predicates, and logical
predicates were used to represent human activities by specifying their necessary condi-
tions. Bayesian networks are used for primitive event recognition, and HMMs are used
for the recognition of single-thread composite events (i.e., they are strictly sequential).
A heuristic algorithm is designed for the constraint satisfaction problem, recognizing
interactions between multiple persons. The system is probabilistic, but was not able to
overcome the failures of low-level components. The Vu et al. [2003] approach is sim-
ilar to Nevatia et al. [2003], while extending the representation to describe activities
with any levels of hierarchy. However, unlike the Nevatia et al. system, only conjunc-
tive predicates are allowed when concatenating multiple temporal relationships (i.e.,
only and is allowed, not or). Hakeem et al. [2004] designed a representation language,
CASEE, which also represents an activity as a conjunction of necessary temporal and
causal relations.

Several researchers utilized Petri nets to represent and recognize human activities
[Zaidi 1999; Nam et al. 1999; Ghanem et al. 2004]. Petri nets specify the temporal
ordering of an activity’s subevents in terms of a graph representation. The recognition
is done by sequentially handing tokens in the graph, where each node corresponds to a
state before (or after) the completion of particular sub-events. Zaidi [1999] showed that
the Petri nets are able to fully represent temporal relationships described by Allen’s
temporal predicates. Nam et al. [1999] applied the Petri nets for the recognition of
hand gestures from videos. Ghanem et al. [2004] took advantage of the Petri nets to
represent and recognize interactions between humans and vehicles similar to Ivanov
and Bobick [2000]. Due to the Petri net characteristic that the tokens cannot describe
multiple possibilities and are nonreversible (i.e., the recognition process is strictly se-
quential), these deterministic systems have limitations in terms of processing complex
scenes.

In order to overcome the limitations of the previous approaches, Ryoo and Aggar-
wal [2006a] proposed a description-based approach using a CFG as a syntax of their
representation language. Their formal grammar enables the representation of human-
human interactions with any levels of hierarchy, which are described as logical con-
catenations (and, or, and not) of complex temporal and spatial relationships among
their subevents. As a result, they represent high-level human interactions composed
of concurrent subevents (e.g., hand shaking and pushing) in terms of time interval
variables and predicates (e.g., Allen’s temporal predicates). They have developed a hi-
erarchical semantic matching between the observations and the representations for
activity recognition. At the lowest level, Bayesian networks and HMMs are used for
the recognition of atomic actions from a sequence of raw image frames. Recognition of
represented high-level activities is done by performing a hierarchical matching from
the bottom to the top.

In addition, their approach was extended to recognize recursive activities of a contin-
uous nature, such as fighting and greeting [Ryoo and Aggarwal 2006b]. Even though
the representation of recursive activities with sequential subevents is possible with
syntactic approaches, the recognition of recursive activities with complex concurrent
subevents has been limited. The authors have introduced the special time interval ¢his,
which always corresponds to the activity being represented, and proposed an iterative
algorithm to recognize activities described using this. With the proposed approach, the
recursive activity of fighting was represented as a single negative interaction (e.g.,
punching and pushing) followed by shorter episode of fighting, and was successfully.
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Furthermore, Ryoo and Aggarwal [2009a] proposed a probabilistic extension of their
recognition framework that is able to compensate for the failures of its low-level com-
ponents. One of the limitations of description-based approaches is that they are mostly
deterministic, and are fragile when their low-level components are noisy. Ryoo and Ag-
garwal have overcome such limitations. They have used a logistic regression to model
the probability distribution of an activity, and used it to detect the activity even when
some of its subevents have been misclassified. In order to compensate for the complete
failure of the atomic-level components (i.e., no atomic action detected at all), they took
advantage of the concept of the hallucination time intervals, similar to the ones used
in Minnen et al. [2003].

There have also been attempts to adopt symbolic artificial intelligence techniques
to recognize human activities. Tran and Davis [2008] adopted Markov logic networks
(MLNs) to probabilistically infer events in a parking lot. This 2-layered approach suc-
cessfully handled uncertainties in human activities. However, their MLNs relied on
the assumption that an identical subevent occurs only once during interactions, thus
limiting itself from being applied to dynamically interacting actors.

