
19

A Survey of Methods for Analyzing and Improving GPU
Energy Efficiency

SPARSH MITTAL, Iowa State University
JEFFREY S. VETTER, Oak Ridge National Laboratory and Georgia Tech

Recent years have witnessed phenomenal growth in the computational capabilities and applications of GPUs.
However, this trend has also led to a dramatic increase in their power consumption. This article surveys
research works on analyzing and improving energy efficiency of GPUs. It also provides a classification of
these techniques on the basis of their main research idea. Further, it attempts to synthesize research works
that compare the energy efficiency of GPUs with other computing systems (e.g., FPGAs and CPUs). The aim
of this survey is to provide researchers with knowledge of the state of the art in GPU power management
and motivate them to architect highly energy-efficient GPUs of tomorrow.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; I.3.1
[Computer Graphics]: Graphics Processor; H.3.4 [Systems and Software]: Performance Evaluation
(Efficiency and Effectiveness); C.0 [Computer Systems Organization]: System Architectures

General Terms: Experimentation, Management, Measurement, Performance, Analysis

Additional Key Words and Phrases: GPU (graphics-processing unit), energy saving, power management,
energy efficiency, architecture techniques, power model, green computing

ACM Reference Format:
Sparsh Mittal and Jeffrey S. Vetter. 2014. A survey of methods for analyzing and improving GPU energy
efficiency. ACM Comput. Surv. 47, 2, Article 19 (July 2014), 23 pages.
DOI: http://dx.doi.org/10.1145/2636342

1. INTRODUCTION

As we enter into the post-petascale era, the requirements of data processing and com-
putation are growing exponentially. To meet this requirement, researchers have moved
from serial execution platforms to high-performance computing (HPC) platforms, such
as multicore processors, FPGAs, and GPUs. GPUs, in particular, have been widely used
for HPC applications due to their extremely high computational powers, and a large
fraction of supercomputers in the Top500 list use GPUs to achieve unprecedented com-
putational power [Top500 2013]. Thus, GPUs have become an integral part of today’s
mainstream computing systems.

The high-performance demands on GPUs, however, have influenced their design to
be optimized for higher performance, even at the cost of large power consumption.

The work was performed when Sparsh Mittal was at Iowa State University. The article has been authored
by Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract #DE-AC05-
00OR22725 to the U.S. government. Accordingly, the U.S. government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
government purposes. This research is sponsored by the Office of Advanced Scientific Computing Research
in the U.S. Department of Energy.
Authors’ address: S. Mittal and J. S. Vetter, 1 Bethel Valley Road, Future Technologies Group, Oak Ridge
National Laboratory, Building 5100, MS-6173, Tennessee, USA 37830; email: {mittals, vetter}@ornl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/07-ART19 $15.00

DOI: http://dx.doi.org/10.1145/2636342

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

http://dx.doi.org/10.1145/2636342
http://dx.doi.org/10.1145/2636342

19:2 S. Mittal and J. S. Vetter

Hence, recent years have witnessed a marked increase in power consumption of GPUs.
The elevated levels of power consumption of GPUs have a significant impact on their
reliability, economic feasibility, architecture design, performance scaling, and deploy-
ment into a wide range of application domains. As a case in point, supercomputers
built with CPU-GPUs consume a huge amount of power; for example, the Titan su-
percomputer consumes 8.2MW of power [Top500 2013]. Further, it has been estimated
that an exascale machine, built with the technology used in today’s supercomputers,
will consume several gigawatts of power [Miller 2013]. To manage such high levels of
power dissipation and continue to scale performance, power management techniques
are essential for both CPUs and GPUs. While the area of power management in CPUs
has been actively researched over the years, the area of power management in GPUs
has yet to be fully explored. For these reasons, understanding the state of the art
in GPU power management is extremely important for researchers to propose even
more effective solutions to address the power challenges and design “green” GPUs of
tomorrow.

In this article, we present a survey of research works aimed at analyzing and im-
proving the energy efficiency of GPUs. We classify the techniques based on several
parameters to provide insights into their important features. We also review the re-
search works that compare the energy efficiency of GPUs with other computing systems
such as CPUs, Cell processors, and FPGA. We believe that this will enable the readers
to judge the energy efficiency of GPUs vis-à-vis alternate computing platforms and
make important decisions.

Since it is infeasible to review all the research ideas proposed in the literature,
we adopt the following approach to limit the scope of the article. We include only
those studies that analyze GPU power consumption and the techniques that have been
evaluated based on GPU energy efficiency. We do not include those studies that have
been shown to improve only performance and not energy efficiency, even though the
performance improvement is likely to translate to better energy efficiency. We include
application-level and architectural-level techniques and not circuit-level techniques for
improving energy efficiency. Further, since different techniques have been evaluated
using different experimentation platform and methodologies, we only focus on their
key ideas and generally do not present their quantitative results.

This article is organized as follows. Section 2 reviews the GPU terminology and also
highlights the need for power management. Section 3 reviews the studies on comparing
GPU energy efficiency with that of other computing systems. Section 4 discusses some
power management techniques in detail. In both of these sections, we first provide
an overview and classification of the methods and then discuss some of the tech-
niques in detail. We finally provide concluding remarks and future research trends in
Section 5.

2. BACKGROUND

2.1. GPU Terminology and Sources of Power Consumption

Recently, several researchers have proposed models and tools for measurement and
estimation of GPU power consumption [Hong and Kim 2010; Ramani et al. 2007;
Nagasaka et al. 2010; Sheaffer et al. 2005a; Zhang et al. 2011; Jiao et al. 2010;
Zhang et al. 2011; Chen et al. 2011; Suda and Ren 2009; Enos et al. 2010; Wang and
Ranganathan 2011; Ren 2011; Ren et al. 2012; Luo and Suda 2011; Pool et al. 2010;
Stolz et al. 2010; Li et al. 2011; Wang and Chen 2012; Collange et al. 2009; Wang et al.
2010; Vialle et al. 2011; Kasichayanula et al. 2012]. These models provide insights
into the working of GPUs and relative contribution of different components in the
total power consumption. In what follows, we briefly review the GPU architecture,

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:3

terminology, and sources of power consumption as relevant for this article and refer
the reader to the aforementioned works for more details.

A GPU has several streaming multiprocessors, each of which has multiple cores. For
example, NVIDIA GeForce GTX 590 has dual GPUs, where each GPU has 16 streaming
multiprocessors (SMs); each of these SMs has 32 cores, for a total of 512 cores in each
GPU and 1,024 cores in the overall GTX 590 graphics card [GeForce GTX 590 2013].
The cores of a typical GPU are composed of ALUs, thread schedulers, load/store units,
scratchpad memory, register file and caches, and so forth. A GPU is designed for stream
or throughput computing, which has little data reuse, and hence, a GPU has a much
smaller sized cache (e.g., 16KB L1 and 256KB L2 [Wong et al. 2010]) than a typical
CPU. The GPU is used as a coprocessor with a CPU, and in such cases, the GPU is
referred to as the “device” and the CPU as the “host.” A GPU has its own device memory
of a few GBs (gigabytes), and it is connected to the host through a PCI-Express (PCIe)
bus. A GPU is programmed as a sequence of kernels. The code is executed in groups of
32 threads, called a warp. CUDA (Compute Unified Device Architecture) and OpenCL
(Open Computing Language) are widely used interfaces for programming GPUs.

The power consumption of GPUs can be divided into two parts, namely, leakage
power and dynamic power. The dynamic power is a function of operating temperature
and circuit technology. Leakage power is consumed when the GPU is powered, even if
there are no runtime activities. The dynamic power arises from switching of transistors
and is determined by the runtime activities. Different components such as SMs and
memories (e.g., local, global, shared, etc.) contribute to this power consumption.

2.2. Need for Improving Energy Efficiency of GPUs

GPU power management is extremely important for the following reasons.

2.2.1. Addressing Inefficient Resource Usage. To meet the worst-case performance re-
quirements, the chip designers need to overprovision the computing resources of GPUs;
however, on average, the utilization of these resources remains low. Also, in several ap-
plications, memory bandwidth of GPUs acts as a performance bottleneck [Hong and
Kim 2010; Daga et al. 2011; Cebrian et al. 2012; Spafford et al. 2012], due to which
the cores are not fully utilized, which leads to energy inefficiency. Further, unlike mas-
sively parallel applications, regular parallel applications do not scale well beyond a
certain number of cores, and hence, a large amount of power is wasted in idle cores or
in synchronization. Finally, GPUs are increasingly being used in cloud infrastructure
and data centers [Amazon EC2 2013], which experience highly varying usage patterns.
Thus, dynamic power management techniques can offset these sources of inefficiencies
by using runtime adaption.

2.2.2. Ensuring Reliability. Large power consumption has a significant effect on the reli-
ability of the computing systems. A 15◦C rise in temperature increases the component
failure rates by up to a factor of two [Anderson et al. 2003]. The device failures may lead
to system malfunction, and as GPUs become increasingly employed in supercomputers
and business services, system malfunction may have a serious economic impact. For
example, the service cost of merely 1 hour of downtime in brokerage operations and
credit card authorization can be $6,450,000 and $2,600,000, respectively [Feng 2003].
Thus, since the performance requirements grow at a much faster pace than the effec-
tiveness of cooling solutions, power management techniques are extremely important
to ensure longevity and reliability.

2.2.3. Providing Economic Gains. For every watt of power dissipated in the computing
equipment, an additional 0.5 to 1W of power is consumed by the cooling system it-
self [Patel et al. 2003], and with an increasing ratio of cooling power to computing

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:4 S. Mittal and J. S. Vetter

power, compaction of devices is inhibited, which results in increased operation costs.
Due to these trends, in recent years, the energy cost of high-performance computing
clusters has been estimated to contribute more than the hardware acquisition cost of
IT equipment itself [Bianchini and Rajamony 2004; Mittal 2012].

2.2.4. Enabling Performance Scaling. The power challenges are expected to present the
most severe obstacle to performance scaling, and it has been shown that thermal
and leakage power constraints may disallow simultaneously using all the cores of a
massively parallel processor [Esmaeilzadeh et al. 2013]. Large power consumption
may necessitate complex cooling solutions (e.g., liquid cooling), which may increase
chip complexity and offset the benefits of performance boost obtained by using GPUs.

2.2.5. Enabling Deployment in Wide Range of Applications. The energy efficiency of GPUs,
relative to other alternatives (e.g., CPUs, FPGAs), will have a crucial role in deciding
its adoption in various application domains. In recent years, ongoing technological
innovations have greatly improved other computing systems. As we show in Section 3,
for several applications, FPGAs have been found to have better performance and energy
efficiency than GPUs. Moreover, while a few initial works have reported orders of
magnitude difference in performance of GPUs and CPUs, other researchers who apply
careful optimization on both CPUs and GPUs have reported much lower speedups
of GPUs over CPUs, typically in the range of 0.7× to 15× [Lee et al. 2010; Zou et al.
2012; Chandramowlishwaran et al. 2010]. Thus, to maintain their competitiveness and
justify their use in product design, GPUs must exhibit high energy efficiency.

