
48

A Survey of Checker Architectures
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Reliability is quickly becoming a primary design constraint for high-end processors because of the inherent
limits of manufacturability, extreme miniaturization of transistors, and the growing complexity of large
multicore chips. To achieve a high degree of fault tolerance, we need to detect faults quickly and try to
rectify them. In this article, we focus on the former aspect. We present a survey of different kinds of fault
detection mechanisms for processors at circuit, architecture, and software level. We collectively refer to such
mechanisms as checker architectures. First, we propose a novel two-level taxonomy for different classes of
checkers based on their structure and functionality. Subsequently, for each class we present the ideas in
some of the seminal papers that have defined the direction of the area along with important extensions
published in later work.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General

General Terms: Reliability

Additional Key Words and Phrases: Checker architectures, reliability, fault tolerance

ACM Reference Format:
Kalayappan, R. and Sarangi, S. R. 2013. A survey of checker architectures. ACM Comput. Surv. 45, 4,
Article 48 (August 2013), 34 pages.
DOI: http://dx.doi.org/10.1145/2501654.2501662

1. INTRODUCTION

With continued device scaling, it is getting increasingly difficult to ensure reliability
at a device, circuit, and architectural level. Traditional methods of design and testing
are proving insufficient to ensure reliable error-free operation for today’s multi-billion
transistor chips [Borkar 2004]. Consequently, the budgets for verification and testing
are now roughly two-thirds [Bacchini et al. 2004] of the cost of developing a high-end
processor. Even then, occasionally some defects slip into production silicon, and have
resulted in catastrophic failures as documented by the popular press [Sarangi et al.
2007]. Other than such congenital faults [Sarangi 2007], processors are susceptible
to a wide variety of transient and permanent faults during regular operation. Hence,
along with extensive testing and careful design, it is necessary to reckon that defects
will manifest in the field, and we need to make changes in the design of processors
to dynamically detect and correct them. Researchers are converging to the view that
we need to design reliable processors with increasingly unpredictable and unreliable
components.

The need for reliable processors has been felt since the mid-seventies when computers
started to be used in major banks, financial institutions, and airlines. The designers
of the Tandem computer [Horst and Chou 1985] were one of the early pioneers in
this field. They used three processors in parallel, and decided the results based on
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voting. They considered a fail-stop failure model, which guarantees that a processor
will completely stop functioning upon an error. However, since then, faults have be-
come far more insidious in nature. In the mid-nineties transient faults due to cosmic
rays and alpha particle strikes came into prominence. As a result, IBM augmented
its mainframe processors with a spare pipeline that executed a redundant thread of
computation [Spainhower and Gregg 1999].

In the last decade, transistors have seen further miniaturization and have entered
the nanometer era. Along with a significantly increased chance of transient faults,
transistors are now vulnerable to a host of wear-out-related faults that manifest over
time. Second, designs have become extremely complicated, especially after the advent
of multicores. This leads to a host of design defects. Consequently, there is a vast body
of literature on different kinds of checker architectures tailored to detect different
kinds of faults. Some of them use variants of classical n-modular execution; however,
most schemes use a host of novel techniques to quickly detect faults. There are some
additional constraints, such as power consumption and complexity, which make the
space of solutions even more diverse.

1.1. Scope

The problem of designing reliable processors can be broken down into three parts:
fault characterization (Section 2.1), efficient fault/error detection (Sections 3 to 7), and
checkpointing/ recovery (Section 2.3). In this survey article, we focus on online detection
mechanisms for faults in hardware. In specific, we primarily look at approaches at
architecture level. Additionally, we look at some circuit- and software-level approaches
that are fairly oblivious to low-level hardware details and mostly concern themselves
with architectural features.

1.2. Organization

We start by providing a novel taxonomy of fault detection mechanisms in Section 2.2.
At the highest level, we classify the different detection mechanisms based on two major
criteria. The first criterion is the type of the checker, namely specialized circuit, spare
core, extra thread, and software module. The second criterion is the type of target
processor, namely single core or multicore. For a second-level classification, we have
three orthogonal sets of criteria, namely the type of fault detected, degree of coverage,
and the structure of the checker.

We observe that when the checker architecture is limited to specialized circuits (see
Section 3), there is a significant amount of diversity in solutions. The solutions for
different types of faults vary significantly. However, most of the solutions at the level of
a core, thread, or CMP follow one of several major patterns as described in Sections 4
to 6. These patterns were proposed in a few seminal papers. Most schemes add extra
constraints, change the fault model, or change the type of coverage. The approaches for
finding hardware faults in software (see Section 7) either rely on classical redundancy
techniques or check if a certain set of invariants hold.

We finally conclude in Section 8 by observing that we need an even more diverse
set of solutions for checking architectures of the future. Over the next few years, we
expect processors to have tens of cores, many specialized accelerators, 3D integration,
and novel on-chip interconnects. They will have their own unique runtime verification
challenges.

2. BACKGROUND

We describe different types of faults in Section 2.1, provide a taxonomy of different
types of checking systems in Section 2.2, and briefly survey different methods of taking
checkpoints and performing rollback in Section 2.3.
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2.1. Faults in Hardware

2.1.1. Overview. Traditional fault tolerance literature [Koren and Krishna 2007;
Mourad and Zorian 2000] classifies faults in two different ways. They can be clas-
sified by their duration, namely transient, intermittent, or permanent. Alternatively,
they can be classified based on their nature, namely stuck-at, timing, and functional.
Stuck-at faults can be modeled as a permanent open circuit or short circuit for some
wire or transistor. When a circuit becomes slow and signals do not reach their desti-
nation on time, the circuit suffers a timing fault. Lastly, a logical flaw in the design
of the circuit is referred to as a functional fault. Given the fact that transient faults
in circuits can typically be modeled as stuck-at faults and in a processor’s timeframe,
there is no significant difference between an intermittent and permanent fault, so we
can coalesce the different types of faults into four categories: transient, timing, hard,
and design.

2.1.2. Transient Faults. Transient faults are caused by events that occur once and their
effects persist for an extremely small duration (typically less than one cycle). Some of
the most common causes include alpha particles, and neutrons generated by cosmic
radiation, or spontaneous degeneration of unstable isotopes in the packaging mate-
rial [Ziegler et al. 1996]. These events induce a current pulse which is potent enough
to flip the value stored in a latch. There are other relatively infrequent causes such
as crosstalk and sudden fluctuations in supply voltage. Both logic as well as memory
elements such as latches and unprotected SRAM arrays are susceptible to these faults.
Larger yet slower transistors can partially mitigate this problem.

2.1.3. Timing Faults. Timing faults are typically caused by severe voltage or tempera-
ture fluctuations, or as a result of gradual wear out. Severe temperature and voltage
fluctuations typically are intermittent in nature, and can possibly last for hundreds of
milliseconds. During this period, transistors can slow down and lead to the emergence
of timing faults. Second, due to aging processes [Tiwari and Torrellas 2008], intercon-
nects and transistors can gradually wear out and become slower. One of the prominent
aging processes is Negative Bias Temperature Instability (NBTI), which refers to the
increase in threshold voltage of PMOS transistors due to negative gate voltages applied
at a high temperature.

2.1.4. Hard Faults. Aging processes can ultimately lead to a complete disintegration
of the affected component (transistors or interconnects). Along with NBTI, typical
examples of aging processes that ultimately lead to hard faults are electro-migration,
stress migration, thermal cycling, and dielectric breakdown. Electro-migration refers
to the phenomenon in which wires tend to gradually thin over time, because flowing
electrons transfer a part of their momentum to the surrounding atoms. A similar
migration of atoms known as stress migration happens due to thermal fluctuations.
Thermal cycling refers to metal fatigue around I/O contacts due to temperature cycles.

2.1.5. Design Faults. Design faults refer to bugs in RTL. Even after extensive verifica-
tion, some design bugs slip into production silicon [Sarangi et al. 2007] and permanently
impair some aspect of the processor’s functionality. One such example is the infamous
Pentium division bug [Blum and Wasserman 1996]. Because of the increasing complex-
ity of modern architectures, it is becoming increasingly difficult to completely eliminate
them.

2.1.6. Detection and Correction of Faults. In the subsequent sections, we label each major
approach based on the types of faults it detects and corrects. We have observed that in
some cases, the original paper was slightly vague about the fault coverage. Second, it
is possible that through trivial extensions of the proposed architecture, it is possible to
detect a wider variety of faults.
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Table I. Rules for Classifying Faults

Fault Rule for Detection Rule for Correction

Transient Any scheme that assesses the correctness
of the program execution.

Spatial or temporal re-execution of the
affected sequence of instructions.

Timing 1) A spare copy that is physically isolated
from the master copy. Eg., separate core,
or separate circuit with its own clock.
or 2) A scheme that detects an invariant.

A spare that effectively runs at a safe
frequency.

Hard A scheme that uses spatial redundancy or
invariants.

Contains one or multiple spare copies
that are guaranteed to be correct.

Design A method that checks some high level
properties of the program execution that
are independent of the architecture.

An entity that computes the correct
result through an alternative method.

Table I provides an alternate perspective viewed in terms of the faults, rather than
the fault detection/correction schemes. The four types of faults are discussed in terms
of the nature of the support that is required to detect and correct them. We use these
rules to classify different architectures on the basis of their fault coverage. Please note
that when we say that a certain architecture detects a certain fault, we mean that it
either detects the fault or the error resulting from the fault. It is not necessary for it to
distinguish different fault types all the time, as long as it can detect all the resultant
errors.

2.2. Taxonomy

We propose a taxonomy of checkers in this section. Traditional fault tolerance litera-
ture [Koren and Krishna 2007] has looked at three major classes of solutions: spatial
redundancy (run spare copies in parallel), temporal redundancy (run the same copy
repeatedly), and information redundancy (error-checking logic). We observe that these
criteria prove extremely nebulous for classifying checker architectures. For example,
Rashid et al. [2005] propose to parallelize the process of checking for different chunks
of execution. These copies lag behind the master copy. We cannot neatly place this
idea in any of the bins, because it contains aspects of both temporal as well as spatial
redundancy.

Consequently, we base our high-level classification on a novel set of criteria shown in
Figure 1(a). Before considering the taxonomy in detail, we need to reckon that it is often
computationally intractable to check the correctness of hardware in totality. Obtaining
an acceptable amount of coverage using pure hardware-checking/verification methods
can also be very time consuming. Consequently, the methods that we survey primarily
focus on the correctness of the execution of a given test program. If this test program
does not execute correctly, then we can infer a hardware fault. Please note that the test
program can either be a regular application or it can be a targeted microbenchmark
tailored to detect a specific category of faults.

The x-axis represents the nature of the test program: single-threaded or multi-
threaded. For a single-threaded execution, we can check the computation (Comp),
dataflow (DataFlow), and control flow (CntrlFlow). For a multithreaded execution,
we can check for just uniprocessor semantics (UniProc) or mutiprocessor semantics,
namely cache coherence and memory consistency. In the y-axis, we list the different
types of design alternatives for checkers. They can either be specialized circuits or
intra-pipeline functional units, spare cores, spare threads, or software modules. We
divide the 2D design space into rectangles and discuss each rectangle in a separate
section in this article.

We now define a set of second-level criteria in Figure 1(b) to dissect each section.
Before proceeding, let us define the terms master and slave. A master is an entity
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Fig. 1. Taxonomy of checkers.

(hardware or software) which represents the default implementation. It is afflicted by
faults and has a minimal amount of instrumentation in a checker-based architecture. In
comparison, a slave is a separate entity (hardware or software) which is significantly
impaired in either ability or performance as compared to the master. A slave is not
strictly required to guarantee correctness. Second, it might either execute subsets of
the original program or perform a totally separate computation to detect faults. A
checker-based architecture needs to detect faults by observing the outputs of masters
and slaves.

Now, we define three kinds of configurations based on the number of masters and
slaves: – MultiMaster (multiple masters, no slaves), SingleSlave (single master, single
slave), and MultiSlave (single master, multiple slaves). MultiMaster is similar to classi-
cal n-modular redundancy [Koren and Krishna 2007], where the existence of a fault is
decided by comparing the outputs of the different redundant units. SingleSlave refers
to a weak slave unit which typically checks the execution of the master/underlying
system, or does some other computation that is helpful in detecting a fault. The Multi-
Slave configuration parallelizes the work done by the slaves. We use this classification
as the x-axis in Figure 1(b).

Let us define the term test set, which refers to the set of all dynamic instructions in the
execution of the test program that are relevant to the subsystem under test. Now, for
the y-axis in Figure 1(b), we consider the degree of coverage: complete, subset, invariant,
and symptom1. Complete coverage refers to the verification of every single instruction in
the test set, whereas subset coverage considers only a proper subset of all instructions.
The invariant coverage metric seeks to verify a certain set of high-level assertions.
Lastly, the symptom coverage metric is conceptually the inverse of invariant; it checks
for signs of something wrong. However, in most cases, it is not a strict boolean inverse
of the invariant conditions. For example, let us consider a program that finds a root of a
quadratic equation. Complete coverage is tantamount to checking all the instructions.
We might just decide to check that the instructions to compute the discriminant are
executed correctly (subset coverage), or we might substitute the value of the obtained
root in the original equation and check if it equates to zero (invariant coverage). Lastly,

1We use italics for the coverage metrics to distinguish them from other uses of the same word in the rest of
the text.
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we can run a fault inference algorithm only upon the occurrence of an extraordinary
event such as a segmentation fault (symptom coverage).

