Journal of Software Engineering, Vol. 1, No. 1, April 2015

ISSN 2356-3974

A Systematic Literature Review of Software Defect Prediction:
Research Trends, Datasets, Methods and Frameworks

Romi Satria Wahono
Faculty of Computer Science, Dian Nuswantoro University
romi@romisatriawahono.net

Abstract: Recent studies of software defect prediction typically
produce datasets, methods and frameworks which allow
software engineers to focus on development activities in terms
of defect-prone code, thereby improving software quality and
making better use of resources. Many software defect
prediction datasets, methods and frameworks are published
disparate and complex, thus a comprehensive picture of the
current state of defect prediction research that exists is missing.
This literature review aims to identify and analyze the research
trends, datasets, methods and frameworks used in software
defect prediction research betweeen 2000 and 2013. Based on
the defined inclusion and exclusion criteria, 71 software defect
prediction studies published between January 2000 and
December 2013 were remained and selected to be investigated
further. This literature review has been undertaken as a
systematic literature review. Systematic literature review is
defined as a process of identifying, assessing, and interpreting
all available research evidence with the purpose to provide
answers for specific research questions. Analysis of the
selected primary studies revealed that current software defect
prediction research focuses on five topics and trends:
estimation, association, classification, clustering and dataset
analysis. The total distribution of defect prediction methods is
as follows. 77.46% of the research studies are related to
classification methods, 14.08% of the studies focused on
estimation methods, and 1.41% of the studies concerned on
clustering and association methods. In addition, 64.79% of the
research studies used public datasets and 35.21% of the
research studies used private datasets. Nineteen different
methods have been applied to predict software defects. From
the nineteen methods, seven most applied methods in software
defect prediction are identified. Researchers proposed some
techniques for improving the accuracy of machine learning
classifier for software defect prediction by ensembling some
machine learning methods, by using boosting algorithm, by
adding feature selection and by using parameter optimization
for some classifiers. The results of this research also identified
three frameworks that are highly cited and therefore influential
in the software defect prediction field. They are Menzies et al.
Framework, Lessmann et al. Framework, and Song et al.
Framework.

Keywords: systematic literature review, software defect
prediction, software defect prediction methods, NASA MDP
datasets

1 INTRODUCTION

A software defect is a fault, error, or failure in a
software (Naik and Tripathy 2008). It produces either an
incorrect, or unexpected result, and behaves in unintended
ways. It is a deficiency in a software product that causes it to
perform unexpectedly (McDonald, Musson, & Smith, 2007).

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

The definition of a defect is also best described by using the
standard IEEE definitions of error, defect and failure (IEEE,
1990). An error is an action taken by a developer that results in
a defect. A defect is the manifestation of an error in the code
whereas a failure is the incorrect behavior of the system during
execution. A developer error can also be defined as a mistake.

As today’s software grows rapidly in size and complexity,
software reviews and testing play a crucial role in the software
development process, especially in capturing software defects.
Unfortunately, software defects or software faults are very
expensive in cost. Jones and Bonsignour (2012) reported that
the cost of finding and correcting defects is one of the most
expensive software development activities (Jones and
Bonsignour 2012). The cost of software defect increases over
the software development step. During the coding step,
capturing and correcting defects costs $977 per defect. The cost
increases to $7,136 per defect in the software testing phase.
Then in the maintenance phase, the cost to capture and remove
increases to $14,102 (Boehm and Basili 2001).

Software defect prediction approaches are much more cost-
effective to detect software defects as compared to software
testing and reviews. Recent studies report that the probability
of detection of software defect prediction models may be
higher than probability of detection of currently software
reviews used in industrial methods (Menzies et al., 2010).
Therefore, accurate prediction of defect-prone software helps
to direct test effort, to reduce costs, to improve the software
testing process by focusing on defect-prone modules (Catal,
2011), and finally to improve the quality of the software (T.
Hall, Beecham, Bowes, Gray, & Counsell, 2012). That is why,
today software defect prediction is a significant research topic
in the software engineering field (Song, Jia, Shepperd, Ying, &
Liu, 2011).