Gupta et al. [2009] recently presented a description-based approach for a probabilis-
tic analysis as well. Unlike other description-based approaches designed to recognize
complex activities, their approach aims to recognize atomic-level actions more reliably
by modeling causality among the actions. A tree structured AND-OR graph similar
to Hongeng et al. [2004] was used to represent a storyline of a sports game (e.g.,
baseball), labeling each action (e.g., hitting) that fits the storyline. Their system it-
eratively searches for the best explanatory AND-OR graph structures and the best
video-action associations by taking advantage of captions and video trajectories. That
is, a representation-fitting algorithm has been developed.

3.4. Comparison

Hierarchical approaches are suitable for recognizing high-level activities which can be
decomposed into simpler subevents. Due to their nature, they can more easily incor-
porate human knowledge into the systems and require less training data, as pointed
out by many researchers [Oliver et al. 2002; Nevatia et al. 2003; Ryoo and Aggarwal
2006a]. Statistical and syntactic approaches provide a probabilistic framework for re-
liable recognition with noisy inputs. However, they have difficulties representing and
recognizing activities with concurrently organized subevents.

Description-based approaches are able to represent and recognize human activities
with complex temporal structures. Not only sequentially occurring, but also concurrent
organized subevents are handled with description-based approaches. The major draw-
back of description-based approaches is their inability to compensate for the failures of
low-level components (e.g., gesture detection failure). That is, most of the description-
based approaches have a deterministic high-level component. Pinhanez and Bobick
[1998] showed that the high-level system has the potential to compensate for a single
low-level detection failure, and a couple of recent works have proposed probabilistic
frameworks for description-based approaches [Ryoo and Aggarwal 2009a; Gupta et al.
2009]. Table III compares the abilities of important hierarchical approaches.

4. HUMAN-OBJECT INTERACTIONS AND GROUP ACTIVITIES

In this section we present and summarize previous papers on the recognition of human-
object interactions and those on the recognition of group activities. Such approaches
fall into different categories if the approach-based taxonomy of the previous sections is
applied as shown in Figures 2 and 3. However, even though they use different method-
ologies for recognition, they exhibit interesting common properties and characteristics
as they share the same objective. In the first section (4.1), we discuss approaches for
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(a) A human-object interaction of a person placing a box in a trash bin.
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(b) A human-object interaction of a person stealing another’s suitcase.

Fig. 13. Example human-object interactions that Ryoo and Aggarwal [2007] have recognized (©2007 IEEE).

analyzing interplays between humans and objects. Next, we compare various recogni-
tion approaches for group activities.

4.1. Recognition of Interactions between Humans and Objects

In order to recognize interactions between humans and objects, an integration of mul-
tiple components is required. The identification of objects and motion involved in an
activity, as well as analysis of their interplays, is essential for the reliable recognition
of human activities involving humans and objects. While we provide an overview of
general human-object recognition approaches, we particularly focus on the approaches
that analyze interplays among object recognition, motion estimation, and activity-level
analysis toward robust recognition of human-object interactions. Figure 13 shows an
example of human-object interactions.

The most typical human-object interaction recognition approaches are those that
ignore interplays between object recognition and motion estimation. In those works,
objects are generally recognized first, and activities involving them are recognized by
analyzing objects’ motion. They have made object recognition and motion estimation
independent or made it so that motion estimation is strictly dependent on object recog-
nition. Most of the previous recognition approaches fall into this category, including
the approaches that we discussed in previous sections [Siskind 2001; Vu et al. 2003;
Nevatia et al. 2003; Shi et al. 2004; Yu and Aggarwal 2006; Damen and Hogg 2009].

On the other hand, several researchers have studied relationships and dependencies
among objects, motion, and human activities to improve object recognitions as well
as activity recognition [Moore et al. 1999; Gupta and Davis 2007; Ryoo and Aggarwal
2007]. In principle, these components are highly dependent on each other: objects have
their own roles, suggesting that the way humans interact with an object depends on
the identity of the object. For example, an object, the water bottle, is expected to be
involved in a particular type of interaction: drinking. Therefore, the motion related to
the water bottle must be different from that of spray bottle, even though they appear
similar. Several researchers have designed a probabilistic model describing mutual
information between objects and the inherent human motions with the objects. The
results suggest that the recognition of objects can benefit activity recognition, while
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activity recognition helps the classification of objects; we discuss these approaches one
by one.

