
30

A Survey of Migration Mechanisms of Virtual Machines

VIOLETA MEDINA, Universidad Michoacana de San Nicolás de Hidalgo
JUAN MANUEL GARCÍA, Instituto Tecnológico de Morelia

In the virtualization area, replication has been considered as a mechanism to provide high availability.
A high-availability system should be active most of the time, and this is the reason that its design should
consider almost zero downtime and a minimal human intervention if a recovery process is demanded. Several
migration and replication mechanisms have been developed to provide high availability inside virtualized
environments. In this article, a survey of migration mechanisms is reported. These approaches are classified
in three main classes: process migration, memory migration, and suspend/resume migration.

Categories and Subject Descriptors: C.2: Computer-Communication Networks; C.2.2 [Network Protocols]:
Routing Protocols; C.2: Computer-Communication Networks; C.2.4 [Distributed Systems]: Network Oper-
ating Systems

General Terms: Design

Additional Key Words and Phrases: High availability, migration, replication, virtual machine, virtualization

ACM Reference Format:
Violeta Medina and Juan Manuel Garcı́a, 2014. A survey of migration mechanisms of virtual machines. ACM
Comput. Surv. 46, 3, Article 30 (January 2014), 33 pages.
DOI: http://dx.doi.org/10.1145/2492705

1. INTRODUCTION

Virtualization is a technology that started in the 1960s. The origin of virtual machines
was in mainframe computers with multiprogramming operating systems, which made
use of time sharing and resource sharing on expensive hardware [Susanta and Tzi-Cker
2005]. The principal architectural characteristics were the dual-state hardware organi-
zation with a privileged and a nonprivileged mode [Goldberg 1974]. The architecture of
IBM’s M44/44X was the first to introduce the virtual machines term. The main machine
was an IBM 7044 (M44) scientific computer and several simulated 7044 virtual ma-
chines, or 44Xs, using both hardware and software, virtual memory, and multiprogram-
ming, respectively. The address space of a 44X was resident in the M44’s memory hierar-
chy, implemented via virtual memory and multiprogramming [Dittner and Rule 2007].

Nowadays, the interest in virtualization has resurged since computers have enough
processing power to use virtualization as a technique of partitioning or dividing the
resources of a single server into multiple separated execution environments. Each

This work is supported by Consejo Nacional de Ciencia y Tecnologı́a (CONACYT) and Universidad Michoa-
cana de San Nicolás de Hidalgo.
Authors’ addresses: V. Medina, División de Estudios de Posgrado, Facultad de Ingenierı́a Elı́ctrica, Univer-
sidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Francisco J. Múgica S/N, Col. Felicitas
del Rio 58030, Morelia, Mich., México; J. M. Garcı́a, Computer Systems Department, Instituto Tecnológico
de Morelia, Av. Tecnológico 1500, Morelia, México.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/01-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2492705

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://dx.doi.org/10.1145/2492705
http://dx.doi.org/10.1145/2492705

30:2 V. Medina and J. M. Garcı́a

environment is isolated from others; therefore, multiple operating systems can run
on the same hardware [Barham et al. 2003; Changarti 2007; Rosenblum 2004]. These
logical units are called Virtual Machines (VMs).

The basic motivation for virtualization is the same for the multitask operating sys-
tems; the computers have more processing power than necessary to fulfill a task. The
computers of the second generation were programmable; those computers could com-
plete just one task at a time. Eventually, the hardware became faster and a computer
could complete a job and had unused resources. Multitasking took advantage of the
unused computational power [Chisnall 2007].

Virtualization introduces a software abstraction layer between the hardware and the
operating system and applications running on top of it. This abstraction layer is called
a Virtual Machine Monitor (VMM) or hypervisor. Because the hardware resources are
controlled by the VMM, it is possible to run in parallel multiple operating systems in
the same hardware [Sahoo et al. 2010].

Rosemblum and Garfinkel [2005] present an overview of VMMs. The current VMMs
offer characteristics that attracted the interest of researchers, such as isolation, server
consolidation [Padala et al. 2007], cloning, server migration, and replication. These
characteristics are used to provide high availability in a virtualized system.

Many organizations found that they had servers doing only one task or small clusters
of related jobs. The virtualization allows that a series of virtual servers can be con-
solidated within a unique physical machine without losing the security in the isolated
environments.

A VMM provides certain characteristics, such as clonation, at a very low cost. For
example, if a patch is tested, a VM can be cloned, and the patch can be applied to the
clone machine to observe the way the system is affected. This procedure is easier than
a test in a machine in production. Another issue that has contributed to increase the
VMM popularity is the support to the legacy operating systems. System administrators
can use this capacity to consolidate many underutilized servers into only one machine,
thus ensuring isolation and efficient performance [Whitaker et al. 2005] by expanding
these capacities to clustering environments [Kiyanclar 2005]. Another great advantage
is the migration. A virtual machine can be migrated to another host if the hardware
begins to experience failures or if an actualization is scheduled. The machine can be mi-
grated to the original machine when it begins to work again. The efficient use of energy
makes the virtualization attractive. An idle server consumes power, too. Consolidating
many servers in VMs in a small number of hosts can contribute to reduce the cost of
energy in a substantial way [Torres et al. 2008]. Finally, virtualization provides a high
degree of isolation between VMs [Gupta et al. 2006]. A virtual machine failure will not
affect other running virtual machines in the same hardware. Performance isolation is
another important goal; the resource consumption of one virtual machine should not
impact the performance of other VMs sharing the same hardware.

Several VMMs include migration as a mechanism to provide fault tolerance in a
highly available system. Migration is a tool for load balancing, dealing with hardware
failures, scaling systems, or reallocating resources. A migration mechanism has to
provide almost zero downtime.

This migration should be transparent to the guest operating system, applications
running on the operating system, and remote clients of the virtual machine. It should
appear, to all involved parties, that the virtual machine did not change its location.
The only perceived change should be a brief slowdown during the migration and a
possible improvement in performance after the migration, since the VM was moved to
a machine with more available resources.

This article is focused on migration mechanisms, but replication approaches are
presented too. We consider that a migration mechanism moves a VM from one host

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:3

to another and just one copy is created at a time. A replication mechanism maintains
multiple copies of an original image VM in sync. It is typically used to create a failover
scheme for a highly available system. Record and replay techniques may be used to
support migration, but they can also be used for replication or diagnosis/debugging. A
record/replay mechanism captures and records nondeterministic events of a source VM
in a log file. The stored information may be used to replay the whole state of the source
VM in a different VM. In this article, different forms of migration have been reviewed.

The remainder of Section 1 shows the background of VM migration. The rest of the
article is structured as follows. In Section 2, we present live migration mechanisms.
In Section 3, we present suspend/resume migration mechanisms. In Section 4, we
describe some live migration approaches, which migrate VMs over a WAN. In Section 5,
we present some migration mechanisms to get load balancing and efficient resource
consumption. In Section 6, we show the automatic management of live migration. In
Section 7, we describe some migration mechanisms based on a record/replay technique
and the live migration of the lightweight virtualization solution. In Section 8, we
present some current trends, and in Section 9, we conclude.

1.1. Definition of Terms

In the section to follow, several migration and replication mechanisms are detailed.
We consider that a migration mechanism moves, at a time, a single copy of a VM from
one host to another. A replication mechanism maintains multiple copies of an original
image VM in sync. Record and replay techniques may be used to support migration.
A record/replay mechanism captures and records nondeterministic events of a source
VM in a log file. During a replay phase, these log records guide the virtual machine as
it re-executes from a checkpoint.

1.2. Background Work

In the mid-1980s, there were two important technological advances. The first one was
the development of powerful microprocessors. CPUs quickly were manufactured in 64
bits. The second development was the invention of high-speed computer networks. The
use of Local Area Networks (LANs) and Wide Area Networks (WANs) allows build-
ing computing systems formed by a large number of CPUs connected by a high-speed
network. These systems were called distributed systems. It was necessary to develop
operating systems to support distributed systems. A distributed system can be defined
as a collection of independent computers that appears to users as a single computer
[Tanenbaum and Steen 2001]. A system can reach this goal if it is transparent. Dis-
tributed systems consider several concepts of transparency: location transparency—
users cannot know where resources are located; migration transparency—resources
can move anywhere without changing their names; replication transparency—users
cannot know how many copies of data exist; concurrency transparency—users can
share resources automatically; and parallelism transparency—some activities can be
executed in parallel without users knowing. Under this philosophy, many distributed
operating systems were developed with process migration as an inherent characteristic.

Several operating systems were created to work in a distributed environment, such
as Amoeba [Mullender et al. 1990], Mach [Tanenbaum 1995], and Chorus [Rozier et al.
1991]. Within the first works in migration, the migration process can be considered as
a strategy to copy the complete state from one VM to another physical machine.

1.2.1. Zap. Zap [Osman et al. 2002] introduces a virtualization layer on top of the
operating system called PrOcess Domain (pod). A pod includes a group of processes
within a private namespace that presents the process group with the same virtualized
view of the system. A pod allows relating virtual identifiers with operating system

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:4 V. Medina and J. M. Garcı́a

resources like process identifiers and network addresses. This abstraction separates a
pod from dependencies on the operating system and from other processes in the system.

Zap was implemented as a kernel module without kernel modifications, which in-
tercepts system calls as needed for virtualization and saves and restores the kernel
state as needed for migration. The Zap prototype provides a migration process with
low overhead.

To support transparent process migration, Zap considers three requirements: re-
source consistency, resource conflicts, and resource dependencies. The first requirement
is the need to preserve resource-naming consistency. An operating system contains nu-
merous identifiers for its resources, including Process IDs (PIDs), file names, and socket
ports. The operating system assumes that the identifier does not change during a cycle
of a process life.

The second requirement is oriented to eliminate naming conflicts when processes are
migrated. The third requirement is to eliminate process dependencies when a process
is migrated.

Pods are self-contained units that can be suspended to secondary storage, migrated
to another machine, and transparently resumed. A pod can contain any number of
processes. The main difference between a pod and a traditional operating system en-
vironment is that each pod has its own private, virtual namespace.

Names within a pod are assigned in the same way that traditional operating systems
assign names, but such names are localized to the pod. Because the namespace is
private to a given pod, there are no resource-naming conflicts for processes in different
pods.

Zap virtualization is based on a checkpoint-restart mechanism to suspend, migrate,
and resume pods and their associated processes. The checkpoint-restart approach
avoids leaving residual components, migrating the complete state in a checkpointed
image; a pod can be migrated over a network or in local storage and the checkpointed
state can be stored.

To migrate a pod, Zap first suspends the pod by stopping all processes in the pod,
saving the virtualization mappings, and saving all process states, including memory,
CPU registers, open file handles, and so forth. On the destination host, Zap resumes
the pod by first restoring the pod virtualized environment and then restoring processes
in a stopped state; for this reason, it is necessary to create the virtualization mappings
of the stopped processes. Finally, Zap enables the processes to continue executing in
the restored pod environment.

In the process of migrating a pod, the memory migration is considered. Zap check-
points the memory areas allocated by processes within the pod. Zap ensures that the
same view of the file system is available to a pod on whatever machine on which the
pod is executed. Because of this, Zap does not need to save the code segments that
belong to an executable, for example, text pages of the process or linked libraries in
use by the process. Migration of text pages is carried out by saving references to the
executable files and virtual memory addresses to which they are mapped.

1.2.2. AutoPod. AutoPod [Nieh 2005] is a system that determines when a patch needs
to be applied in an operating system based on a system status, preserving application
service availability. The migration of application services to another host is automatic.

The AutoPod model is based on a virtual machine abstraction called a pod. For
migration, the same operating system version for all systems is assumed.

AutoPod uses a virtualization layer to translate the AutoPod namespace to the host
operating system namespace.

AutoPod uses a checkpoint-restart mechanism and an intermediate format to repre-
sent the state that needs to be saved at the checkpoint. When a checkpoint is realized,

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:5

the intermediate format representation is saved and digitally signed; during the restart
process, the integrity of the image is verified. According to performed tests, to start a
desktop environment from scratch can take around 20 seconds; the checkpoint and
restarting of AutoPod can take 851ms and 942ms, respectively.

It is common that operating system vendors provide their users with the ability to
automatically check for system updates and download and install them when they
become available. AutoPod provides a service that monitors the security repositories; it
downloads the security updates and through the checkpoint/restart mechanism enables
the actualizations.

Commodity systems can provide information about the state of the system and detect
some irregular conditions such as DMA timeout or the need to reset the IDE bus. When
AutoPod discovers possible failures, this service checkpoints the pods running on the
system, migrates the pod, and restarts it on a new host.