Many software defect prediction datasets, methods and
frameworks are published disparate and complex, thus a
comprehensive picture of the current state of defect prediction
research that exists is missing. This literature review aims to
identify and analyze the research trends, datasets, methods and
frameworks used in software defect prediction research
betweeen 2000 and 2013.

This paper is organized as follows. In section 2, the
research methodology are explained. The results and answers
of research questions are presented in section 3. Finally, our
work of this paper is summarized in the last section.

2 METHODOLOGY

2.1 Review Method

A systematic approach for reviewing the literature on the
software defect prediction is chosen. Systematic literature
reviews (SLR) is now a well established review method in
software engineering. An SLR is defined as a process of

Journal of Software Engineering, Vol. 1, No. 1, April 2015

identifying, assessing, and interpreting all available research
evidence with the purpose to provide answers for specific
research questions (Kitchenham and Charters 2007). This
literature review has been undertaken as a systematic literature
review based on the original guidelines proposed by
Kitchenham and Charters (2007). The review method, style
and some of the figures in this section were also motivated by
(Unterkalmsteiner et al., 2012) and (Radjenovi¢, Hericko,
Torkar, & Zivkovig, 2013).

As shown in Figure 1, SLR is performed in three stages:
planning, conducting and reporting the literature review. In the
first step the requirements for a systematic review are
identified (Step 1). The objectives for performing the literature
review were discussed in the introduction of this chapter. Then,
the existing systematic reviews on software defect prediction
are identified and reviewed. The review protocol was designed
to direct the execution of the review and reduce the possibility
of researcher bias (Step 2). It defined the research questions,
search strategy, study selection process with inclusion and
exclusion criteria, quality assessment, and finally data
extraction and synthesis process. The review protocol is
presented in Sections 2.2, 2.3, 2.4 and 2.5. The review protocol
was developed, evaluated and iteratively improved during the
conducting and reporting stage of the review.

Start

:

Step 1: Identify the need for a
systematic review

'

Step 2: Develop review
protocol

\

Step 3: Evaluate review
protocol

l

Step 4: Search for primary
studies

\

Step 5: Select primary studies

'

Step 6: Extract data from
primary studies

\

Step 7: Assess quality of
primary studies

'

Step 8: Synthesize data

l

Step 9: Disseminate results

:

End

PLANNING
STAGE

CONDUCTING
STAGE

REPORTING
STAGE

Figure 1 Systematic Literature Review Steps

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

2.2 Research Questions

The research questions (RQ) were specified to keep the
review focused. They were designed with the help of the
Population, Intervention, Comparison, Outcomes, and Context
(PICOC) criteria (Kitchenham and Charters 2007). Table 1
shows the (PICOC) structure of the research questions.

Table 1 Summary of PICOC

Software, software application, software system,
information system

Software defect prediction, fault prediction, error-
prone, detection, classification, estimation, models,
methods, techniques, datasets

Comparison B0

Prediction accuracy of software defect, successful

Intervention

defect prediction methods
Studies in industry and academia, small and large data
sets

The research questions and motivation addressed by this
literature review are shown in Table 2.

Table 2 Research Questions on Literature Review

m Research Question I Motivation

RQ1 Which journal is the most Identify the most significant
significant software defect journals in the software defect
prediction journal? prediction field

RQ2 Who are the most active and = Identify the most active and
influential researchers in the = influential researchers who
software defect prediction contributed so much on a
field? research area of software defect

prediction

RQ3 What kind of research topics = Identify research topics and
are selected by researchers in = trends in software defect
the software defect prediction = prediction
field?

RQ4 What kind of datasets are the = Identify datasets commonly
most used for software defect = used in software fault prediction
prediction?