Finally, we use the type of fault—transient, timing, hard, and design—in the z-axis.
For different types of checkers, we do not have solutions for all points in this 3D space.
Consequently, we use different set of axes in different orders of priority for each section
based on the diversity of prior work.

2.3. Checkpoints and Recovery

In this section, we discuss the process of recovery from an error. There are a few
classical forward error recovery techniques which use n-modular redundancy or error-
checking logic. In the former case, the correct output is decided by voting, and in the
latter case we use error-correcting codes to fix erroneous bits in the output. However,
because of their limited applicability as well as implementation overhead, prior work
has primarily looked at Backward Error Recovery (BER), which involves the process
of creating a checkpoint of a correct state and a rollback upon the detection of an error.
Please note that both these areas are extremely well-studied; in this section, we are
just outlining the major concepts.

For BER, the first design point that we need to consider is the extent of propagation
of the error at the time it is detected. The erroneous output might have propagated to
logic in the same Functional Unit (FU), other stages in the pipeline, or other elements
in the memory system such as caches.

2.3.1. Functional Units. If the error is localized to the FU, then we first need to restore
the state bits of the FU to default values. Subsequently, for error recovery we have two
generic options. We can either reissue the instruction to the same FU or use the result
of a spare FU [Spainhower and Gregg 1999].

2.3.2. Pipeline. If the error has propagated to other pipeline stages, then we can treat
this event as an exception. We need to flush the pipeline and restore the register state.
The correct register state can be obtained from either a register checkpoint taken
previously or from a separate slave thread which is guaranteed correct. As explained by
Smith and Sohi [1995], there are two methods of taking a register checkpoint. The first
technique uses a history buffer to take a checkpoint of the values of all the architectural
registers at periodic intervals. To rollback, we need to find the relevant checkpoint in
the history buffer. The second method uses a separate Architectural Register File (ARF)
which maintains the register state for only the committed instructions. To flush all the
instructions in flight, we just need to copy the state from the ARF to the physical
register file in the processor.

2.3.3. Memory System. When bugs propagate to the memory system, the process of
recovery can be complicated. First, we need to use checkpoints for the pipeline as
mentioned in Section 2.3.2. Subsequently, there are four broad approaches for taking
checkpoints for memory [Prvulovic et al. 2002]: full separation, partial separation,
renaming, and logging. “Full separation” proposes to keep all the speculative state
in a dedicated store buffer. For any access, we need to query this buffer first, before
accessing the caches. We can rollback to a checkpoint by flushing the store buffer.
To create a new checkpoint, we need to drain the store buffer to the L1 cache and
reinitialize it. However, this approach is not very scalable. “Partial separation” uses
the caches as the store buffer. Before creating a new checkpoint, we need to ensure
that all the speculative data in the cache is flushed to lower levels. We do not allow
speculative data to be displaced from the cache until the next checkpoint. If there is a
conflict miss, we can use a victim cache to ameliorate the situation. After detecting a
fault, we can go back to the last checkpoint by flushing the cache.
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As compared to separation-based approaches, we can use “renaming” at page level.
We can use a copy-on-write scheme for pages. After the creation of a checkpoint, when-
ever a word in a page is written, we need to create a new copy of the page. To restore
a checkpoint, we need to restore the state of the page table at the beginning of the
checkpoint. The most scalable method, especially for multiprocessors [Prvulovic et al.
2002; Sorin et al. 2002], is to use variants of “logging”, which propose to record the old
value of a memory word before it is overwritten for the first time. These logs can be
maintained either in software or in hardware. Regular read accesses are oblivious of
the logs. Since faults are extremely infrequent, we will need to restore the values in
the logs very rarely. Consequently, we can afford to maintain very large logs.

For multiprocessors, there is an additional issue [Prvulovic et al. 2002], namely
checkpoint consistency. A checkpoint is consistent if it contains the effect of an event,
only if it contains the cause of the event. For example, it should never be the case that
processor 1 has written X to location A, processor 2 has read X from there, and the
read has been recorded but the write has not been recorded. We can have many such
cases in systems with relaxed memory consistency models. Consequently, there is a
need to take a coordinated checkpoint across different cores. We can either have global
coordination or optimized algorithms to take coordinated local checkpoints [Prvulovic
et al. 2002; Sorin et al. 2002; Ahmed et al. 1990].

3. CIRCUIT- AND PIPELINE-LEVEL TECHNIQUES

3.1. Summary

In this section, we look at approaches at circuit and pipeline level. For a second-level
classification, we classify the approaches by the type of fault that they are primarily
designed to detect. At circuit/pipeline level, the approaches to detect different kinds of
faults vary significantly. We shall observe in the succeeding sections that at a higher
level, the nature of the fault is not very important and it is hard to distinguish between
them.

Table II shows a list of some of the seminal techniques. Most of them are designed to
primarily detect one kind of fault. Some proposals such as Argus [Meixner et al. 2007]
can detect both hard as well as transient faults. We have classified them based on their
conceptual similarity with other schemes in the same category. We mention the nature
of faults covered in the description of the technique as well as in Table II.

After classifying the techniques based on the type of fault they detect, we clas-
sify them based on coverage. As compared to higher-level approaches, circuit-level
approaches are much more reliant on symptoms and invariants. Lastly, we observe
that there is also a preponderance of MultiSlave techniques, because a pipeline-level
checking algorithm typically uses a different type of slave for each important stage.

3.2. Transient Faults

3.2.1. Complete Coverage. Ray et al. [2001] and Parashar et al. [2004] advocate the use
of classical n-modular redundancy for the execution stage of the pipeline (see Figure 3).
There are replicated execution units, and each instruction is dispatched to a multitude
of units. This replication is done at the rename stage. At the end of the execution, the
hardware compares the outputs of the replicated units. If there is a mismatch that
tends to recur, we can infer a hard fault.

3.2.2. Subset Coverage. Given the overheads of complete coverage, we observe the need
to consider a subset of all the instructions. Gomaa and Vijaykumar [2005] propose to
use the resources of the pipeline when it is idle to reexecute portions of the program.
Such idle phases can be caused by L2 misses, or low-IPC phases. They present the
design of a reuse buffer that contains a set of instructions along with their input and
output values. A part of the pipeline such as the issue queue and the functional units
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Table II. Summary of Circuit-/Pipeline-Level Approaches

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

IRTR Transient ≈0% Minimal Multi Subset
T

[Gomaa et al.
2005]

Faults (3.2) Master

ReStore Transient ≈0% Minimal Multi Symptom
T

�

�

�

�
MH

[Wang and Patel
2006]

Faults (3.2) Slave

RAZOR Timing ≈0% Extra flip-flop Single Complete
M

[Ernst et al. 2003] Faults (3.3) per latch Slave
Wearmon Timing ≈0% 1 Delay moni- Single Invariant �

�

�

�
M

[Zandian et al.
2010]

Faults (3.3) tor per stage Slave

BulletProof Hard 4–18% 5.8% Multi Complete
MH

[Shyam et al. 2006] Faults (3.4) Slave
Argus Hard <4% <17% Multi Complete �

�

�

�
TMH

[Meixner et al.
2007]

Faults (3.4) Slave

Phoenix Design ≈0% 0.05% Multi Complete
D

[Sarangi et al.
2006]

Faults (3.5) Slave

Fault Types : (T → Transient, M → Timing, H → Hard, D → Design)
→ detect and correct, �

�

�

�
→ only detect

are augmented with extra hardware to verify the results. Qureshi et al. [2005] propose
a similar scheme and augment it by making the verification phase visible to higher
levels.

Reese [Nickel and Somani 2001] propose to use idle cycles to only verify ALU results.
Hu et al. [2005] extend this idea to consider the load imbalance between the integer
ALU and the floating point ALU. The floating point ALU can be used to check the
results of the integer ALU.

3.2.3. Symptom Coverage. The ReStore [Wang and Patel 2006] architecture uses symp-
toms to detect transient faults. Through a detailed set of simulations, the authors
establish that about 80% of failure-inducing transient faults can be classified as pro-
cessor exceptions, access to illegal memory addresses, and control-flow violations. These
can be detected by a specialized symptom detector.

3.2.4. Invariant Coverage. Early variants of IBM’s G5/S390 servers [Spainhower and
Gregg 1999] had processors that performed inline checking by performing parity pre-
diction or duplicating selected functional units. Parity prediction refers to a process of
quickly predicting the parity of the output of an ALU without doing the actual compu-
tation. This can be used to find errors in the execution. Ossi et al. [2009] use Berger
codes to verify the operation of an ALU. A Berger code is a concise representation of a
binary number. Moreover, it is possible to find the Berger code representation of the re-
sult of an ALU operation from the Berger codes of the operands. Carretero et al. [2009]
generalize this approach to consider a variety of signatures. It uses these signatures to
verify the control logic of the issue queue and the register files. Second, it also proposes
to use signatures based on arithmetic codes, which can be used to verify the operation
of ALUs.
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Fig. 2. RAZOR.

Fig. 3. Dual use of superscalar datapath.

3.3. Timing Faults

3.3.1. RAZOR – Complete Coverage. The RAZOR [Ernst et al. 2003] scheme was orig-
inally proposed to reduce power. However, it proved a seminal technique and has
subsequently been used in Avirneni et al. [2009] for fault tolerance. RAZOR proposes
to augment a pipeline latch with an additional RAZOR flip-flop.

The intuition behind the RAZOR pipeline is as follows. Let us assume that the ideal
clock cycle is one unit of time. It is possible that, due to a timing fault, the delay of a
pipeline stage increases to κ, where κ > 1 for some inputs. Now, if we resample the
output of the stage at the instant κ −1 in the subsequent cycle and compare it with the
value that was originally stored in the pipeline latch, we can detect a timing fault.

Figure 2 shows the design of a RAZOR flip-flop. The flip-flop has a normal latch
and a shadow latch. The shadow latch uses a clock that is offset from the main clock
by κ − 1 units of time. It is assumed that by the time the outputs are read into the
shadow latch, they have stabilized to the correct values. Consequently, we compare
the results in the shadow latch and the main flip-flop and infer faults accordingly. It is
possible to proceed by using the value in the shadow latch in the subsequent stages. The
erroneous computation can be discarded by inserting a pipeline bubble or by flushing
the pipeline [Blaauw et al. 2008].

3.3.2. Invariant Coverage. Typically, the clock period of a processor is designed to ac-
commodate for worst-case propagation delays of all the pipeline stages. The difference
between the propagation delay of a signal and the clock period is indicative of the safety
margin. If it is too small or negative, then we can infer the occurrence of a timing fault.
Blome et al. [2007] and Zandian et al. [2010] propose extra circuitry to measure this
difference through periodic sampling and by using different test vectors. These circuits
are activated periodically or during periods of low activity.

3.4. Hard Faults

Shyam et al. [2006] propose BulletProof, a circuit-level solution that protects the
pipeline and the on-chip memory. Each stage of the pipeline (decoder, register file,
functional units, cache) has an associated checker which gets activated during idle
slots. A decoder checker sends the same instruction to multiple unused decoders in
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the pipeline and verifies the results. A register file checker generates random inputs
and writes them to unused registers. It reads those registers at a later point of time
and compares the results. Each ALU has a 9-bit mini ALU that can verify some of
the results generated by the main ALU. Constantinides et al. [2007] propose a new
set of instructions that can manipulate a microprocessor’s internal state. The proposal
envisages firmware that can periodically suspend the execution of the microprocessor,
capture its state, run a set of test vectors loaded by software, and then restore the state
back. The coverage of both of these techniques is dependent on the type of test vectors
and checking algorithms.

Argus [Meixner et al. 2007] can detect both transient and hard faults. It has a
dataflow, control-flow, and computation checker. Using static analysis, the compiler
embeds a signature representing the control flow and dataflow in every basic block.
The signature represents the flow of values between different registers in a basic
block and the unique id of the basic block. To verify the dataflow within a basic block,
the hardware needs to compute the signature dynamically and compare it with the
embedded signature. For the case of control flow, the compiler embeds the signatures of
the possible successors at the end of the basic block. The hardware verifies the signature
of a newly entered basic block with this list. For verifying computation, Argus uses a
low-cost adder for adds, simpler redundant units for logical operations, and a modulo-
arithmetic-based approach for checking multiplication/division operations.