2. LIVE MIGRATION

2.1. Important Concepts

In the virtualization area, several replication and migration approaches to achieve
fault tolerance and high availability have been proposed. In the ideal copy of a virtual
machine, the complete state from the original VM should be transferred to the copy
including memory, disk, and network connections. The memory state migration has
been widely studied and basically there are two methods, precopy and postcopy. Local
disk and network interface migration are not trivial. To maintain network connectivity
after migration, it is necessary to preserve open connections. Network clients should
be attended with minimal disruption. If the migration is within the same LAN, a VM
should retain its original IP address after migration, by generating an unsolicited ARP
reply advertising the new location for the migrated VM’s IP [Clark et al. 2005]. But
in a WAN migration, the use of network technologies such Virtual Private Networks
(VPNs), tunneling [Travostino 2006; Wood et al. 2011], and DNS servers [Bradford
et al. 2007] is useful. The disconnected mode [Satyanarayanan et al. 2005; Chandra
et al. 2005; Cáceres et al. 2005] is employed too. Sometimes disk state migration is
not considered, because it is assumed that a SAN or NAS strategy is used among
VMs, but a WAN environment should consider the migration of local disk. Migrating
disk state typically represents the largest component of the overall migration time,
as the disk state may be in the tens or hundreds of gigabytes. Many strategies to
migrate storage are used such as record and replay, transmission by deltas, or the im-
plementation of a Distributed Replicated Block Device (DRBD) [LINBIT 2011] storage
solution.

2.1.1. Memory Migration. There are two types of live migration mechanisms, precopy
and postcopy. Postcopy migration transfers a VM’s memory contents after its processor
state has been sent to the target host. It differs from the precopy approach, which first
copies the memory state to the destination, through a repetitive process, after which
its processor state is transferred to the target.

Postcopy migration [Hirofuchi et al. 2011] basically follows the next steps:

(1) Stop the VM at the source host. Processor state is sent to destination VM, and
the content of virtual CPU registers and the states of devices are copied to the
destination.

(2) Resume the VM at the destination without any memory content.
(3) If the VM tries to access pages that have not yet been transferred, the VM is

temporarily stopped and the fault pages are demand paged over the network from
source. The VM is resumed.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:6 V. Medina and J. M. Garcı́a

Precopy migration [Milojičić et al. 2000; Clark et al. 2005] follows the next phases:

(1) The source VM continues running while all memory pages are copied to the des-
tination VM in a first iteration. Subsequent iterations copy only those pages that
were modified during the previous transfer round.

(2) The source VM is stopped; the CPU state and remaining dirty pages are copied.
The destination VM is started.

(3) The new VM starts operation; if it tries to access a page that has not yet transferred,
this page is brought from the source VM.

Both memory migration mechanisms have some pros and cons. At the first step of
precopy memory migration, all memory pages are transferred to the VM destination;
therefore, the migration time increases in proportion to the memory size of the VM. Be-
sides, dirtied pages must be iteratively copied to the destination. If the VM is executing
a write-intensive workload accessing large amounts of memory, numerous dirty pages
are generated and transferred continuously. In the worst case, live migration is never
completed [Hirofuchi et al. 2011]. Precopy minimizes VM downtime and application
degradation when the VM is executing a read-intensive workload.

In postcopy migration, after the destination VM is started, memory pages are trans-
ferred across the network on first use. This approach consumes a shorter downtime
but produces a longer total migration time, and the performance during the migra-
tion is likely to be considerably degraded when a large number of memory pages have
been demand-paged across the network. However, in precopy migration, the iterative
checking and sending of modified pages between two hosts could consume the whole
bandwidth available between them and cause degradation of active services. In both
schemes, mechanisms to alleviate their drawbacks have been implemented. For ex-
ample, in postcopy [Hines et al. 2009], ballooning [Waldspurger 2002] is included to
improve performance. In precopy, a bandwidth limit is defined during the subsequent
round of copies to avoid the service degradation [Clark et al. 2005].

In postcopy migration, faulted pages are transferred on demand over the network
from the source, and then each memory page is sent at most once, avoiding the duplicate
transmission overhead of precopy.

Failure of the destination node has different implications in the two memory migra-
tion types. For precopy, there is no problem if a failure of the destination node occurs,
because the source node still holds an entire up-to-date copy of the VM’s memory and
processor state. If it is necessary, the VM can be revived from this image. However,
when postcopy is used, the destination node has a more up-to-date copy of the virtual
machine. Hence, a failure of the destination VM during postcopy migration becomes a
critical failure of the VM.

Live migration refers to techniques in which a VM is moved from one host to an-
other with almost zero downtime. Usually, the common environment for live migration
is server VMs within a cluster/data center where tight control over the networking
enables transparent migration of connections. The use of storage technologies such as
SAN or NAS eliminates the disk migration.

2.1.2. Self-Migration. This work establishes the basis for the Xen migration mechanism
[Clark et al. 2005]. In Hansen and Jul [2004], two prototype systems are implemented.
The first implementation, NomadBIOS, is a prototype host environment for running
several adapted Linux instances concurrently. It migrates such instances between
hosts without disrupting service, which is called live migration. NomadBIOS runs on
top of the L4 microkernel. NomadBIOS reduces downtime using precopy migration,
keeping the guest OS running on the original host while migrating, tracking changes
to its address space, and sending updates to the target VM over a number of iterations.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:7

The updates’ size typically decreases to 100 kilobytes or less. To migrate network
connections, a gratuitous ARP packet is then broadcast to the local Ethernet, to inform
local peers about the move to a new interface. Files are accessed via iSCSI or NFS;
disk migration is not considered. A second approach is called self-migration; here the
guest OS performs the entire migration without hypervisor involvement; the guest OS
is migrated by itself. This migration is based on Xen [Clark et al. 2005].

2.1.3. VMWare. VMware developed a migration mechanism called VMotion [Nelson
et al. 2005] as part of the VMware VirtualCenter product that manages the VMware
ESX Server. In Waldspurger [2002], the VMware memory mechanism is shown. The
ESX Server uses a ballooning technique for memory management. A small balloon
module is loaded into the guest OS as a pseudo-device driver or kernel service. This
module collaborates with the server to reclaim pages that are considered least valuable
by the guest operating system. When the server wants to reclaim memory, it instructs
the driver to “inflate” the balloon by allocating pinned physical pages within the VM.
Similarly, the server may “deflate” the balloon by deallocating previously allocated
pages. When memory is tight, the guest operating system decides which particular
pages to reclaim and, if necessary, swaps them to its own virtual disk. The memory
ballooning mechanism allows memory that was allocated for a virtual machine to be
given to another virtual machine without having to shut the machine down.

Each guest operating system that executes within a virtual machine addresses a zero-
based physical address space, as within real hardware. The ESX Server gives each
VM this illusion, virtualizing physical memory by adding an extra level of address
translation. A machine address refers to actual hardware memory, while a physical
address is a software abstraction used to provide the illusion of hardware memory to
a virtual machine. Each virtual machine has a fixed set of physical address ranges
that map to physical memory. All direct accesses to the VM’s physical memory are
intercepted by the VMM. The VMM then translates these physical addresses into
the actual machine addresses. A precopy memory scheme is used. First, the physical
memory from the source VM is copied and marked as read-only, so any modification
can be detected by the VMM. When this process is finished, modified pages by the VM
in execution may exist. These pages are copied to the new VM. This step is repeated
until the remaining number of modified pages is small (16 megabytes) or there is a
reduction in changed pages of less than 1 megabyte.

VMware provides a virtual Ethernet network card, VNIC, as part of its virtual
platform, which has a unique MAC address within the local network. A VNIC can
be associated to one or more physical network cards. Because the VNIC has a MAC
address independent of the physical MAC address, the VMs can be moved from one host
to another without stopping services and keeping the active network connections. This
is possible only if the new VM is opened in the same subnet as the original machine. In
storage, VMware assumes that the computers are connected to a server SAN or NAS.

2.1.4. Xen. Xen [Barham et al. 2003] proposed a live migration mechanism [Clark
et al. 2005]. This approach is focused on VM memory migration. Live migration of
virtual machines considers the minimization of downtime, which is the period during
which the VM’s services are unavailable, and the total migration time, which is the
period that begins when the original VM starts the migration and ends when the VM
is shut down. The memory migration of a virtual machine can be described in three
phases. In the first phase, the source VM continues running while using the precopy
[Milojičić et al. 2000] approach; all memory pages are copied to the destination VM in a
first iteration, and subsequent iterations copy only those pages that were dirtied during
the previous transfer round. In the second phase, the stop-and-copy process is executed,
the source VM is stopped, and remaining dirty pages are copied and the destination VM

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:8 V. Medina and J. M. Garcı́a

is started. The traffic is redirected to the new VM. In the third phase, the destination
VM resumes normal operation, and if an inconsistent page still remains, it is brought
from the source VM. It is considered to migrate the open network connections through
an unsolicited ARP reply from the migrated host, notifying that the IP has a new
location. However, some routers are configured to not accept broadcast ARP replies (in
order to prevent security attacks), so this idea may not work in all scenarios. Storage
migration is not necessary because a shared storage form, like NAS, is assumed.

The Writable Working Set (WWS) is formed by pages modified so often that they are
not good candidates for the precopy phase. The Xen’s shadow page tables are used to
track dirtying statistics on all pages used by a particular executing operating system.
Through these statistics, the WWS can be determined.

Xen considers two different methods for initiating and managing state transfer.
The first one, managed migration, is mainly executed out of the VM, which is being
migrated by a migration daemon running in the management VM. The second one,
self-migration, is almost totally run within the VM being migrated and a short part on
the destination machine.

Managed migration is performed by migration daemons running in the management
VMs of the source and destination hosts. These are responsible for creating a new VM
on the destination machine and coordinating transfer of a live system state over the
network. The control software executes rounds to transfer the memory image. In the
first round, all pages are transferred to the destination machine; in subsequent rounds,
this copying is restricted to pages that were dirtied during the previous round. To log
pages that are dirtied, Xen inserts shadow page tables underneath the running OS.
All Page-Table Entries (PTEs) are initially read-only mappings in the shadow tables.
If the guest tries to modify a page of memory, the resulting page fault is trapped by
Xen. If write access is allowed by the relevant guest PTE, then this permission is
extended to the shadow PTE, setting the appropriate bit in the VM’s dirty bitmap.
When it is determined that the precopy phase is no longer beneficial, using heuristics
methods, a control message is sent to the OS requesting that it suspend itself in a
state suitable for migration. The dirty bitmap is scanned one last time for remaining
inconsistent memory pages, and these are transferred to the destination together with
the VM’s checkpointed CPU-register state. Once this final information is received at the
destination, the VM state on the source machine can safely be discarded. Execution is
then resumed by starting the new VM at the point that the old VM checkpointed itself.

Self-migration handles a precopying scheme similar to that for managed migration.
The major implementation difficulty of this scheme is to transfer a consistent OS
checkpoint. This difficulty was solved with a final two-stage stop-and-copy phase. The
first phase disables all OS activity except for migration and then performs a final scan
of the dirty bitmap, clearing the appropriate bit as each page is transferred. Any pages
that are dirtied during the final scan, and that are still marked as dirty in the bitmap,
are copied to a shadow buffer. The second phase transfers the contents of the shadow
buffer. Page updates are ignored during this transfer.

The live migration evaluation was tested with different workloads by Clark et al.
[2005]. As a representative test, the Apache workload can be mentioned, which is
presented by SPECweb99, a complex application-level benchmark for evaluating web
servers and the systems that host them. A virtual machine with 800MB of memory
was used; the VM was migrated with a SPECweb99 in execution. The VM suspension
is done when 18.2MB of memory remains to be sent. Until this point, the transmission
takes 201 ms, after which an additional 9 ms is required for the domain to resume
normal execution. The total downtime of 210 ms experienced by the SPECweb clients
is sufficiently brief to maintain the 350 clients.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:9

In the article [Clark et al. 2005] cited before, a multiplayer online server game server
was tested. The performance of live migration with a virtual machine with 64MB of
memory running a Quake 3 server was measured. Six players joined the game and
started to play within a shared arena. Xen performed the live migration with a total
downtime of 60 ms.

2.1.5. KVM. The Kernel-based Virtual Machine [Machine 2012], or KVM, is a virtual
machine monitor that allows full virtualization for Linux on x86 hardware. Due to the
increasing impact of virtualization, hardware vendors such as Intel and AMD have
added extensions to the x86 architecture that make virtualization much easier (Intel
VT or AMD-V). KVM consists of a loadable kernel module, kvm.ko, and the architecture-
specific functionality is provided by two architecture-specific modules, kvm-intel.ko and
kvm-amd.ko. Using KVM, it is possible to run multiple virtual machines of unmodified
Linux or Windows.

In Kivity et al. [2007], live migration is implemented. Live migration uses the pre-
copy strategy, which means that if a guest page is modified after it has been copied, it
has to be copied again. KVM implements a dirty page log, which is used as a bitmap
of modified pages since the last call. KVM maps guest pages as read-only and only
maps them for write after the first write access. Live migration is completed in three
phases [Clark et al. 2005]. This is an iterative process; each iteration copies memory
to the destination host. In the first phase, all memory pages are marked dirty and the
modification-tracking mechanism is initialized. In the second phase, pages marked as
dirtied are copied. The iterative process of copying pages continues while the maxi-
mum transfer rate to the destination machine is not exceeded. Modified pages, but not
copied, are used to estimate the downtime if the migration starts the third stage. If
the estimated downtime is high compared with the target value, the algorithm iter-
ates until it predicts a value lower than the target value. When the target downtime
is reached, the migration enters the third and final phase, where the source virtual
machine (and applications) is stopped. Dirty pages are transmitted to the destination
machine, the registers are loaded, and execution is resumed on the new host [Ibrahim
et al. 2011].