2.2.6. Achieving the Goals of Sustainable Computing. It has been estimated that the carbon
emission of ICT (information and communication technology) will triple from 2002 to
2020 [Smarr 2010], and hence, concerns for the environment will force policymakers
and researchers to place higher emphasis on energy efficiency in the design of future
computing systems. Thus, improving the energy efficiency of GPUs is also important
for achieving the goals of sustainable computing.

3. RESEARCH WORKS ON ANALYZING GPU ENERGY EFFICIENCY

In this section, we review the research works that analyze energy efficiency of GPUs
and compare it with that of other computing systems. We first present an overview and
then discuss some of the research works in detail.

3.1. Overview

Modern GPUs consume a significant amount of power. The high-end GPUs, such as
NVIDIA GeForce GTX 590 (40nm) and AMD Radeon HD 5970 (40nm), have a maximum
power consumption of 365W [GeForce GTX 590 2013] and 294W [RADEON 2013],
respectively. In contrast, Intel’s Core i7-3770T (22nm) and Xeon E7-8870 (32nm) have
a maximum power consumption of 45W and 150W, respectively [Intel Core i7 2013;
Intel Xeon E7 2013]. Note, however, that for several applications, GPUs provide better
performance than CPUs, which makes their energy efficiency better than those of
CPUs.

In recent years, several researchers have compared the power consumption of GPUs
with that of other computing systems such as CPUs, Cell, or FPGA. For certain appli-
cations and platforms, GPUs have been found to be more energy efficient than CPUs
[Zandevakili et al. 2012; Huang et al. 2009; Anzt et al. 2011; Baker et al. 2007; Thomas
et al. 2009; Hamada et al. 2009; McIntosh-Smith et al. 2012; Lange et al. 2009; Ghosh
et al. 2012; Udagawa and Sekijima 2011; Zou et al. 2012; Hussain et al. 2011; De
Schryver et al. 2011; Van Essen et al. 2012; Betkaoui et al. 2010; Timm et al. 2010;
Goddeke et al. 2008; Scogland et al. 2010; Danalis et al. 2010; Chung et al. 2010; Keckler

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:5

et al. 2011; Brodtkorb et al. 2010; Chau et al. 2013; López-Portugués et al. 2011; Cong
et al. 2011; Pedram et al. 2012; Chow et al. 2012; Wang et al. 2012], while for other
applications, CPUs have been found to be more energy efficient [Chandramowlish-
waran et al. 2010; Kestur et al. 2010]. Some researchers also discuss the conditions
under which CPUs or GPUs may be more efficient [Datta et al. 2008; Anzt et al. 2010;
Calandrini et al. 2012; Fowers et al. 2013; Maghazeh et al. 2013]. For example, Datta
et al. [2008] show that taking into account the overhead of data communication be-
tween CPUs and GPUs can significantly degrade GPU energy efficiency and can make
them less energy efficient than CPUs.

Similarly, some authors have found FPGAs to be more energy efficient than GPUs
[Kestur et al. 2010; Hefenbrock et al. 2010; Baker et al. 2007; Thomas et al. 2009;
Pauwels et al. 2012; Birk et al. 2012; Hussain et al. 2011; Hamada et al. 2009; Gohringer
et al. 2011; Zou et al. 2012; Benkrid et al. 2012; De Schryver et al. 2011; Lange et al.
2009; Williams et al. 2008; Richardson et al. 2010; Lee et al. 2010; Van Essen et al.
2012; Brodtkorb et al. 2010; Chau et al. 2013; Cong and Zou 2009; Llamocca et al. 2011;
Cong et al. 2011; Waidyasooriya et al. 2012; Chow et al. 2012; Wang et al. 2012; Struyf
et al. 2014], while others have found GPUs to be more energy efficient [Duan et al.
2011]. Similarly, some researchers observe other computing systems such as Cell, DSP
(digital signal processor), or ASIC to be more energy efficient than GPUs [Chung et al.
2010; Baker et al. 2007; Benkrid et al. 2012; Mu et al. 2011; Pedram et al. 2012].

From these works, it is clear that although for the majority of works, FPGAs are
more energy efficient than GPUs and GPUs, in turn, are more energy efficient than
CPUs, a single platform cannot be accepted as the most energy efficient for all possible
applications. The results crucially depend on the devices and evaluation methodology
used in the experiments.

3.2. Discussion

Keckler et al. [2011] discuss the level of energy efficiency required for building future
exascale machines. They show that building an exascale machine with a power budget
of 20MW requires an energy efficiency of 20 picoJoules (pJ) per floating point operation.
In contrast, state-of-the-art CPUs and GPUs incur 1700pJ and 225pJ, respectively, for
each floating-point operation. This shows that although the GPUs are more energy
efficient than CPUs, their efficiency needs to be improved further to fulfill exascale
challenge.

Chandramowlishwaran et al. [2010] compare the performance and energy efficiency
of a GPU with a multicore CPU for the fast multipole method. They have observed
that on applying suitable optimization and parallelization, the CPU is nearly 1.7×
faster than a single GPU and achieves 0.75× the performance of two GPUs. In terms
of energy efficiency, the CPU is nearly 2.4× and 1.8× as energy efficient as the systems
accelerated using one or two GPUs, respectively.

Datta et al. [2008] compare the performance and energy efficiency of a GPU with
a CPU for stencil (nearest-neighbor) computations. They observe that while use of a
large number of cores gives a significant performance and power advantage to the
GPU over the CPU, when it is used as an accelerator offload engine for applications
that primarily run on the host CPU, the performance and energy efficiency are severely
degraded due to limited CPU-GPU bandwidth and low reuse within GPU device mem-
ory. Since the GPU can access CPU memory only through a PCI-express (PCIe) bus, for
applications that require larger on-board memory than what is available on the GPU,
the performance is significantly degraded.

Huang et al. [2009] evaluate the energy efficiency and performance of a GPU
for a scientific computing benchmark, namely, GEM software, which is used to
compute the electrostatic potential map of macromolecules in a water solution. The

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:6 S. Mittal and J. S. Vetter

CPU code is parallelized using Pthread (POSIX threads). They observe that although
the GPU consumes significantly higher power than the CPU, the execution time of the
GPU version of code is much smaller, and hence, the EDP (energy-delay product) of
the GPU implementation is orders of magnitude better than that of both the serial
and parallel versions of CPU implementation. Moreover, using a single-precision code
improves the energy efficiency of GPU even more.

McIntosh-Smith et al. [2012] compare the energy efficiency of a GPU with that
of a multicore CPU for a molecular mechanics problem. They observe that of the
different GPU implementations tested, the best implementation outperforms all CPU
implementations in both performance and energy efficiency. Moreover, for the real-
world case where the dataset become larger, the benefits of GPU become even larger.

Kestur et al. [2010] compare the energy efficiency and performance of a GPU with
that of a multicore CPU and an FPGA, for double-precision floating-point programs
from the Basic Linear Algebra Subroutines (BLAS) library. They have shown that the
FPGA offers comparable performance to the GPU while providing significantly better
energy efficiency. Moreover, the multicore CPU also provides better performance and
energy efficiency than the GPU.

Llamocca et al. [2011] compare a GPU and an FPGA for a 2D FIR (finite-impulse
response) filter program that has application in video processing. They observe that
due to its higher frequency and ability to exploit massive parallelization present in the
algorithm, the GPU provides better performance than the FPGA. However, the FPGA
consumes up to an order of magnitude less energy than the GPU.

Baker et al. [2007] compare the energy efficiency and performance of matched filter
on an FPGA, an IBM Cell, a GPU, and a CPU. Matched filter is a signal-processing
kernel that is used for extracting useful data from hyperspectral imagery. Relative to
the CPU, the speedup of other computing systems is calculated and then a comparison
is made on the metric of speedup and speedup per kilowatt values. The authors observe
that both the Cell and FPGA outperform the GPU in performance and energy efficiency.
Further, the GPU provides better performance and energy efficiency than the CPU.

Hefenbrock et al. [2010] implement the Viola-Jones face detection algorithm using
multi-GPU and compare its performance and power consumption with that of the
fastest known FPGA implementation of the same algorithm. They observe that using
4-GPUs provides comparable performance with the design using a single FPGA, while
the energy efficiency of the FPGA design was orders of magnitude better than that of
the 4-GPUs-based design.

Lange et al. [2009] compare the performance and energy efficiency of a GPU with an
FPGA and a multicore CPU for geometric algebra computations. They observe that the
GPU is less energy efficient than the FPGA, but more efficient than the CPU. They also
note that taking data transfer overhead into account degrades the energy efficiency of
the GPU.

Hussain et al. [2011] compare the energy efficiency of a GPU with that of an FPGA
and a CPU for the k-means clustering algorithm, which is used in data mining. They
observe that the FPGA provides better performance and energy efficiency than the
GPU. Also, the GPU shows much better energy efficiency than the CPU.

De Schryver et al. [2011] compare the energy efficiency of a GPU and a multicore CPU
with that of a hybrid FPGA–CPU implementation for Monte Carlo option pricing with
the Heston model. This program finds applications in financial domains. The hybrid
FPGA–CPU implementation divides the work between FPGA and CPU, such that
computation-intensive kernels are executed on FPGAs. They observe that compared
to the GPU implementation, the hybrid FPGA–CPU implementation provides less
performance but higher energy efficiency. Moreover, the GPU implementation excels
CPU in both performance and energy efficiency.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:7

Thomas et al. [2009] compare energy efficiency of a GPU with an FPGA and a mul-
ticore CPU for random number generation. The authors experiment with different
random number generation programs and compute the geometric mean of energy ef-
ficiency (number of samples generated per joule of energy). They observe that FPGAs
provide an order of magnitude better energy efficiency than the GPU. Moreover, the
GPU is found to be an order of magnitude more energy efficient than the CPU.

Van Essen et al. [2012] implement the random forest classification problem used
in machine learning on a GPU, an FPGA, and a multicore CPU. They observe that
the FPGA provides the highest performance but requires a multiboard system even
for modest size problems, which increases its cost. Further, on the performance-per-
watt metric, the FPGA implementation is an order of magnitude better than the GPU
implementation, which, in turn, is better than the CPU implementation.

Duan et al. [2011] compare a GPU with an FPGA and a multicore CPU on floating-
point FFT implementation. For GPU and CPU implementation, they use standard
libraries, and for FPGA, they develop their own implementation. They observe that
the GPU is more energy efficient than the FPGA and the CPU for radix-2 FFT. They,
however, observe a degradation in performance of the GPU for mixed-radix FFT.