3.5. Design Faults

Sarangi et al. [2007] proposed the Phoenix system that can detect design faults. They
analyze the errata sheets published by processor vendors, and characterize the design
defects based on the microarchitecture-level signals that activate them. For example, a
bug in Pentium IV can possibly manifest when, in the same cycle, the L2 cache is being
flushed, there is an external snoop request, and the processor is in a low-power state.
They subsequently characterize the defects from a certain processor family and use
this information to design appropriate hardware to collect all the signals for a future
processor. There is an elaborate network of programmable logic arrays that can collect
and route signals. Each fault is associated with a combination of signals.

After releasing a processor, vendors should continue to test their processor for design
faults. As and when they detect faults, they need to issue a hardware patch that
can train the reconfigurable on-chip hardware to monitor appropriate combinations
of signals and flag an error if the combination gets activated. Software or dedicated
hardware can then initiate recovery and take measures to circumvent the problem.
Constantinides et al. [2008] extend this work by considering more comprehensive and
flexible monitoring of signals.

4. CORE-BASED APPROACHES

4.1. Summary

In this section, we explore approaches that use single or multiple fully functional cores
as the checker. We survey a set of major techniques for each of the major classes of
checkers and their implications in terms of power, performance, and complexity. We
highlight some of the seminal proposals in Table III.

We first look at the classical n-modular-redundancy-based MultiMaster configura-
tion in Section 4.2. MultiMaster-based approaches can detect all kinds of faults and
can provide complete coverage. The issue here is that we cannot run modern processors
in lock-step due to nondeterminism introduced by the memory system and bus proto-
cols [Sarangi et al. 2006]. Consequently, we need to devise protocols to run processors
in a loosely synchronized fashion and compare outputs infrequently.
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Table III. Summary of Core-Level Approaches

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

NSAA† 4.2 Minimal 300% Multi Complete
TMH[Bernick et al.

2005]
Master

DIVA 4.3 <3% 6% Single Complete
TMHDAustin [1999] Slave

SlipStream 4.4 12% speed-up 100% Single Complete
T

�

�

�

�
MH[Purser et al.

2000]
Slave

CGVP* 4.5 <8% 200% + post- Multi Complete
T

�

�

�

�
MH[Rashid et al.

2005]
commit buffer Slave

Fault Types : (T → Transient, M → Timing, H → Hard, D → Design)
→ detect and correct, �

�

�

�
→ only detect

CGVP* → Coarse Grain Verification Parallelism, NSAA† → Non-Stop Advanced Architecture

We subsequently look at two broad families of SingleSlave schemes, namely DIVA
(Section 4.3) and SlipStream (Section 4.4). DIVA uses a simple in-order checker pro-
cessor and SlipStream uses a redundant core that lags behind the master core. The
slave is meant to be slower as compared to the master such that we can ensure that it
is relatively immune to faults. However, for the slave to keep up with the master, it is
necessary for it to get hints—branch outcomes and memory values—from the master.
The SingleSlave approaches are clearly better than MultiMaster approaches in terms
of power. We can also reduce power consumption by considering a MultiSlave approach
(MSSP family described in Section 4.5), where the task of checking is distributed among
several slaves. Each of them can be run at a slower frequency. Since power is a cubic
function of frequency, we can achieve substantial power savings.

4.2. MultiMaster Approaches

Conceptually, we can either use Dual Modular Redundancy (DMR) to just detect errors
or Triple Modular Redundancy (TMR) to correct them using voting. However, due to
nondeterministic events in state-of-the-art processors, it is difficult to run processors
in lock-step and compare results every cycle. Different processors might read asyn-
chronous events at slightly different times. Signal propagation delays using source
synchronous buses [Sarangi et al. 2006] are typically variable. Power and thermal
management events typically introduce delays. Lastly, due to process variation [Borkar
2004], different processors might run at different speeds or might have I/O interfaces
that do not have the same latency. Consequently, we need to explore loosely coupled
solutions which can tolerate some amount of slack between the processors.

4.2.1. Lock-Step Processors. Tandem Computers Inc. (now Hewlett Packard Nonstop
Enterprise Division) [Horst and Chou 1985; Joel et al. 1986] were the first to design
and commercially market highly reliable servers that used dual modular redundancy.
The cores had a minimal amount of slack between them. The NonStop I was released
in 1976. The system consisted of 2 to 16 processors connected by a dual-bus intercon-
nect. Each processor worked in a fail-stop mode. A fail-stop processor stops as soon
as it detects a fault. The Tandem processor had extensive support for built-in self-test
modules and parity checkers.

The first two versions of the Tandem processor used messages in software to exchange
state across redundantly executing processes. To facilitate the exchange of messages,
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Fig. 4. NonStop architecture.

the NonStop kernel [Bartlett 1981] was developed. These processors used redundant
memory elements and hard disks. These designs used messages to keep the checker
processor in sync with the master. Whenever the master failed, it was taken off the
system and the checker was connected in lieu of it.

By 1993, designers realized that internal BIST mechanisms are not sufficient to
detect all types of faults. Pure DMR solutions were deemed necessary. Hence, later
versions employed a pairing scheme for processors: two processors, working with the
same clock, executed the same program in a lock-stepped fashion (see Figure 4(a)). If
their results did not match, a fault was inferred and both the processors were removed
from the system.

4.2.2. Loosely Coupled Processors. This lock-stepped manner of execution is not desir-
able as it poses restrictions on possible power optimizations, advanced I/O protocols,
and wide out-of-order machines. As an alternative, the NonStop Advanced Architecture
or NSAA was proposed [Bernick et al. 2005]. NSAA follows a more loosely coupled ap-
proach. The comparison of results is done at a much larger granularity, thus allowing
for minor deviations in execution behavior and in the frequency at which the processors
run. The comparison is done only before every I/O operation.

The working of the NSAA architecture is explained in Figure 4(b). The architecture
consists of groups of three 4-way Itanium SMP server processors. In a group, three
corresponding cores, each in one server processor, are referred to as a slice. All three
cores in a slice execute the same program. They have separate memory address spaces.
Please note that this architecture is only suitable for single-threaded applications.
Before every I/O event or interprocessor message, all three cores send a message to the
voter. This message typically contains the content of the I/O event. The voter compares
the results for three cores. If all of them agree, then we proceed normally; otherwise, the
recovery system marks the core that produced the erroneous output. It is possible that
the faulty core had a soft error. In this case, we set the state of the faulty core to the
state of a core that did not suffer a fault by copying the register and memory contents.
However, if a core repeatedly suffers a fault or has a BIST failure, then it has most likely
suffered a hard error. In this case the entire SMP system is removed. The two cores in
each slice can function in a standard DMR configuration, where we can detect errors,
but we cannot correct them without using extensive checkpoint-rollback recovery. It is
possible to later add another 4-way SMP system in place of the faulty one to complete
each slice. This can be done through automatic reconfiguration or manually.
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Fig. 5. Basic idea of DIVA.

Nomura et al. [2011] propose Sampling + DMR, which employs DMR for a fraction of
time, while the remainder of the time has the system working in the uncovered mode.
This allows massive savings in terms of power and performance (as now fewer com-
parisons are done). It must be noted that this is a solution that covers only permanent
faults.

4.3. SingleSlave – DIVA Family

Austin proposed the Dynamic Instruction Verification Architecture (DIVA) [Austin
1999], which is one of the earliest works in this area and serves as the basis for
many subsequent proposals. This architecture uses a small slave coprocessor to verify
the execution of the larger master core. Since the slave typically has lesser complexity,
lower frequency, and uses fault-tolerant transistors, it is significantly more immune to
faults. The main research challenge is to ensure that the slave can keep up with the
master in terms of performance.

4.3.1. DIVA. Figure 5 shows a high level view of the architecture.
We can view the DIVA pipeline as a deeper pipeline with verification required before

the commit stage. Elaborating further, the primary core performs all the functions of
a standard processor (in-order or out-of-order) other than stores and commits. After
the execute stage and memory access (for loads), the checker core verifies the execu-
tion of the master core in an in-order fashion. The verification consists of two parts:
checking the communication (Comm) and checking the computation (Comp). Comm in-
volves checking if the operands were read correctly. Meanwhile, performed in parallel,
Comp involves reperforming the operation and checking if the results were computed
correctly. If both the checks pass successfully, the checker commits the instruction and
performs a store operation if required.

Additionally, the checker core is also interrupted by a watch-dog timer. This timer de-
tects if the master is suffering a deadlock. When a fault is detected (logical or deadlock),
the checker flushes the pipeline of the master. It commits all the instructions until the
erroneous instruction and then starts the master from the subsequent instruction.

The checker is significantly simpler when compared to the master core because it
processes instructions in-order. Thus, there is no need for complex structures like
reorder buffers and instruction windows, which potentially increase the chances of
a fault. The checker core can also match the master core’s performance because it
is expected to have a higher IPC, as it does not suffer data or control hazards. It is
provided with the values of all the operands by the master.

Unfortunately, this design has a few shortcomings. Both the checker and the master
access the register file as well as the L1 cache. We will require extra ports. Second,
we need more entries in the load store queue and reorder buffer, because it takes
longer to commit an instruction. It is also possible that the master and checker might
destructively interfere in the L1 cache.
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Fig. 6. FastShared model.

Fig. 7. MiniDiva.

4.3.2. FastShared Model. The goal in this design [Chatterjee et al. 2000] is to mitigate
the structural hazards due to the sharing of register files and the store queue. The
checker contains a copy of the register file and the store queue. The master core’s
register file is speculative. Upon the detection of a fault, the checker restores the
contents of the master’s register file with values from its own register file. The checker
performs normal reads and writes to its register file. This optimization eliminates
register file checkpoints and also reduces the number of ports in both the register files.

There is a similar contention in the case of a shared store queue. Consequently, the
checker maintains its own store queue. The core checks for a possibility of load-store
forwarding by reading values from its own store queue, however, it does not remove
any entries from its store queue. The checker removes entries from its queue, as well
as the master core’s queue, after a store commits.

4.3.3. MiniDiva and SplitDiva. In the FastShared model, we still have the issue of in-
creased contention at the level of the L1 cache. In the MiniDiva [Chatterjee et al.
2000] model (see Figure 7), we introduce an extra L0 cache for the checker. It is loaded
with data that is touched by the master core. Along with reducing contention in the
L1 cache, it also helps in prefetching values for the checker core. While writing data,
the checker writes the data to its store queue and the dedicated L0 cache. The data is
further propagated to the L1 cache when it has free ports available.

We have, uptil now, assumed the L1 cache to be reliable. The SplitDiva [Chatterjee
et al. 2000] design (see Figure 8) addresses this problem and covers faults in the L1
cache. There are two L1 caches: one for the master core and one for the checker. The
master core’s L1 is speculative. It is not allowed to writeback modified data to the
shared L2 cache. Once a store is committed, the data is written to the checker’s L1.
Upon an eviction, the checker’s L1 writes the data back to the L2 cache.

4.3.4. Filtered Checkers. Yoo and Franklin [2008] propose hierarchical verification to
minimize the performance penalty of the checker in a DIVA-like architecture by chang-
ing the coverage metric from complete to subset. The basic idea is as shown in Figure 9.
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Fig. 8. SplitDiva.

Fig. 9. (a) Traditional DIVA; (b) hierarchical verification.

An instruction can be deemed critical or otherwise, by looking at various character-
istics of the instruction such as the number of bits in the instruction that are useful, or
the degree of usage of the result of an instruction. A filter checker sets the noncriticality
of every instruction. The filtering of instructions can be proactive or reactive. Based
on the noncriticality of an instruction and the congestion at the checker, the checker
decides whether or not to drop an instruction. This scheme helps in reducing the power
usage as well as the bandwidth between core and checker. Second, for very high-IPC
programs, the checker can become a bottleneck. By filtering out instructions that are
not critical we can avoid this scenario.

4.4. SingleSlave – SlipStream Family

4.4.1. SlipStream Processors. Purser et al. proposed the Slipstream processor
[Sundaramoorthy et al. 2000; Purser et al. 2000] in 2000. This had a lot of concep-
tual similarities with DIVA (see Section 4.3). However, unlike DIVA, the slave core is
equivalent to the master core in terms of size.

In this architecture, two versions of an application are executed on two separate
cores. One version is called the advanced stream or the A-stream. The other is called the
redundant stream or the R-stream. The R-stream lags behind the A-stream. The orig-
inal paper primarily focused on increasing performance. They achieved this through
reducing the number of dynamic instructions in the A-stream by eliminating redun-
dant and predictable computations. The R-stream could keep up with the A-stream
in terms of performance because it received periodic dataflow and control-flow hints
from the A-stream. The enhanced accuracy of different predictors ensured that the
R-stream had an elevated IPC. However, on a side note the authors mention that this
scheme can be used to increase reliability by treating the A-stream as the master and
R-stream as the slave. The reason we mention this as a seminal technique is because
the SlipStream approach forms the basis of a plethora of subsequent proposals. Most
extensions to this idea leverage the hints from the A-stream to make the R-stream
slower by reducing its frequency, lowering its voltage, or by using bigger transistors. In
either case, the R-stream is made more immune to faults. Second, since the core idea
is to reduce the performance of the R-stream to make it more reliable, it satisfies our
definition of a slave processor (see Section 2.2).