2.1.6. Kemari. A synchronization approach for VMs based in Xen is proposed in a
project called Kemari [Tamura 2008]. In this project, when Kemari detects an event
from the guest domain, this domain is paused, and the dirty pages created since the last
synchronization are located and sent to the image VM. When the synchronization is
completed, Kemari unpauses the guest domain and the event is executed in domain 0.

2.1.7. Live and Incremental Migration of Virtual Machines. In Luo et al. [2008], a live and
incremental migration of VMs has been proposed; it includes memory, CPU, and disk
state migration. It uses a Three-Phase Migration (TPM) algorithm (precopy, freeze-and-
copy, postcopy), which is an expansion of live migration of Xen where an Incremental
Migration (IM) is used for storage. During the precopy phase, the storage data are
iteratively precopied. In the first iteration, all the storage data should be copied to
the destination VM. After, modified data, just during the last iteration, is sent to the
backup VM.

2.1.8. Migration without Virtualization. Currently, most of the migration approaches are
based on virtualization and have as a requirement the hardware compatibility between
the physical source machine and physical destination machine. In Kozuch et al. [2009],
a mechanism for operating systems to allow direct migration from one physical machine
to another physical machine is proposed even if the hardware on the target machine is
different from the source machine.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:10 V. Medina and J. M. Garcı́a

2.1.9. Postcopy Live Migration of Virtual Machines. In Hines et al. [2009], a design, imple-
mentation, and evaluation of postcopy-based live migration for virtual machines across
a Gigabit LAN are presented. Postcopy migration transfers the VM’s memory contents
after its processor state has been sent to the destination host. The precopy approach
first copies the memory state over multiple iterations and after transfers the processor
state to the target host.

In this work, the postcopy strategy for live VM migration is proposed and evaluated.
Efficiency of postcopy depends on the process to minimize the number of page faults (or
network faults); to speed up the migration, memory pages are pushed from the source
before they are needed by the VM at the target. To reduce network faults, postcopy live
migration includes the active push component with adaptive prepaging.

The way in which pages are fetched creates different variants of postcopy, providing
improvements. Postcopy migration combines four techniques to fetch memory pages
from the source: demand paging, active push, prepaging, and Dynamic Self-Ballooning
(DSB). When demand paging is used, the VM resumes at the target; when a memory
fault is produced, this is serviced by a request to the source node over the network.
Active push avoids transferring pages more than once. A page is transferred either by
demand paging or by an active push. Active pushing reduces the duration of residual
dependencies on the source host, pushing the VM’s pages from the source to the target
VM that continues in execution. Prepaging uses network faults as start points to predict
the VM’s page access locality at the target and search pages in the neighborhood of a
network fault before they are accessed by the VM. The VM’s pages at source are stored
in an in-memory pseudo-paging device, which resides completely in memory. Prepaging
applies an bubbling algorithm, which starts the active pushing from a pivot page inside
the pseudo-paging device and transmits symmetrically located pages around that pivot.
Pages that have already been transmitted are skipped. The bubbling method can be
executed with a single or multiple pivots. Transferring free pages would be a waste of
network and CPU resources and would increase the total migration time regardless of
which migration algorithm is used. DSB reduces the number of free pages transferred
during migration, improving the performance of precopy and postcopy migration. The
VM performs ballooning [Waldspurger 2002] continuously over its execution lifetime.

The postcopy migration proposed is compared against Xen’s precopy migration. Both
the VM in each experiment and domain 0 are configured to use two virtual CPUs; the
default VM size is 512MB. Different performance metrics are analyzed with four ap-
plications: (a) SPECWeb 2005: the system is configured within a VM and six external
clients request connections; (b) BitTorrent Client: a multipeer distributed application,
which is slightly CPU intensive; (c) Linux Kernel compile: considered because of con-
sistency; (d) Netperf: the Netperf sender is configured inside the VM. They evaluate
four metrics: downtime, total migration time, pages transferred, and page faults.

Postcopy is effective only when a large majority of the pages reach the target before
they are faulted upon the target VM, in which case they become minor page faults
rather than major network page faults. The quantity of major faults compared to mi-
nor page faults is a parameter of effectiveness of postcopy. So, for all of the applications
except the SPECWeb, postcopy reduces the total pages transferred by more than half.
The most significant result is where postcopy’s prepaging algorithm becomes network
page faults in minor faults for the largest applications, SPECWeb and Bittorrent, in
79% and 83%, respectively. Postcopy reduces the total migration time for all applica-
tions compared to precopy, in some cases by more than 50%. But the downtime is much
higher for postcopy than for precopy.

2.1.10. Optimizing Live Migration of Virtual Machines. In Atif and Strazdins [2009], an opti-
mization to the live migration mechanism of Xen is proposed. The experimental tests

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:11

were executed in a high-performance computing environment. The improvement is
based on the reduction of the iterations number in the precopy phase of the live migra-
tion of Xen to the minimum of two. This optimization is able to reduce the total number
of memory pages transferred during the migration up to 500% and their results can
show an average of 50% of improvement, in comparison with the original Xen live
migration mechanism.

3. SUSPEND/RESUME MIGRATION

3.1. Important Concepts

Chen and Noble [2001] suggested that virtual machine technology can be used to
provide user mobility in a secure way. Suspend/resume technology is based on this idea.
Suspend/resume migration refers to the motion of a VM from one host to another where
the VM is locally inactive during the translation. Usually, this is a migration across
a WAN. The network connections are typically dropped and need to be re-established.
For a WAN migration, it is crucial to not just transfer the VM images but also transfer
the local persistent state, its ongoing network connections, and the support for the
disconnected operation. A technique to optimize the disk transfer is the use of deltas.
On a source host, the process intercepts write operations and generates deltas, which
are communication units that contain the written data, the location on the disk, and
the size of the written data. The process examines the stored data and locates blocks
or bytes that have changed since the last write. Changed data, rather than the whole
information, can then be sent to the target hosts across the LAN or WAN.

Disconnected operation [Kistler and Satyanarayanan 1992] is a mode of operation
that enables a client to continue accessing critical data during temporary failures of
a shared data repository. While disconnected, file system service requests are rely-
ing solely on the contents of its cache. When disconnection ends, modifications are
propagated to the corresponding server.

3.2. Internet Suspend/Resume

Internet Suspend/Resume (ISR) [Kozuch and Satyanarayanan 2002; Satyanarayanan
et al. 2007] presents a project where the complete state of a VM can be migrated. ISR
is based on the idea that a VMM encapsulates the volatile execution state of a VM
and a VMM transfers the state of its VMs to files in the local file system within the
host machine. When a VM is suspended, the volatile state is transferred to files until a
suspension point. These files, including the operating system, are copied to the remote
machine, where the VM can be reassumed. The downtime depends directly on the file
size to be transferred.

ISR uses the distributed storage technology. Each VM encapsulates a guest operating
system and guest applications in an execution state and a user customization state,
and both are called a parcel. The distributed storage layer transports a parcel across
space (from suspend site to resume site) and time (from suspend instant to resume
instant). Users can own multiple parcels, just as they can own multiple machines with
different operating systems or application suites.

This ISR structure remained invariant across the many different ISR versions. The
ISR layer was implemented in two parts. One part was a loadable kernel module called
Fauxide that served as the device driver for a pseudo-device. VMware was configured
to use this pseudo-device for the VM state. Fauxide redirected VMware requests to this
pseudo-device to a user-level process called Vulpes, which was the ISR layer’s second
component. Vulpes implemented the VM state-transfer policy, the VM state’s mapping
to a directory tree of 256Kb files in coda, and hoarding control for these files.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:12 V. Medina and J. M. Garcı́a

Some components implementing each layer have changed over time. For example,
the virtual machine monitor was VMware in early versions of ISR but in the latest
versions VMware, KVM, or Xen can be used. These VMMs support a mode in which a
local disk partition holds the VM state. The ISR client software encrypts data from a
parcel before handing it to the distributed storage layer. Neither servers nor persistent
client caches used by the distributed storage mechanism contain any unencrypted
user state. Compromised storage servers can, at worst, result in a denial of service.
Compromise of a client after a user suspends can, at worst, prevent the updated VM
state from being propagated to servers, also resulting in denial of service. Even in these
situations, ISR preserves the privacy and integrity of user parcels.

ISR has implemented some versions: ISR-1, ISR-2, and ISR-3. In the latest version,
coda has integrated a mechanism to use distributed storage.

In the first implementation of ISR, some results were reported. The prototype ISR
implementation is able to suspend a VM on Client 1 and resume it on Client 2, and
vice versa.

A measure of performance was reported with ISR-1. In tests, it was considered that
before each resume operation on a client a reboot should be executed to ensure a cold
NFS cache. Two types of suspend events were considered: warm suspend, which occurs
in a VM shortly after a resume event, and cold suspend, which occurs long after a
resume event. A cold resume takes 125 seconds, a warm suspend 114 seconds, and
a cold suspend 146 seconds. These results are tolerable for some users but generally
much longer than suspend resume in a laptop.

ISR-2 incorporates disconnected operation, where users can use the cached state even
when disconnected. The client stores updates and reintegrates them when network
connectivity is restored.

3.3. Capsule

A capsule [Sapuntzakis et al. 2002] is defined as a hardware state that includes the
entire operating system, applications, and running processes. This state is moved over
a network and includes the state in its disks, memory, CPU registers, and I/O devices.
This project is based on the Collective [Chandra et al. 2005] and handles x86 architec-
ture. Capsules can be suspended from execution, serialized, and resumed after. Cap-
sules can be moved among machines to balance loads or for fail-over. An inactive capsule
can contain gigabytes of disk storage, whereas an active capsule can include hundreds of
megabytes of memory data, as well as internal machine registers and I/O device states.
To copy a whole capsule to another physical location would take a long time. But this
project implements some optimization to reduce storage requirements, transfer time,
and start-up time over a network of a capsule. Four optimizations are presented:

(1) To reduce the memory state before serialization, the ballooning technique is em-
ployed. The balloon program asks the OS for a large number of physical pages.
The program then zeroes the pages, making them easily compressible. Ballooning
reduces the size of the compressed memory state and thus reduces the start-up
time of capsules. This technique works well if the memory has many freed pages
whose contents are not compressible. This memory is not transferred, and these
pages are the first to be cleared by the ballooning process.

(2) Each time a capsule starts, all the updates made to disk are saved on a separate
disk, using copy-on-write. Capsules are created in hierarchical order, so each child
capsule could be viewed as inheriting from the parent capsule. The differences in
disk state between parent and child are captured in a separate Copy-On-Write
(COW) virtual disk. This strategy reduces the cost of saving a capsule disk because
only the differences are captured.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:13

(3) Instead of sending the entire disk, disk pages are fetched on demand as the capsule
runs.

(4) Transfer time is decreased by sending a hash of data blocks instead of complete
data. Collision-resistant hashes are used to avoid sending pages of memory or disk
data that already exist at the destination. It is expected to find identical blocks
of data between disk images and memories, even across different users’ capsules.
All network traffic is compressed with gzip.

3.4. The Collective

The Collective [Chandra et al. 2005] is a system that provides managed desktops to
Personal Computer (PC) users. System administrators create such desktop environ-
ments called virtual appliances, which include the operating system and all installed
applications. Target PC runs client software, called the Virtual Appliance Transceiver
(VAT), that caches and runs the latest copies of appliances locally and continuously
backs up changes to user data to a network repository. The Collective is available to
machines with x86 architecture and uses the virtualization technology of VMWare GSX
Server [VMware 2012]. PCs can be attached to a LAN or WAN with broadband or even
disconnected from the network like a laptop. Users can access their desktops from any
Collective client; they can also carry a bootable drive that converts a PC into a client. A
VAT is built using a Knoppix Live CD, which automatically detects available hardware
at runtime and load Linux drivers. A display client browser can be used to access a
desktop running on a remote server.

The Collective presents a cache-based system management, which separates a com-
puter state into two parts: the system state, which consists of an operating system and
all installed applications, and the user state, which consists of a user’s profile, prefer-
ences, and data files. In this model, appliances and user state are separately stored in
network-accessible appliance repositories and data repositories. PCs are called VATs.
A user can use any of these clients, log in, and get access to any appliance with au-
thorization. The VAT executes functions like authenticate users, fetches and runs the
latest copies of appliances locally, stores user state to the data repository, handles a
cache to reduce the amount of the data that needs to be fetched over the network,
and improves the performance. A VAT can run a prefetcher process to minimize cache
misses. The VAT runs a prefetcher process, and even a client can completely prefetch
an appliance into a cache to work in disconnected mode.

3.5. SoulPads

In Cáceres et al. [2005], a system called SoulPad is presented. This system allows a
user to resume a personal computing session that was suspended in another machine.
The SoulPad divides the user’s machine into a body (display, CPU, RAM, I/O) and a
soul (session state, software, data, preferences). The soul is carried in a small and
light portable device, the SoulPad. The soul can resume on any x86-based personal
computer with no preloaded software. The computers that resume SoulPad are denoted
as EnviroPCs. Connections between the SoulPad and the EnviroPC are made through
USB 2.0. The user can retrieve a suspend state in disconnected mode. EnviroPCs do not
need any preloaded software. Users migrate from one machine to another by moving the
SoulPad disk. A SoulPad disk contains three elements: first, the host OS Knoppix that
boots on EnviroPCs and obtains hardware availability via auto-configuration; second,
the VMM, VMware Workstation, which supports the suspend/resume operations on
virtual machines and guest OS diversity; and third, a VM that executes the user’s
applications on a guest OS (Windows or Linux). The disk partition that holds the VM
images is encrypted using the AES128 block cipher.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:14 V. Medina and J. M. Garcı́a

3.6. Cloudlets

The architecture where a mobile user exploits VM technology to instantiate customized
service software on a nearby cloudlet and then uses that service over a wireless LAN is
discussed in Satyanarayanan et al. [2009]. The mobile device typically functions as a
thin client with respect to the service. A cloudlet is defined as a trusted, resource-rich
computer or cluster of computers that is well connected to the Internet and available
for use by nearby mobile devices. It is recognized that mobile hardware is resource
poor with respect to static client and server hardware. A solution to improve this
disadvantage is to use cloud computing.