Moore et al. [1999] constructed a system that compensates for the failures of ob-
ject classification with the recognition results of simple actions. Most of the time,
this system performs the object recognition first, and then estimates human activities
with objects by depending on the object recognition results, as most other researchers
have done. However, when an object component fails to make a concrete decision,
their systems uses the objects’ action information to compensate for the object recog-
nition. In order to recognize actions, positions of hands and their tracking results are
used. HMMs are applied to characterize actions based on the tracking results. Finally,
object-based evidence is integrated with action-based evidence by using a Bayesian
network to decide the final class of object, making the system recover from the fail-
ure of object recognition. Moore et al. have tested their system with various objects
in office, kitchen, and automobile environments (such as books, phones, bowls, cups,
and steering wheels). They focused on the recognition of simple activities of a single
person.

Peursum et al. [2005] proposed a Bayesian framework for the better labeling of
objects based on activity context. Similar to Moore et al. [1999], they focused on the fact
that humans interact with objects in many different ways, depending on the function of
the objects. They pointed out that appearance (i.e., shape) cues of objects are unreliable
due to scale and viewpoint variations, and presented an object recognition based solely
on the activity information. The system calculates an interaction signature per object,
which essentially is a concatenation of activity recognition results involving the object.
HMNM:s are adopted for the action recognition: a 3-D pose skeleton of a person as well as
the relative locations of objects are analyzed to recognize activities, where each object
candidate is computed by region segmentation based on color. Peursum et al. have
recognized objects such as floor, chair, and keyboard, by recognizing printing-related
activities.

Gupta and Davis [2007] proposed a probabilistic model integrating an objects’ ap-
pearance, human motion with objects, and reactions of objects. Similar to Moore et al.
[1999], a Bayesian network is constructed to combine cues. Two types of motion in
which humans interact with objects, that is, “reach motion” and “manipulation mo-
tion,” are estimated using trajectories as well as HMMs. The reactions of objects, that
is, the effect of human activity in relation to their interaction with objects, such as
“a light going on after pressing the switch,” are considered for classification as well.
The Bayesian network integrates all of this information, and makes a final decision
to recognize objects and human activities. Human-object interactions involving cups,
spray bottles, phones, and flashlights have been recognized in their experiments.

Ryoo and Aggarwal [2007] designed and implemented a recognition system for high-
level human-object interactions such as “a person stealing another’s suitcase.” Similar
to the above-mentioned approaches [Moore et al. 1999; Gupta and Davis 2007], the
Ryoo and Aggarwal object recognition and motion estimation components were con-
structed to help each other. Furthermore, their system was designed to compensate for
object recognition failures or motion estimation failures using high-level activity recog-
nition results probabilistically. That is, the object recognition and motion estimation
components not only help each other, but also get feedback from the high-level activ-
ity recognition results for improved recognition. For example, by observing a person
pulling an object in an airport environment, their system was able to deduce that it is
the activity of “a person carrying a suitcase” and provide feedback that the object in the
scene is a suitcase. Via experiments, they have shown that the feedback generated by
the high-level activity recognition may benefit object recognition, motion estimation,
and low-level tracking of objects.
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Fig. 14. Example group activities from the Ryoo and Aggarwal [2008]’s dataset. From left to right, snapshots
of group activities: group carrying, group stealing in an office, group stealing in a shop, group fighting, and
group arresting. Group stealing is a situation where a thief takes an object while the other thieves distract
its owners.

4.2. Recognition of Group Activities

Group activities are those whose actors are one or more conceptual groups. “A group
of soldiers marching” and “a group of persons carrying a large object” are examples of
simple group activities. In order to recognize group activities, the analysis of activities
of individuals as well as their overall relations becomes essential. In this section, we
discuss the recognition approaches to group activities, while focusing on the types of
activities that they recognized. There are various types of group activities, and most of
the work specializes in recognizing a particular type among them. Figure 14 illustrates
example snapshots of various group activities.

First of all, researchers have focused on the recognition of group activities where
each group member has its own role, different from the others [Cupillard et al. 2002;
Gong and Xiang 2003; Lv et al. 2004; Zhang et al. 2006; Dai et al. 2008]. The goal of
these approaches is to recognize an activity of a single group with a limited number
of members who exhibit nonuniform behaviors. The group activity, presentation with
a fixed number of participants in a meeting room is an example of this type: the
presenter is talking while the other members are taking notes, asking questions, and/or
listening. For this type of group activity, the system must recognize the activities of
each individual member and then analyze their structures. By nature, most of these
approaches are hierarchical, since there exist at least two-levels of activities: activities
of the group and activities of individual persons. Statistical hierarchical approaches
that use state models we discussed in Section 3.1 are especially popular. Essentially,
this type of group activity is equivalent to multiagent interactions recognized by [Intille
and Bobick 1999; Ivanov and Bobick 2000; Vu et al. 2003; Nevatia et al. 2003; Joo and
Chellappa 2006; Ryoo and Aggarwal 2007].