RQ5 What kind of methods are Identify opportunities and
used for software defect trends for software defect
prediction? prediction method

RQ6 What kind of methods are = Identify the most used methods
used most often for software = for software defect prediction
defect prediction?

RQ7 = Which method performs best = Identify the best method in
when used for software defect =~ software defect prediction
prediction?

RQ8 What kind of method Identify the proposed method
improvements are proposed = improvements for predicting the
for software defect = software defect
prediction?

RQ9 What kind of frameworks are =~ Identify ~ the most used

proposed for software defect
prediction?

frameworks in software defect
prediction

From the primary studies, software prediction methods,
frameworks and datasets to answer RQ4 to RQ9 are extracted.
Then, the software defect prediction methods, frameworks and
datasets were analyzed to determine which ones are, and which
are not, significant methods, frameworks and datasets in
software defect prediction (RQ4 to RQ9). RQ4 to RQY are the
main research questions, and the remaining questions (RQ1 to
RQ3) help us evaluate the context of the primary studies. RQ1
to RQ3 give us a summary and synopsis of a particular area of
research in software defect prediction field.

Figure 2 shows the basic mind map of the systematic
literature review. The main objective of this systematic
literature review is to identify software prediction methods,
framework and datasets used in software defect prediction.

Journal of Software Engineering, Vol. 1, No. 1, April 2015

RQ1 - Signifi 1
RQY - Proposed Software Defect el IR

Prediction Frameworks

Publications

RQS - Proposed ‘ RQ2 - Influential Researchers ‘

Method Improvements

Software
Defect
Prediction

— ‘ RQ3 - Research Topics and Trends “

RQ7 - Method Comparison
Results

‘ RQ4 - Software Defect Datasets “

RQ6 - Most Used
Classification Methods

RQ5 - Software Defect |
Prediction Methods

Figure 2 Basic Mind Map of the SLR on Software Defect Prediction

2.3 Search Strategy

The search process (Step 4) consists of some activities,
such as selecting digital libraries, defining the search string,
executing a pilot search, refining the search string and
retrieving an initial list of primary studies from digital libraries
matching the search string. Before starting the search, an
appropriate set of databases must be chosen to increase the
probability of finding highly relevant articles. The most
popular literature databases in the field are searched to have the
broadest set of studies possible. A broad perspective is
necessary for an extensive and broad coverage of the literature.
Here is the list of the digital databases searched:
ACM Digital Library (dl.acm.org)
IEEE eXplore (ieeexplore.ieee.org)
ScienceDirect (sciencedirect.com)
Springer (springerlink.com)
Scopus (scopus.com)

The search string was developed according to the
following steps:

1. Identification of the search terms from PICOC,
especially from Population and Intervention

2. Identification of search terms from research questions

3. Identification of search terms in relevant titles,
abstracts and keywords

4. Identification of synonyms, alternative spellings and
antonyms of search terms

5. Construction of sophisticated search string using
identified search search terms, Boolean ANDs and
ORs

The following search string was eventually used:

(software OR applicati* OR systems) AND (fault* OR
defect* OR quality OR error-prone) AND (predict*
OR prone™* OR probability OR assess* OR detect* OR
estimat* OR classificat®)

The adjustment of the search string was conducted, but the
original one was kept, since the adjustment of the search string
would dramatically increase the already extensive list of
irrelevant studies. The search string was subsequently adjusted
to suit the specific requirements of each database. The
databases were searched by title, keyword and abstract. The
search was limited by the year of publication: 2000-2013. Two
kinds of publication namely journal papers and conference
proceedings were included. The search was limited only
articles published in English.