Hamada et al. [2009] make a comparative study of a GPU, an FPGA, an ASIC,
and a CPU for gravitational force calculation in N-body simulation in the context
of astrophysics. They observe that the GPU outperforms the ASIC and the CPU in
energy efficiency (performance per watt); however, its energy efficiency is an order of
magnitude less than that of the FPGA.

Birk et al. [2012] compare the performance and energy efficiency of a GPU and an
FPGA for 3D ultrasound computer tomography, which is used for medical imaging.
They observe that the performance of the GPU is comparable with that of the FPGA;
however, the FPGA offer much better energy efficiency.

Betkaoui et al. [2010] compare the energy efficiency of a GPU with an FPGA and
a single and a multicore CPU for three throughput computing applications, viz. FFT,
general (dense) matrix multiplication (GEMM), and Monte Carlo method (MCM). Of
these, GEMM is limited by computations, FFT by memory latency, and MCM is embar-
rassingly parallel and hence is limited only by available parallelism. They use standard
libraries for implementing these applications. They observe that for all three applica-
tions, the GPU outperforms the CPU on energy efficiency. Further, for GEMM, the GPU
is more energy efficient than the FPGA, while for FFT and MCM, the FPGA is more
energy efficient than the GPU. They note that the FPGA provides an advantage over
the GPU for applications that exhibit poor data locality and a low memory bandwidth
requirement.

Zou et al. [2012] compare a GPU with a CPU and an FPGA for the Smith-Waterman
(S-W) algorithm. The S-W algorithm is used for performing pair-wise local sequence
alignment in the field of bioinformatics. They highlight the need of making suitable
optimizations on all three platforms for making meaningful comparisons. They observe
that on the metric of performance per unit power, the FPGA is more energy efficient
than the GPU, which in turn is more energy efficient than the CPU, although the ad-
vantage of the GPU over the CPU is small. The FPGA also provides higher performance
than both the GPU and CPU.

Benkrid et al. [2012] compare a GPU with a CPU, an FPGA, and Cell BE (broadband
engine) for the Smith-Waterman algorithm. They observe that on the energy-efficiency
(performance-per-watt) metric, the FPGA and Cell BE perform better than the GPU,
while the GPU performs better than the CPU. They further note that results also
depend on the devices used and performance optimizations performed on each platform.

Pauwels et al. [2012] compare a GPU with an FPGA for the computation of phase-
based optical flow, stereo, and local image features that are used in computer vision.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:8 S. Mittal and J. S. Vetter

They observe that while the GPU offers better performance and accuracy than the
FPGA, the FPGA is more energy efficient than the GPU.

Fowers et al. [2013] compare the energy efficiency of a GPU with that of an FPGA and
a multicore CPU for the convolution problem, which has applications in digital signal
processing. They observe that for very small signal sizes, the CPU is most energy
efficient. However, as the signal size increases, the energy efficiency of the GPU and
the FPGA increase, and for very large signal sizes, the FPGA outperforms the GPU in
energy efficiency.

Mu et al. [2011] implement the high-performance embedded computing (HPEC)
benchmark suite on a GPU and compare the performance and energy efficiency of
the GPU with that of a DSP for this benchmark suite. This benchmark includes a
broad range of signal-processing applications. They have observed that while the GPU
provides at least an order of magnitude better performance than the DSP, its energy
efficiency measured in terms of performance per watt is inferior to that of the DSP.

4. TECHNIQUES FOR IMPROVING GPU ENERGY EFFICIENCY

In this section, we discuss techniques for improving GPU energy efficiency.

4.1. Overview

For the purpose of this study, we classify the techniques into the following categories.

(1) DVFS (dynamic voltage/frequency scaling)-based techniques [Liu et al. 2011, 2012;
Nam et al. 2007; Jiao et al. 2010; Lee et al. 2007, 2011; Ma et al. 2012; Cebrian
et al. 2012; Sheaffer et al. 2005b; Chang et al. 2008; Wang et al. 2010; Ren 2011;
Anzt et al. 2011; Ren et al. 2012; Lin et al. 2011; Zhao et al. 2012; Huo et al. 2012;
Keller and Gruber 2010; Abe et al. 2012; Park et al. 2006; Leng et al. 2013; Paul
et al. 2013]

(2) CPU-GPU workload division-based techniques [Takizawa et al. 2008; Rofouei et al.
2008; Ma et al. 2012; Luk et al. 2009; Liu et al. 2011, 2012; Hamano et al. 2009]
and GPU workload consolidation [Li et al. 2011]

(3) Architectural techniques for saving energy in specific GPU components, such as
caches [Wang et al. 2012; Lee et al. 2011; Lashgar et al. 2013; Arnau et al. 2012;
Rogers et al. 2013; Lee and Kim 2012], global memory [Wang et al. 2013; Rhu
et al. 2013], pixel shader [Pool et al. 2011], vertex shader [Pool et al. 2008], core
data path, registers, pipeline and thread scheduling [Abdel-Majeed et al. 2013; Chu
et al. 2011; Gebhart et al. 2011; Gilani et al. 2013; Jing et al. 2013; Yu et al. 2011;
Abdel-Majeed and Annavaram 2013; Gilani et al. 2012; Sethia et al. 2013]

(4) Techniques that exploit workload variation to dynamically allocate resources
[Jararweh and Hariri 2012; Liu et al. 2011; Lee et al. 2011; Hong and Kim 2010;
Alonso et al. 2012; Cebrian et al. 2012; Wang and Ranganathan 2011; Keller and
Gruber 2010]

(5) Application-specific and programming-level techniques for power analysis and
management [Alonso et al. 2012; Chandramowlishwaran et al. 2010; Ren and Suda
2009; Datta et al. 2008; Jiao et al. 2010; Zandevakili et al. 2012; Anzt et al. 2011;
Ren et al. 2012; Padoin et al. 2012; Wang et al. 2010; Ghosh et al. 2012; Dreßler
and Steinke 2012; Zhang et al. 2012; Wang et al. 2010; Yang et al. 2012; Hsiao et al.
2013]

We now discuss these techniques in detail. As seen through the previous classifica-
tion, several techniques can be classified into more than one group. For the sake of
clarity, we discuss them in one group only.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:9

4.2. DVFS-Based Techniques

DVFS is a well-known power management technique that works by dynamically ad-
justing the clock frequency of a processor to allow a corresponding reduction in the
supply voltage to achieve power saving. The relation between power and frequency is
captured by the following formula [Rabaey et al. 2002]:

P ∝ FV 2. (1)

Here F shows the operating frequency and V shows the supply voltage. By intelligently
reducing the frequency, the voltage at which the circuit needs to be operated for stable
operation can also be reduced, leading to power saving. However, since the reduction
in frequency also harms the performance, the scaling of voltage/frequency needs to be
carefully performed. Also note that in some of the works discussed later, the frequency
scaling is actually applied to CPU; however, we still include these works since the
power saving is achieved in the entire system and power management of CPU is done
while taking into account the properties of GPU.

Nam et al. [2007] propose a low-power GPU for hand-held devices. The proposed
GPU uses logarithmic arithmetic to optimize area and power consumption. The use
of logarithmic arithmetic leads to some computation error; however, due to the small
screen of the hand-held devices, the error can be tolerated. They divide the chip into
three power domains, viz. vertex shader, rendering engine, and RISC processor, and
DVFS is individually applied to each of the three domains. The power management
unit decides the supply voltage and frequency of each domain based on its workload
for saving power while maintaining the desired performance level.

Ren et al. [2012] discuss an approach for saving system energy in a heterogeneous
CPU-GPU computing system. They suggest that, instead of using a single GPU with
each CPU, using multiple GPUs with each CPU enables achieving speedup in execution
time and improving the usage of the CPU, which improves the energy efficiency of the
system. Further, since during the execution of the CUDA kernel the host CPU remains
in the polling loop without doing useful work, the frequency of the CPU can be reduced
for saving energy while always ensuring that CPU frequency is greater than the PCIe
bus between the CPU and GPU. Since the range of high-performance CPU frequencies
is generally larger than that of the PCIe bus, CPU frequency can be scaled without
affecting GPU performance. They demonstrate their approach by parallelizing 3D finite
element mesh refinement on GPU.

Anzt et al. [2011] propose techniques for reducing energy consumption in CPU-GPU
heterogeneous systems for executing iterative linear solvers. They propose using DVFS
for saving energy in the CPU while it stays in busy-wait waiting for the GPU to complete
computations. Since during this time the CPU performs no useful work, use of DVFS
gives large energy savings with little performance loss. Further, since the conjugate
gradient iterative linear solver consumes nearly the same time in different iterations,
by noting this duration once, the CPU can be transitioned to the sleep state for this
duration in further calls to the kernel, which leads to further energy savings. They also
remark that this technique is useful when the calls to kernels consume a sufficiently
large amount of time.

Jiao et al. [2010] study the performance and power consumption of GPUs for three
computationally diverse applications for varying processor and memory frequencies.
Specifically, they study dense matrix multiplication (compute intensive), dense matrix
transpose (memory intensive), and fast Fourier transform (hybrid). They have observed
that the power consumption of GPUs is primarily dependent on the ratio of global
memory transactions to computation instructions and the rate of issuing instructions.
These two metrics decide whether an application is memory intensive or computation

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:10 S. Mittal and J. S. Vetter

intensive, respectively. Based on these characteristics, the frequency of GPU cores and
memory is adjusted to save energy.

Lin et al. [2011] propose use of software prefetching and dynamic voltage scaling
to save GPU energy. Software prefetching is a technique that aims to improve per-
formance by overlapping the computing and memory access latencies. It works by
inserting prefetch instructions into the program so that data is fetched into registers
or caches well before time, and processor stall on memory access instructions is avoided.
Since prefetching increases the number of instructions, it also increases the power con-
sumption, and hence, it must be balanced with suitable performance enhancement.
Their technique analyzes the program to insert prefetching instructions and then it-
eratively uses DVFS to find a suitable frequency such that performance constraint is
met while saving the largest possible amount of energy.

4.3. CPU-GPU Work Division to Improve Energy Efficiency

Researchers have shown that different ratios of work division between CPUs and
GPUs may lead to different performance and energy efficiency levels [Ma et al. 2012;
Luk et al. 2009]. Based on this observation, several techniques have been proposed
that dynamically choose between CPU and GPU as a platform of execution of a kernel
based on the expected energy efficiency on those platforms.

Ma et al. [2012] propose an energy management framework for GPU-CPU heteroge-
neous architectures. Their technique works in two steps. In the first step, the workload
is divided between the CPU and GPU based on the workload characteristics in a man-
ner that both sides may complete their tasks approximately at the same time. As an
example, the task shared by the CPU and GPU may be 15% and 85%, respectively. This
step ensures load balancing, which also avoids energy waste due to idling. In the second
step, the frequency of GPU cores and memory are adjusted, along with the frequency
and voltage of the CPU, to achieve the largest possible energy savings with minimal
performance degradation.