Figure 10 shows a high-level view of the architecture. The A-stream and R-stream
processors are connected by a delay buffer, which is a queue containing dataflow and
control-flow values. The A-stream writes entries into it and the R-stream removes
them. The R-stream treats these values as hints and trains its predictors (branch
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Fig. 10. Slipstream processors.

and load latency). It thus has a higher IPC, and can match the A-stream in terms of
performance. Subsequently, the R-stream compares the results of the A-stream with
its own results. If a discrepancy is detected, then the R-stream initiates a process of
recovery. It flushes its pipeline and resets the A-stream. It restores its checkpointed
register state and sends it to the A-stream also. For memory values, this paper assumes
that the two processors have separate address spaces. A recovery controller tracks the
store addresses that have been retired in the A-stream but not in the R-stream. Upon
detection of a fault, the recovery controller restores the values of these addresses by
reading them from the address space of the R-stream; the R-stream thus commits
only correct values. We further observe that it has complete coverage and it is mostly
suitable for detecting and recovering from transient faults.

4.4.2. Fingerprinting. Smolens et al. [2004] aim to reduce the inter-core communica-
tion bandwidth required to exchange information for verification. If the granularity of
checking is small (say, every instruction executed is individually checked), then this
involves frequent exchanges of messages between the cores while checking. If the gran-
ularity is increased, the amount of information to be exchanged also increases. Every
change to the architectural state since the last verification round should be intimated
to the other core. Fingerprinting suggests creating a cryptographic hash of all this
information and exchanging simply the hashes, thus requiring much less bandwidth.

4.4.3. RESEA and RECVF. There have been other endeavors to reduce the usage of the
Network-on-Chip. Subramanyan [2010] proposes Reduced Execution based on Simple
Execution Assistance (RESEA). Instead of forwarding the results of all computations
to the checker, the master only sends the results of load and branch instructions. This
is based on the fact that the criticality of these instructions is generally greater than
the rest. Important data and control hazards are resolved, allowing the attainment of
a higher IPC in the checker.

Subramanyan et al. [2010] propose Reduced Execution based on Critical Value For-
warding (RECVF). The critical path of execution is identified in the master, and the
results of computations on this path (and not every instruction) are forwarded to the
checker. The criticality of an instruction is determined heuristically. Two of the impor-
tant heuristics determined are freedN and fanoutN. freedN marks an instruction as
critical if, on completion, it wakes up at least N instructions. fanoutN deems an in-
struction as critical if the value it produces is consumed by at least N live instructions.

4.4.4. Dual Core Execution. Ma et al. [2007] follow in the same vein as SlipStream,
proposing Dual Core Execution (DCE) to improve reliability and/or power efficiency. The
idea again is to have the master core execute the program in a fast, highly accurate way
with the checker executing redundantly to guarantee accuracy. Redundant execution
implies a large power budget. Solutions are proposed to reduce the power consumed.
One important source of power consumption is the large effective instruction window,
which results as a result of redundant execution. The authors suggest dynamic adaptive
sizing of the instruction window based on the behavior of the program.
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4.4.5. Decoupled Execution. Garg and Huang [2008] propose an architecture similar to
Slipstream with a leading and a trailing core. The leading core runs a reduced version
of the program called the skeleton program. The skeleton program is built by dynamic
profiling and removal of code that is rarely exercised. Consequently, branches and the
computation involved in computing the branch decision are removed. The leading core
thus runs faster than the base version since it processes fewer instructions. Correct-
ness is guaranteed by the trailing core that executes the entire program in a normal
fashion. The trailing core is able to keep pace with the leader as it receives branch
prediction hints from the latter, and the leader core helps prefetch memory locations.
Memory operations also benefit from shorter latencies in the trailing core. Discrepan-
cies detected between the leading and the trailing core trigger recovery mechanisms to
restore a stable state.

It might not be always possible to dedicate a separate core for the process of checking.
There are some novel proposals that suggest using dead cores in a chip, which have had
faults detected by BISTs (Built-in Self Test). Ansari et al. [2010] is one such proposal
which proposes using dead cores in a SlipStream fashion.

4.5. MultiSlave Approaches

In this section, we look at another seminal work, MSSP, and relevant extensions. The
primary aim of MSSP was to improve performance. However, later works have used the
same idea to improve reliability by dividing the work of checking among more than one
slaves. As we shall see in Section 4.5.2, the main advantage of MultiSlave approaches
is the reduction of power consumption.

4.5.1. Master Slave Speculative Parallelization (MSSP). Zilles and Sohi [2002] proposed the
Master/Slave Speculative Parallelization (MSSP) framework in 2002. The authors
propose to match the rate of the master and the slave by parallelizing the process of
checking. They propose multiple checkers that each check a portion of the master’s exe-
cution. This architecture was very influential in the field of speculative parallelization
also, primarily because dataflow violations between threads can be modeled as faults.

Here an approximate (referred to as distilled in the paper) version of the binary is
run on a core designated as the master. A distilled binary lacks large chunks of code
that are not likely to be executed in the common case. The process of creating it is an
approximate compiler transformation devoid of any correctness guarantees.

Now, MSSP generates a checkpoint periodically (approximately after every hundred
instructions). All instructions between two checkpoints constitute a task. A task is then
assigned to a slave core. The slave core executes instructions from the original program
and not the approximate one.

Now if the master is fast enough, it may generate enough number of checkpoints
to require the use of multiple slaves executing different tasks in parallel. When a
slave completes its task, its state is compared with the corresponding checkpoint. If a
discrepancy is found, which is a rare event, a recovery process is initiated. Subsequent
works have used this paper as a basis because it is possible to make minor changes
to this scheme to ensure reliability. Instead of the distilled binary, we need to run the
original binary on the master. Using this scheme, we can easily detect transient faults
because it is very unlikely that a master and a slave will be afflicted by a transient
fault at exactly the same point of time.

4.5.2. Coarse-Grain Verification Parallelism. Rashid et al. [2005] extend MSSP for relia-
bility. The main motivation is to reduce the total energy dissipated in the process of
checking. In the SingleSlave scenario, the difference in frequencies of the master and
the slave is limited to 20–30%. However, in a system with two slaves, we can run each
slave at half the frequency. Since the supply voltage is roughly proportional to the
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Fig. 11. Coarse-grain verification parallelism.

frequency, the theoretical power consumption of the two slaves combined is 25% of that
of one slave running at nominal frequency.

The approach chosen by the authors involves having a large slack between the leading
core and the checking cores. The unverified instructions are divided into chunks. Each
chunk contains hundreds of instructions. Each checker is given the starting state of a
chunk (register file contents and starting PC) and an ending state. The checker starts
at the initial state and keeps fetching instructions until it reaches the final state, or
times out. If it reaches the final state and there is a discrepancy in the register contents
or the values that need to be stored, then there is an error.

Figure 11 shows this scheme. The master divides its execution into chunks and
distributes the chunks across checkers. Each checker verifies the chunk assigned to
it. If there are n parallel checkers, then each checker can theoretically run at (1/n)th

the frequency. The main problem is to provide each chunk the correct view of the
memory system. For this purpose the master maintains a list of uncommitted stores
in a structure called the Post-Commit Buffer (PCB). Each chunk first checks the PCB
for values before accessing the caches. Zhao [2008] proposes optimizations to the PCB
structure.

5. THREAD-LEVEL APPROACHES

5.1. Summary

This section focuses on achieving reliability through multithreading. We shall observe
that achieving reliability through multiple threads is conceptually different from the
approaches using multiple cores. It is much easier to communicate intermediate results
across threads than cores. Second, since multiple threads are on the same physical
core, there are no architectural differences that can be exploited. We did not have this
constraint for core-based schemes; the checker could have been very different from the
master, like the DIVA scheme.

We observe that in the design space of multiple threads, the MultiMaster configu-
ration (see Section 5.2) is relatively simpler to design as compared to the core-based
approaches. This is because the sources of nondeterminism that afflict multiple cores,
such as clock skew and variable delays in buses, are not relevant for multiple threads.
Most of the time, threads share bus controllers and their clocks are synchronized with
each other. The SingleSlave approaches based on Slipstream are harder to design,
because it is typically not possible to run different threads at different frequencies.
However, there are some SingleSlave approaches that use the slave to check a subset
of instructions (see Section 5.3).

5.2. MultiMaster Schemes – Complete Coverage

5.2.1. IBM G5. The earliest commercial system to incorporate thread-level redundancy
was the IBM G5 [Spainhower and Gregg 1999]. It had two pipelines running at the
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Table IV. Summary of Thread-Level Approaches

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

IBM G5 5.2 ≈0% Parallel Multi Complete
T

�

�

�

�
MH[Spainhower et al.

2005]
Pipeline Master

AR-SMT 5.2 0–30% Delay Multi Complete
T[Rotenberg 1999] Buffer Master

SRT 5.2 ≈8% Extra buffer/ Multi Complete
T[Reinhardt et al.

2000]
queue Master

SRTR 5.2 <40% Extra queue Multi Complete
T[Vijaykumar et al.

2002]
Master

CRTR 5.2 <30% Extra Multi Complete
T

�

�

�

�
MH[Gomaa et al.

2003]
Core Master

DBCE 5.3 <35% Extra queue Single Subset
T[Vijaykumar et al.

2002]
Slave

Fault Types : (T → Transient, M → Timing, H → Hard, D → Design)
→ detect and correct, �

�

�

�
→ only detect

same time. All stores and register writeback values were compared every cycle. If there
was any discrepancy, both the pipelines were flushed. Effectively, the G5 architecture
added one extra pipeline stage, whose job was to check the results of both the pipelines.
We will outline several schemes that have tried to improve upon this basic idea.

5.2.2. AR-SMT. A seminal work in this area is called Active-stream/Redundant-stream
Simultaneous Multithreading (AR-SMT) [Rotenberg 1999] proposed by Eric Rotenberg
in 1999. He proposes to use two threads called the A-thread and R-thread (similar
to SlipStream (see Section 4.4)). Both of them run the same copy of an application.
However, there is a lag of tens of cycles between them. This is deliberately introduced
to localize the effect of intermittent faults to one thread. The A-thread runs ahead of the
R-thread. It writes all its results to a delay buffer. The R-thread compares its results
to values in the delay buffer. It commits an instruction only if the results match. If
the R-thread detects a discrepancy, both the threads rollback to the last checkpointed
state. This state is the last committed state of the R-thread.

The two threads independently read and write from memory. They have separate
address spaces. Consequently, there is no explicit sharing of values, even though there
might be constructive or destructive interference in the caches for read-only data, which
might possibly be in shared pages. The paper further proposes using branch prediction
and value prediction hints to speed up both the threads in a SlipStream fashion. The
authors showed that it is possible to achieve complete fault coverage by incurring an
overhead of 10–30%.

5.2.3. SRT. Reinhardt and Mukherjee [2000] extended the AR-SMT idea and made
it more generic. An important contribution of this paper is the introduction of the
term sphere of replication shown in Figure 12(a) and 12(b). A sphere of replication is
a reliable subcomponent of a system which ensures reliability through computation
redundancy. To support it, we need a well-defined interface with the rest of the system.
Additionally, we need to replicate the inputs to feed all the redundant units, and we
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Fig. 12. Sphere of replication.

need to compare the outputs for all of them. Figure 12(a) shows an example in which
the entire execution is replicated. In Figure 12(b), we just replicate the CPUs (not the
memory or disk). IBM G5 follows this model.

The authors observe that first, in an out-of-order system, the order of execution of
instructions of the leading and the trailing threads cannot be guaranteed to be the
same. Thus, a lock-stepped or per-cycle manner of comparing outcomes may not be ad-
visable. Second, the overhead of essentially executing every instruction twice must be
minimized as much as possible, while still providing fault tolerance. Another issue that
requires handling is that the execution of synchronization constructs must be exactly
similar in both the threads. Like Slipstream and DIVA, SRT passes branch outcomes
between threads to speed the trailing checker thread. Furthermore, the leading thread
effectively prefetches memory values for the trailing thread. This reduces its latency
and it can possibly run slower if required.

Two possible solutions for dealing with the synchronizing constructs are proposed:
Active Load Address Buffer (ALAB) and Load Value Queue (LVQ).

The ALAB scheme forces loads to happen in pairs. After performing a load, the
leading thread adds an entry in the ALAB if there is no previous entry for that address.
Otherwise, it increments the count for that entry. When the trailing thread performs
the same load, it decrements the count. If the count reaches zero, then the entry can
be recycled. During the time the count is nonzero, the cache line cannot be replaced or
be written to. This ensures that the trailing thread gets the same value for the load.
This scheme can suffer deadlocks. The paper proposes appropriate solutions.

The LVQ is a much simpler solution. The leading thread inserts the results of load
instructions in the LVQ upon committing the instruction. The trailing thread does not
access the cache. Instead, it reads the results of load instructions in program order
from the LVQ.