Cupillard et al. [2002] recognized a group activity using a finite state machine,
which is equivalent to a fully observable Markov model. They used multiple cameras,
and were able to recognize the activity that “a group is fighting” which is essentially
intragroup fighting of a group composed of two members. Similarly, as in Section 3.1,
Gong and Xiang [2003] used variations of dynamic Bayesian networks to recognize
group activities. With their system, they have recognized “a group of trucks loading (or
unloading) baggage on an airplane” which is a group activity of a fixed number of trucks
and an airplane. Zhang et al. [2006] recognized a group activity occurring in a meeting
room using DBNSs, similar to Gong and Xiang [2003]. Sequentially organized group
activities including monologues, discussion, presentation, and note-taking have been
successfully recognized. Similarly, Dai et al. [2008] recognized break, presentation, and
discussion using DBNs with hierarchical structures.

The second type of group activity is that characterized by the overall motion of an
entire group. A group of people parading or marching is a typical example of this type.
In contrast to the first type of group activity where the individual activities of specific
members are important, the analysis of overall motion and formation changes of the
entire group is important for the second type of group activity. By their nature, single-
layered approaches are appropriate for recognition, since all the motions of group
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members must be considered simultaneously [Vaswani et al. 2003; Khan and Shah
2005].

Vaswani et al. [2003] have recognized group activities of people interacting with an
airplane. Their approach corresponds to the category of single-layered exemplar-based
sequential approaches presented in Section 2.1.3. They represented a group activity
as a shape change over time frames. At each frame, they extracted & point objects
and constructed a polygon by treating the extracted points as corners. The points are
tracked, and the dynamics of shape changes following the statistical shape theory are
maintained. Their system was able to distinguish normal and abnormal activities by
comparing the activity shape extracted from an input with a maintained model in a
tangent space. Similarly, Khan and Shah [2005] recognized a group of people parading
by analyzing the overall motion of group members. They use a single-layered space-time
approach using trajectory features, discussed in Section 2.1.2. The authors extracted
the trajectory of each group member, and analyzed their activities by fitting a 3-D
polygon to check the rigidity formation of the group.

Finally, Ryoo and Aggarwal [2008] developed a general representation and recogni-
tion methodology that is able to handle various types of group activities. Their approach
is a description-based approach (Section 3.3), and various classes of group activities
including group actions (e.g., marching), group-group interactions (e.g., group steal-
ing), group-persons interactions (e.g., march by signal), and intra-group interactions
(e.g., intragroup fighting) have been represented and recognized with this system. They
took advantage of the universal (V) and existential (3) quantifiers to describe subevents
(usually activities of individuals) that need to be performed by any one member of a
group or by all members of a group. By attaching the universal and existential quan-
tifiers to the participating group members, their system was able to represent most
group activities that previous researchers recognized. The first class of activities that
we discussed above is represented by attaching an existential quantifier to each ac-
tor of the group activity. The second class of activities is represented by applying the
universal quantifier and by posing spatial constraints to the group. In addition, high-
level group activities with complex structures that the previous methods had difficulty
representing and recognizing, such as “a thief stealing an object while other thieves dis-
tract the owners” or “policemen arresting a group of criminals,” have been successfully
represented and recognized with their system.

5. DATASETS AND REAL-TIME APPLICATIONS

In this section, we discuss public datasets available for the performance evaluation of
the approaches, and review real-time human activity recognition systems.

5.1. Datasets

Public datasets provide a common criterion to measure and compare the accuracy of
the proposed approaches. Therefore, a construction of a dataset containing videos of
human activities plays a vital role in the advancement in the research of human activity
recognition. In this section, we describe the existing human activity datasets that are
currently available and discuss the characteristics of the datasets. We also compare
the performance of the systems tested on an identical dataset.

Existing datasets that have been made publicly available can be categorized into
three groups, as follows. The first type of dataset includes the KTH dataset [Schuldt
et al. 2004] and the Weizmann dataset [Blank et al. 2005], which are designed to
test general-purpose action recognition systems academically. They contain videos of
different participants performing simple actions such as walking and waving, which
are taken by the authors in a controlled environment. The second type is a class of more
application-oriented datasets obtained from realistic environments (e.g., an airport).
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Fig. 15. Example snapshots from the KTH dataset [Schuldt et al. 2004] (©2004 IEEE).