3.7. CloneCloud

CloneCloud is presented in Chun et al. [2011]. This application partitioner and execu-
tion runtime makes possible that unmodified mobile applications run in an application-
level virtual machine, off-loading part of their execution onto device clones [Chun and
Maniatis 2009] operating in a computational cloud. The system transforms a single-
machine execution of a mobile device into a distributed execution inside a cloud. An
application-level VM is an abstract computing machine that allows hardware and op-
erating system independence. Its instructions are bytecodes; an executable is a set of
bytecodes. The VM runtime executes bytecodes of methods with threads. A partition
mechanism creates a partition, which is a choice of execution points where the appli-
cation migrates part of its execution and state between the device and a clone. During
the execution, if a migration point is found, the executing thread is suspended and its
state (including virtual state, program counter, registers, and stack) is packaged and
sent to a synchronized clone. At the clone, the thread state is copied into a new thread
with the same stack and reachable heap objects, and then resumed. If the migrated
thread reaches a reintegration point, it is suspended, packaged, and then sent back
to the mobile device. Finally, the returned packaged thread is merged into the state
of the original process. A mathematical optimizer chooses migration points that opti-
mize total execution time or mobile device energy consumption according to the appli-
cation and the cost model. Test results have shown that some applications achieve as
much as a 20 times execution speed-up and up to 20 times decrease of energy spent on
the mobile device.

4. WAN LIVE MIGRATION

4.1. Important Concepts

In the VM migration across a WAN, the transference of the complete VM state includ-
ing disk, open network connections and memory pages is essential. The next section
presents some works that move the complete VM state from one host to another in a
live migration over a WAN.

4.2. Seamless Live Migration of Virtual Machines over the MAN/WAN

Live migration over WANs is an interesting topic that has attracted attention in recent
years. To achieve live migration of the virtual machine across WANs, an approach using
IP tunnels to guarantee network connections was presented in the “VM turntable”
demonstrator [Travostino 2006]. The IP tunnel between the source and target host
is set up to forward packets to and from the client applications. Live migration is
executed over dedicated lightpaths, which are circuits of 1Gbps capacity; they were
created between two sites in Amsterdam and San Diego. A VM Traffic Controller
(VMTC) coordinates the migration of VMs providing network resources and ensuring
seamless layer 3–7 connectivity to the applications inside of the VM. The VMTC sent
migration commands to the Xen environment. The system was tested over a network

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:15

with two sites, Amsterdam and San Diego. The source and destination VM ran a demo
application for face detection, which continuously fetched images from storage. It was
set up with 200MB memory. The live migration caused an application downtime of
0.8–1.6 seconds, which, compared to the downtime with intra-LAN configuration, was
five to 10 times higher.

4.3. LiveWide-Area Migration of Virtual Machines

Virtual machine migration on local area networks has been concentrated on develop-
ing efficient methods to transfer the memory state of a VM. However, for wide-area
network migration, it is important to transfer additional resources of a VM, like the
local persistent state (its file system) and the ongoing network connections.

Bradford et al. [2007] combine a block-level solution with precopying and write throt-
tling to transfer an entire running web server including its local persistent state with
minimal disruption. The combination of dynDNS with tunneling transfers transpar-
ently existing connections. The new ones are redirected to the new network location.
The original VM remains in operation on the source host.

During the storage migration, a user-level block device is used to record and forward
any write accesses to the destination. The management network connection is made by
a redirection scheme and the notification of the new addresses via dynDNS. The system
is implemented as part of the XenoServer platform and uses the memory migration of
Xen.

The migration mechanism is coordinated by a migration client, running at the source,
in continuous communication with a migration daemon, running at the destination.

The system follows some phases. The initialization phase sets up the client and
server processes, which handle the bulk transfer of the disk image to destination. It
then starts the bulk transfer stage, which precopies the disk image of the VM to the
destination while the VM continues in execution. Then, the system invokes the Xen’s
live migration, which iteratively copies dirtied pages to the VM destination and logs
them. Finally, the source VM is paused, the remaining dirtied pages are copied to
destination, and the VM is resumed.

As the VM continues to run at the source during both the bulk transfer and Xen
live migration stages, it is necessary to ensure that any changes to its disk images are
forwarded to the destination and applied to the version there. During bulk transfer
and live migration phases, write operations on the source VM are intercepted. These
operations are packaged as deltas, which are communication units that consist of the
written data, the location of the write on the disk, and the size of the written data.
Deltas are sent and enqueued on the destination VM for later application to the disk
image. If the rate at which the VM is performing write accesses is too high, a write
throttling is applied to minimize bandwidth congestion. This is based on a threshold
and a delay; when a VM reaches the number of writes defined as threshold, a new
attempt to write is delayed by the delay parameter.

After the bulk transfer phase finishes, the Xen live migration stage starts and in
parallel the enqueued deltas are orderly applied at the destination disk image. Any
new writes that occur during this stage are enqueued on the destination host and once
again applied in order. Before the Xen live migration is completed, the original VM is
paused and the redirection scheme starts if the VM is migrated across the Internet.
Iproute2 creates an IP tunnel between the IP address at the source and the IP address
at the destination. When migration finishes, the dynamic DNS entry is updated, and
new connections are directed to the VM’s new IP address.

Authors show some remarkable results. They run a web server providing a bulletin
board. They evaluate the migration from a source to destination in LAN and WAN. In
a LAN, the bulk transfer starts at 25 seconds; the application of deltas occurs after

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:16 V. Medina and J. M. Garcı́a

62 seconds. Xen live migration begins after 125 seconds and the experiment finishes
after 225 seconds. The migration of a running web server containing a database of
250 clients has a disruption time of 3.09 seconds. To emulate a wide-area network,
they used the Linux traffic shaping interface to limit bandwidth to 5Mbps and added
a round-trip latency of 100ms between hosts A and B. This is representative of the
connectivity observed between a host in London and a host on the East Coast of the
United States. In a WAN environment, the bulk transfer starts after 260 seconds, and
the Xen live migration after 2250 seconds. The migration finishes after 3,600 seconds
with a disruption time of 68 seconds.

4.4. A Live Storage Migration Mechanism over WAN

In Hirofuchi et al. [2009], a storage access mechanism that supports live VM migration
over WAN is proposed. It rapidly relocates VM disks between source and destination
sites with the minimum impact on I/O performance. The proposed mechanism works
as a storage server of a block-level storage I/O protocol (e.g., iSCSI and NBD). The
on-demand fetching and background copying techniques are applied to move online
virtual disks among remote sites. This mechanism works for Xen and KVM without
any modification to them.

The experiments emulated a WAN environment for remote data centers over the
Pacific Ocean (e.g., Tokyo and San Francisco). The experiments showed that the pro-
posed mechanism improved I/O performance from conventional remote storage access,
minimizing the performance degradation during disk migration.

The live storage migration mechanism is composed mainly by a target server and a
proxy server of a block-level I/O protocol. The Network Block Device (NBD) technology
is used to build this prototype, called xNBD. NBD connects the source and destination
host nodes to the target and proxy server, respectively, using TCP/IP. Virtual disks are
accessed by a VM via block device files (e.g., /dev/nbd0) on a host operating system.
Before live migration, it works in the same manner as a normal NBD target server,
which redirects I/O requests from the VM to a disk image file. After live migration
[Clark et al. 2005] is started, the proposed mechanism works together with memory
migration by a VMM and the destination server continues updates of disk blocks of the
image file. In the last part of the live migration, the VM is restarted at the destination
site, and then I/O operations are performed at the destination site via the proxy server.
At this moment, the proxy server starts disk migration. The proxy server continues
remote block copies through an NBD connection, until all required blocks are cached
at the destination site. After that, the proxy server terminates the NBD connection;
the VM does not depend on the target server at the source site. The proxy server copies
remote disk blocks using two methods, working in parallel on-demand fetching and
background copying. The on-demand method works as follows: if the destination VM
tries to read a block that is not cached at the destination VM, the proxy server retrieves
the data block from source server. The background copying mechanism copies the blocks
that still remain at the source site. The blocks are proactively retrieved before the VM
accesses them. The netem module of the Linux kernel emulates the experimental WAN
environment. The configuration parameters correspond to a network between Tokyo
and the West Coast of the United States. The experimental results show that the
proposed mechanism reallocates disks between source and destination sites with an
I/O performance comparable to the I/O operations reproduced in the LAN environment.

4.5. CloudNet

The emerging technology of cloud computing [Marston et al. 2009; Mel 2009], which
offers the use of services over a network, has changed the scope of resource management
from allocating resources on a single server to handling pools of resources within a data
center. CloudNet architecture [Wood et al. 2011] as a cloud framework consists of cloud

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:17

computing platforms linked with a Virtual Private Network (VPN) infrastructure to
provide seamless and secure connectivity between enterprise and cloud data center
sites. As a contribution, the authors present some optimizations that minimize the
cost of transferring storage and virtual machine memory during migrations over low
bandwidth and high-latency Internet links.

CloudNet includes a Virtual Cloud Pool (VCP) abstraction, which allows the seamless
connection among servers into a WAN that appears like a single logical pool of resources
connected over a LAN. CloudNet uses existing VPN technologies to build a VCP and
moves memory and disk state using this structure.

CloudNet implements several WAN optimizations to enable migration over low-
bandwidth links. It implements an adaptive live migration algorithm that dynamically
tailors the migration of the memory state based on application behavior. It also imple-
ments mechanisms such as content-based redundancy elimination and page deltas into
the hypervisor to reduce the data volume sent during the migration process. Collec-
tively, these optimizations minimize total migration time, application downtime, and
volume of data transferred.

Cloudnet is implemented using the Xen platform and a commercial layer 2 VPN
implementation. Another tool employed is the Virtual Private LAN Services (VPLSs),
which bridge multiple Multi-Protocol Label Switching (MPLS) endpoints onto a single
LAN segment. This allows cloud resources to appear inside the enterprise’s own LAN.
It is assumed that there is a trusted relationship between the enterprise, the network
provider, and the cloud provider.

CloudNet follows the next steps for live migration of VM: Step 1: Establish virtual
connectivity between VCP endpoints. Step 2: If storage is not shared, transfer all disk
states. Step 3: The transference of the VM memory state to a destination data center
is executed while the source VM continues running. Step 4: After disk and memory
state have been transferred, the source VM is paused for the remaining transition of
memory and processor state to the destination host. This process does not disrupt any
active network connections between the application and its clients.

Cloudnet uses the Distributed Replicated Block Device (DRBD) distributed storage
system to migrate storage to the destination data center. To reduce the performance
impact of this synchronization, CloudNet uses DRBD’s asynchronous replication mode
during this step. Once the remote disk has been brought to a consistent state, Cloud-
Net switches to a synchronous replication scheme and the live migration of the VM’s
memory state is initiated. When the migration completes, the new host’s disk becomes
the primary, and the origin’s disk is disabled.

CloudNet uses the Xen’s code to achieve memory migration and implements a Smart
Stop and Copy optimization to reduce the unnecessary number of iterations and mini-
mize the pause time. This point was detected where the number of pages sent is equal
to the number of pages dirtied.

The ContentBased Redundancy (CBR) elimination technique is another improve-
ment. It is used to eliminate the redundant data while transferring VM memory and
disk state.

After the first iteration, many pages are retransmitted because they have been mod-
ified. Another mechanism to reduce bandwidth consumption is to keep a cache of
previously transmitted pages and then send only the difference between the cached
and current modified page. This type of communication delta is combined with the
CBR optimization.

The experimental evaluation was obtained using three data centers spread across
the United States. The results show CloudNet’s optimizations decreasing memory mi-
gration and pause time by 30% to 70% in typical link capacity scenarios; in a set of
VM migrations over a distance of 1200km, CloudNet saves 20GB of bandwidth, a 50%
reduction.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:18 V. Medina and J. M. Garcı́a

5. LOAD BALANCING

5.1. Important Concepts

The low utilization of servers increases costs for power consumption and cooling
systems. Besides, more physical machines require more floor space and increase
maintenance and administration labor. Nowadays, green computing contributes to
develop technologies that reduce the energy consumption and CO2 emissions from
cooling systems. Virtualization belongs to these technologies and provides mecha-
nisms to optimize the resource allocation and also an isolation layer that consolidates
applications running on several underutilized servers to a reduced number of highly
used servers. Further, it is possible to migrate resources from one physical machine to
another with minimal disruption. There are many proposals that allow the reallocation
of resources to obtain a load balancing and a more optimized resource distribution.