Luk et al. [2009] propose an automatic technique for mapping computations of pro-
cessing elements on a CPU-GPU heterogeneous system. Compared to other approaches
that require the programmer to manually perform the computations to processor map-
ping, their technique uses a runtime adaptation to automatically perform the mapping.
Their technique provides an API (application programming interface) for writing par-
allelizable programs. Through the API, the computations are explicitly expressed, and
hence, the compiler is not required to extract parallelism from the serial code. While
OpenMP can exploit parallelism only on the CPU, their technique can exploit paral-
lelism on both the CPU and the GPU. Since the optimal mapping changes with different
applications, hardware/software configurations, and input problem sizes, the adaptive
mapping outperforms hand-tuned mapping in both performance and energy efficiency.

Liu et al. [2012] discuss a technique for finding power-efficient mappings of time-
critical applications onto CPU/GPU heterogeneous systems. Their technique works in
two steps. In the first step, their technique maps the application to either the CPU
or the GPU, such that their deadlines are met and execution time is minimized. In
the second step, DVFS techniques are applied to both the CPU and GPU to save
energy. The mapping of applications can be done in both an offline and online manner.
To keep the performance high and avoid resource idling, their technique also aims
to achieve load balancing. Moreover, their technique utilizes the fact that typically
average-case execution times are less than their worst-case execution time, and hence,
early completion provides a slack, which can be exploited using DVFS to save a large
amount of energy.

Takizawa et al. [2008] propose SPRAT (stream programming with runtime auto-
tuning), a runtime environment for dynamically selecting a CPU or GPU with a view

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:11

to improve the energy efficiency. They introduce a performance model that takes into
account the relative execution time and energy consumption on the CPU and GPU and
the data transfer time between the CPU and GPU. This model is especially suited for
applications that require frequent data transfers between the CPU and GPU. Based
on the runtime behavior, SPRAT can dynamically select the computing platform (CPU
or GPU) for executing a kernel such that system energy is minimized.

Rofouei et al. [2008] experimentally evaluate the power and energy cost of GPU
operations and compare it with that of CPU for the convolution problem. They find the
relation between execution time and energy consumption and show that that GPU is
more energy efficient when it provides application performance improvement above a
certain threshold. Based on this, the decision about running the application on a CPU
or GPU can be taken. Ren and Suda [2009] discuss a scenario where the performance
benefit provided by using two GPUs (instead of one) offsets the power consumption
overhead of the extra GPU and leads to power saving. They demonstrate their approach
for multiplication of large matrices.

Liu et al. [2011] develop an energy-saving algorithm for large-scale GPU cluster
systems based on the waterfall model. In their cluster, each node may have many
CPU–GPU pairs. Their method divides the energy consumption of the overall sys-
tem into three different levels based on different energy-saving strategies deployed.
Their method formulates the energy-saving problem as an optimization task, where
the energy consumption needs to be minimized while meeting task deadlines. Their
technique transitions the node in one among three states, namely, busy (all CPUs and
GPUs inside a node are executing task), spare (at least one CPU–GPU pair is free),
and sleep (all CPU–GPU pairs are free). At the time of reduced workload, the node in
the sleep state is powered off to save energy, and at the time of additional workload,
a node is woken up. Also, their technique selects an appropriate task from the set of
available tasks and schedules it on an optimal CPU–GPU pair such that the execution
time of the task is minimized. Further, the voltage of the CPU is adaptively scaled to
save energy while meeting the task deadline. Finally, they also utilize the β-migration
policy, where a small fraction (β) of the GPU’s share of the task is migrated to the CPU
in the same CPU–GPU pair for achieving load balancing.

4.4. Saving Energy in GPU Components

Several techniques make architecture-level changes to GPUs to optimize the energy
spent in individual components of the GPU. These techniques utilize the specific usage
pattern of GPU components to make runtime adaptations for saving energy.

Gebhart et al. [2011] present a technique for saving energy in the core datapath of
GPU. Since GPUs employ a large number of threads, storing the register context of
these threads requires a large amount of on-chip storage. Also, the thread scheduler in
the GPU needs to select a thread to execute from a large number of threads. For these
reasons, accessing large register files and scheduling among a large number of threads
consumes a substantial amount of energy. To address this, Gebhart et al. present two
improvements. First, a small storage structure is added to register files that acts like a
cache and captures the working set of registers to reduce energy consumption. Second,
the threads are logically divided into two types, namely, active threads (which are
currently issuing instructions or waiting on relatively short latency operations) and
pending threads (which are waiting on long memory latencies). Thus, in any cycle, the
scheduler needs to consider only the active threads that are much smaller in number.
This leads to significant energy savings.

Wang et al. [2012] propose a technique for saving static energy in both L1 and
L2 caches. They propose putting the L1 cache (which is private to each core) in

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:12 S. Mittal and J. S. Vetter

state-preserving1 low-leakage mode when there are no threads that are ready to be
scheduled. Further, the L2 cache is transitioned to low-leakage mode when there is no
memory request. They also discuss the microarchitectural optimizations that ensure
that the latency of detecting cache inactivity and transitioning a cache to low power
and back to normal power are completely hidden.

Lashgar et al. [2013] propose the use of a filter cache to save energy in GPUs by
reducing accesses to the instruction cache. Their technique is based on “interwarp in-
struction temporal locality,” which means that during short execution intervals, a small
number of static instructions account for a significant portion of dynamic instructions
fetched and decoded within the same stream multiprocessor. Thus, the probability that
a recently fetched instruction will be fetched again is high. They propose using a small
filter cache to cache these instructions and reduce the number of accesses to the in-
struction cache, which improves the energy efficiency of the fetch engine. Filter cache
has been used in CPUs also; however, in GPUs, the instruction temporal locality is
even higher. This is because GPUs interleave thousands of threads per core, which are
grouped in warps. The warp scheduler continuously issues instructions from different
warps, which fills the warp, thus fetching the same instruction for all warps during
short intervals.

A unified local memory design for GPUs is presented by Gebhart et al. [2012]. The
existing GPUs use rigid partition sizes of registers, cache, and scratchpad; however,
different GPU workloads have different requirements of registers, caches, and scratch-
pad (also called shared memory). Based on the characterization study of different
workloads, they observe that different kernels and applications have different require-
ments of cache, shared memory, and so forth. To address this issue, they propose a
unified memory architecture that aggregates these three types of storage and allows
for a flexible allocation on a per-kernel basis. Before the launch of each kernel, the
system reconfigures the memory banks to change the partitioning of the memory. By
effectively using the local storage, their design reduces the accesses to main memory.
They have shown that using their approach broadens the range of applications that can
be efficiently executed on GPUs and also provides improved performance and energy
efficiency.

To filter a large fraction of memory requests that are serviced by the first-level cache
or scratchpad memory, Sankaranarayanan et al. [2013] propose adding small sized
caches (termed as tinyCaches) between each lane in a streaming multiprocessor (SM)
and the L1 data cache, which is shared by all the lanes in an SM. Further, using some
unique features of the CUDA/OpenCL programming model, these tinyCaches avoid
the need for complex coherence schemes, and thus, they can be implemented with low
cost. They have shown that their design leads to improvement in the energy efficiency
of the GPU.

Rhu et al. [2013] propose a technique for finding the right data-fetch granularity
for improving the performance and energy efficiency of GPUs. They observe that only
a few applications use all four 32B sectors of the 128B cache block, which leads to
overfetching of data from the memory. To address this issue, their technique first
decides the appropriate granularity (coarse grain or fine grain) of data fetch. Based on
this, a hardware predictor adaptively adjusts the memory access granularity without
programmer or runtime system intervention. Thus, their approach enables adaptively
adjusting the memory access granularity depending on the spatial locality present in
the application.

1State preserving refers to the low-power state where the contents stored in the block are not lost. This is in
contrast with the state-destroying low-power state, where the block contents are lost in the low-power mode
[Mittal et al. 2013].

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:13

In a CPU-GPU heterogeneous computing system (HCS) with shared last-level cache
(LLC), interference between CPU and GPU threads can lead to degradation in perfor-
mance and energy efficiency. This is especially critical since the GPU has a much larger
number of threads than the CPU, and hence, the large number of accesses from the
GPU are likely to evict data brought in cache by the CPU threads. Some authors pro-
pose techniques to address this issue [Lee and Kim 2012; Mekkat et al. 2013]. Lee and
Kim [2012] propose a thread-level parallelism (TLP)-aware cache management policy
for such systems. Due to the presence of deep multithreading, a cache policy does not
directly affect the performance in GPUs. Hence, to estimate the effect of cache behav-
ior on GPU performance, they propose a core-sampling approach, which leverages the
fact that most GPU applications show symmetric behavior across the running cores.
Based on this, core sampling applies a different policy (e.g., a cache replacement pol-
icy) to each core and periodically collects samples to see how the policies work. A large
difference in performance of these cores indicates that GPU performance is affected
by the cache policy and vice versa. Using this, the best cache management policy can
be chosen. Further, to alleviate the interference, they introduce a cache block lifetime
normalization approach, which ensures that statistics collected for each application
are normalized by the access rate of each application. Using this, along with a cache
partitioning mechanism, cache is partitioned between the CPU and GPU, such that
cache is allocated to the GPU only if it benefits from the cache.

Mekkat et al. [2013] propose a technique that leverages the GPU’s ability to toler-
ate memory access latency to throttle GPU LLC accesses to provide cache space to
latency-sensitive CPU applications. Based on the observation that the TLP available
in an application is a good indicator of the cache sensitivity of an application, their
technique allows GPU memory traffic to selectively bypass the shared LLC if GPU
cores exhibit sufficient TLP to tolerate memory access latency or when the GPU is
not sensitive to LLC performance. A large number of wavefronts that are ready to
be scheduled indicates a higher amount of TLP. Using core sampling, they apply two
different bypassing thresholds to two different cores to find the impact of bypassing
on GPU performance. Also, using cache set sampling, the effect of GPU bypassing on
CPU performance is estimated. Using these, the rate of GPU bypassing is periodically
adjusted to improve performance and save energy.

4.5. Dynamic Resource Allocation-Based Techniques

It is well known that there exists large intra-application and interapplication variation
in the resource requirements of different applications. In fact, several real-world appli-
cations rarely utilize all the computational capabilities of the GPU. Thus, significant
amount of energy savings can be achieved by dynamically adapting the components
that exhibit low utilization levels.

Hong and Kim [2010] propose an integrated power and performance prediction sys-
tem to save energy in GPUs. For a given GPU kernel, their method predicts both
performance and power and then uses these predictions to choose the optimal number
of cores that can lead to the highest performance per watt value. Based on this, only the
desired number of cores can be activated, while the remaining cores can be turned off
using power gating. Note that power gating is a circuit-level scheme to remove leakage
by shutting off the supply voltage to unused circuits.