The PETS datasets containing activities like baggage stealing and fighting are typical
examples of this type, targeted for surveillance applications. In addition, datasets
collected from real video media such as TV broadcasts and movies have recently been
constructed and presented.

5.1.1. Action Recognition Datasets. A large number of researchers have tested their sys-
tem on the KTH dataset [Schuldt et al. 2004; Dollar et al. 2005; Jiang et al. 2006;
Niebles et al. 2006; Yeo et al. 2006; Ke et al. 2007; Kim et al. 2007; Jhuang et al. 2007;
Savarese et al. 2008; Laptev et al. 2008; Liu and Shah 2008; Bregonzio et al. 2009;
Rapantzikos et al. 2009; Ryoo and Aggarwal 2009b] and the Weizmann dataset [Blank
et al. 2005; Niebles et al. 2006; Scovanner et al. 2007; Rodriguez et al. 2008; Bregonzio
et al. 2009]. The KTH dataset is a large-scale dataset that contains 2391 videos of
six actions performed by 25 subjects. Walking, jogging, running, boxing, hand-waving,
and hand-clapping are the six actions contained in the dataset (Figure 15). Videos are
taken at slightly different scales with various backgrounds in indoor and outdoor envi-
ronments (but mostly uniform backgrounds). Each video contains repeated executions
of a single action in a resolution of 160%120, 25fps. Similarly, the Weizmann dataset
consists of 10 action categories with 9 people, resulting in 90 videos. In the Weizmann
dataset, a static and simple background is used throughout the videos. Simple hu-
man actions of running, walking, jumping-jack, jumping forward on two legs, jumping
in place on two legs, galloping sideways, waving one hand, waving two hands, and
bending are performed by the actors. The resolution of the videos is 180%144, 25fps.
Both dataset are composed of relatively simple action-level activities, and only one
participant appears in the scene.

What we must note is that these datasets are designed to verify the classification
ability of the systems on simple actions. Each video of the datasets contains executions
of only one simple action, performed by a single actor. That is, entire motion-related
features extracted from each video correspond to a single action, and the goal is to
identify the label of the video while knowing that the video belongs to one of a limited
number of known action classes. Further, all actions in both datasets except for the
“bend” action of the Weizmann dataset are periodic actions (e.g., walking), making the
videos suitable for action-level classification systems.

Due to their nature, testing the methodologies utilizing spatio-temporal local fea-
tures (Section 2.1.3) is popular. As discussed in previous sections, such approaches do
not require background subtraction and are robust to scale changes. Further, they are
particularly suitable for recognition of periodic actions, since spatio-temporal features
will be extracted repeatedly from the periodic actions. Figure 16 compares the classifi-
cation accuracies of the systems. The X axis corresponds to the time of the publication,
while the Y axis shows the classification performance of the systems. Most of the sys-
tems tested on the Weizmann dataset have obtained successful results, mainly due to
the simplicity of the dataset. Particularly, [Blank et al. 2005; Niebles et al. 2006; Ro-
driguez et al. 2008; Bregonzio et al. 2009] have obtained more than 0.95 classification
accuracy.

5.1.2. Surveillance Datasets. On the other hand, the PETS datasets (i.e., the datasets
provided at the PETS workshops on 2004, 2006, 2007) and other similar datasets,
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Fig. 16. The classification accuracies of various systems tested on the KTH dataset. The X axis corresponds
to the time of publication. Only the results of the systems with the common experimental settings, the
original 16 training-9 testing setting [Schuldt et al. 2004; Laptev et al. 2008] or the leave-one actor-out
cross-validation setting (i.e., 25-fold cross-validation), are shown. Results of other systems using nontrivial
settings, such as Wong et al’s [2007] system tested with 100-fold cross-validations, Kim et al’s [2007] system
using manually-labeled bounding boxes, and Jhuang et al.’s [2007] system tested with the subsets, are not
presented. The results of Niebles et al. [2006] and Savarese et al. [2008] are from the system trained with
unlabeled data (i.e., unsupervised learning). [Dollar et al. 2005; Niebles et al. 2006; Savarese et al. 2008;
Ryoo and Aggarwal 2009b] used the same cuboid features, and most of the other systems developed their
own features to recognize the actions.

including the i-Lids dataset, are composed of realistic videos in uncontrolled envi-
ronments such as crowded subway stations and airports. The camera viewpoints are
similar to those of typical CCTVs, and even multiple camera viewpoints are provided
in some of the datasets. Cameras are fixed, implying that the backgrounds are static
and the scales for persons are mostly constant. Multiple persons and objects appear
in the scene simultaneously, and occlusion among them occurs frequently. The goal of
these surveillance videos is to test the ability of recognition systems to analyze realis-
tic and specific (e.g., baggage abandonment and baggage theft) activities, which are of
practical interest. These datasets are closely related to real-time applications, which
we will discuss in the following section.