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

2.4 Study Selection
The inclusion and exclusion criteria were used for
selecting the primary studies,. These criteria are shown in
Table 3.
Table 3 Inclusion and Exclusion Criteria

Inclusion
Criteria

Studies in academic and industry using large and small
scale data sets

Studies discussing and comparing modeling performance
in the area of software defect prediction

For studies that have both the conference and journal
versions, only the journal version will be included

For duplicate publications of the same study, only the most
complete and newest one will be included

Studies without a strong validation or including
experimental results of software defect prediction

Studies discussing defect prediction datasets, methods,
frameworks in a context other than software defect
prediction

Studies not written in English

Exclusion
Criteria

Software package Mendeley (http.//mendeley.com) was
used to store and manage the search results. The detailed search
process and the number of studies identified at each phase are
shown in Figure 3. As shown in Figure 3, the study selection
process (Step 5) was conducted in two steps: the exclusion of
primary studies based on the title and abstract and the exclusion
of primary studies based on the full text. The literature review
studies and other studies which do not include experimental
results are excluded. The similarity degree of the study with
software defect prediction is also the inclusion of studies.

Start

:

Select digital libraries

\

Define search string

\

Execute pilot search 4—\

Majority of no
known primary
studies found?

Refine search string

yes

Retrieve initial list of primary
studies
(2117)

ACM Digital Library (474)
IEEE Explore (785)
ScienceDirect (276)
SpringerLink (339)
Scopus (243)

Exclude primary studies based on
title and abstract
(213)

Exclude primary studies based on
full text

an

Make a final list of included
primary studies
1)

End

Figure 3 Search and Selection of Primary Studies

Journal of Software Engineering, Vol. 1, No. 1, April 2015

The final list of selected primary studies for the first stage
had 71 primary studies. Then, the full texts of 71 primary
studies were analyzed. In addition to the inclusion and
exclusion criteria, the quality of the primary studies, their
relevance to the research questions and study similarity were
considered. Similar studies by the same authors in various
journals were removed. 71 primary studies remained after the
exclusion of studies based on the full text selection. The
complete list of selected studies is provided in last section
section of this paper (Table 6).

2.5 Data Extraction

The selected primary studies are extracted to collect the
data that contribute to addressing the research questions
concerned in this review. For each of the 71 selected primary
studies, the data extraction form was completed (Step 6). The
data extraction form was designed to collect data from the
primary studies needed to answer the research questions. The
properties were identified through the research questions and
analysis we wished to introduce. Six properties were used to
answer the research questions shown in Table 4. The data
extraction is performed in an iterative manner.

Table 4 Data Extraction Properties Mapped to Research Questions

Research Questions

Researchers and Publications RQI1, RQ2

Research Trends and Topics RQ3

Software Defect Datasets RQ4

Software Metrics RQ4

Software Defect Prediction Methods RQS5, RQ6, RQ7, RQ8
Software Defect Prediction Frameworks = RQ9

2.6 Study Quality Assessment and Data Synthesis

The study quality assessment (Step 8) can be used to guide
the interpretation of the synthesis findings and to define the
strength of the elaborated inferences. The goal of data synthesis
is to aggregate evidence from the selected studies for
answering the research questions. A single piece of evidence
might have small evidence force, but the aggregation of many
of them can make a point stronger. The data extracted in this
review include both quantitative data and qualitative data.
Different strategies were employed to synthesize the extracted
data pertaining to different kinds of research questions.
Generally, the narrative synthesis method was used. The data
were tabulated in a manner consistent with the questions. Some
visualization tools, including bar charts, pie charts, and tables
were also used to enhance the presentation of the distribution
of software defect prediction methods and their accuracy data.

2.7 Threats to Validity

This review aims to analyze the studies on software defect
prediction based on statistical and machine learning
techniques. This review is not aware about the existence of
biases in choosing the studies. The searching was not based on
manual reading of titles of all published papers in journals.
This means that this review may have excluded some software
defect prediction papers from some conference proceedings or
journals.

This review did not exclude studies from conference
proceedings because experience reports are mostly published
in conference proceedings. Therefore, a source of information
about the industry’s experience is included. Some systematic
literature reviews, for example (Jorgensen and Shepperd 2007)
did not use conference proceedings in their review because

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

workload would increase significantly. A systematic literature
review that included studies in conference proceedings as the
primary studies is conducted by Catal and Diri (Catal and Diri
2009a).