5.2. Dynamic Placement of Virtual Machines

In Bobroff et al. [2007], a dynamic server migration and consolidation algorithm is in-
troduced. The goal of the algorithm is to minimize the cost of running the data center.
The cost penalizes overcapacity (low utilization) and overloading, which causes poor ap-
plication performance and violates contractual Service Level Agreements (SLAs). SLAs
are typically expressed as CPU or response time guarantees. The proposed algorithm
is based on measuring historical data, forecasting the future demand, and remapping
VMs to Physical Machines (PMs), and it is called Measure-Forecast-Remap (MFR).

This approach considers the analysis and classification of resources’ workloads. Time
series of resource demands were analyzed with a forecasting technique, and it was
found that servers that benefit most with a dynamic migration are those that denote a
strong variability and autocorrelation in their demand resource distributions.

After finding out the candidate VMs for dynamic management and their future
resource demand (for time interval T), the management algorithm tries to reallocate
each candidate VM to PM such that the VM’s resource requirement should be less
than the target PM’s capacity. The management algorithm sorts the candidate VMs
in descending order of their future resource demand and then makes an attempt to
allocate the first VM in order to list the PM as first fit bin packing problem algorithm.
If the list of PMs is exhausted without the VM reallocation, the VM is assigned to
the PM that has the smallest difference between resource demands and its capacity.
The algorithm iterates for all candidate VMs. The experiments are conducted on IBM
Blade servers with VMWare ESX 2.5, and migration is programmatically executed
with the Software Development Kit (SDK) by VMWare. Results show a reduction of
29% minimum and 50% maximum of active PMs to support a specified rate of SLA
violations for a given workload.

5.3. Harmony

In Singh et al. [2008], a load balancing algorithm called VectorDot for handling the
hierarchical and multidimensional resource constraints is presented. This algorithm
can be used in data centers with the necessity of load balancing across multiple resource
layers such as servers, switches, and disk storage. The system called HARMONY
continuously monitors the resource usages of servers, network switches, and storage
nodes in the data center. It launches live migrations of VMs and virtual disks if a
hotspot is presented. Overloaded nodes migrate to an underutilized node. The Vector-
Dot algorithm is based on the Toyoda method for multidimensional knapsacks. Storage
virtualization refers to managing physical storage into virtualized containers called
virtual disks (Vdisks) that can be used by applications. This kind of storage allows
dynamic growth or shrink of storage. HARMONY handles block-level virtualization

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:19

where each data block is mapped to one or more storage subsystems, but it appears the
application resides on a single volume. A single file system can be formed by multiple
file systems with a common namespace. HARMONY uses a block virtualization solution
called IBM SAN Volume Controller (SVC). This SVC is configured in the I/O paths of
three ESX servers. There is a storage virtualization manager, IBM SVC’s CLI interface,
which interacts with HARMONY to obtain virtual storage configuration and handles
nondisruptive data migration. On the other hand, HARMONY interacts with a server
virtualization manager to obtain configuration and performance information about
VMs and physical servers and to manage live migration of VMs. The virtualization
manager is VMWare Virtual Center.

If a node is overloaded, exceeding some threshold, HARMONY initiates the optimiza-
tion planning component VectorDot. It generates recommendations for migrating one
or more VMs or Vdisks to alleviate the hotspot. These are processed by the Virtualiza-
tion Orchestrator by using appropriate server and storage virtualization managers.

The node could be a server node, storage node, or switch node. A server overload can
be caused by an excessive CPU, memory, network, or disk I/O usage. A storage node
overload can occur due to excessive storage space usage or disk I/O rates. A switch
node (or a switch port) overload can occur if a large amount of I/O is being pushed
through it. If a node exceeds the threshold along any of its resource dimensions, the
node is considered to be an overloaded node or trigger node. To solve the overload, the
load balancing algorithm in HARMONY moves one or more VMs or Vdisks from an
overloaded node to underloaded nodes.

In an example of virtual machine and storage migration with HARMONY, the au-
thors obtained the following results: a VM2 and its storage are migrated to a different
physical server. VM2 is configured with 3GHz CPU, 1.2GB memory, and a storage
volume of 20GB. The Postmark benchmark was running in the VM. During the VM
migration Postmark transaction, throughput drops by around 11.9%. This happens
due to the CPU congestion at source and destination servers caused by live migration.
Storage live migration does not cause CPU congestion and has a smaller overhead of
7.6%, it occurs for a much more prolonged period of time, and 20GB of data is migrated
to another physical machine. HARMONY is highly scalable, producing allocation and
load balancing recommendations for over 5,000 VMs and Vdisks on over 1,300 nodes
in less than 100 seconds.

5.4. pMapper

pMapper [Verma et al. 2008] is an application management middleware for workload
placement. It takes into account the power and migration costs. pMapper handles three
different managers, and an arbitrator ensures consistency between the three actions.
Soft actions like VM resizing and idling are communicated by the Performance Man-
ager. The Power Manager triggers power management at a hardware layer, while the
Migration Manager interfaces with the Virtualization Manager to trigger consolidation
through VM live migration.

The resource management flow of pMapper starts with the Monitoring engine, which
collects the current performance and power characteristics of all the VMs and physical
servers in the farm. The Performance Manager finds out the current performance and
recommends a set of target VM sizes based on the SLA goals. If the target VM sizes
are different from the current VM sizes, it presents an estimate of the benefit due to
resizing. Similarly, the Power Manager looks at the current power consumption and
may suggest throttling (by Dynamic Voltage and Frequency Scaling, DVFS, or explicit
CPU throttling).

The Arbitrator implements an algorithm to compute the best placement for a VM
based on the estimates received from the Performance, Power, and Migration managers.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:20 V. Medina and J. M. Garcı́a

pMapper is implemented for VMWare ESX-based platforms. The VMWare Virtual
Center is used as the Virtualization Manager. The VI API provided by VMWare ESX
3.0 is used to communicate with the Virtualization Manager and execute migration
actions. Throttling actions are executed by the IBM Active Energy Manager interface.

6. RELATED TOPIC: AUTOMATIC MANAGEMENT OF LIVE MIGRATION

6.1. Important Concepts

The automatic live migration may be caused by the hotspots’ detection. A hotspot can
be defined as an access point with a high demand of resources, such as an overloaded
server; if some resources like the processor, network, or memory exceed a threshold; or if
Service Level Agreement (SLA) violations during a period are launched. An important
characteristic for a well-managed data center is its ability to avoid hotspots. Overloaded
nodes (servers, storage, or network switches) often lead to performance degradation and
are vulnerable to failures. To alleviate such hotspots, load must be migrated from the
overloaded resource to an underutilized one.

6.2. Sandpiper

In Wood et al. [2007], a mechanism to automatically migrate virtual machines is pre-
sented. This system is called Sandpiper and implements a hotspot detection algorithm
that determines when, what, and where to migrate virtual machines. Sandpiper cur-
rently uses Xen’s migration mechanism proposed in Clark et al. [2005].

Sandpiper employs two strategies for virtual machine migration in large data cen-
ters: black-box and gray-box strategies. The black-box approach uses data generated
by SO and the gray-box approach implements application-level statistics. These tech-
niques automate the tasks of monitoring system resource usage, detecting hotspots,
determining a new mapping, and initiating the necessary migrations.

Sandpiper assumes a large cluster of possibly heterogeneous servers. The hardware
configuration of each server (CPU, network interface, disk, and memory) is known
by Sandpiper. Each physical server runs a virtual machine monitor and one or more
virtual machines. Sandpiper uses Xen to build this structure.

All storage is assumed to be on a Network File System (NFS) or a Storage Area
Network (SAN), so it is not necessary to move the disk state during VM migrations.
Sandpiper runs a component called the nucleus on each physical server; the nucleus
runs inside a special virtual server (domain 0 in Xen) and collects the resource usage
statistics on that server. It uses a monitoring engine that gathers processor, network
interface, and memory swap statistics for each virtual server.

The gray-box approach implements a daemon within each virtual server to collect
OS-level statistics. The nuclei periodically deliver these statistics to the Sandpiper
control plane. The control plane runs on a specific node. It includes three components:
a profiling engine, a hotspot detector, and a migration manager. The profiling engine
uses the statistics from the nuclei to construct resource usage profiles for each virtual
server and add profiles for each physical server.

The monitoring engine tracks the usage for each resource of each virtual machine
(processor, network, and memory) in a measurement interval and reports these statis-
tics to the control plane when the interval ends. Much of the required information can
be determined directly from the Xen hypervisor or by monitoring events within domain
0 of Xen.

Sandpiper supports gray-box monitoring, using a lightweight monitoring daemon
that is installed within each virtual server. In Linux, the monitoring daemon uses the
/proc interface to collect OS-level statistics of CPU, network, and memory usage.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:21

A profile is a compact description of the server’s resource usage over a sliding time
window W. Three black-box profiles are maintained by the virtual server: CPU uti-
lization, network bandwidth utilization, and swap rate (i.e., page fault rate). If gray-
box monitoring is permitted, four additional profiles are maintained: memory utiliza-
tion, service time, request drop rate, and incoming request rate. Similar profiles are
also maintained for each physical server, which indicate the global usage of resident
VMs.

Hotspot detection is executed on each physical server based on the black-box ap-
proach, so a hotspot is flagged if the total CPU, network usage, or total swap activity
exceeds a threshold. On the other hand, the SLA violations are detected on each virtual
server based on the gray-box approach; a hotspot is flagged if the memory utilization
of the VM exceeds a threshold or if the response time or the request drop rate exceeds
the SLA-specified values.

Sandpiper works by moving load from the most overloaded servers to the least over-
loaded servers, minimizing data copying during migration. It considers the overload
on one or more of three dimensions (CPU, network, and memory) of a VM, and the
volume of a physical or virtual server is defined as the product of its CPU, network,
and memory loads:

Vol = 1
1 − cpu

∗ 1
1 − net

∗ 1
1 − mem

,

where cpu, net, and mem correspond to the use of that resource for the virtual or
physical server. The volume indicates the degree of (over)load on multiple dimensions.

Migration Phase: To determine which VMs to migrate, the algorithm orders physical
servers in decreasing order of their volumes. VMs are considered in decreasing order
of their Volume-to-Size Ratio (VSR), where VSR is defined as Volume

Size ; size is the memory
footprint of the VM.

The migration algorithm locates the VM with the highest VSR from the server with
the highest volume and determines if the VM can be relocated on the least loaded
physical server. Migration is possible just if the selected server has enough unused
CPU, network, and memory resources to host the VM. If there are not enough resources,
the algorithm analyzes the next least loaded server and so on, until a new server host
is found. If the algorithm cannot find a physical server to host the VM with the highest
VSR, then the algorithm moves on to the next highest VSR VM and attempts to move it
in a similar way. The process is repeated until the use of all resources on each physical
server decreases below their thresholds.

Swap Phase: When there are not sufficient free resources on less loaded servers to
eliminate a hotspot, the migration algorithm considers VM swaps. A swap exchanges
a high-VSR virtual machine from a loaded server with one or more low-VSR virtual
machines from an underloaded server. The swap releases resources, but with less
impact than a one-way migration.

The experiments with Sandpiper in Wood et al. [2007] compare the black-box ap-
proach with the gray-box approach. The scenario was configured with a 6-second
measurement interval. Once a hotspot is flagged, the gray-box approach eliminates
it within 40 seconds with two migrations, while the black-box approach requires 110
seconds and three migrations. As a result, the decrease of overloaded servers by the
use of Sandpiper was obtained within a reasonable time.

6.3. VirtualPower

The VirtualPower [Nathuji and Schwan 2007] approach operates in virtualized plat-
forms. It makes it possible to control and coordinate the application of several power
management polices inside VMs. The hardware usage by guest is limited with software

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:22 V. Medina and J. M. Garcı́a

and hardware techniques that leverage underlying hardware support like the processor
frequency scaling. VirtualPower Management (VPM) is based on the Xen hypervisor
and implements multiple system-level abstractions including VPM states, channels,
mechanisms, and rules. VirtualPower exports a rich set of virtualized power states,
called VirtualPower Management states (VPM states); then the guest takes actions
according to the VM-level power management policies. Power states are changed by
privileged actions, such as the modification of the Model Specific Registers (MSRs).
VirtualPower intercepts the power management policies built into guest VMs, but they
are “hints” rather than executable commands. So, VirtualPower intercepts attempts to
execute privileged actions on the interface for power management (Advanced Configu-
ration and Power Interface, ACPI) and maps them into a VPM channel. These channels
provide hints to VirtualPower’s VPM rules running on Dom0. Finally, rules are based on
a set of VPM mechanisms that implement management methods across heterogeneous
hardware platforms. The mechanisms supported by VirtualPower include hardware
scaling, soft scaling, and consolidation. VPM rules implement a tiered policy approach:
local PM-L policies perform actions corresponding to resources on local platforms, and
a higher-level PM-G policy component uses rules responsible for coordinating global
decisions.

The consolidation mechanism is an example of power management through policies
that handle the idle, standby, and sleep states. Consolidation can be used to mini-
mize the number of currently active resources so that standby and sleep states can be
used. Underused servers can be consolidated into fewer hosts and offloaded hosts can
be placed into a sleep mode. VirtualPower provides policies that combine consolida-
tion with migration to perform efficient allocations. The employ of VPM management
techniques in heterogeneous server systems provides 34% of power savings.