The PETS 2004 dataset (also known as the CAVIAR dataset) contains 6 categories of
activities where each category is composed of one or more actions: walking, browsing,
resting-slumping-fainting, leaving bags behind, people meeting, walking together, and
splitting up, and fighting. Each class has 3 to 6 videos, providing a total of 28 videos.
Videos have 384*%288 spatial resolution, 25fps. Background images are provided, and
the videos were taken in a shop environment. It is a single viewpoint dataset (i.e., only
one camera was installed).

In the PETS 2006 dataset, 7 long video sequences were provided from every one
of the 4 different viewpoints. The PETS 2006 dataset focused on the baggage aban-
donment problem: each sequence contains an event in which a bag is abandoned in a
train station. Either one or two persons participated in the activity, and several other
pedestrians were present in the scene. All four cameras had a high spatial resolution of
768*576 with 25fps. The PETS 2007 have a similar setup to the PETS 2006. The videos
were taken in an airport hall with four cameras, providing eight executions of human
activities. They focused on human-baggage interactions: two sequences of general loi-
tering, four sequences of baggage theft, and two sequences of baggage abandonment
similar to those of the PETS 2006. The resolution of the images are identical to the
PETS 2006. Actors, objects, and pedestrians were severely occluded in the videos.
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Similar to the PETS datasets, the recently introduced i-Lids dataset focuses on
the baggage abandonment problem. Videos were taken from a single viewpoint in
a London subway station, in a crowded environment. The videos not only contain
persons and objects, but also a moving subway train in which people get out and in.
Humans and objects were severely occluded by each other, and pedestrians were easily
occluded by pillars in the station. Three videos were provided for training and validation
purposes, and a lengthy video containing six baggage abandonment activities were
given for testing. Videos have a resolution of 720%576 with 25fps. There was a real-
time abandoned baggage-detection competition at the AVSS 2007 conference with the
dataset [Venetianer et al. 2007; Bhargava et al. 2007].

Several works testing their systems on these surveillance datasets have been pub-
lished [Lv et al. 2004; Kitani et al. 2005; Ribeiro et al. 2007]. In contrast to the datasets
mentioned in Section 5.1.1, the surveillance datasets are motivated by the practical
needs for constructing surveillance systems for public safety. They provide more re-
alistic videos in practical environments. However, they lack generality in a certain
aspect, since they are highly oriented toward surveillance applications. That is, they
are focused on particular types of activities.

5.1.3. Movie Datasets. Movie datasets are composed of challenging videos obtained from
real movie scenes (or from TV broadcasts). Unlike the datasets in Section 5.1.1, they are
not taken in a controlled environment. They are different from the datasets in Section
5.1.2 as well, since camera viewpoints move frequently, and background information
is seldom provided. Most of the movie datasets [Ke et al. 2007; Laptev and Perez 2007;
Laptev et al. 2008; Rodriguez et al. 2008] focused on relatively simple actions such
as kissing and hitting. Even though the actions are simple, each video of an action
exhibits person-dependent, viewpoint-dependent, and situation-dependent variations.
Thus, the major challenge is in handling those variations rather than recognizing
complex structured activities; space-time feature-based approaches have been applied
to solve the problem.

5.2. Real-Time Applications

In this section, we review several computer vision systems designed to recognize activ-
ities in real-time. Even though the approaches that we have discussed in the previous
sections have shown results on various types of human activities, most of the pro-
posed algorithms are far from being real-time. In order for an activity recognition
methodology to be applicable for real-world applications, including surveillance sys-
tems, human-computer interfaces, intelligent robots, and autonomous vehicles, this
computational gap must be overcome.

Recently, various real-time human activity recognition systems have been proposed,
and we review some of them here. The general idea of most of them is to increase the
efficiency of the algorithms by simplifying them. These systems focus on the utiliza-
tion of simple but effective features instead of performing a detailed analysis. Lv et al.
[2004] used a traditional Bayesian posterior probability calculation for the recognition
of actions. In order to detect activities reliably without spending too much on com-
putational costs, their approach searches for an optimal set of features from a large
number of features. They have proposed a dynamic programming algorithm to find a
set of features that maximizes the detection accuracy on the training data. The PETS
2004 dataset has been used for the testing.