3 RESEARCH RESULTS

3.1 Significant Journal Publications

In this literature review, 71 primary studies that analyze
the performance of software defect prediction are included.
The distribution over the years is presented to show how the
interest in software defect prediction has changed over time. A
short overview of the distribution studies over the years is
shown in Figure 4. More studies were published since 2005,
indicating that more contemporary and relevant studies are
included. It should be noted that the PROMISE repository was
developed in 2005, and researchers began to be aware of the
use of public datasets. Figure 4 also shows that the research
field on software defect prediction is still very much relevant
today.

12
8 10
23
\
S 6
5
—_‘é 4
Z 2
0
1995 2000 2005 2010 2015
Year

Figure 4 Distribution of Selected Studies over the Years

According to the selected primary studies, the most
important software defect prediction journals are displayed in
Figure 5. Note that the conference proceedings are not included
in this graph.

IEEE Transactions on Software. . 9

Journal of Systems and Software
Expert Systems with Applications
IEEE Transactions on Reliability
Information and Software Technology
Information Sciences

IEEE Transactions on Systems,..

Software Quality Journal
Empirical Software Engineering
IET Software

Advanced Science Letters
Automated Software Engineering
IEEE Software

IEEE Transactions on Knowledge..

International Journal of Software..

Journal of Software

EE—
I 5
eee—— 4
EEee— 4
EEs— 4

— 3
———)
——)

2 4 6 8 10

Number of Publications

Figure 5 Journal Publications and Distribution of Selected Studies

Table 5 shows the Scimago Journal Rank (SJR) value and
Q categories (Q1-Q4) of the most important software defect
prediction journals. Journal publications are ordered according

to their SJR value.

Journal of Software Engineering, Vol. 1, No. 1, April 2015

Table 5 Scimago Journal Rank (SJR) of Selected Journals

IEEE Transactions on Software = 3.39 | QI in Software
Engineering
2 Information Sciences 2.96 | QI in Information
Systems
3 IEEE Transactions on Systems, 2.76 = QI in Artificial
Man, and Cybernetics Intelligence
4 IEEE Transactions on Knowledge = 2.68 | QI in Information
and Data Engineering Systems
5 Empirical Software Engineering 2.32 | QI in Software
6 Information and Software = 1.95 = QI in Information
Technology Systems
7 Automated Software Engineering 1.78 | Ql in Software
8 IEEE Transactions on Reliability 1.43 | Ql in Software
9 Expert Systems with Applications 1.36 | Q2 in Computer
Science
10 Journal of Systems and Software 1.09 | Q2 in Software
11 Software Quality Journal 0.83 = Q2 in Software
12 IET Software 0.55 | Q2 in Software
13 Advanced Science Letters 0.24 Q3 in Computer
Science
14 Journal of Software 0.23 | Q3 in Software
15 International Journal of Software 0.14 Q4 in Software

Engineering and Its Application

3.2 Most Active and Influential Researchers

From the selected primary studies, researchers who
contributed very well and who are very active in the software
defect prediction research field were investigated and
identified. Figure 6 shows the most active and influential
researchers in the software defect prediction field. The
researchers were listed according to the number of studies
included in the primary studies. It should be noted that Taghi
Khoshgoftaar, Tim Menzies, Qinbao Song, Martin Shepperd,
Norman Fenton, Cagatay Catal, Burak Turhan, Ayse Bener,
Huanjing Wang, Yan Ma, Bojan Cukic, and Ping Guo are
active researchers on software defect prediction.