Wang et al. [2011] propose power-gating strategies for saving energy in GPUs. In
graphics applications, different scenes have different complexities (e.g., number of
objects), and hence, the amount of computing resources that are required to provide a
satisfactory visual perception varies across different frames. By predicting the required
shader resources for providing the desired frame rate, the extra shader resources can
be turned off using power gating. To avoid the overhead of power gating, their technique

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:14 S. Mittal and J. S. Vetter

ensures that the idle period of the unused circuits is long enough to compensate the
switching overhead.

Wang and Ranganathan [2011] present an offline profiling-based technique to esti-
mate the appropriate number of GPU cores for a given application to save energy. Their
technique uses the profile of PTX (parallel thread execution) codes generated during
compilation of the application to decide the number of cores to be used for achieving
the highest energy efficiency. During the actual run, in place of using the programmer-
specified number of cores, only the desired number of cores can be activated to save
energy.

Among the commercial products, AMD uses PowerPlay technology [AMD PowerPlay
2013] for dynamic power management. It dynamically transitions the GPU between
low, medium, and high states, based on the load on the GPU. For example, while
a graphics application is running, the demand on the GPU is high, and hence, it
runs in a high-power state. Conversely, while typing emails, the load on the GPU
is minimal, and hence, it runs in a low-power state. The power saving also reduces
system temperatures and fan noise. Similarly, NVIDIA uses PowerMizer technology
for dynamic power management [NVIDIA PowerMizer 2013].

4.6. Application-Specific and Programming-Level Techniques

It has been observed that source-code-level transformations and application-specific
optimizations can significantly improve the resource utilization, performance, and en-
ergy efficiency of GPUs. Thus, by performing manually or automatically optimizing
GPU implementation and addressing performance bottlenecks, large energy savings
can be obtained.

Wang et al. [2010] propose a method for saving energy in GPUs using kernel fusion.
Kernel fusion combines the computation of two kernels into a single thread. Thus, it
leads to balancing the demand of hardware resources, which improves utilization of
resources and thus improves the energy efficiency. The authors formulate the task of
kernel fusion as a dynamic programming problem, which can be solved using conven-
tional tools.

Alonso et al. [2012] propose a technique to save energy in task-parallel execution of
dense linear algebra operations (viz. Cholesky and LU factorization) by intelligently
replacing the busy waits with a power-friendly blocking state. Execution of these tasks
involves a CPU thread issuing the kernel (for execution on the GPU) and then waiting
for the next ready task in a busy wait polling loop. This leads to wastage of energy. To
avoid this, their technique blocks the CPU thread on a synchronization primitive when
waiting for the GPU to finish work, thus leading to saving of energy.

Ghosh et al. [2012] study the energy efficiency of HPC application kernels (viz.
matrix-matrix multiplication, FFT, pseudo-random number generation, and 3D finite
difference) on multi-GPU and multicore CPU platforms. The kernel implementations
are taken from standard libraries. They observe that while the absolute “power” con-
sumption (in watts) of multi-GPU is larger than that of the multicore CPU, the “energy
efficiency” (in gigaflops per watt) of GPUs is far superior to that of CPUs. They observe
that for GPUs, the number of global memory accesses and operations per unit time
have a significant influence on the power consumption. Also, a large computation to
the communication ratio per device is important for hiding data transfer latency and
realizing energy efficiency in GPUs.

Yang et al. [2012] evaluate several open-source GPU projects and suggest ways to
change the program code to improve GPU usage, performance, and energy efficiency.
These projects are taken from a wide range of disciplines, such as atmosphere sci-
ence, computational physics, machine learning, bioinformatics, and mathematics. They
identify the common code patterns that lead to inefficient hardware use. For example,

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:15

adjustment of thread-block dimension can improve the way global memory data are
accessed and reused in either shared memory or hardware caches. Further, choice of
global memory data types and use of texture and constant memory has a significant
effect on achieved bandwidth. Also, by optimizing the program for specific GPUs (e.g.,
AMD GPU or NVIDIA GPU), the hardware-specific features can be exploited to obtain
higher performance and energy efficiency.

5. FUTURE RESEARCH TRENDS AND CONCLUSION

We believe that in the near future, the challenges of GPU power consumption will need
to be simultaneously addressed at different levels at the same time. At the chip design
level, researchers are aiming to develop energy-efficient throughput cores and memory
design to exploit instruction-level, data-level, and fine-grained task-level parallelism.
At the architecture level, CPUs and GPUs need to be efficiently integrated on the
same chip with a unified memory architecture [Foley et al. 2012; Yuffe et al. 2011].
This will address the memory bandwidth bottleneck and also avoid the replicated
chip infrastructure and the need for managing separate memory spaces. At the pro-
gramming level, per-application tuning is inevitable to achieve a fine balance between
demands of the application and the resources of the GPU. Finally, at the system level,
policies for intelligent scheduling and work division between CPU and GPU are re-
quired, so that their individual competencies are integrated and they complement each
other.

The 3D die stacking technology holds the promise of mitigating the memory band-
width bottleneck in GPUs, as it enables use of shorter, high-bandwidth, and power-
efficient global interconnect and provides a denser form factor. 3D stacking also enables
integration of heterogeneous technologies, which allows use of nonvolatile memory
(NVM), such as phase change RAM (PCM) and spin transfer torque RAM (STT-RAM),
in the design of GPU memory [Mittal 2013]. NVMs consume negligible leakage power
and provide higher density than SRAM and DRAM; however, their write latency and
energy are significantly higher than those of SRAM and DRAM. It is expected that
leveraging the benefits of 3D stacking and NVM would be a major step in improv-
ing the energy efficiency of GPUs and it would require novel solutions at the device,
architecture, and system level.

As GPUs become deployed in large-scale data centers and supercomputers, the chal-
lenges of power management are expected to grow. For such large systems, power
management needs to be done at the level of both intranode and internode. These
nodes may be remotely situated and may have different configurations (e.g., CPU,
GPU, FPGA, etc., or different interconnection). Managing power consumption of such
systems while taking into account load balancing, temperature reduction, and perfor-
mance target will be an interesting research problem for designers. On the other side
of the spectrum, in battery-operated devices such as smartphones, where the need for
processing visually compelling graphics within a small power budget increases with
each new generation, the requirement for aggressive energy optimization will pose
novel challenges for computer architects.

Virtualization technology enables multiple computing environments to be consoli-
dated in a single physical machine and thus increases resource utilization efficiency
and reduces total cost of ownership (TCO). Specifically, in cloud computing, virtualiza-
tion is a key enabling technology since flexible resource provisioning is essential for
unpredictable user demands. Very recently, GPUs have been used in cloud computing
and virtual machine (VM) platforms [NVIDIA 2014; Jo et al. 2013; Shi et al. 2012;
Amazon EC2 2013]. By adding or removing GPUs in each VM in an on-demand man-
ner, VMs in the same physical host can use the GPUs in a time-sharing manner [Jo
et al. 2013], which also leads to significant reduction in idle power of GPUs. We believe

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:16 S. Mittal and J. S. Vetter

that much research still needs to be done to leverage virtualization for minimizing
power and TCO of the GPU computing infrastructure.

In this article, we surveyed several methods aimed at analyzing and improving
the energy efficiency of GPUs. We underscored the need for power management in
GPUs and identified important trends that are worthy of future investigation. Further,
we presented a classification of different research works to highlight the underlying
similarities and differences between them. We believe that this survey will provide
the researchers valuable insights into the state of the art in GPU power management
techniques and motivate them to create breakthrough inventions for designing green
GPUs of the future exascale era.

REFERENCES

Mohammad Abdel-Majeed and Murali Annavaram. 2013. Warped register file: A power efficient register file
for GPGPUs. In HPCA. 412–423.

Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. 2013. Warped gates: Gating aware schedul-
ing and power gating for GPGPUs. In International Symposium on Microarchitecture (MICRO’13). 111–
122.

Yuki Abe, Hiroshi Sasaki, Martin Peres, Koji Inoue, Kazuaki Murakami, and Shinpei Kato. 2012. Power and
performance analysis of GPU-accelerated systems. In USENIX Conference on Power-Aware Computing
and Systems (HotPower’12).

P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Orti. 2012. Reducing energy consumption of
dense linear algebra operations on hybrid CPU-GPU platforms. In International Symposium on Parallel
and Distributed Processing with Applications (ISPA’12). 56–62.

Amazon EC2. 2013. Hompage. Retrieved from http://aws.amazon.com/hpc-applications/.
AMD PowerPlay. 2013. Homepage. Retrieved from http://www.amd.com/us/products/technologies/ati-power-

play.
D. Anderson, J. Dykes, and E. Riedel. 2003. More than an interface-SCSI vs. ATA. In Proceedings of the 2nd

USENIX Conference on File and Storage Technologies (FAST’03). 245–257.
Hartwig Anzt, Vincent Heuveline, José I Aliaga, Maribel Castillo, Juan C. Fernandez, Rafael Mayo, and

Enrique S. Quintana-Orti. 2011. Analysis and optimization of power consumption in the iterative solu-
tion of sparse linear systems on multi-core and many-core platforms. In International Green Computing
Conference and Workshops (IGCC’11). IEEE, 1–6.

Hartwig Anzt, Björn Rocker, and Vincent Heuveline. 2010. Energy efficiency of mixed precision iterative
refinement methods using hybrid hardware platforms. Computer Science-Research and Development 25,
3 (2010), 141–148.

José-Marı́a Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2012. Boosting mobile GPU perfor-
mance with a decoupled access/execute fragment processor. In International Symposium on Computer
Architecture (ISCA’12). 84–93.

Zachary K. Baker, Maya B. Gokhale, and Justin L. Tripp. 2007. Matched filter computation on FPGA, Cell
and GPU. In IEEE Symposium on Field-Programmable Custom Computing Machines. 207–218.

Khaled Benkrid, Ali Akoglu, Cheng Ling, Yang Song, Ying Liu, and Xiang Tian. 2012. High performance
biological pairwise sequence alignment: FPGA versus GPU versus Cell BE versus GPP. International
Journal of Reconfigurable Computing 2012, Article 7.

Brahim Betkaoui, David B. Thomas, and Wayne Luk. 2010. Comparing performance and energy efficiency of
FPGAs and GPUs for high productivity computing. In International Conference on Field-Programmable
Technology (FPT’10). IEEE, 94–101.

Ricardo Bianchini and Ram Rajamony. 2004. Power and energy management for server systems. Computer
37, 11 (2004), 68–76.

Matthias Birk, Matthias Balzer, Nicole Ruiter, and Juergen Becker. 2012. Comparison of processing perfor-
mance and architectural efficiency metrics for FPGAs and GPUs in 3D ultrasound computer tomography.
In International Conference on Reconfigurable Computing and FPGAs (ReConFig’12). 1–7.

Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and Olaf O. Storaasli. 2010.
State-of-the-art in heterogeneous computing. Scientific Programming 18, 1 (2010), 1–33.

Guilherme Calandrini, Alfredo Gardel, Pedro Revenga, and Jose Luis L’zaro. 2012. GPU acceleration on
embedded devices. A power consumption approach. In 14th IEEE International Conference on High
Performance Computing and Communication and 9th International Conference on Embedded Software
and Systems (HPCC-ICESS’12). 1806–1812.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

http://aws.amazon.com/hpc-applications/
http://www.amd.com/us/products/technologies/ati-power-play
http://www.amd.com/us/products/technologies/ati-power-play

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:17

J. M. Cebrian, G. D. Guerrero, and J. M. Garcia. 2012. Energy efficiency analysis of GPUs. In International
Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW’12). 1014–1022.

Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, and Richard
Vuduc. 2010. Optimizing and tuning the fast multipole method for state-of-the-art multicore architec-
tures. In International Symposium on Parallel & Distributed Processing (IPDPS’10). 1–12.

Chia-Ming Chang, Shao-Yi Chien, You-Ming Tsao, Chih-Hao Sun, Ka-Hang Lok, and Yu-Jung Cheng. 2008.
Energy-saving techniques for low-power graphics processing unit. In International SoC Design Confer-
ence, Vol. 1. IEEE, 242–245.

Thomas C. P. Chau, Xinyu Niu, Alison Eele, Wayne Luk, Peter Y. K. Cheung, and Jan Maciejowski. 2013. Het-
erogeneous reconfigurable system for adaptive particle filters in real-time applications. In International
Symposium on Applied Reconfigurable Computing (ARC’13). 1–12.

Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. 2011. Tree structured analysis on GPU
power study. In International Conference on Computer Design (ICCD’11). IEEE, 57–64.

Gary Chun Tak Chow, Anson Hong Tak Tse, Qiwei Jin, Wayne Luk, Philip H. W. Leong, and David B.
Thomas. 2012. A mixed precision monte carlo methodology for reconfigurable accelerator systems. In
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 57–66.

Slo-Li Chu, Chih-Chieh Hsiao, and Chiu-Cheng Hsieh. 2011. An energy-efficient unified register file for
mobile GPUs. In International Conference on Embedded and Ubiquitous Computing (EUC’11). 166–
173.

Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. 2010. Single-chip heterogeneous computing:
Does the future include custom logic, FPGAs, and GPGPUs? In MICRO. 225–236.

Sylvain Collange, David Defour, and Arnaud Tisserand. 2009. Power consumption of GPUs from a software
perspective. In International Conference on Computational Science (ICCS’09). 914–923.

Jason Cong, Muhuan Huang, and Yi Zou. 2011. 3D recursive Gaussian IIR on GPU and FPGAs: A case
for accelerating bandwidth-bounded applications. In 9th Symposium on Application Specific Processors
(SASP’11). IEEE, 70–73.

Jason Cong and Yi Zou. 2009. FPGA-based hardware acceleration of lithographic aerial image simulation.
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2, 3 (2009), 17:1–17:29.

Mayank Daga, Ashwin M. Aji, and Wu-chun Feng. 2011. On the efficacy of a fused cpu+ gpu processor (or
apu) for parallel computing. In Symposium on Application Accelerators in High-Performance Computing
(SAAHPC’11). IEEE, 141–149.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth, Kyle Spafford, Vinod
Tipparaju, and Jeffrey S. Vetter. 2010. The scalable heterogeneous computing (SHOC) benchmark suite.
In 3rd Workshop on General-Purpose Computation on Graphics Processing Units. ACM, 63–74.

Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid Oliker, David
Patterson, John Shalf, and Katherine Yelick. 2008. Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures. In ACM/IEEE Conference on Supercomputing. 1–12.

Christian De Schryver, Ivan Shcherbakov, Frank Kienle, Norbert Wehn, Henning Marxen, Anton Kostiuk,
and Ralf Korn. 2011. An energy efficient FPGA accelerator for monte carlo option pricing with the heston
model. In 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig’11). IEEE,
468–474.

Sebastian Dreßler and Thomas Steinke. 2012. Energy consumption of CUDA kernels with varying thread
topology. Computer Science-Research and Development (2012), 1–9.

Bo Duan, Wendi Wang, Xingjian Li, Chunming Zhang, Peiheng Zhang, and Ninghui Sun. 2011. Floating-
point mixed-radix FFT core generation for FPGA and comparison with GPU and CPU. In International
Conference on Field-Programmable Technology (FPT’11). IEEE, 1–6.

Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr
Kindratenko, John E Stone, and James C. Phillips. 2010. Quantifying the impact of GPUs on performance
and energy efficiency in HPC clusters. In International Green Computing Conference. 317–324.

Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankaralingam, and Doug Burger. 2013.
Power challenges may end the multicore era. Communications of the ACM 56, 2 (2013), 93–102.

Wu-Chun Feng. 2003. Making a case for efficient supercomputing. Queue 1, 7 (2003).
Denis Foley, Pankaj Bansal, Don Cherepacha, Robert Wasmuth, Aswin Gunasekar, Srinivasa Gutta, and

Ajay Naini. 2012. A low-power integrated x86–64 and graphics processor for mobile computing devices.
IEEE Journal of Solild-State Circuits 47, 1 (2012), 220–231.

Jeremy Fowers, Greg Brown, John Wernsing, and Greg Stitt. 2013. A performance and energy comparison
of convolution on GPUs, FPGAs, and multicore processors. ACM Transactions on Architecture and Code
Optimization (TACO) 9, 4 (2013), 25.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:18 S. Mittal and J. S. Vetter

Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally, Erik Lindholm,
and Kevin Skadron. 2011. Energy-efficient mechanisms for managing thread context in throughput
processors. ACM SIGARCH Computer Architecture News 39, 3 (2011), 235–246.

Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and William J. Dally. 2012. Unifying
primary cache, scratch, and register file memories in a throughput processor. In Annual IEEE/ACM
International Symposium on Microarchitecture. 96–106.

GeForce GTX 590. 2013. Specifications. Retrieved from http://www.geforce.com/hardware/desktop-GPUs/
geforce-gtx-590/specifications.

Sayan Ghosh, Sunita Chandrasekaran, and Barbara Chapman. 2012. Energy analysis of parallel scientific
kernels on multiple GPUs. In Symposium on Application Accelerators in High Performance Computing
(SAAHPC’12). IEEE, 54–63.

Syed Zohaib Gilani, Nam Sung Kim, and Michael J. Schulte. 2012. Power-efficient computing for compute-
intensive GPGPU applications. In 21st International Conference on Parallel Architectures and Compila-
tion Techniques (PACT’12). 445–446.

Syed Zohaib Gilani, Nam Sung Kim, and Michael J. Schulte. 2013. Exploiting GPU peak-power and perfor-
mance tradeoffs through reduced effective pipeline latency. In International Symposium on Microarchi-
tecture (MICRO’13). 74–85.

Dominik Goddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick McCormick, Hilmar Wobker, Christian
Becker, and Stefan Turek. 2008. Using GPUs to improve multigrid solver performance on a cluster.
International Journal of Computational Science and Engineering 4, 1 (2008), 36–55.

D. Gohringer, M. Birk, Y. Dasse-Tiyo, N. Ruiter, M. Hubner, and J. Becker. 2011. Reconfigurable MPSoC
versus GPU: Performance, power and energy evaluation. In IEEE International Conference on Industrial
Informatics (INDIN’11). 848–853.

Tsuyoshi Hamada, Khaled Benkrid, Keigo Nitadori, and Makoto Taiji. 2009. A comparative study on
ASIC, FPGAs, GPUs and general purpose processors in the O (N2) gravitational n-body simulation.
In NASA/ESA Conference on Adaptive Hardware and Systems (AHS’09). 447–452.

Tomoaki Hamano, Toshio Endo, and Satoshi Matsuoka. 2009. Power-aware dynamic task scheduling for
heterogeneous accelerated clusters. In International Symposium on Parallel & Distributed Processing
(IPDPS’09). IEEE, 1–8.

Daniel Hefenbrock, Jason Oberg, Nhat Thanh, Ryan Kastner, and Scott B. Baden. 2010. Accelerating viola-
jones face detection to FPGA-level using GPUs. In IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM’10). 11–18.

Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and performance model. ACM SIGARCH
Computer Architecture News 38, 3 (2010), 280–289.

Chih-Chieh Hsiao, Slo-Li Chu, and Chen-Yu Chen. 2013. Energy-Aware hybrid precision selection framework
for mobile GPUs. Computers & Graphics 37, 5 (2013), 431–444.

Song Huang, Shucai Xiao, and W. Feng. 2009. On the energy efficiency of graphics processing units for
scientific computing. In International Symposium on Parallel & Distributed Processing (IPDPS’09). 1–8.

Hongpeng Huo, Chongchong Sheng, Xinming Hu, and Baifeng Wu. 2012. An energy efficient task scheduling
scheme for heterogeneous GPU-enhanced clusters. In International Conference on Systems and Infor-
matics (ICSAI’12). IEEE, 623–627.

Hanaa M. Hussain, Khaled Benkrid, Ahmet T. Erdogan, and Huseyin Seker. 2011. Highly parameterized
k-means clustering on FPGAs: Comparative results with GPPs and GPUs. In International Conference
on Reconfigurable Computing and FPGAs (ReConFig’11). 475–480.

Intel Core i7. 2013. Specifications. Retrieved from http://ark.intel.com/products/65525/Intel-Core-i7-3770T-
Processor-8M-Cache-up-to-3_70-GHz.

Intel Xeon E7. 2013. Specifications. Retrieved from http://ark.intel.com/products/53580/Intel-Xeon-Processor-
E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI.

Yaser Jararweh and Salim Hariri. 2012. Power and performance management of GPUs based cluster. Inter-
national Journal of Cloud Applications and Computing (IJCAC’12) 2, 4 (2012), 16–31.

Y. Jiao, H. Lin, P. Balaji, and W. Feng. 2010. Power and performance characterization of computational
kernels on the GPU. In Int’l Conference on Green Computing and Communications (GreenCom) & Int’l
Conference on Cyber, Physical and Social Computing (CPSCom’10). 221–228.

Naifeng Jing, Yao Shen, Yao Lu, Shrikanth Ganapathy, Zhigang Mao, Minyi Guo, Ramon Canal, and Xiaoyao
Liang. 2013. An energy-efficient and scalable eDRAM-based register file architecture for GPGPU. In
International Symposium on Computer Architecture (ISCA’13). 344–355.