Yeo et al. [2006] focused on a frame-to-frame similarity measurement based on optical
flow calculations. The key to their system is the fact that the modern video compression
technology takes advantage of the optical flows to encode the videos. That is, optical
flows are naturally embedded in the videos, and are easily extractable. The similarities
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between frames are measured based on the optical flow distribution, and are aggregated
to measure the similarities between two videos. Their approach can be seen as a
sequential exemplar-based approach similar to Efros et al. [2003]; the KTH dataset
has been applied to test their system.

The Li et al. [2008] approach is that of a space-time trajectory analysis. They used
the principal component analysis (PCA) to compress the trajectories from a high-
dimensional space to a low-dimensional one. Several learning algorithms were applied
on the low-dimensional trajectories, and the Gaussian mixture model was adopted for
the classification. The reduction in dimensionality provided the ability to process videos
in real-time. Their system was also tested with the KTH dataset.

Notably, Rofouei et al. [2008] utilized the graphical processing units (GPUs) of com-
puter systems to enable the real-time recognition of human activities. Instead of mak-
ing the algorithms simpler, they focused on the fact that modern hardware is able to
support computationally expensive processing. The state-of-the-art graphic cards are
composed of GPUs with many cores, suggesting that they are able to compute repetitive
computations in parallel. This implies that they are suitable for the parallel processing
of many computer vision algorithms analyzing images and videos (e.g., a GPU-based
SIFT feature extraction). Rofouei et al. [2008] designed a GPU-version algorithm of
Dollar et al. [2005], which is 50 times faster than the CPU implementation of the
algorithm, without sacrificing performance. They illustrated the potential for GPUs (or
multi-core CPUs) to greatly improve the speed of computer vision systems, enabling
the real-time implementation of existing activity recognition algorithms.

6. CONCLUSION

Computer recognition of human activities is an important area of research in computer
vision with applications in many diverse fields. The application to surveillance is nat-
ural in today’s environment, where the tracking and monitoring people is becoming
an integral part of everyday life. Other applications include human-computer inter-
action, biometrics based on gait or face, and hand and face gesture recognition. We
have provided an overview of the current approaches to human activity recognition.
The approaches are diverse and yield a spectrum of results. The senior author of this
article has been involved in the study of motion since the early 1970s [Aggarwal and
Duda 1975] and in the area of human activity recognition since the early 1980s [Webb
and Aggarwal 1982]. The impetus for the study of human motion and human activity
was provided by Johansson’s [1975] pioneering work in the early 1970s; human activity
research came to the forefront in the early 1990s.

In this review we have summarized the methodologies previously explored for the
recognition of human activity, and discussed the advantages and disadvantages of
those approaches. An approach-based taxonomy was designed and applied to catego-
rize previous works. We have discussed nonhierarchical approaches developed for the
recognition of gestures and actions as well as hierarchical approaches for the analysis
of high-level interactions between multiple humans and objects. Nonhierarchical ap-
proaches were again divided into space-time approaches and sequential ones, and we
discussed the similarities and differences of the two thoroughly. Previous publications
on hierarchical methodologies including statistical, syntactic, and description-based
approaches were compared as well.

In 1999, human activity recognition was in its infancy, as Aggarwal and Cai [1999]
pointed out. A significant amount of progress on human activity recognition has been
made in the past ten years, but it is still far from being an off-the-shelf technology. We
are at a stage where experimental systems are deployed at airports and other public
places. It is likely that more and more such systems will be deployed. There is a strong
interaction between the surveillance authorities and computer vision researchers. For
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example, Mubarak Shah of the University of Central Florida and the Orlando Police
Department are joining forces to develop a system to monitor downtown Orlando:
http://server.cs.ucf.edu/~vision/ projects/Knight/Knight.html.

Further, today’s environment for human activity recognition is significantly different
from the scenario at the end of the last decade. The cameras were mostly fixed and
without pan-tilt-zoom adjustments. Today’s cameras may be mounted on several types
of moving platforms, ranging from a moving car or a truck to an unmanned aerial
vehicle (UAV). A global positioning system may be attached to the camera system to
pin-point its location. The recognition of activity from a moving platform poses many
more challenges. Noise, tracking, and segmentation issues arising out of stabilization
of video add to the difficulty of the problem for the recognition of activities. Tracking is a
difficult problem, although animals and human do it almost effortlessly. If the tracking
algorithm does not extract the object of the focus of attention, recognizing the activity
being performed becomes enormously more difficult. Designing an activity recognition
system that is able to compensate for low-level failures in such environments (.e.,
moving platforms) is an extremely challenging task.