In this scheme and SRT, the trailing thread is assumed to hold the correct state.
If there is a discrepancy between results when an instruction in the trailing thread
commits, then it is necessary to flush the pipeline of the trailing thread and restore the
state of the leading thread.

5.2.4. SRTR. Vijaykumar et al. [2002] propose Simultaneously and Redundantly
Threaded Processors with Recovery (SRTR) as an extension to SRT [Reinhardt and
Mukherjee 2000]. The first problem with SRT recognized by the authors is that the
leading thread is allowed to commit an instruction before verification. This alters the
state of the system regardless of whether the instruction executed incorrectly or not.
To avoid this, SRTR advocates checking the instructions before committing.

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.



A Survey of Checker Architectures 48:21

Verification of the outputs involves comparing the values of registers. These accesses
increase pressure on the register file, which may degrade performance and increase
power consumption. As a solution to this, the authors propose maintaining all unveri-
fied results of the leading thread in a Register Value Queue or RVQ. The trailing thread
compares its results with the values stored in the RVQ.

Gomaa et al. [2003] propose Chip-level Redundantly Threaded Processors with Re-
covery, which is an extension of SRTR [Vijaykumar et al. 2002]. However, in this case
each thread is located on a separate SMT core.

5.3. SingleSlave – Subset Coverage

5.3.1. Dependence-Based Checking Elision. The authors of SRTR [Vijaykumar et al. 2002]
also propose another scheme called Dependency-Based Checking Elision (DBCE). They
observe that it is possible to further reduce the pressure on shared data structures,
and also speed up the checker. The basic insight here is to check the result of the last
instruction in a long chain of dependent instructions. Unless there is logical masking, a
fault anywhere in the long chain of computation should show up in the result of the last
instruction with very high probability. If we can isolate some values which have long
dependence chains or graphs (backward slices), then we can check the execution of large
parts of programs by verifying just this small subset of values. The authors propose to
build such DBCE chains by propagating tokens across data-dependent instructions.

5.3.2. Other Approaches. Gomaa and Vijaykumar [2005] propose Opportunistic Fault
Tolerance, where redundant execution takes place only when the efficiency of single-
thread execution is low.

Kumar and Aggarwal [2008] also aim at improving efficiency through Speculative
Instruction Validation (SpecIV). The basis for this work is that most instructions have
predictable outputs. For example, almost every instance of a particular load instruction
fetches from the same address. Similarly, reasoning may be extended to the addresses
of store instructions, the outcomes of branch instructions, and the results of computa-
tions. The idea is to leverage this predictability and reexecute only those instructions
that fail to behave as predicted. Thus, the number of instructions reexecuted is re-
duced, thereby helping improve efficiency, while having only a minimal impact on the
protection offered.

6. MULTITHREADED PROGRAMS

6.1. Summary

In Sections 4 and 5, we tried to infer hardware faults by analyzing the execution of
single-threaded programs. In this section, we try to do the same by analyzing mul-
tithreaded programs. We can divide the correctness of a multithreaded program into
two parts: uniprocessor semantics and multiprocessor semantics. While considering
uniprocessor semantics (Section 6.2), we assume that values produced by other pro-
cessors are being correctly delivered at the right time. We just verify the execution
of each individual thread of computation separately. While considering multiprocessor
semantics, we are interested in the integrity of values transferred across processors
and the associated state machines. We separately look at detecting faults in the cache
coherence protocols in Section 6.3 and in the implementation of the memory consistency
model in Section 6.4.

Verifying uniprocessor semantics is similar to verifying executions at core level. We
thus discuss both MultiMaster and SingleSlave configurations. However, the main dif-
ference here is that synchronization operations force the master and slave to converge,
thus reducing the lag to zero. The performance penalty is nontrivial, and consequently,
this is a major research challenge. For verifying coherence and consistency mechanisms,
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Table V. Summary of Approaches Targeting Multithreaded Programs

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

Reunion Uniprocessor 5–6% 100% + sign Multi Complete
T

�

�

�

�
MH[Smolens et al. Semantics generator Master

2006] (6.2.1)
HDTLR Uniprocessor ≈40% 100% + Single Complete

T
�

�

�

�
MH[Rashid et al. Semantics PCB Slave

2008] (6.2.2)
Repas Uniprocessor <21% SVQ Single Complete

T
�

�

�

�
MH[Sanchez et al. Semantics Slave

2009b] (6.2.2)
Token Coh. Coherence <7% BW Central Single Invariant

T
�

�

�

�
MHD[Meixner et al.

2007]
(6.3) overhead Verifier Slave

DVSC Consistency <20% DIVA checker Single Varied
T

�

�

�

�
MHD[Meixner et al.

2005]
(6.4) (ld/st

reordering) +
invariant
checker

Slave Coverage

Fault Types : (T → Transient, M → Timing, H → Hard, D → Design)
→ detect and correct, �

�

�

�
→ only detect

we look at the SingleSlave model and verify both the entire protocol as well as partic-
ular invariants. Table V summarizes the set of schemes.

6.2. Uniprocessor Semantics

We look at MultiMaster configurations in Section 6.2.1 and the SingleSlave configura-
tion in Section 6.2.2.

6.2.1. MultiMaster - Reunion. Smolens et al. [2006] propose the Reunion scheme, which
forms a logical pair of cores where both of them execute the same thread. They compare
their results with each other to detect the occurrence of faults. Each time a core finishes
executing a predetermined number of instructions, it creates a hash (fingerprint) of
all the results and passes it to the partner core. Exchange of fingerprints consumes
bandwidth, and so fixing the granularity of checking is an important decision.

The two cores of a pair are not completely symmetric; one is called the vocal core and
the other the mute core. The stores of the vocal core are allowed to propagate to the rest
of the memory system, while those of the mute core are not. Second, unlike the vocal
core, the mute core does not participate in coherence protocol actions. Now, we have
observed in Section 4.2 that it is very difficult to make two cores operate in lock-step. In
modern processors there are a lot of nondeterministic delays due to process variation
and complex out-of-order execution.

Consequently, there will be a small amount of asynchrony between the two cores.
This can lead to the input incoherence problem, that is, two corresponding loads to the
same address return different values. This is because of intervening stores to the same
address. This scenario is indistinguishable from the case of a soft error in the case of
Reunion. A somewhat related problem is that the two cores might observe different
results for synchronization operations.

To check for discrepancies between the cores, we add a stage at the end of the pipeline
to compare fingerprints across the two cores. If they don’t match, then there might have
been a soft error or an input incoherence event. In either case, both the cores flush
their pipelines and restore themselves to a safe state. It is assumed that in the absence
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of soft errors, the vocal core maintains a correct state. Furthermore, the vocal core
transfers its register state to the mute core. To avoid the input incoherence problem,
the mute core copies the value of the mismatched load instruction (if any) from the
vocal core. Subsequently, both the cores resume execution. The authors observe that a
slowdown due to synchronizing/serializing instructions is inevitable in master-checker
architectures.

6.2.2. SingleSlave Configurations. We can naively use a solution based on DIVA or
SlipStream (see Sections 4.3 and 4.4). To avoid costly multiprocessor memory check-
points, we need to ensure that the effects of a fault are localized to the pipeline or
possibly to higher-level private caches. Consequently, we need to make a write and
synchronization operation globally visible only when the entire execution until that
point is guaranteed correct. This can be a prohibitive constraint for synchronization
operations, if we do not allow master or slave threads to speculate across them, espe-
cially in a proposal akin to DIVA or SlipStream. If we disallow speculation, then all the
masters and slaves need to converge at the beginning of every synchronization opera-
tion. Researchers have measured a slowdown of up to 34% [Sanchez et al. 2009b] in this
case. We thus need to mitigate this bottleneck in high-performance implementations.

Dynamic Core Coupling. In DCC [LaFrieda et al. 2007] each thread has a redundant
copy running on another core similar to Reunion. Here, there is some slack between
the two cores (SlipStream pattern). With increasing slack, the probability of different
forms of input incoherence events increases.

DCC attempts to solve this problem on a per-address basis. When the leading thread
executes a load, it opens a read window for the address, and when it executes a store, it
opens a write window. When both leading and trailing threads commit the load (store),
the read (write) window is closed. Two read windows on the same address may overlap,
but a read and a write window or two write windows may not. Enforcing this constraint
ensures that shared memory operations in the leading and trailing thread behave in
the same way.

HDTLR. Highly Decoupled Thread-Level Redundancy or HDTLR [Rashid and Huang
2008] allows for large slacks. The cores that run the leading threads (masters) form
a logical computation wavefront while the cores running the trailing threads (slaves)
form the verification wavefront. Coherence activities in one wavefront do not affect the
other.

The problem arising out of the large slack is that the sequence of memory operations
need not be the same in the leading and trailing threads, due to complicated interactions
between the threads of a wavefront. Thus, at the time of verification, states may not
match, even when no error has occurred. Especially, race conditions pose a problem.
We start out by dividing the entire execution into intervals called epochs. Both the
wavefronts need to compare their state at the end of epochs.

To handle the issue of race conditions in programs, we partition epochs into sube-
pochs. The partitioning is such that there are no two stores (even across threads) to
the same address in the same subepoch. This is achieved by some amount of commu-
nication among the leaders, with each informing the others of its stores. If a leader
has issued a store to an address and receives a message from another core informing
of a store to the same address, the leader places all further instructions in the next
subepoch. The verification wavefront ensures that all instructions belonging to a sube-
poch are completed before moving onto the next one, thereby maintaining the ordering
of shared memory operations as seen in the leading wavefront. All operations including
memory races are replayed in exactly the same order.
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REPAS. Sanchez et al. [2009b, 2009a] propose Reliable Execution for Parallel Ap-
plications in Tiled CMPs or REPAS. It extends earlier proposals CRTR [Gomaa et al.
2003] and SRT [Reinhardt and Mukherjee 2000] to provide a solution for checking
multithreaded applications. The idea is to have two copies of each thread, both exe-
cuting on the same SMT core. This removes the requirement for nontrivial inter-core
bandwidths (DCC [LaFrieda et al. 2007]) and large central data structures (HDTLR
[Rashid and Huang 2008]). Stores made by the leading thread go as far as the L1 cache
and, on verification by the trailing thread, go beyond. Such a scheme requires the two
threads to have a reasonably small slack between them. An additional structure called
the Store Value Queue is used to support multiple unverified writes to the same cache
block.

6.3. Multiprocessor Semantics - Cache Coherence

Most of the error detection schemes for cache coherence utilize the SingleSlave config-
uration consisting of a small dedicated unit that checks for errors in the execution of
the protocol. Upon the detection of an error, the hardware needs to discard the victim
memory operation or in some cases rollback to a checkpoint. We present three schemes,
where each one of them considers a separate coverage model.

6.3.1. Complete Coverage. Cantin and Smith [2001] extend the DIVA scheme [Austin
1999] for cache-coherent SMPs. Each node is paired with a checker processor which
checks its computation. The core sends coherence events and results to a private cache
coherence checker immediately after a memory operation completes. The checker ver-
ifies the actions of the coherence protocol. The second phase of checking is global in
nature. The checkers have a dedicated network for passing messages. They broadcast
the states of lines and then check for illegal global states.

6.3.2. Invariants. Token Coherence [Marty et al. 2005] is a token-based protocol for
verifying cache coherence. Each block has N tokens, one of them being the owner
token. For a memory element to be able to read a block it must hold at least one token.
To write to a block, it must hold all the tokens. If a memory element wishes to read (or
write) a block and doesn’t have sufficient tokens, then it broadcasts a token request.
Other cores respond to this request by sending their tokens. Such a realization of cache
coherence clearly defines various invariants that have to hold during correct operation.
Meixner and Sorin [2007b] leverage these invariants, and propose a combination of
local and global checks that verify that they hold.

6.3.3. Symptoms. Fernandez-Pascual et al. [2007] build on Token Coherence. It han-
dles faults in the on-chip interconnect. The detection of faults is solely based on
timeouts. Every control message which requires a reply according to the protocol is
associated with a timeout period. Based on the kind of control message, expiry of the
timeout results in resending of the message (fixed number of retrials) or proceeding
with the recovery mechanism. The recovery mechanism is to simply invalidate all
current tokens and generate new ones.

6.4. Multiprocessor Semantics – Memory Consistency

Similar to cache coherence, most of the schemes follow the SingleSlave DIVA pattern
by proposing a small nonintrusive hardware unit to verify memory consistency. It
takes inputs from the memory system. The schemes use invariants that are provably
equivalent to the memory consistency model being verified.

Meixner and Sorin [2005] propose two schemes: DVSC-Direct and DVSC-Indirect.
The DVSC schemes try to dynamically verify Sequential Consistency (SC) [Adve and
Gharachorloo 1996]. The DVSC-Direct scheme tries to record the dependence edges
across multiple threads by timestamping all the memory accesses using a logical time
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base. If event A precedes event B, then a logical time base guarantees that time(A) <
time(B). The dependence edges across memory operations in different threads are
recorded through special units that track the loads and stores issued by each processor.
Conceptually, there is a violation of SC if there is a cycle in the dependence graph. Due
to space constraints, this approach is impractical.