Heeseung Jo, Jinkyu Jeong, Myoungho Lee, and Dong Hoon Choi. 2013. Exploiting GPUs in virtual machine
for biocloud. BioMed Research International 2013 (2013), 11. doi:10.1155/2013/939460.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

http://www.geforce.com/hardware/desktop-GPUs/geforce-gtx-590/specifications
http://www.geforce.com/hardware/desktop-GPUs/geforce-gtx-590/specifications
http://ark.intel.com/products/65525/Intel-Core-i7-3770T-Processor-8M-Cache-up-to-370-GHz
http://ark.intel.com/products/65525/Intel-Core-i7-3770T-Processor-8M-Cache-up-to-370-GHz
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-240-GHz-640-GTs-Intel-QPI
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-240-GHz-640-GTs-Intel-QPI

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:19

Kiran Kasichayanula, Dan Terpstra, Piotr Luszczek, Stan Tomov, Shirley Moore, and Gregory Peterson.
2012. Power aware computing on GPUs. In Symposium on Application Accelerators in High-Performance
Computing. 64–73.

Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs
and the future of parallel computing. IEEE Micro 31, 5 (2011), 7–17.

Vincent Keller and Ralf Gruber. 2010. One joule per GFlop for BLAS2 Now!. In American Institute of Physics
Conference Series, Vol. 1281. 1321–1324.

Srinidhi Kestur, John D. Davis, and Oliver Williams. 2010. BLAS comparison on FPGA, CPU and GPU. In
IEEE Annual Symposium on VLSI (2010), 288–293.

Holger Lange, Florian Stock, Andreas Koch, and Dietmar Hildenbrand. 2009. Acceleration and energy
efficiency of a geometric algebra computation using reconfigurable computers and GPUs. In IEEE Sym-
posium on Field Programmable Custom Computing Machines. 255–258.

Ahmad Lashgar, Amirali Baniasadi, and Ahmad Khonsari. 2013. Inter-Warp instruction temporal locality
in deep-multithreaded GPUs. In Architecture of Computing Systems (ARCS’13). 134–146.

Jaekyu Lee and Hyesoon Kim. 2012. TAP: A TLP-aware cache management policy for a CPU-GPU hetero-
geneous architecture. In 18th International Symposium on High Performance Computer Architecture
(HPCA’12). IEEE, 1–12.

Jeabin Lee, Byeong-Gyu Nam, and Hoi-Jun Yoo. 2007. Dynamic voltage and frequency scaling (DVFS) scheme
for multi-domains power management. In IEEE Asian Solid-State Circuits Conference. 360–363.

Jungseob Lee, Vijay Sathisha, Michael Schulte, Katherine Compton, and Nam Sung Kim. 2011. Improving
throughput of power-constrained GPUs using dynamic voltage/frequency and core scaling. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT’11). IEEE, 111–120.

JunKyu Lee, Junqing Sun, Gregory D. Peterson, Robert J. Harrison, and Robert J. Hinde. 2010. Power-aware
performance of mixed precision linear solvers for FPGAs and GPGPUs. In Symposium on Application
Accelerators in High Performance Computing.

Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen,
Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, et al. 2010. Debunk-
ing the 100X GPU vs. CPU myth: An evaluation of throughput computing on CPU and GPU. In ACM
SIGARCH Computer Architecture News 38, 451–460.

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and
Vijay Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In International
Symposium on Computer Architecture (ISCA’13). 487–498.

Dong Li, Surendra Byna, and Srimat Chakradhar. 2011. Energy-Aware workload consolidation on GPU. In
International Conference on Parallel Processing Workshops (ICPPW’11). IEEE, 389–398.

Yisong Lin, Tao Tang, and Guibin Wang. 2011. Power optimization for GPU programs based on software
prefetching. In International Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom’11). 1339–1346.

Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xiaozhu Lin. 2012. Power-efficient time-
sensitive mapping in heterogeneous systems. In International Conference on Parallel Architectures and
Compilation Techniques (PACT’12). ACM, 23–32.

Wenjie Liu, Zhihui Du, Yu Xiao, David A. Bader, and Chen Xu. 2011. A waterfall model to achieve energy
efficient tasks mapping for large scale GPU clusters. In IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum (IPDPSW’11). 82–92.

Daniel Llamocca, Cesar Carranza, and Marios Pattichis. 2011. Separable FIR filtering in FPGA and GPU
implementations: Energy, Performance, and Accuracy considerations. In International Conference on
Field Programmable Logic and Applications (FPL’11). IEEE, 363–368.

Miguel López-Portugués, Jesús A López-Fernández, Alberto Rodrı́guez-Campa, and José Ranilla. 2011. A
GPGPU solution of the FMM near interactions for acoustic scattering problems. Journal of Supercom-
puting 58, 3 (2011), 283–291.

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In International Symposium on Microarchitecture (MICRO’09).
45–55.

Cheng Luo and Reiji Suda. 2011. A performance and energy consumption analytical model for GPU. In
International Conference on Dependable, Autonomic and Secure Computing (DASC’11). IEEE, 658–
665.

Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. 2012. GreenGPU: A holistic approach to energy
efficiency in GPU-CPU heterogeneous architectures. In International Conference on Parallel Processing
(ICPP’12). 48–57.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

19:20 S. Mittal and J. S. Vetter

Arian Maghazeh, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng. 2013. General Purpose Computing on
Low-Power Embedded GPUs: Has It Come of Age? Technical Report. Linkping University, Software and
Systems.

Simon McIntosh-Smith, Terry Wilson, Amaurys Ávila Ibarra, Jonathan Crisp, and Richard B. Sessions. 2012.
Benchmarking energy efficiency, power costs and carbon emissions on heterogeneous systems. Computer
Journal 55, 2 (2012), 192–205.

Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and Antonia Zhai. 2013. Managing shared last-level cache
in a heterogeneous multicore processor. In 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT’13). 225–234.

Rich Miller. 2013. Exascale Computing. Retrieved from http://www.datacenterknowledge.com/archives/2010/
12/10/exascale-computing-gigawatts-of-power/.

Sparsh Mittal. 2012. A survey of architectural techniques for DRAM power management. International
Journal of High Performance Systems Architecture 4, 2 (2012), 110–119.

Sparsh Mittal. 2013. Energy Saving Techniques for Phase Change Memory (PCM). Technical Report. Iowa
State University.

Sparsh Mittal, Yanan Cao, and Zhao Zhang. 2013. MASTER: A multicore cache energy saving technique
using dynamic cache reconfiguration. IEEE Transactions on VLSI Systems 22, 8 (2013), 1653–1665.

Shuai Mu, Chenxi Wang, Ming Liu, Dongdong Li, Maohua Zhu, Xiaoliang Chen, Xiang Xie, and Yangdong
Deng. 2011. Evaluating the potential of graphics processors for high performance embedded computing.
In 2011 Design, Automation Test in Europe Conference Exhibition (DATE’11). 1–6.

Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi Matsuoka. 2010. Statistical
power modeling of GPU kernels using performance counters. In International Conference on Green
Computing. 115–122.

Byeong-Gyu Nam, Jeabin Lee, Kwanho Kim, Seung Jin Lee, and Hoi-Jun Yoo. 2007. A low-power hand-
held GPU using logarithmic arithmetic and triple DVFS power domains. In ACM SIGGRAPH/
EUROGRAPHICS Symposium on Graphics Hardware, Vol. 4. 73–80.

NVIDIA. 2014. Dedicated GPU Technology for Virtual Desktops. Retrieved from http://www.nvidia.com/
object/dedicated-gpus.html.

NVIDIA PowerMizer. 2013. NVIDIA PowerMizer Technology-Extend Battery Life on Notebook PCs. Re-
trieved from http://www.nvidia.com/object/ feature_powermizer.html.

Edson Luiz Padoin, Laércio Lima Pilla, Francieli Zanon Boito, Rodrigo Virote Kassick, Pedro Velho, and
Philippe O. A. Navaux. 2012. Evaluating application performance and energy consumption on hybrid
CPU+ GPU architecture. Cluster Computing (2012), 1–15.

Chanmin Park, Hyunhee Kim, and Jihong Kim. 2006. A low-power implementation of 3D graphics system
for embedded mobile systems. In Workshop on Embedded Systems for Real Time Multimedia. 53–58.

C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and R. Friedrich. 2003. Smart cooling of data centers. In Pa-
cific RIM/ASME International Electronics Packaging Technical Conference and Exhibition (IPACK’03).

Indrani Paul, Vignesh Ravi, Srilatha Manne, Manish Arora, and Sudhakar Yalamanchili. 2013. Coordinated
energy management in heterogeneous processors. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’13). 59.

Karl Pauwels, Matteo Tomasi, Javier Diaz Alonso, Eduardo Ros, and Marc M. Van Hulle. 2012. A compar-
ison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image features. IEEE
Transactions on Computers 61, 7 (2012), 999–1012.

Ardavan Pedram, Robert A. van de Geijn, and Andreas Gerstlauer. 2012. Co-Design tradeoffs for high-
performance, low-power linear algebra architectures. IEEE Transactions on Computers 61, 12 (2012),
1724–1736.

Jeff Pool, Anselmo Lastra, and Montek Singh. 2008. Energy-precision tradeoffs in mobile graphics processing
units. In International Conference on Computer Design (ICCD’08). IEEE, 60–67.

Jeff Pool, Anselmo Lastra, and Montek Singh. 2010. An energy model for graphics processing units. In IEEE
International Conference on Computer Design (ICCD’10). 409–416.

Jeff Pool, Anselmo Lastra, and Montek Singh. 2011. Precision selection for energy-efficient pixel shaders. In
ACM SIGGRAPH Symposium on High Performance Graphics. 159–168.

Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. 2002. Digital Integrated Circuits. Vol. 2.
Prentice Hall, Englewood Cliffs, NJ.

RADEON. 2013. http://www.amd.com/US/PRODUCTS/DESKTOP/GRAPHICS/ATI-RADEON-HD-5000/HD-
5970/Pages/ati-radeon-hd-5970-overview.aspx#2. (2013).

Karthik Ramani, Ali Ibrahim, and Dan Shimizu. 2007. PowerRed: A flexible modeling framework for power
efficiency exploration in GPUs. In Workshop on General Purpose Processing on GPUs (GPGPU’07).

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

http://www.datacenterknowledge.com/archives/2010/12/10/exascale-computing-gigawatts-of-power/
http://www.datacenterknowledge.com/archives/2010/12/10/exascale-computing-gigawatts-of-power/
http://www.nvidia.com/object/dedicated-gpus.html
http://www.nvidia.com/object/dedicated-gpus.html
http://www.nvidia.com/object/ ignorespaces feature_powermizer.html
http://www.amd.com/US/PRODUCTS/DESKTOP/GRAPHICS/ATI-RADEON-HD-5000/HD-5970/Pages/ati-radeon-hd-5970-overview.aspx2
http://www.amd.com/US/PRODUCTS/DESKTOP/GRAPHICS/ATI-RADEON-HD-5000/HD-5970/Pages/ati-radeon-hd-5970-overview.aspx2

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:21

Da Qi Ren. 2011. Algorithm level power efficiency optimization for CPU–GPU processing element in data
intensive SIMD/SPMD computing. Journal of Parallel and Distributed Computing 71, 2 (2011), 245–253.