7. RELATED TOPIC: RECORD/REPLAY

7.1. Important Concepts

Logging and replay are widely used for the recovering state. The procedure starts from
a checkpoint of a prior state, then rolls forward, replaying events from the log to reach
the desired state [Dunlap et al. 2002]. Replaying a virtual machine requires logging
the nondeterministic events that affect the virtual machine’s computation. These log
records guide the virtual machine as it re-executes (rolls forward) from a checkpoint.
Deterministic events (e.g., arithmetic, memory, branch instructions) do not need to be
logged; the virtual machine will re-execute these events in the same way during replay
as it did during the original execution. To replay an execution, any nondeterministic
event that affects the state of the system is logged and replayed. For virtual machines,
this includes logging virtual interrupts; input from virtual devices such as the virtual
keyboard, network, or real-time clock; and the results of nondeterministic instructions
such as those that read the processor’s Time-Stamp Counter (TSC). Nondeterministic
events fall into two categories: time and external input. Time refers to the exact point
in the execution stream at which an event takes place. External input refers to data
received from a nonlogged entity, such as a human user or another computer.

Recording fidelity [Andrica and Candea 2011] quantifies recorded events, the log is
relatively small and replay is close to ideal [Surie et al. 2008]. High-fidelity recording
requires that all events be recorded. Replaying fidelity correctly quantifies played-
back events, and high-fidelity replaying requires that all interactions be realistically
simulated.

Techniques for replaying single processor systems are widely known. But with the
increasing use of multicore processors, execution replay on multiprocessor systems has
become more important. When replaying shared-memory systems, reads from memory

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:23

by one processor are affected by writes of another processor. Since these reads and
writes may happen in any arbitrary interleaving order, this introduces fine-grained
nondeterminism into any shared memory operation [Dunlap et al. 2008].

The record/replay technique has to face many challenges such as maximizing trace
completeness and the detail level of an event register and minimizing distortion. The
information collected should faithfully represent the program being recorded, reducing
log file size and being fast, inexpensive, and easy to operate. To save log files on disk
represents an overhead in performance but introduces an option to ensure the execution
of deterministic events.

7.2. Live Migration of VM Based on Full System Trace and Replay

CR/TR-Motion [Liu et al. 2009] is an approach based on checkpointing/recovery and
trace/replay technology. The execution trace logs are obtained from source VM and syn-
chronically replayed on the target VM. The objective of this live migration mechanism
is to minimize downtime, network bandwidth consumption, and the total migration
time. Live migration phases are as follows:

(1) A target host with sufficient resources is selected. The migration requirement
from the source VM to the target VM is made. (2) The source VM changes to a frozen
state and saves the actual system state (virtual memory, CPU registers, memory from
external devices, and virtual disk) to a file in copy-on-write mode. After checkpointing,
the source VM continues running. (3) In the first round of transference, the checkpoint
file is copied from host source to destination, and source VM continues on execution
and saving nondeterministic system events in a log file. The following iterations copy
the log file generated during the previous transfer round. At the same time, destination
VM replays the received log files. (4) The iterative process is executed until the log file
generated during the previous transfer round is reduced to a specified size defined as
a threshold value Vthd (1KB in experiments). (5) The source VM is suspended and
the remaining log file is transferred to the destination host. After the last log file is
replayed, there is a consistent replica of the VM at both the source and destination. The
VM at the source is still considered to be primary and may be resumed in case of failure.
(6) The source VM informs the destination VM that it has successfully synchronized
their running states. The source host acknowledges this message and then all its
network traffic is redirected to VM destination. Now the source VM may be discarded.
(7) The destination VM is activated.

The copy-on-write mechanism reduces the checkpoint time. During the iterative log
transference, the execution log of the source VM is copied, but not the dirty memory
pages, and this may decrease the amount of data transferred while synchronizing the
two VMs’ running state.

7.3. Record/Replay for Replication

7.3.1. Important Concepts. Record/replay is a technique that is able to restore the com-
plete state of a VM even in more than one location.

7.3.2. Remus. Remus [Cully et al. 2008] migrates running VMs between physical hosts
and replicates snapshots of an entire running OS instance at very high frequencies (as
often as every 25ms) between a pair of physical machines.

Remus runs paired servers in an active-passive configuration. Remus utilizes three
techniques in its implementation: First, virtualization is used to run a pair of systems
in lock-step; external events are carefully injected into both the primary and backup
VMs, which results in identical states. Second, Remus does not attempt to make a
deterministic computation. The state of the replica needs to be synchronized with the
primary only when the output of the primary has become externally visible. Instead

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:24 V. Medina and J. M. Garcı́a

of letting the normal output stream dictates when synchronization must occur, Remus
saves in a buffer output (network and disk) up to a more convenient time, performing
computation speculatively ahead of synchronization points. And third, an asynchronous
replication is implemented; buffering output at the primary server allows replication to
be performed asynchronously. The primary host can resume execution at the moment
its machine state has been captured, without waiting for acknowledgment from the
remote end. The primary server remains productive while synchronization with the
replicated server is asynchronously performed.

The high-availability mechanism of Remus is based on frequent checkpoints of an
active VM to a backup VM. The VM image backup is resident in memory and may begin
execution immediately if failure was suffered by the active system. The VM backup is
not always consistent with the primary VM; the network output is saved to a buffer
until the state is synchronized on the backup. The cycle that includes checkpoint, buffer,
and release buffer occurs frequently (up to 40 times per second). Disk replication is
asynchronously maintained through writes to the backup. Writes to the primary disk
are held in a RAM buffer until the corresponding checkpoint arrives. After that, the
checkpoint is acknowledged to the primary, which then releases the outgoing network
traffic, and the buffered disk writes are applied to the backup disk. The backup VM is
assumed as active until a failure is detected. Multiple backups can be done.

Remus implements a failure model that considers handling the failure of any host.
If primary and backup hosts fail at the same time, Remus will leave the system in a
consistent state. Thus, the outputs just can be visible until the associated system state
has been committed to the replica.

A failure detector within the checkpoint strategy has been implemented. If a timeout
is detected while the primary is waiting to commit requests, the primary will assume
that the VM backup has crashed and it will disable protection. On the other hand, if a
timeout is detected during a checkpoint, the backup will assume that the primary has
crashed and it will resume the execution from the most recent checkpoint.

In the performance evaluation of Cully et al. [2008], it was found that in a general-
purpose task, Remus incurs approximately a 50% performance penalty when check-
pointed 20 times per second.

Cully et al. applied several tests to Remus; within representative tests it can be
mentioned that:

—The kernel compile test measures the time required to build Linux kernel version
2.6.18 using the default configuration and the bzImage target. This is a test for CPU,
memory, and disk performance. The checkpoint was configured at rates of 10, 20,
30, and 40 times per second, compared to a baseline compilation in an unprotected
virtual machine. Total measured overhead at each of these frequencies was 31%,
52%, 80%, and 103%, respectively.

7.3.3. Lightweight Live Migration. High availability is a valuable feature for service clus-
ters and cloud computing, and sometimes it is more valuable than performance. Live
migration of virtual machines is a mechanism to achieve availability. But the use of
checkpointing can introduce significant overhead. In the work of Jiang et al. [2010], a
Lightweight Live Migration (LLM) mechanism is presented. This work is developed on
Xen and compared with Remus [Cully et al. 2008]. Test cases show that LLM overcomes
Remus in terms of network delay and overhead.

In LLM, the machine that provides regular services is called the primary machine,
and the replica machine is called the backup machine. One challenge of live migration
is to minimize the downtime.

LLM integrates two ideas: checkpointing and input replay with the objective of
improving migration for applications with intensive network workload. The primary

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:25

machine migrates CPU, memory, and disk status updates to the backup machine at
low frequency and the service requests from network clients at high frequency.

In this work, a hardware failure model considers the following assumptions: any
correct server can detect if another server has failed and it is used for stable storage
that contains the last correct state of the crashed server.

Remus uses the block/commit case where the output packets are blocked until a
checkpoint is acknowledged. LLM releases the response packets immediately. During
a transference with low checkpointing frequency, network clients may experience very
long delays with the block/commit mechanism of Remus.

The Netfilter system in the IPv4 protocol stack makes it possible to filter and copy
network packets to and from a specific guest VM.

The time sequence of migrating the checkpointed resources is described as follows:

—The guest VM is paused. During this suspension period, all the status updates of
CPU/memory/disk are collected and stored in a migration buffer.

—Once the guest VM is resumed, the content stored in the migration buffer is migrated
first to the replica machine.

—Then, the network buffer migration starts at high frequency until the guest VM is
suspended again. At the end of each network buffer migration cycle, it is known
which packets need to be replayed on the backup machine and which ones need to
be responded to the clients.

Any time a failure happens to a primary machine, the backup machine will con-
tinue the execution of VM from the latest checkpointed status. Then, it will replay the
requests after the first boundary to achieve consistency, and it will respond to those
unresponded requests after the second boundary.

LLM was evaluated and compared with Remus in terms of its correctness, downtime,
delay for clients, and overhead under various checkpointing periods in Jiang et al.
[2010]. LLM tested some case studies. For example, a flood ping is launched over the
primary machine. This experiment is called “HighNet” because of the intensity of the
network load. With HighNet, LLM obtains shorter downtimes than Remus. This is
because there are too many duplicated packets to be served by the backup machine in
Remus from the client side.

In this experiment, the network delay was estimated too. Results show that most of
the time, LLM has a much shorter network delay than Remus.

7.4. Lightweight Virtualization Solution

7.4.1. Important Concepts. The lightweight virtualization [Vaughan-Nichols 2006] ap-
proaches allow a single operating system to run several instances of the same OS
or different OSs. They require fewer CPU and memory resources, which is why the
technology is called “lightweight” virtualization. Containers do not emulate any of the
underlying hardware. Instead, the virtualized OS or application talks to the host OS,
which then makes the appropriate calls to the real hardware.

7.4.2. OpenVZ. Container-type virtualization allows running multiple isolated sets of
processes, known as containers, under a single kernel instance. Each isolated instance
has the possibility to execute a checkpoint, which saves the complete state of a container
and later restarts it. In Mirkin et al. [2008], a mechanism used for live migration is
presented. Checkpointing and restart are implemented as loadable kernel modules.

The container’s processes are saved in a consistent state. Dependencies such as
process hierarchy, identifiers (PGID, SID, TGID, etc.), and shared resources (open files,
SystemV IPC objects, etc.) are saved and restored during restart.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:26 V. Medina and J. M. Garcı́a

Networking is a resource managed by checkpointing and restart. During checkpoint-
ing and restart, the network should be disabled. All incoming packets are dropped, the
processes are frozen, and they do not process incoming packets.

Live migration is implemented using the checkpointing and restart feature. The
algorithm does not require any special hardware like SAN or iSCSI storage and follows
the next steps:

(1) Transfer the container’s file system to the destination server. This can be done
using rsync utility.

(2) Freeze all the processes and disable networking.
(3) Collect all the processes and their resources and save them to a file on disk. This

step can take a long time.
(4) There is a second container’s file system synchronization. During the first synchro-

nization, the source container is in operation, and some files could be modified and
the destination container could hold outdated files. The dump file is transferred to
the destination server.

(5) Restart the container on the destination server. At this phase, a container and its
processes are created in a destination server extracting information from the dump
file. Processes are in a frozen state.

(6) The destination container resumes execution on the destination server.
(7) Stop the original container.
(8) Destroy the original container.

8. CURRENT TRENDS

Live migration allows that VMs can be moved between physical hosts in response to
changing workloads, so data centers can have a dynamic infrastructure, which can
be built with virtualization technology pools computing resources and by allocating
these resources on demand or with resource utilization. An important virtualization
trend is the support for the dynamic data center. Many organizations are already
using virtualization benefits through server consolidation. The next phase to server
consolidation is the ability to move virtualized resources between different hosts with
no downtime [Singh et al. 2008]. Computation is no longer localized within a data
center; now resources can be spread across multiple data centers around the world.
The development of live migration over a WAN is an open research area. This kind of
migration faces challenges like the transference of disk images and memory over low
bandwidth and minimizing the performance degradation of the migrating VM system.

Nowadays, virtualization and cloud computing are two linked topics [Armbrust et al.
2009, 2010]. Using virtualization to create a private cloud is an important virtualization
trend. Lastly, an important research direction is to develop new technologies that
enable cloud computing to support large distributed applications despite limitations
in network bandwidth and latency [Sripanidkulchai et al. 2010]. Today, when cloud
providers need to perform fixes or maintenance on a physical machine, they inform
users to shut down and reallocate their instances to a different location. Cloud providers
could use live migration to move instances while they are running. Although some
providers expose an interface for users to use live migration within their own cloud,
live migration to a different cloud is a research opportunity [Williams et al. 2012].