However, the authors use insights suggested by Plakal et al. [1998] to make the
design practical by actually verifying a set of subinvariants. These subinvariants
are equivalent to SC. They thus propose the DVSC-Indirect protocol, which reduces
the number of messages and the amount of logging by an order of magnitude. Chen
et al. [2008] extend this scheme by using scalar timestamps. Lastly, DVMC [Meixner
and Sorin 2009] extends DVSC to verify relaxed memory models. It checks the
three subinvariants—uniprocessor semantics, allowable memory reordering, and cache
coherence—that are provably equivalent to the memory model that it intends to verify.
An extension of DVMC [Romanescu et al. 2010] recognizes Physical Address Memory
Consistency (PAMC) and Virtual Address Memory Consistency (VAMC) as two sepa-
rate problems. Virtual memory can create issues because of synonyms and dynamic
changes in page mapping.

7. SOFTWARE APPROACHES

7.1. Summary

This section discusses software-based approaches for providing fault tolerance in pro-
cessors. In Section 7.2, we survey papers that attempt to verify only the computation
and dataflow. In Section 7.3, we look at approaches that try to exclusively verify the
control flow. Section 7.4 discusses solutions that are capable of handling errors in both
dataflow as well as in the control flow. Lastly, approaches specially catering to the
multiprocessor domain are discussed in Section 7.5.

It must be noted that some of these solutions are purely software based (for example,
EDDI (Section 7.2)), while others require a certain amount of hardware support (for
example, SWAT (Section 7.4.2)). A summary of the seminal papers in this area is
provided in Table VI.

7.2. Computation and Dataflow Errors

In this section, we focus on techniques that try to infer hardware faults by analyzing
errors in the computation and dataflow of test programs. The most popular set of
approaches use a MultiMaster configuration (Section 7.2.1). They run multiple copies
of the same instruction and compare the results. Section 7.2.2 describes approaches
that use the SingleSlave configuration. The slave instructions mostly check invariants.

7.2.1. MultiMaster Schemes.

Complete Coverage. Rebaudengo et al. [1999] describe a general scheme that consists
of duplicating all the computation and data. At compile time, each instruction is dupli-
cated with a different set of registers. For instance, an operation of the form a = b + c;
is transformed to a1 = b1 + c1; a2 = b2 + c2;. These two statements are followed by an
assertion statement that checks for the equality of a1 and a2. Thus, any errors in the
computation and the reading (writing) of operands (results) are detected with a high
probability, since the recurrence of the same fault (only transient faults are covered
by this technique) during the redundant computation is highly unlikely. Chang et al.
[2006] propose SWIFT-R that uses TMR to both detect and recover from faults.

Subset Coverage. Error Detection by Duplicated Instructions (EDDI) [Oh et al. 2002b]
extends this idea by changing the coverage model to subset. It checks the values that
are written to memory or determine a branch direction. Pattabiraman et al. [2007] also
propose to reduce the overhead through Critical Value Recomputation (CVR), a static
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Table VI. Summary of Approaches

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

EDDI Comp. and upto 100% nil Multi Subset
T[Oh et al. Data Flow Master

2002b] (7.2)
DDFV Data Flow ≈1.8% Signature HW Single Invariant

T
�

�

�

�
MH[Meixner et al.

2007]
(7.2) +

Modifications
to ROB,RF

Slave

CCA Control Flow 20–50% nil Single Invariant
T

�

�

�

�
MH[Kanawati

et al. 1996]
(7.3) Slave

SWIFT All errors ≈41% ECC in Multiple Varied
T

�

�

�

�
H[Reis et al.

2005]
(7.4.2) memory Checkers Coverage

SWAT All errors ≈0% Symptom Single Invariant
T

�

�

�

�
MH[Li et al. 2008] (7.4.2) Detector HW Slave

TSOtool Total Store Not Not Single Complete
�

�

�

�
TMHD

[Hangal et al.
2004]

Order (7.5) Applicable Applicable Slave

mSWAT All errors ≈0% Record/Replay Multi Invariant
T

�

�

�

�
MH[Hari et al.

2009]
(7.5) Support Master

Fault Types : (T → Transient, M → Timing, H → Hard, D → Design)
→ detect and correct, �

�

�

�
→ only detect

technique, wherein during compile time, the dataflow graph is analyzed, and results
that have a high fanout (number of consuming instructions) are deemed critical values.
The computation of these values is then covered by duplication. Lyle et al. [2009] extend
CVR, proposing the implementation of the checks in an on-chip progammable array to
accelerate execution.

7.2.2. Singleslave Schemes. Meixner and Sorin [2007a] propose Dynamic DataFlow
Verification (DDFV), which starts out by creating signatures for each basic block at
compile time. A signature is a hash of the histories of each register, where history
refers to the ordered list of registers whose values were used in setting the value of the
concerned register. This signature is embedded in the program source. During runtime,
special DDFV hardware computes the signature for each executed block and compares
them with the statically determined values.

7.3. Control-Flow Errors

A more challenging problem is the detection of errors that alter the control flow. This
can be caused by errors in the backward slice of a branch instruction or by faults in the
fetch logic. The general pattern of approaches to verify the control flow of a program is
to compare the observed basic block sequence with a set of patterns computed through
static analysis. For example, let us assume that basic block B can be preceded by only
basic blocks A and C. If B is preceded by basic block D, then we can infer an error.
All the schemes that we have surveyed primarily use the SingleSlave pattern, and are
mostly tailored to detect transient faults. They avoid redoing any computation to verify
the control flow; instead, they rely on verifying invariants.

Schuette and Shen [1994] propose to assign identifiers to basic blocks at compile
time. There is a global register KEY , which contains the identifier of the current basic
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block being executed. The first instruction of every basic block updates the basic block
id in the KEY register. The compiler further embeds checking statements within a
basic block to test the value of the KEY register. If the value is incorrect, then we
can infer a control-flow error. This means that the processor has not executed the first
instruction of a basic block.

Kanawati et al. [1996] propose Control-Flow Checking using Assertions (CCA), which
adds more information to every basic block. During compilation, each basic block is
assigned a block identifier BID and a control-flow identifier CF ID. All blocks sharing
the same parent block (or predecessor block in the control flow) have the same CF ID.
The BIDs help detect entry into the middle of a basic block similar to Schuette and
Shen [1994], while the CF IDs serve to verify that, upon exit from the current basic
block, a legally succeeding block (in terms of the control flow) is executed. A drawback
of this approach is the extra storage to maintain the BID and CF ID and the time
needed to compare them.

Alkhalifa et al. [1999] propose Enhanced Control-Flow Checking using Assertions
(ECCA). By using prime numbers for the identifiers and number-theoretic techniques,
it is possible to compress the BID and CF ID to a single number. Second, ECCA
proposes to create large hyperblocks from more than one basic blocks. By performing
checking at hyperblock level, we can further reduce the time and space overhead.

Oh et al. [2002a] and Goloubeva et al. [2003] propose another signature-based tech-
nique termed Control-Flow Checking through Software Signatures (CFSS). The authors
propose to perform the invariant check in only a subset of blocks, as opposed to every
single block.

Venkatasubramanian et al. [2003] propose Assertions for Control-Flow Checking
(ACFC). The novelty in this technique is that instead of associating an identifier with
each basic block (and then updating a common register during runtime), ACFC main-
tains Execution Status words, with each block being represented by a single bit in these
words. The flow of control modifies these Execution Status words based on which block
has just been entered, and the invariant check is based on their current value.

Borin et al. [2006] and Vemu and Abraham [2006] propose the Edge Control-Flow
Technique where we ascertain the signature of the next block at the end of every basic
block. After entering the target block, the compiler inserts code to ascertain that the
correct basic block is being executed. This is done through comparing the id of the
predicted basic block with the id of the basic block currently being executed. Borin
et al. [2006] further propose to use the same method at the level of larger hyperblocks.

7.4. All Types of Errors

In this section we look at software schemes that detect hardware faults by considering
programs holistically.

7.4.1. Multimaster Techniques. Banerjee et al. [1990] propose application-specific tech-
niques to detect errors in matrix multiplication, Gaussian elimination, and Fourier
transforms. Let us consider a matrix multiplication problem – C = A∗ B. Here a con-
troller core gives each master core i the matrix Band a portion of the matrix A, Ai. Each
core i computes Ci = Ai ∗Band sends it to the controller. The controller then aggregates
these components (Ci) to derive C. Now, to enable the detection of faults, the controller
core makes a logical pair of masters called mates. Each mate computes the submatrix,
Ci. The two mates exchange these matrices (whole or signature) among each other. If
there is a discrepancy, then at least one of the mates is faulty. The controller can then
assign the task to another set of masters.

Classical techniques described in Koren and Krishna [2007] propose running n copies
of the same program, and decide the final or intermediate outputs through voting.
There is another famous paradigm known as n-version software [Avizienis 1985] which
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considers n independently designed versions of the same program. Such approaches can
ensure a better detection of design faults because it is possible that one version might be
exercising a certain functional unit such that a bug is exposed. Foutris et al. [2011] con-
sider a variant of n-version programming by generating code for the same benchmark
in multiple ways. For example, it is possible that one version can use an instruction like
swap and the other version can replace it with a sequence of moves. These approaches
increase the diversity of the programs and help us detect a wide variety of faults, in-
clusive of design and intermittent faults, because different sequences of instructions
exercise different functional units.

7.4.2. SingleSlave Techniques. We categorize the different techniques for the Single-
Slave configuration based on coverage.

Subset Coverage. Constantinides et al. [2007] aim at a flexible reliability solu-
tion through a software-based BIST (Built-In Self-Test) technique. Periodically, the
firmware suspends execution and runs tests on the processor. These tests can be ex-
plicitly invoked by the user or the compiler as the instruction set is augmented with
additional monitoring capabilities. Pellegrini and Bertacco [2010] also propose to peri-
odically run tests, but only on units that are being exercised by the user’s application,
in a bid to reduce overhead. Another solution, Relax [de Kruijf et al. 2010], uses hard-
ware error detection recovery techniques like Argus [Meixner et al. 2007]. These are
used only on those instructions for which the programmer or compiler have explicitly
requested for additional protection.

Fault Detection Based on Invariants. Ersoz et al. [1985] propose software implemen-
tations of a watch-dog processor with which other applications can register invariant
assertions. The Watch-Dog Task periodically verifies all registered invariants, enabling
the detection of errors. Leeke et al. [2011] try to automatically deduce the invariants
through a combination of rigorous static analysis and profiling.

Reis et al. [2005] propose SWIFT, a software-based transient error detection mech-
anism, inclusive of both control and dataflow errors. It is blend of duplication for
dataflow errors, ECC-based memory protection, and invariant-based control-flow er-
ror detection. Additionally, it proposes some optimizations to reduce overhead, like
performing checks only on those values that are to be written to memory.

Fault Detection Based on Symptoms. Some recent works propose techniques that are
implemented partly in hardware and partly in software. Li et al. [2008] introduce Soft-
Ware Anomaly Treatment (SWAT). The findings illustrate that a vast majority of the
hardware faults that propagate into software can be detected with simple hardware
support. The principle is to detect suspicious activities (symptoms) such as: (i) fa-
tal hardware traps, (ii) abnormal application exit, (iii) application or OS hangs, and
(iv) abnormally high OS activity. The occurrence of one or more of these activities im-
plies the occurrence of an error with good probability. In Sahoo et al. [2008], the authors
aim to improve the coverage of SWAT with iSWAT. They suggest the usage of training
inputs to determine likely ranges of selected program variables. At runtime, we can
verify these invariants.

7.5. Detecting Faults in Multiprocessors

We present two schemes here: mSWAT and TSOtool. mSWAT can detect transient,
timing, and hard faults; TSOtool can also detect design faults.

7.5.1. mSWAT. mSWAT [Hari et al. 2009] is an extension to SWAT (Section 7.4.2) for
multicore systems. mSWAT aims to identify the faulty core in a set of n cores, and
it further assumes that only one core has suffered a fault. Whenever the mSWAT
hardware observes a symptom, it rolls back the entire system to a correct checkpoint
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and restarts execution. If the symptom does not recur, then we can infer a transient
fault; otherwise, we can infer a permanent fault or software bug. In the latter case,
mSWAT restarts the application from the checkpoint and collects a detailed trace of
all the events. The trace is a log of all loads performed by each core. In the first round,
each core sends its checkpoint and trace to another core. The other cores execute the
received trace and compare the outputs. A lack of divergence implies a software bug.
If there are two divergences, then there must be a core in common between the two
pairs since we assume only one faulty core. This core can be declared faulty. If there is
just one divergence, then we have two suspect cores (core A that generated the trace
and core B that ran it). In the next round, we run the trace that had a divergence on a
fault-free core (known from the first round). If there is a divergence, then core A is at
fault, else, core B is at fault.