Da Qi Ren, E. Bracken, S. Polstyanko, N. Lambert, R. Suda, and D. D. Giannacopulos. 2012. Power aware
parallel 3-D finite element mesh refinement performance modeling and analysis with CUDA/MPI on
GPU and multi-core architecture. IEEE Transactions on Magnetics 48, 2 (2012), 335–338.

Da Qi Ren and R. Suda. 2009. Power efficient large matrices multiplication by load scheduling on multi-core
and GPU platform with CUDA. In International Conference on Computational Science and Engineering,
Vol. 1. IEEE, 424–429.

Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A locality-aware memory hierarchy
for energy-efficient GPU architectures. In International Symposium on Microarchitecture (MICRO’13).
86–98.

Justin Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, Alan George, and Herman Lam.
2010. Comparative analysis of HPC and accelerator devices: Computation, memory, I/O, and power. In
International Workshop on High-Performance Reconfigurable Computing Technology and Applications
(HPRCTA’10). IEEE, 1–10.

Mahsan Rofouei, Thanos Stathopoulos, Sebi Ryffel, William Kaiser, and Majid Sarrafzadeh. 2008. Energy-
aware high performance computing with graphic processing units. In Workshop on Power Aware Com-
puting and System.

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-Aware warp scheduling. In 46th
IEEE/ACM International Symposium on Microarchitecture (MICRO-46). 99–110.

A. Sankaranarayanan, E. K. Ardestani, J. L. Briz, and J. Renau. 2013. An energy efficient GPGPU memory
hierarchy with tiny incoherent caches. In IEEE International Symposium on Low Power Electronics and
Design (ISLPED’13). 9–14.

T. R. W. Scogland, Heshan Lin, and Wu-chun Feng. 2010. A first look at integrated GPUs for green high-
performance computing. Computer Science-Research and Development 25, 3 (2010), 125–134.

A. Sethia, G. Dasika, M. Samadi, and S. Mahlke. 2013. APOGEE: Adaptive prefetching on GPUs for energy
efficiency. In International Conference on Parallel Architectures and Compilation Techniques (PACT).
73–82.

Jeremy W. Sheaffer, Kevin Skadron, and David P. Luebke. 2005a. Fine-grained graphics architectural sim-
ulation with Qsilver. In ACM SIGGRAPH 2005 Posters. ACM, 118.

Jeremy W. Sheaffer, Kevin Skadron, and David P. Luebke. 2005b. Studying thermal management for
graphics-processor architectures. In IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS’05). IEEE, 54–65.

Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. 2012. vCUDA: GPU-accelerated high-performance computing
in virtual machines. IEEE Transactions on Computers. 61, 6 (2012), 804–816.

Larry Smarr. 2010. Project greenlight: Optimizing cyber-infrastructure for a carbon-constrained world. Com-
puter 43, 1 (2010), 22–27.

Kyle L Spafford, Jeremy S. Meredith, Seyong Lee, Dong Li, Philip C. Roth, and Jeffrey S. Vetter. 2012. The
tradeoffs of fused memory hierarchies in heterogeneous computing architectures. In 9th Conference on
Computing Frontiers. ACM, 103–112.

L. Stolz, H. Endt, M. Vaaraniemi, D. Zehe, and W. Stechele. 2010. Energy consumption of graphic processing
units with respect to automotive use-cases. In International Conference on Energy Aware Computing
(ICEAC). IEEE, 1–4.

Lars Struyf, Stijn De Beugher, Dong Hoon Van Uytsel, Frans Kanters, and Toon Goedemé. 2014. The battle
of the giants: A case study of GPU vs FPGA optimisation for real-time image processing. In 4th Inter-
national Conference on Pervasive and Embedded Computing and Communication systems (PECCS’14).

Reiji Suda and Da Qi Ren. 2009. Accurate measurements and precise modeling of power dissipation of CUDA
kernels toward power optimized high performance CPU-GPU computing. In International Conference
on Parallel and Distributed Computing, Applications and Technologies. IEEE, 432–438.

Hiroyuki Takizawa, Katsuto Sato, and Hiroaki Kobayashi. 2008. SPRAT: Runtime processor selection for
energy-aware computing. In International Conference on Cluster Computing. IEEE, 386–393.

David Barrie Thomas, Lee Howes, and Wayne Luk. 2009. A comparison of CPUs, GPUs, FPGAs, and mas-
sively parallel processor arrays for random number generation. In International Symposium on Field
Programmable Gate Arrays. 63–72.

Constantin Timm, Andrej Gelenberg, F. Weichert, and P. Marwedel. 2010. Reducing the Energy Consump-
tion of Embedded Systems by Integrating General Purpose GPUs. Technische Universität Dortmunde,
Department of Computer Science.

Top500. 2013. Top500 List—November 2013. Retrieved from http://www.top500.org/lists/2013/11/.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

http://www.top500.org/lists/2013/11/

19:22 S. Mittal and J. S. Vetter

Takuro Udagawa and Masakazu Sekijima. 2011. The power efficiency of GPUs in multi nodes environment
with molecular dynamics. In International Conference on Parallel Processing Workshops (ICPPW’11).
IEEE, 399–405.

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Accelerating a random forest
classifier: Multi-core, GP-GPU, or FPGA? In International Symposium on Field-Programmable Custom
Computing Machines (FCCM’12). IEEE, 232–239.

Stéphane Vialle, Sylvain Contassot-Vivier, Thomas Jost, et al. 2011. Optimizing computing and energy
performances in heterogeneous clusters of CPUs and GPUs. Handbook of Energy-Aware and Green
Computing. Chapman Hall/CRC.

Hasitha Muthumala Waidyasooriya, Yasuhiro Takei, Masanori Hariyama, and Michitaka Kameyama. 2012.
Low-Power heterogeneous platform for high performance computing and its application to 2D-FDTD
computation. In International Conference on Reconfigurable Systems and Algorithms.

Bin Wang, Bo Wu, Dong Li, Xipeng Shen, Weikuan Yu, Yizheng Jiao, and Jeffrey S. Vetter. 2013. Explor-
ing hybrid memory for GPU energy efficiency through software-hardware co-design. In International
Conference on Parallel Architectures and Compilation Techniques (PACT’13). 93–102.

Guibin Wang, YiSong Lin, and Wei Yi. 2010. Kernel fusion: An effective method for better power efficiency on
multithreaded GPU. In 2010 IEEE/ACM International Conference on Green Computing and Communi-
cations (GreenCom) and International Conference on Cyber, Physical and Social Computing (CPSCom).
IEEE, 344–350.

Haifeng Wang and Qingkui Chen. 2012. An energy consumption model for GPU computing at instruction
level. International Journal of Advancements in Computing Technology (2012), 192–200.

Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. 2011. Power gating strategies on GPUs.
ACM Transactions on Architecture and Code Optimization 8, 3 (2011), 13:1–13:25.

Wendi Wang, Bo Duan, Wen Tang, Chunming Zhang, Guangming Tang, Peiheng Zhang, and Ninghui Sun.
2012. A coarse-grained stream architecture for cryo-electron microscopy images 3D reconstruction. In
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM,
143–152.

Yue Wang and N. Ranganathan. 2011. An instruction-level energy estimation and optimization methodology
for GPU. In International Conference on Computer and Information Technology (CIT’11). 621–628.

Yue Wang, S. Roy, and N. Ranganathan. 2012. Run-time power-gating in caches of GPUs for leakage energy
savings. In Design, Automation Test in Europe Conference Exhibition (DATE’12). 300–303.

Zhuowei Wang, Xianbin Xu, Naixue Xiong, Laurence T. Yang, and Wuqing Zhao. 2010. Analysis of parallel
algorithms for energy conservation with GPU. In International Conference on Green Computing and
Communications (GreenCom) & International Conference on Cyber, Physical and Social Computing
(CPSCom’10). IEEE, 155–162.

Jason Williams, Alan D. George, Justin Richardson, Kunal Gosrani, and Siddarth Suresh. 2008. Computa-
tional density of fixed and reconfigurable multi-core devices for application acceleration. In Proceedings
of Reconfigurable Systems Summer Institute.

Henry Wong, M.-M. Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos. 2010. Demystifying
GPU microarchitecture through microbenchmarking. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’10). 235–246.

Yi Yang, Ping Xiang, Mike Mantor, and Huiyang Zhou. 2012. Fixing performance bugs: An empirical study
of open-source GPGPU programs. In International Conference on Parallel Processing. 329–339.

Wing-kei S. Yu, Ruirui Huang, Sarah Q. Xu, Sung-En Wang, Edwin Kan, and G. Edward Suh. 2011. SRAM-
DRAM hybrid memory with applications to efficient register files in fine-grained multi-threading. In
ACM SIGARCH Computer Architecture News, Vol. 39. 247–258.

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. 2011. A fully integrated multi-
CPU, GPU and memory controller 32nm processor. In International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC’11). 264–266.

Pooya Zandevakili, Ming Hu, and Zhaohui Qin. 2012. GPUmotif: An ultra-fast and energy-efficient motif
analysis program using graphics processing units. PloS One 7, 5 (2012), e36865.

Changyou Zhang, Kun Huang, Xiang Cui, and Yifeng Chen. 2012. Energy-aware GPU programming at
source-code levels. Tsinghua Science and Technology 17, 3 (2012), 278–286.

Ying Zhang, Yue Hu, Bin Li, and Lu Peng. 2011. Performance and power analysis of ATI GPU: A statistical
approach. In International Conference on Networking, Architecture and Storage (NAS’11). IEEE, 149–
158.

Ying Zhang, Lu Peng, Bin Li, Jih-Kwon Peir, and Jianmin Chen. 2011. Architecture comparisons between
Nvidia and ATI GPUs: Computation parallelism and data communications. In IEEE International
Symposium on Workload Characterization (IISWC’11). 205–215.

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

A Survey of Methods for Analyzing and Improving GPU Energy Efficiency 19:23

Jishen Zhao, Guangyu Sun, Gabriel H. Loh, and Yuan Xie. 2012. Energy-efficient GPU design with reconfig-
urable in-package graphics memory. In ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED’12). 403–408.

Dan Zou, Yong Dou, and Fei Xia. 2012. Optimization schemes and performance evaluation of Smith–
Waterman algorithm on CPU, GPU and FPGA. Concurrency and Computation: Practice and Experience
24, 14, 1625–1644.

Received May 2013; revised February 2014; accepted June 2014

ACM Computing Surveys, Vol. 47, No. 2, Article 19, Publication date: July 2014.