On the other hand, smartphones are a technology in continuous renovation. Smart-
phones provide pervasive computing, but their hardware is limited in terms of compu-
tation, memory, and energy reserves. This is a research direction that can be developed
to create live migration. An engine may augment the smartphone’s capabilities by
off-loading some tasks to a nearby computer, where they are executed in clone image

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:27

Table I. Migration Characteristics

Process Memory Replay Checkpoints Multi-
Migration Migration backup

Zap • • • •
Autopod • • • •
VMotion •
Xen Live Migration •
KVM •
Post-Copy Live Mig. •
ISR •
Capsule •
SoulPad •
Live Wide-Area Mig. • •
SandPiper • • •
CT/TR Motion • •
Remus • • •
LLM • •

Table II. Migration Characteristics-Continuation

Storage Hypervisor Incremental Automatic
Migration Required Migration Migration

Zap •
Autopod • •
VMotion •5

Xen Live Migration •1

KVM • •3

Post-Copy Live Mig. • •1

ISR • •1,2,3

Capsule • •5 •9

SoulPad • •6

Live Wide-Area Mig. • •7

SandPiper •1 • •8

CT/TR Motion • •4

Remus • •1

LLM •1

Note: 1Xen, 2 VirtualBox, 3KVM, 4UMLinux mod, 5VMware, 6Knoppix,
7XenoServer, 8Migration starts if a threshold is reached, 9Incremental backup.

of the device, after reintegrating the results in the smartphone execution [Chun and
Maniatis 2009].

9. CONCLUSIONS

In this article, a survey of selected publications related to migration mechanisms of
virtual machines is presented. In Tables I and II, we summarize the main characteris-
tics of VM migration mechanisms. Process migration indicates whether the migration
mechanism is based on process migration. Memory migration indicates if the mecha-
nism is based on memory migration. Replay denotes if migration saves in log records
the state of a VM. Checkpointing determines if migration uses a checkpoint to take a
snapshot of the entire state of a VM. Multibackup indicates if the replication mecha-
nism maintains more than one VM copy at the same time. Storage migration indicates
if migration considers a storage migration mechanism. Hypervisor identifies if a hy-
pervisor is necessary for the migration mechanism. Incremental migration indicates

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

30:28 V. Medina and J. M. Garcı́a

if a copy of the VM can be reassumed from a specific execution point. Automatic mi-
gration notes if the migration mechanism is auto-started when a specific condition is
reached. The necessity of migration of processes appeared since the creation of dis-
tributed systems. With the development of the virtualization and the incorporation of
this technology as a tool to achieve high-availability systems, the migration mecha-
nisms were greatly improved. In this article, we have considered that the migration
mechanisms have been divided into three main branches. The first one, process mi-
gration, which was born along with the distributed systems, is the beginning of the
VM’s migration. The mechanisms based on process migration have some character-
istics, such as complexity, performance, transparency, fault resilience, scalability, and
heterogeneity, that have a major impact on the effectiveness and deployment of process
migration. The complexity of implementation and dependency on an operating system
are among the obstacles to the wider use of process migration [Milojičić et al. 2000].
Process migrations can be made in the range of seconds, and this time can increase to
minutes.

The migration mechanisms based on memory migration are efficient and faster than
others; they migrate virtual machines from one physical machine to the other in a
short time (60 ms in the best test time). However, the majority of these hypervisors
do not perform storage migration, and it is necessary for a SAN or NAS platform to
handle the file system, which is not always efficient for geographically separated file
systems. The increasing necessity of sharing information and the new vision where
the information is no longer localized within a data center but rather can be dispersed
across geographical distances has created migration mechanisms to transfer VM across
a WAN. These approaches transfer local disk and network connections along with the
memory state within a negligible time. Diverse optimizations to efficiently transfer
memory and disk [Travostino 2006; Bradford et al. 2007; Hines et al. 2009] have been
developed. Besides, researches have generated live migration mechanisms to get load
balancing and efficient resource consumption [Wood et al. 2007; Nathuji and Schwan
2007]. Suspend/resume migration allows the transference of a VM across a WAN. The
source VM is suspended and retrieved from the network when the VM is resumed.
This technology has developed the disconnected operation concept, where the users
keep working with the cache content. Suspend/resume is the base for mechanisms that
allow carrying an auto-configuring operating system along with a suspend VM on a
small portable device [Cáceres et al. 2005] or a mobile device user executing a service
software on a nearby cloudlet [Satyanarayanan et al. 2009].

Cloud computing technology is attracting new users around the world, and there are
many scientific projects that are adopting this technology as their platform [NERSC
2011; Vöckler et al. 2011; Portal 2010; Gunarathne et al. 2010; Li et al. 2009; Iványi
and Topping 2011]. These projects demand the use of intensive computational power,
access to fault-tolerant mechanisms, and management of virtual machine replicas.
They require the use of hundreds of nodes to provide the necessary computational
power. Currently, the hypervisors based on memory have become the most widely used
around the world, due to the generalized use of these types of hypervisors as the
underlying platform in systems that provide cloud computing services. For example,
Amazon’s Web Services handle instances of Xen and VMWare; Futuregrid manages
virtual machines in Xen, KVM, or VMWare; and NERSC uses Xen, KVM, or UML.
However, the use of live migration mechanisms in cloud computing is an open research
area. Cloud computing providers still do not create a live migration mechanism that
does not interrupt user activities [Williams et al. 2012].

Recently, the record-and-replay strategy has been widely used in migration of virtual
machines, due to the nondeterministic events, which can be recorded and reproduced

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

A Survey of Migration Mechanisms of Virtual Machines 30:29

after. This strategy includes storage migration with efficient migration time. It can be
noticed that record-and-replay strategies allow incremental migrations to be applied
to virtual machines and specific filters to be applied to restore just the information
that the user needs. This type of migration has great possibility of development since
the experiments in this area have shown data consistency, efficient time performance
during the log and replay processes, and security in which the whole state of a VM
would be migrated, including memory, storage, and network connections.

Several migration mechanisms and their respective experimental results have been
presented. It is hard to compare the performance of various migration mechanisms
because the implementations were done on a number of different architectures. Tests
have been executed under different circumstances; elements such as hardware, size
samples, benchmarking, and report units are distinct among the migration methods.
It is also hard and inaccurate to normalize the performance.

REFERENCES

2009. The NIST Definition of Cloud Computing. National Institute of Standards and Technology 53, 6 (2009),
50. http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

Silviu Andrica and George Candea. 2011. WaRR: A tool for high-fidelity web application record and
replay. In Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems & Networks (DSN’11). IEEE Computer Society, Washington, DC, 403–410. DOI:http://dx.doi.org/
10.1109/DSN.2011.5958253

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2010. A view of cloud computing.
Commun. ACM 53, 4 (April 2010), 50–58. DOI:http://dx.doi.org/10.1145/1721654.1721672

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2009.
Above the Clouds: A Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28.
EECS Department, University of California, Berkeley. Retrieved from http://www.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

Muhammad Atif and Peter Strazdins. 2009. Optimizing live migration of virtual machines in SMP clusters
for HPC applications. In Proceedings of the IFIP International Conference on Network and Parallel
Computing Workshops. 51–58. DOI:http://dx.doi.org/10.1109/NPC.2009.32

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP’03). ACM, New York, NY, 164–177. DOI:http://dx.doi.org/
10.1145/945445.945462

N. Bobroff, A. Kochut, and K. Beaty. 2007. Dynamic placement of virtual machines for managing SLA
violations. In Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM’07). 119–128. DOI:http://dx.doi.org/10.1109/INM.2007.374776

Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schiöberg. 2007. Live wide-area migra-
tion of virtual machines including local persistent state. In Proceedings of the 3rd International Confer-
ence on Virtual Execution Environments (VEE’07). ACM, New York, NY, 169–179. DOI:http://dx.doi.org/
10.1145/1254810.1254834

Ramón Cáceres, Casey Carter, Chandra Narayanaswami, and Mandayam Raghunath. 2005. Reincar-
nating PCs with portable SoulPads. In Proceedings of the 3rd International Conference on Mobile
Systems, Applications, and Services (MobiSys’05). ACM, New York, NY, 65–78. DOI:http://dx.doi.org/
10.1145/1067170.1067179

Ramesh Chandra, Nickolai Zeldovich, Constantine Sapuntzakis, and Monica S. Lam. 2005. The collective:
a cache-based system management architecture. In Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation - Volume 2 (NSDI’05). USENIX Association, Berkeley,
CA, 259–272.

Prabhakar Changarti. 2007. Xen Virtualization: A Practical Handbook (1st ed.). Packt Publishing Ltd.,
Birmingham, UK.

Peter M. Chen and Brian D. Noble. 2001. When virtual is better than real. In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HOTOS’01). IEEE Computer Society, Washington, DC, 133.

David Chisnall. 2007. The Definitive Guide to the Xen Hypervisor. Prentice Hall, Upper Saddle River, NJ.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
<url>http://dx.doi.org/10.1109/DSN.2011.5958253</url>
<url>http://dx.doi.org/10.1109/DSN.2011.5958253</url>
http://dx.doi.org/10.1145/1721654.1721672
<url>http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html</url>
<url>http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html</url>
http://dx.doi.org/10.1109/NPC.2009.32
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1109/INM.2007.374776
http://dx.doi.org/10.1145/1254810.1254834
http://dx.doi.org/10.1145/1254810.1254834
http://dx.doi.org/10.1145/1067170.1067179
http://dx.doi.org/10.1145/1067170.1067179

30:30 V. Medina and J. M. Garcı́a

Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. 2011. CloneCloud:
elastic execution between mobile device and cloud. In Proceedings of the 6th Conference on Computer
systems (EuroSys’11). ACM, New York, NY, 301–314. DOI:http://dx.doi.org/10.1145/1966445.1966473

Byung-Gon Chun and Petros Maniatis. 2009. Augmented smartphone applications through clone cloud exe-
cution. In Proceedings of the 12th Conference on Hot Topics in Operating Systems (HotOS’09). USENIX
Association, Berkeley, CA, 8–8. http://dl.acm.org/citation.cfm?id=1855568.1855576

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. 2005. Live migration of virtual machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation (NSDI’05). USENIX Association, Berkeley,
CA, 273–286.

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew Warfield.
2008. Remus: High availability via asynchronous virtual machine replication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’08). USENIX Associa-
tion, Berkeley, CA, 161–174.

Rogier Dittner and David Rule. 2007. The Best Damn Server Virtualization Book Period: Including VMware,
Xen, and Microsoft Virtual Server. Syngress Publishing.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. 2002. ReVirt:
enabling intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev. 36, SI
(December 2002), 211–224. DOI:http://dx.doi.org/10.1145/844128.844148

George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen. 2008. Execution
replay of multiprocessor virtual machines. In Proceedings of the 4th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (VEE’08). ACM, New York, NY, 121–130.
DOI:http://dx.doi.org/10.1145/1346256.1346273

R. P. Goldberg. 1974. Survey of virtual machine research. IEEE Computer Magazine (June 1974), 34–45.
Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. 2010. Cloud computing paradigms for

pleasingly parallel biomedical applications. In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing (HPDC’10). ACM, New York, NY, 460–469.
DOI:http://dx.doi.org/10.1145/1851476.1851544

Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. 2006. Enforcing performance iso-
lation across virtual machines in Xen. In Proceedings of the ACM/IFIP/USENIX 2006 International
Conference on Middleware (Middleware’06). Springer-Verlag, New York, NY, 342–362.

Jacob Gorm Hansen and Eric Jul. 2004. Self-migration of operating systems. In Proceedings of the 11th
ACM SIGOPS European Workshop (EW’11). ACM, New York, NY, Article 23. DOI:http://dx.doi.org/
10.1145/1133572.1133616

Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live migration of virtual ma-
chines. SIGOPS Oper. Syst. Rev. 43, 3 (July 2009), 14–26. DOI:http://dx.doi.org/10.1145/1618525.1618528

Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi. 2011. Reactive consolidation
of virtual machines enabled by postcopy live migration. In Proceedings of the 5th International Work-
shop on Virtualization Technologies in Distributed Computing (VTDC’11). ACM, New York, NY, 11–18.
DOI:http://dx.doi.org/10.1145/1996121.1996125

Takahiro Hirofuchi, Hidemoto Nakada, Hirotaka Ogawa, Satoshi Itoh, and Satoshi Sekiguchi. 2009. A
live storage migration mechanism over wan and its performance evaluation. In Proceedings of the 3rd
International Workshop on Virtualization Technologies in Distributed Computing (VTDC’09). ACM, New
York, NY, 67–74. DOI:http://dx.doi.org/10.1145/1555336.1555348

Khaled Z. Ibrahim, Steven Hofmeyr, Costin Iancu, and Eric Roman. 2011. Optimized pre-copy live migration
for memory intensive applications. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC’11). ACM, New York, NY, Article 40, 11 pages.
DOI:http://dx.doi.org/10.1145/2063384.2063437

P. Iványi and B.H.V. Topping (Eds.). 2011. Threat Detection in an Urban Water Distribution Systems with
Simulations Conducted in Grids and Clouds. Ajaccio, Corsica, France. DOI:http://dx.doi.org/10.4203/
ccp.95.93

Bo Jiang, Binoy Ravindran, and Changsoo Kim. 2010. Lightweight live migration for high availabil-
ity cluster service. In Proceedings of the 12th International Conference on Stabilization, Safety,
and Security of Distributed Systems (SSS’10). Springer-Verlag, Berlin, 420–434. Retrieved from
http://dl.acm.org/citation.cfm?id=1926829.1926865.