7.5.2. TSOtool. The TSOtool project [Hangal et al. 2004] aims to find errors in the
implementation of a processor’s memory model. In specific, it checks for the TSO (Total
Store Order), which allows the processor to relax the write to read ordering. It first
generates a set of multithreaded programs that randomly read and write from a small
set of locations. Each write operation stores a unique value to memory. Now, by ana-
lyzing the values read by load instructions, it is possible to create a dependence graph
between all the dynamic instructions. The graph will have some edges induced by the
program order and some edges from producing stores to consuming loads. The last part
of the algorithm checks for cycles in this graph. If there are cycles, then we can be
sure that there is a violation of the underlying memory model, TSO. The algorithm for
finding cycles has performance issues since the size of the graph is typically very large.
Chen et al. [2009] propose algorithms to speed up this process for memory models that
implement atomic writes. The complexity of their algorithm is linear in the number of
operations.

8. CONCLUSION AND FUTURE DIRECTIONS

In this article, we presented a comprehensive survey of most of the state-of-the-art
techniques for detecting faults in processors. In Section 2.2, we proposed a taxonomy
of different checker architectures. We observed that there is a significant variability in
the nature of techniques for solutions at circuit/pipeline and software level. However,
solutions at thread, core, and multiprocessor level follow a set of major patterns and
have a roughly similar structure.

Most of the techniques that we presented were proposed in the last decade. The next
decade is extremely exciting for computer architecture research since a host of new
technologies [Torrellas 2009] such as optical interconnects, nonvolatile RAMs, FinFets,
3D stacking, and near-threshold operation are expected to be introduced. These new
technologies have very different fault mechanisms, and consequently detecting them
with a minimal amount of hardware is a challenge.

In specific, futuristic chips are expected to have extensive on-chip networks possibly
containing many different types of interconnects. We would need a dedicated checker
substrate for the network to verify different safety and liveness properties. Novel in-
terconnect technologies such as optical interconnects are sensitive to process variation,
and thus their health needs to be monitored. Nonvolatile memory extends the lifetime
of a fault. Faults can persist even after a system restart and can propagate to lower
levels and I/O devices more easily. Consequently, early fault detection and efficient
fault containment are important challenges. Novel process technologies using FinFets,
high k transistors, and 3D stacking allow for greater on-chip transistor densities. We
would need to detect faults at multiple layers in the 3D stack simultaneously. For
example, if we have processor and memory on a single die, it is possible that high tem-
perature in the processor layer can cause faults in the DRAM memory layer. Any fault
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detection mechanism for such processors will probably need to take such interactions
into account. We thus foresee an exciting decade ahead for research in fault detection
architectures.

REFERENCES
ADVE, S. V. AND GHARACHORLOO, K. 1996. Shared memory consistency models: A tutorial. IEEE Comput. 29,

12, 66–76.
AHMED, R., FRAZIER, R., AND MARINOS, P. 1990. Cache-aided rollback error recovery (carer) algorithm for shared-

memory multiprocessor systems. In Proceedings of the 20th International Symposium on Fault-Tolerant
Computing (FTCS’90). Digest of Papers. 82–88.

ALKHALIFA, Z., NAIR, V., KRISHNAMURTHY, N., AND ABRAHAM, J. 1999. Design and evaluation of system level
checks for on-line control flow error detection. IEEE Trans. Parallel Distrib. Syst. 10, 6, 627–641.

ANSARI, A., FENG, S., GUPTA, S., AND MAHLKE, S. 2010. Necromancer: Enhancing system throughput by animat-
ing dead cores. In Proceedings of the 37th Annual International Symposium on Computer Architecture
(ISCA’10). ACM Press, New York, 473–484.

AUSTIN, T. 1999. Diva: A reliable substrate for deep submicron microarchitecture design. In Proceedings of
the 32nd Annual International Symposium on Microarchitecture (MICRO’99). 196–207.

AVIRNENI, N. D. P., SUBRAMANIAN, V., AND SOMANI, A. K. 2009. Soft error mitigation schemes for high performance
and aggressive designs. In Proceedings of the Workshop on Silicon Errors in Logic – System Effects.

AVIZIENIS, A. 1985. The n-version approach to fault-tolerant software. IEEE Trans. Softw. Engin. 12, 1491–
1501.

BACCHINI, F., DAMIANO, R. F., BENTLEY, B., BATY, K., NORMOYLE, K., ISHII, M., AND YOGEV, E. 2004. Verification:
What works and what doesn’t. In Proceedings of the 41st Design Automation Conference (DAC’04).
274.

BANERJEE, P., RAHMEH, J., STUNKEL, C., NAIR, V., ROY, K., BALASUBRAMANIAN, V., AND ABRAHAM, J. 1990. Algorithm-
based fault tolerance on a hypercube multiprocessor. IEEE Trans. Comput. 39, 9, 1132–1145.

BARTLETT, J. F. 1981. A nonstop kernel. In Proceedings of the 8th ACM Symposium on Operating Systems
Principles (SOSP’81). ACM Press, New York, 22–29.

BERNICK, D., BRUCKERT, B., VIGNA, P. D., GARCIA, D., JARDINE, R., KLECKA, J., AND SMULLEN, J. 2005. Nonstop
advanced architecture. In Proceedings of the International Conference on Dependable Systems and Net-
works (DSN’05). IEEE Computer Society, Los Alamitos, CA, 12–21.

BLAAUW, D., KALAISELVAN, S., LAI, K., MA, W.-H., PANT, S., TOKUNAGA, C., DAS, S., AND BULL, D. 2008. Razor ii: In
situ error detection and correction for pvt and ser tolerance. In Proceedings of the IEEE International
Conference on Solid-State Circuits (ISSCC’08). 400–622.

BLOME, J., FENG, S., GUPTA, S., AND MAHLKE, S. 2007. Self-calibrating online wearout detection. In Proceed-
ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’07). IEEE
Computer Society, Los Alamitos, CA, 109–122.

BLUM, M. AND WASSERMAN, H. 1996. Reflections on the pentium division bug. IEEE Trans. Comput. 45, 385–
393.

BORIN, E., WANG, C., WU, Y., AND ARAUJO, G. 2006. Software-based transparent and comprehensive control-flow
error detection. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO’06). 13.

BORKAR, S. 2004. Microarchitecture and design challenges for gigascale integration. In Proceedings of the
37th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’04). IEEE Computer
Society, Los Alamitos, CA, 3.

CANTIN, J. F., LIPASTI, M. H., AND SMITH., J. E. 2001. Dynamic verification of cache coherence protocols. In
Workshop on Memory Performance Issues (WMPI’01).

CARRETERO, J., CHAPARRO, P., VERA, X., ABELLA, J., AND GONZALEZ, A. 2009. End-to-end register dataflow contin-
uous self-test. SIGARCH Comput. Archit. News 37, 3, 105–115.

CHANG, J., REIS, G., AND AUGUST, D. 2006. Automatic instruction-level software-only recovery. In Proceedings
of the International Conference on Dependable Systems and Networks (DSN’06). 83–92.

CHATTERJEE, S., WEAVER, C., AND AUSTIN, T. 2000. Efficient checker processor design. In Proceedings of the 33rd

Annual ACM/IEEE International Symposium on Microarchitecture (MICRO’00). ACM Press, New York,
87–97.

CHEN, K., MALIK, S., AND PATRA, P. 2008. Runtime validation of memory ordering using constraint graph check-
ing. In Proceedings of the 14th International Symposium on High Performance Computer Architecture
(HPCA’08). 415–426.

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.



A Survey of Checker Architectures 48:31

CHEN, Y., LV, Y., HU, W., CHEN, T., SHEN, H., WANG, P., AND PAN, H. 2009. Fast complete memory consistency
verification. In Proceedings of the 15th IEEE International Symposium on High Performance Computer
Architecture. 381–392.

CONSTANTINIDES, K., MUTLU, O., AND AUSTIN, T. 2008. Online design bug detection: Rtl analysis, flexible mecha-
nisms, and evaluation. In Proceedings of the 41st IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’08). 282–293.

CONSTANTINIDES, K., MUTLU, O., AUSTIN, T., AND BERTACCO, V. 2007. Software-based online detection of hard-
ware defects mechanisms, architectural support, and evaluation. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’07). 97–108.

DE KRUIJF, M., NOMURA, S., AND SANKARALINGAM, K. 2010. Relax: An architectural framework for software
recovery of hardware faults. SIGARCH Comput. Archit. News 38, 3, 497–508.

ERNST, D., KIM, N. S., DAS, S., PANT, S., RAO, R., PHAM, T., ZIESLER, C., BLAAUW, D., AUSTIN, T., FLAUTNER, K., AND

MUDGE, T. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’03). 7–18.

ERSOZ, A., ANDREWS, D. M., AND J., M. E. 1985. The watchdog task: Concurrent error detection using assertions.
Tech. rep. CA, CRC-TR 85-8. Center for Reliable Computing, Stanford University.

FERNANDEZ-PASCUAL, R., GARCIA, J., ACACIO, M., AND DUATO, J. 2007. A low overhead fault tolerant coherence
protocol for cmp architectures. In Proceedings of the 13th IEEE International Symposium on High
Performance Computer Architecture (HPCA’07). 157–168.

FOUTRIS, N., GIZOPOULOS, D., PSARAKIS, M., VERA, X., AND GONZALEZ, A. 2011. Accelerating microprocessor
silicon validation by exposing isa diversity. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’11). 386–397.

GARG, A. AND HUANG, M. C. 2008. A performance-correctness explicitly-decoupled architecture. In Proceed-
ings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’08). IEEE
Computer Society, Los Alamitos, CA, 306–317.

GOLOUBEVA, O., REBAUDENGO, M., SONZA REORDA, M., AND VIOLANTE, M. 2003. Soft-error detection using control
flow assertions. In Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems. 581–588.

GOMAA, M., SCARBROUGH, C., VIJAYKUMAR, T. N., AND POMERANZ, I. 2003. Transient-fault recovery for chip
multiprocessors. In Proceedings of the 30th Annual International Symposium on Computer Architecture
(ISCA’03). ACM Press, New York, 98–109.

GOMAA, M. AND VIJAYKUMAR, T. 2005. Opportunistic transient-fault detection. In Proceeding of the 32nd Inter-
national Symposium on Computer Architecture (ISCA’05). 172–183.

HANGAL, S., VAHIA, D., MANOVIT, C., AND LU, J.-Y. J. 2004. Tsotool: A program for verifying memory systems
using the memory consistency model. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA’04). 114.

HARI, S., LI, M.-L., RAMACHANDRAN, P., CHOI, B., AND ADVE, S. 2009. Mswat: Low-cost hardware fault detec-
tion and diagnosis for multicore systems. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’09). 122–132.

HORST, R. AND CHOU, T. 1985. The hardware architecture and linear expansion of tandem nonstop systems.
Tech. rep., Tandem Computers. http://www.hpl.hp.com/techreports/tandem/TR-85.3.pdf.

HU, J. S., LINK, G. M., JOHN, J. K., WANG, S., AND ZIAVRAS, S. G. 2005. Resource-driven optimizations for
transient-fault detecting superscalar microarchitectures. In Proceedings of the 10th Asia-Pacific Confer-
ence on Advances in Computer Systems Architecture (ACSAC’05).

JOEL, B., GRAY, J., AND HORST, B. 1986. Fault tolerance in tandem computer systems. Tech. rep., Tandem
Computers. http://www.hpl.hp.com/techreports/tandem/TR-90.5.pdf

KANAWATI, G., NAIR, V., KRISHNAMURTHY, N., AND ABRAHAM, J. 1996. Evaluation of integrated system level
checks for on-line error detection. In Proceedings of IEEE International Computer Performance and
Dependability Symposium. 292–301.

KOREN, I. AND KRISHNA, C. 2007. Fault Tolerant Systems. Morgan Kaufmann, San Fransisco.
KUMAR, S. AND AGGARWAL, A. 2008. Speculative instruction validation for performance-reliability trade-off. In

Proceedings of the 14th International Symposium on High Performance Computer Architecture (HPCA’08).
405–414.

LAFRIEDA, C., IPEK, E., MARTINEZ, J., AND MANOHAR, R. 2007. Utilizing dynamically coupled cores to form a
resilient chip multiprocessor. In Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). 317–326.

LEEKE, M., ARIF, S., JHUMKA, A., AND ANAND, S. 2011. A methodology for the generation of efficient error
detection mechanisms. In Proceedings of the 41st IEEE/IFIP International Conference on Dependable
Systems Networks (DSN’11). 25–36.

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.



48:32 R. Kalayappan and S. R. Sarangi

LI, M.-L., RAMACHANDRAN, P., SAHOO, S. K., ADVE, S. V., ADVE, V. S., AND ZHOU, Y. 2008. Understanding the
propagation of hard errors to software and implications for resilient system design. In Proceedings of
the 13th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’08). ACM Press, New York, 265–276.

LYLE, G., CHEN, S., PATTABIRAMAN, K., KALBARCZYK, Z., AND IYER, R. 2009. An end-to-end approach for the
automatic derivation of application-aware error detectors. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems Networks (DSN’09). 584–589.