The future direction of research is obviously encouraged and dictated by applications.
The pressing applications are the surveillance and monitoring of public facilities like
train stations, underground subways or airports, monitoring patients in a hospital
environment or other health care facilities, monitoring activities in the context of UAV
surveillance, and other similar applications. All of these applications are trying to
understand the activities of an individual or the activities of a crowd as a whole and as
subgroups. These problems will occupy us for a number of years and several generations
of graduate students.

As pointed out previously, segmenting and tracking multiple persons in videos is
harder than it appears. This difficulty is partly due to poor lighting, crowded envi-
ronments, noisy images, and camera movements. For example, lighting in subways is
almost universally poor. Further, it is difficult to segment individuals or their body
parts when occlusion is present in the scene. Alternative approaches to segmenting
body parts based on analyzing 3-D XYT volumes by extracting gross features are being
developed. In particular, 3-D local patch features described in terms of histogram of
gradient (HOG) and/or histogram of optical flow (HOOF), such as cuboids [Dollar et al.
2005] and 3-D SIFT [Scovanner et al. 2007], are gaining popularity. These approaches
are motivated by the success of object recognition using 2-D local descriptors (e.g., SIFT
[Lowe 1999]).

However, they involve long feature vectors obtained from a large 3-D XYT volume
created by concatenating image frames, and are likely to have an impact on real-
time analysis. The 3-D search space is much larger than its 2-D versions. Further,
the existing local space-time features generally require a nontextured background for
reliable recognition, such as the ones in the KTH and Weizmann datasets [Schuldt
et al. 2004; Blank et al. 2005]. Also, a limited amount of work has been published
on the 3-D feature-based approaches for analysis of complex human activities. What
we need is an approach that exploits the easy computation of SIFT, HOG, and HOOF
operators and avoids the difficulties of segmentation of body parts and/or combines the
two approaches in a meaningful way.

One promising direction for enabling real-time implementation is the study of hard-
ware support. Rofouei et al. [2008] have implemented a GPU-based version of the cuboid
feature extractor, utilizing graphical processing units (GPUs) with tens of cores run-
ning thousands of threads. The GPU-version turned out to be 50 times faster than its
CPU counterpart, while obtaining the same results. Modern CPUs and GPUs are com-
posed of multiple cores, and the number of cores is likely to increase continually for the
next few years, suggesting that computer vision researchers explore their utilization.
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There are a number of other innovative approaches being explored. One such ap-
proach is exploiting the fact that images, high-dimensional signals, may possibly reside
in low-dimensional manifolds. Several researchers are pursuing issues relating to char-
acterizing the manifolds and exploring the relationships of the manifolds of different
activities of the same person or the same activity of different persons [Veeraraghavan
et al. 2006]. The temporal segmentation of activities and gestures is still a difficult
issue. The inability to simultaneously register rigid and nonrigid parts of a face (parts
of the human body in general) contributes to this difficulty. In certain activities, parts
of the body move fairly rigidly whereas other parts undergo nonrigid motions, for ex-
ample, the movement of the head/face. Shape deformations may be modeled as a linear
combination of unknown shape bases [la Torre Frade et al. 2007], providing another
approach to the recognition of facial expressions.

Hierarchical recognition approaches are being studied intensively, especially for
the recognition of complex multiperson activities. In particular, description-based ap-
proaches are gaining an increasing amount of popularity due to their ability to rep-
resent and recognize human interactions with complex spatio-temporal structures.
Activities with structured scenarios (e.g., most surveillance scenarios) require hierar-
chical approaches, and the description based approaches show the potential for mak-
ing a reliable decision probabilistically. In the near future, hierarchical approaches
together with strong action-level detectors such as the ones mentioned previously, will
be explored for reliable recognition of complex activities. As we have shown in previous
sections, hierarchical approaches have their advantages in the recognition of high-level
activities performed by multiple persons, hence they must be explored further in the
future to support the demands from surveillance systems and other applications.

The preceding areas of research, the space-time feature-based approaches, mani-
fold learning, rigid/nonrigid motion analysis, and hierarchical approaches briefly men-
tioned are but a small glimpse into the large number of methodologies being pursued
today. Hopefully, a review in another ten years will document significant progress in
human activity recognition, to the extent that off-the-shelf systems will be readily
available.
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