James J. Kistler and M. Satyanarayanan. 1992. Disconnected operation in the Coda File System. ACM Trans.
Comput. Syst. 10, 1 (Feb. 1992), 3–25. DOI:http://dx.doi.org/10.1145/146941.146942

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://dx.doi.org/10.1145/1966445.1966473
http://dl.acm.org/citation.cfm?id$=$1855568.1855576
http://dx.doi.org/10.1145/844128.844148
http://dx.doi.org/10.1145/1346256.1346273
http://dx.doi.org/10.1145/1851476.1851544
http://dx.doi.org/10.1145/1133572.1133616
http://dx.doi.org/10.1145/1133572.1133616
http://dx.doi.org/10.1145/1618525.1618528
http://dx.doi.org/10.1145/1996121.1996125
http://dx.doi.org/10.1145/1555336.1555348
http://dx.doi.org/10.1145/2063384.2063437
http://dx.doi.org/10.4203/ccp.95.93
http://dx.doi.org/10.4203/ccp.95.93
http://dl.acm.org/citation.cfm?id$=$1926829.1926865
http://dx.doi.org/10.1145/146941.146942

A Survey of Migration Mechanisms of Virtual Machines 30:31

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: The Linux virtual machine
monitor. In Proceedings of the Ottawa Linux Symposium. 225–230. Retrieved from http://www.kernel.
org/doc/ols/2007/ols2007v1-pages-225-230.pdf.

Nadir Kiyanclar. 2005. A survey of virtualization techniques focusing on secure on-demand cluster comput-
ing. CoRR abs/cs/0511010 (2005).

Michael Kozuch and M. Satyanarayanan. 2002. Internet suspend/resume. In Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA’02). IEEE Computer Society, Wash-
ington, DC, 40.

Michael A. Kozuch, Michael Kaminsky, and Michael P. Ryan. 2009. Migration without virtualization. In
Proceedings of the 12th Conference on Hot Topics in Operating Systems (HotOS’09). USENIX Association,
Berkeley, CA, 10.

Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. 2009. EnaCloud: An energy-saving
application live placement approach for cloud computing environments. In Proceedings of the 2009 IEEE
International Conference on Cloud Computing (CLOUD’09). IEEE Computer Society, Washington, DC,
17–24. DOI:http://dx.doi.org/10.1109/CLOUD.2009.72

LINBIT. 2011. Distributed Replicated Block Device. Retrieved from http://www.drbd.org/.
Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. 2009. Live migration of virtual machine based

on full system trace and replay. In Proceedings of the 18th ACM International Symposium on High
Performance Distributed Computing (HPDC’09). ACM, New York, NY, 101–110. DOI:http://dx.doi.org/
10.1145/1551609.1551630

Yingwei Luo, Binbin Zhang, Xiaolin Wang, Zhenlin Wang, Yifeng Sun, and Haogang Chen. 2008. Live
and incremental whole-system migration of virtual machines using block-bitmap. In Proceedings of the
IEEE International Conference on Cluster Computing. 99–106. DOI:http://dx.doi.org/10.1109/CLUSTR.
2008.4663760

Kernel Based Virtual Machine. 2012. Main Page. Retrieved from http://www.linux-kvm.org/page/Main_Page.
Sean R. Marston, Zhi Li, Subhajyoti Bandyopadhyay, Anand Ghalsasi, and Juheng Zhang. 2009. Cloud

computing: The business perspective. SSRN eLibrary (2009).
Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou. 2000. Process

migration. ACM Comput. Surv. 32, 3 (2000), 241–299. DOI:http://dx.doi.org/10.1145/367701.367728
Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. 2008. Containers checkpointing and live migration.

In Proceedings of the Linux Symposium 2008. 85–92.
Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Renesse, and Hans van Staveren.

1990. Amoeba: A distributed operating system for the 1990s. Computer 23, 5 (May 1990), 44–53.
DOI:http://dx.doi.org/10.1109/2.53354

Ripal Nathuji and Karsten Schwan. 2007. VirtualPower: Coordinated power management in virtual-
ized enterprise systems. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 265–278. DOI:http://dx.doi.org/
10.1145/1323293.1294287

Michael Nelson, Beng-Hong Lim, and Greg Hutchins. 2005. Fast transparent migration for virtual machines.
In Proceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC’05). USENIX
Association, Berkeley, CA, USA, 25–25.

National Energy Research Scientific Computer Center NERSC. 2011. NERSC Mission. Retrieved from http://
www.nersc.gov/about/nersc-mission/.

Jason Nieh. 2005. AutoPod: Unscheduled system updates with zero data loss. In Proceedings of the 2nd
International Conference on Automatic Computing. IEEE Computer Society, Washington, DC, 367–368.
DOI:http://dx.doi.org/10.1109/ICAC.2005.16

Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. 2002. The design and implementation of
Zap: a system for migrating computing environments. SIGOPS Oper. Syst. Rev. 36, SI (December 2002),
361–376. DOI:http://dx.doi.org/10.1145/844128.844162

P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin. 2007. Performance Evaluation of Virtualization Tech-
nologies for Server Consolidation. Technical Report. HP Labs Tech.

Future Grid Portal. 2010. Future Grid. Retrieved from https://portal.futuregrid.org/.
Mendel Rosenblum. 2004. The reincarnation of virtual machines. Queue 2, 5 (2004), 34–40. DOI:http://dx.

doi.org/10.1145/1016998.1017000
Mendel Rosenblum and Tal Garfinkel. 2005. Virtual machine monitors: Current technology and future

trends. Computer 38, 5 (May 2005), 39–47. DOI:http://dx.doi.org/10.1109/MC.2005.176
M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P.

Léonard, and W. Neuhauser. 1991. Overview of the CHORUS Distributed Operating Systems. Computing
Systems 1 (1991), 39–69.

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://dx.doi.org/10.1109/CLOUD.2009.72
http://www.drbd.org/
http://dx.doi.org/10.1145/1551609.1551630
http://dx.doi.org/10.1145/1551609.1551630
http://dx.doi.org/10.1109/CLUSTR.2008.4663760
http://dx.doi.org/10.1109/CLUSTR.2008.4663760
http://www.linux-kvm.org/page/Main_Page
http://dx.doi.org/10.1145/367701.367728
http://dx.doi.org/10.1109/2.53354
http://dx.doi.org/10.1145/1323293.1294287
http://dx.doi.org/10.1145/1323293.1294287
http://www.nersc.gov/about/nersc-mission/
http://www.nersc.gov/about/nersc-mission/
http://dx.doi.org/10.1109/ICAC.2005.16
http://dx.doi.org/10.1145/844128.844162
https://portal.futuregrid.org/
http://dx.doi.org/10.1145/1016998.1017000
http://dx.doi.org/10.1145/1016998.1017000
http://dx.doi.org/10.1109/MC.2005.176

30:32 V. Medina and J. M. Garcı́a

J. Sahoo, S. Mohapatra, and R. Lath. 2010. Virtualization: A survey on concepts, taxonomy and associated
security issues. In Proceedings of the 2nd International Conference on Computer and Network Technology
(ICCNT’10). 222 –226. DOI:http://dx.doi.org/10.1109/ICCNT.2010.49

Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam, and Mendel Rosenblum.
2002. Optimizing the migration of virtual computers. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation. 377–390.

Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. 2009. The case for VM-
based cloudlets in mobile computing. IEEE Pervasive Computing 8, 4 (Oct. 2009), 14–23. DOI:http://
dx.doi.org/10.1109/MPRV.2009.82

Mahadev Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, D. R. O’Hallaron, Ajay Surie, A. Wolbach, J.
Harkes, A. Perrig, D. J. Farber, M. A. Kozuch, C. J. Helfrich, P. Nath, and H. A. Lagar-Cavilla. 2007.
Pervasive personal computing in an Internet suspend/resume system. IEEE Internet Computing 11, 2
(March-April 2007), 16–25. DOI:http://dx.doi.org/10.1109/MIC.2007.46

M. Satyanarayanan, Michael A. Kozuch, Casey J. Helfrich, and David R. O’Hallaron. 2005. Towards seam-
less mobility on pervasive hardware. Pervasive Mob. Comput. 1, 2 (July 2005), 157–189. DOI:http://
dx.doi.org/10.1016/j.pmcj.2005.03.005

Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. 2008. Server-storage virtualization: in-
tegration and load balancing in data centers. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (SC’08). IEEE Press, Piscataway, NJ, Article 53, 12 pages. http://dl.acm.org/
citation.cfm?id=1413370.1413424

Kunwadee Sripanidkulchai, Sambit Sahu, Yaoping Ruan, Anees Shaikh, and Chitra Dorai. 2010. Are
clouds ready for large distributed applications? SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 18–23.
DOI:http://dx.doi.org/10.1145/1773912.1773918

Ajay Surie, H. Andrés Lagar-Cavilla, Eyal de Lara, and M. Satyanarayanan. 2008. Low-bandwidth VM
migration via opportunistic replay. In Proceedings of the 9th Workshop on Mobile Computing Sys-
tems and Applications (HotMobile’08). ACM, New York, NY, 74–79. DOI:http://dx.doi.org/10.1145/
1411759.1411779

Nanda Susanta and Chiueh Tzi-Cker. 2005. A Survey on Virtualization Technologies. Technical Report. Stony
Brook University. http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf

Yoshi Tamura. 2008. Kemari: Virtual machine synchronization for fault tolerance using DomT. In Proceedings
of the Xen Summit.

Andrew S. Tanenbaum. 1995. Distributed Operating Systems. Prentice Hall.
Andrew S. Tanenbaum and Maarten Van Steen. 2001. Distributed Systems: Principles and Paradigms (1st

ed.). Prentice Hall, Upper Saddle River, NJ.
J. Torres, D. Carrera, K. Hogan, R. Gavalda, V. Beltran, and N. Poggi. 2008. Reducing wasted resources to

help achieve green data centers. In Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS’08). 1–8. DOI:http://dx.doi.org/10.1109/IPDPS.2008.4536219

Franco Travostino. 2006. Seamless live migration of virtual machines over the MAN/WAN. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (SC’06). ACM, New York, NY, 290. DOI:http://
dx.doi.org/10.1145/1188455.1188758

Stephen J. Vaughan-Nichols. 2006. New approach to virtualization is a lightweight. Computer 39, 11 (Nov.
2006), 12–14. DOI:http://dx.doi.org/10.1109/MC.2006.393

Akshat Verma, Puneet Ahuja, and Anindya Neogi. 2008. pMapper: Power and migration cost aware appli-
cation placement in virtualized systems. In Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware (Middleware’08). Springer-Verlag, New York, NY, 243–264.

VMware. 2012. VMware GSX Server Documentation. Retrieved from http://www.vmware.com/support/pubs/
gsx_pubs.html.

Jens-Sönke Vöckler, Gideon Juve, Ewa Deelman, Mats Rynge, and Bruce Berriman. 2011. Experiences using
cloud computing for a scientific workflow application. In Proceedings of the 2nd International Workshop
on Scientific Cloud Computing (ScienceCloud’11). ACM, New York, NY, 15–24.

Carl A. Waldspurger. 2002. Memory resource management in VMware ESX server. SIGOPS Oper. Syst. Rev.
36, SI (December 2002), 181–194. DOI:http://dx.doi.org/10.1145/844128.844146

A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. 2005. Rethinking the design of virtual machine monitors.
Computer 38, 5 (May 2005), 57–62. DOI:http://dx.doi.org/10.1109/MC.2005.169

Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. 2012. The Xen-Blanket: virtualize once, run every-
where. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM,
New York, NY, 113–126. DOI:http://dx.doi.org/10.1145/2168836.2168849

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://dx.doi.org/10.1109/ICCNT.2010.49
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/MIC.2007.46
http://dx.doi.org/10.1016/j.pmcj.2005.03.005
http://dx.doi.org/10.1016/j.pmcj.2005.03.005
http://dl.acm.org/citation.cfm?id=1413370.1413424
http://dl.acm.org/citation.cfm?id=1413370.1413424
http://dx.doi.org/10.1145/1773912.1773918
http://dx.doi.org/10.1145/1411759.1411779
http://dx.doi.org/10.1145/1411759.1411779
http://www.ecsl.cs.sunysb.edu/tr/TR179.pdf
http://dx.doi.org/10.1109/IPDPS.2008.4536219
http://dx.doi.org/10.1145/1188455.1188758
http://dx.doi.org/10.1145/1188455.1188758
http://dx.doi.org/10.1109/MC.2006.393
http://www.vmware.com/support/pubs/gsxpubs.html
http://www.vmware.com/support/pubs/gsxpubs.html
http://dx.doi.org/10.1145/844128.844146
http://dx.doi.org/10.1109/MC.2005.169
http://dx.doi.org/10.1145/2168836.2168849

A Survey of Migration Mechanisms of Virtual Machines 30:33

Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus van der Merwe. 2011. CloudNet: Dy-
namic pooling of cloud resources by live WAN migration of virtual machines. SIGPLAN Not. 46, 7 (March
2011), 121–132. DOI:http://dx.doi.org/10.1145/2007477.1952699

Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2007. Black-box and gray-box
strategies for virtual machine migration. In Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation (NSDI’07). USENIX Association, Berkeley, CA, 17–17.

Received February 2007; revised March 2009; accepted June 2009

ACM Computing Surveys, Vol. 46, No. 3, Article 30, Publication date: January 2014.

http://dx.doi.org/10.1145/2007477.1952699