MA, Y., GAO, H., DIMITROV, M., AND ZHOU, H. 2007. Optimizing dual-core execution for power efficiency and
transient-fault recovery. IEEE Trans. Parallel Distrib. Syst. 18, 1080–1093.

MARTY, M. R., BINGHAM, J. D., HILL, M. D., HU, A. J., MARTIN, M. M. K., AND WOOD, D. A. 2005. Improving
multiple-cmp systems using token coherence. In Proceedings of the International Symposium on High-
Performance Computer Architecture. 328–339.

MEIXNER, A., BAUER, M. E., AND SORIN, D. 2007. Argus: Low-cost, comprehensive error detection in simple
cores. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’07). IEEE Computer Society, Los Alamitos, CA, 210–222.

MEIXNER, A. AND SORIN, D. 2007a. Error detection using dynamic dataflow verification. In Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques (PACT’07). 104–118.

MEIXNER, A. AND SORIN, D. 2007b. Error detection via online checking of cache coherence with token coherence
signatures. In Proceedings of the 13th IEEE International Symposium on High Performance Computer
Architecture (HPCA’07). 145–156.

MEIXNER, A. AND SORIN, D. J. 2005. Dynamic verification of sequential consistency. In Proceedings of the 32nd

Annual International Symposium on Computer Architecture (ISCA’05). IEEE Computer Society, Los
Alamitos, CA, 482–493.

MEIXNER, A. AND SORIN, D. J. 2009. Dynamic verification of memory consistency in cache-coherent multi-
threaded computer architectures. IEEE Trans. Depend. Secure Comput. 6, 18–31.

MOURAD, S. AND ZORIAN, Y. 2000. Principles of Testing Electronic Systems. Wiley-Interscience.
NICKEL, J. B. AND SOMANI, A. K. 2001. Reese: A method of soft error detection in microprocessors. In Proceedings

of the International Conference on Dependable Systems and Networks (DSN’01).
NOMURA, S., SINCLAIR, M. D., HO, C.-H., GOVINDARAJU, V., DE KRUIJF, M., AND SANKARALINGAM, K. 2011. Sampling

+ dmr: Practical and low-overhead permanent fault detection. SIGARCH Comput. Archit. News 39, 3,
201–212.

OH, N., SHIRVANI, P., AND MCCLUSKEY, E. 2002a. Control-flow checking by software signatures. IEEE Trans.
Reliabil. 51, 1, 111–122.

OH, N., SHIRVANI, P., AND MCCLUSKEY, E. 2002b. Error detection by duplicated instructions in super-scalar
processors. IEEE Trans. Reliabil. 51, 1, 63–75.

OSSI, E. J., LIMBRICK, D. B., ROBINSON, W. H., AND BHUVA, B. L. 2009. Soft-error mitigation at the architecture-
level using berger codes and instruction repetition. In Proceedings of the IEEE Workshop on Silicon
Errors in Logic – System Effects (SELSE’09).

PARASHAR, A., GURUMURTHI, S., AND SIVASUBRAMANIAM, A. 2004. A complexity-effective approach to alu bandwidth
enhancement for instruction-level temporal redundancy. SIGARCH Comput. Archit. News 32, 2.

PATTABIRAMAN, K., KALBARCZYK, Z., AND IYER, R. 2007. Automated derivation of application-aware error detec-
tors using static analysis. In Proceedings of the 13th IEEE International On-Line Testing Symposium
(IOLTS’07). 211–216.

PELLEGRINI, A. AND BERTACCO, V. 2010. Application-aware diagnosis of runtime hardware faults. In Proceedings
of the International Conference on Computer-Aided Design (ICCAD’10). IEEE Press, Los Alamitos, CA,
487–492.

PLAKAL, M., SORIN, D. J., CONDON, A. E., AND HILL, M. D. 1998. Lamport clocks: Verifying a directory cache-
coherence protocol. In Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’98). ACM Press, New York, 67–76.

PRVULOVIC, M., ZHANG, Z., AND TORRELLAS, J. 2002. Revive: Cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. In Proceedings of the 29th Annual International Symposium
on Computer Architecture. 111–122.

PURSER, Z., SUNDARAMOORTHY, K., AND ROTENDBERG, E. 2000. A study of slipstream processors. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. 269.

QURESHI, M. K., MUTLU, O., AND PATT, Y. N. 2005. Microarchitecture-based introspection: A technique for
transient-fault tolerance in microprocessors. In Proceedings of the International Conference on Depend-
able Systems and Networks (DSN’05). 434–443.

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.



A Survey of Checker Architectures 48:33

RASHID, M. AND HUANG, M. 2008. Supporting highly-decoupled thread-level redundancy for parallel programs.
In Proceedings of the 14th IEEE International Symposium on High Performance Computer Architecture
(HPCA’08). 393–404.

RASHID, M. W., TAN, E. J., HUANG, M. C., AND ALBONESI, D. H. 2005. Exploiting coarse-grain verification
parallelism for power-efficient fault tolerance. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. 315–328.

RAY, J., HOE, J. C., AND FALSAFI, B. 2001. Dual use of superscalar datapath for transient-fault detection and
recovery. In Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO’01). IEEE Computer Society, Los Alamitos, CA, 214–224.

REBAUDENGO, M., SONZA REORDA, M., TORCHIANO, M., AND VIOLANTE, M. 1999. Soft-error detection through
software fault-tolerance techniques. In Proceedings of the International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT’99). 210–218.

REINHARDT, S. K. AND MUKHERJEE, S. S. 2000. Transient fault detection via simultaneous multithreading. In
Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA’00). ACM
Press, New York, 25–36.

REIS, G. A., CHANG, J., VACHHARAJANI, N., RANGAN, R., AND AUGUST, D. I. 2005. Swift: Software implemented
fault tolerance. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO’05). IEEE Computer Society, Los Alamitos, CA, 243–254.

ROMANESCU, B. F., LEBECK, A. R., AND SORIN, D. J. 2010. Specifying and dynamically verifying address
translation-aware memory consistency. In Proceedings of the 15th Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’10). ACM Press, New York,
323–334.

ROTENBERG, E. 1999. Ar-smt: A microarchitectural approach to fault tolerance in microprocessors. In Proceed-
ings of the International Symposium on Fault-Tolerant Computing. 84.

SAHOO, S., LI, M.-L., RAMACHANDRAN, P., ADVE, S., ADVE, V., AND ZHOU, Y. 2008. Using likely program invariants
to detect hardware errors. In Proceedings of the IEEE International Conference on Dependable Systems
and Networks with FTCS and DCC (DSN’08). 70–79.

SANCHEZ, D., ARAGON, J., AND GARCIA, J. 2009a. Extending srt for parallel applications in tiled-cmp ar-
chitectures. In Proceedings of the IEEE International Symposium on Parallel Distributed Processing
(IPDPS’09). 1–8.

SANCHEZ, D., ARAGON, J., AND GARCIA, J. 2009b. Repas: Reliable execution for parallel applications in tiled-
cmps. In Proceedings of the 15th International Euro-Par Conference on Parallel Processing (EuroPar’09).
H. Sips, D. Epema, and H.-X. Lin, Eds., Lecture Notes in Computer Science Series, vol. 5704, Springer,
321–333.

SARANGI, S. R. 2007. Techniques to mitigate the effects of congenital faults in processors. Ph.D. thesis,
AAI3270016. Champaign, IL. https://www.ideals.illinois.edu/bitstream/handle/2142/11267/Techniques%
20to%20Mitigate%20the%20Effects%20of%20Congenital%20Faults%20in%20Processors.pdf?sequence
=2

SARANGI, S. R., GRESKAMP, B., AND TORRELLAS, J. 2006. Cadre: Cycle-accurate deterministic replay for hardware
debugging. In Proceedings of the International Conference on Dependable Systems and Networks. 301–
312.

SARANGI, S. R., NARAYANASAMY, S., CARNEAL, B., TIWARI, A., CALDER, B., AND TORRELLAS, J. 2007. Patching processor
design errors with programmable hardware. IEEE Micro 27, 1, 12–25.

SCHUETTE, M. AND SHEN, J. 1994. Exploiting instruction-level parallelism for integrated control-flow monitor-
ing. IEEE Trans. Comput. 43, 2, 129–140.

SHYAM, S., CONSTANTINIDES, K., PHADKE, S., BERTACCO, V., AND AUSTIN, T. 2006. Ultra low-cost defect protection for
microprocessor pipelines. In Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’06). 73–82.

SMITH, J. AND SOHI, G. 1995. The microarchitecture of superscalar processors. Proc. IEEE 83, 12, 1609–1624.
SMOLENS, J. C., GOLD, B. T., FALSAFI, B., AND HOE, J. C. 2006. Reunion: Complexity-effective multicore redun-

dancy. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE Computer Society, Los Alamitos, CA, 223–234.

SMOLENS, J. C., GOLD, B. T., KIM, J., FALSAFI, B., HOE, J. C., AND NOWATZYK, A. G. 2004. Fingerprinting: Bounding
soft-error detection latency and bandwidth. SIGARCH Comput. Archit. News 32, 224–234.

SORIN, D. J., MARTIN, M. M. K., HILL, M. D., AND WOOD, D. A. 2002. Safetynet: Improving the availability
of shared memory multiprocessors with global checkpoint/recovery. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA’02). IEEE Computer Society, Los Alamitos,
CA, 123–134.

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.



48:34 R. Kalayappan and S. R. Sarangi

SPAINHOWER, L. AND GREGG, T. A. 1999. Ibm s/390 parallel enterprise server g5 fault tolerance: A historical
perspective. IBM J. Res. Dev. 43, 863–873.

SUBRAMANYAN, P. 2010. Efficient fault tolerance in chip multiprocessors using critical value forwarding.
M.S. thesis, Supercomputer Education and Research Center, Indian Institute of Science, Bangalore.
http://www.academia.edu/2909583/Efficient Fault Tolerance in Chip Multiprocessors Using Critical
Value Forwarding

SUBRAMANYAN, P., SINGH, V., SALUJA, K., AND LARSSON, E. 2010. Energy-efficient fault tolerance in chip multi-
processors using critical value forwarding. In Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’10). 121–130.

SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. 2000. Slipstream processors: Improving both performance
and fault tolerance. SIGPLAN Not. 35, 257–268.

TIWARI, A. AND TORRELLAS, J. 2008. Facelift: Hiding and slowing down aging in multicores. In Proceedings of
the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’08). 129–140.

TORRELLAS, J. 2009. Architectures for extreme-scale computing. IEEE Comput. 42, 11, 28–35.
VEMU, R. AND ABRAHAM, J. 2006. Ceda: Control-flow error detection through assertions. In Proceedings of the

12th IEEE International On-Line Testing Symposium (IOLTS’06). 6.
VENKATASUBRAMANIAN, R., HAYES, J., AND MURRAY, B. 2003. Low-cost on-line fault detection using control flow

assertions. In Proceedings of the 9th IEEE On-Line Testing Symposium (IOLTS’03). 37–143.
VIJAYKUMAR, T., POMERANZ, I., AND CHENG, K. 2002. Transient-fault recovery using simultaneous multithread-

ing. In Proceedings 29th Annual International Symposium on Computer Architecture. 87–98.
WANG, N. AND PATEL, S. 2006. Restore: Symptom-based soft error detection in microprocessors. IEEE Trans.

Depend. Secur. Comput. 3, 3, 188–201.
YOO, J. AND FRANKLIN, M. 2008. Hierarchical verification for increasing performance in reliable processors.

J. Electron. Test. 24, 117–128.
ZANDIAN, B., DWEIK, W., KANG, S. H., PUNIHAOLE, T., AND ANNAVARAM, M. 2010. Wearmon: Reliability monitor-

ing using adaptive critical path testing. In Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’10). 151–160.

ZHAO, H. 2008. Memory buffer element optimization for decoupled thread level redundancy. M.S. thesis,
Department of Electrical and Computer Engineering The College School of Engineering and Applied
Science University of Rochester, Rochester, New York.

ZIEGLER, J. F., CURTIS, H. W., MUHLFELD, H. P., MONTROSE, C. J., CHIN, B., NICEWICZ, M., RUSSELL, C. A., WANG,
W. Y., FREEMAN, L. B., HOSIER, P., LAFAVE, L. E., WALSH, J. L., ORRO, J. M., UNGER, G. J., ROSS, J. M.,
O’GORMAN, T. J., MESSINA, B., SULLIVAN, T. D., SYKES, A. J., YOURKE, H., ENGER, T. A., TOLAT, V., SCOTT, T. S.,
TABER, A. H., SUSSMAN, R. J., KLEIN, W. A., AND WAHAUS, C. W. 1996. Ibm experiments in soft fails in
computer electronics (1978–1994). IBM J. Res. Devel. 40, 1, 3–18.

ZILLES, C. AND SOHI, G. 2002. Master/slave speculative parallelization. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’02). 85–96.

Received February 2012; revised May 2012; accepted August 2012

ACM Computing Surveys, Vol. 45, No. 4, Article 48, Publication date: August 2013.