g 10
3 8
7] 6
S 4
g 2 b i
S 0 | I N | | | I | - =
=} % & O & L - & S D L
Z. B S & Q\‘ & :}b \\r§ & QG -vzp'w{&\ &L O o
NS 9 ARSI TR
Lo 30 TR S & & L
FES @ S ST TS D B T ¥
ISR 7 & N Q¥ K o
ST (S O T ¢
RS 3
& =S Y 3
N K
R
Researchers
m First Author Non-First Author

Figure 6 Influential Researchers and Number of Studies

3.3 Research Topics in the Software Defect Prediction Field

Software defect prediction is a significant research topic

in the software engineering field (Song et al., 2011). Analysis
of the selected primary studies revealed that current software
defect prediction research focuses on five topics:

1. Estimating the number of defects remaining in
software systems, using the estimation algorithm
(Estimation)

2. Discovering defect associations using the association
rule algorithm (Association)

3. Classifying the defect-proneness of software modules
typically into two classes namely defect-prone and
not defect-prone using the classification algorithm
(Classification)

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

4. Clustering the software defect based on object using
the clustering algorithm (Clustering)

5. Analyzing and pre-processing the software defect
datasets (Dataset Analysis)

The first type of work (Estimation) applies statistical
approaches (Ostrand, Weyuker, & Bell, 2005), capture-
recapture models (Emam and Laitenberger 2001), and neural
network (Benaddy and Wakrim 2012) (Zhang and Chang
2012) to estimate the number of defects remaining in softwares
with inspection data and process quality data. The prediction
result can be used as an important tool to help software
developers (Kenny, 1993), and can be used to control the
software process and gauge the likely delivered quality of a
software system (Fenton and Neil 1999).

The second type of work (Association) uses association
rule mining algorithms from the data mining community to
expose software defect associations (Shepperd, Cartwright, &
Mair, 2006) (Karthik and Manikandan 2010) (C.-P. Chang,
Chu, & Yeh, 2009). This second type of work can be used for
three purposes (Song et al., 2011). Firstly, to find as many
related defects as possible to the captured defects and
consequently, make more effective improvements to the
software. This may be useful as it permits more focused testing
and more effective use of limited testing resources. Secondly,
to evaluate the results from software reviewers during an
inspection. Thus, the work should be reinspected for
completeness. Thirdly, to assist software development
managers in improving the software development process
through analysis of the reasons why some defects frequently
occur together. Managers can than devise corrective action, if
the analysis leads to the identification of a process problem.

The third type of work (Classification) classifies software
modules as defect-prone and non-defect-prone by means of
metric based classification (Khoshgoftaar et al. 2000) (Li and
Reformat 2007) (Cukic and Singh 2004) (Menzies, Greenwald,
& Frank, 2007) (Lessmann, Baesens, Mues, & Pietsch, 2008)
(Song et al., 2011). The classification algorithm is a popular
machine learning approach for software defect prediction
(Lessmann et al., 2008). It categorizes the software code
attributes into defective or not defective, which is completed
by means of a classification model derived from software
metrics data based on the previous development projects
(Gayatri, Reddy, & Nickolas, 2010). The classification
algorithm is able to predict which components are more likely
to be defect-prone which supports a better targeted testing
resources. If an error is reported during system tests or from
field tests, that module’s fault data is marked as 1, otherwise 0.
For prediction modeling, software metrics are used as
independent variables and fault data is used as the dependent
variable (Catal, 2011). Parameters of the prediction model are
computed by using previous software metrics and fault data.
Various types of classification algorithms have been applied
for software defect prediction (Lessmann et al., 2008),
including logistic regression (Denaro, 2000), decision trees
(Khoshgoftaar and Seliya, 2002) (Taghi M Khoshgoftaar,
Seliya, & Gao, 2005), neural networks (Park, Oh, & Pedrycz,
2013) (Wang and Yu 2004) (Zheng, 2010), and naive bayes
(Mengzies et al., 2007).

The fourth type of work (Clustering) uses clustering
algorithms from the data mining community to capture
software defect clusters. Unsupervised learning methods like
clustering may be used for defect prediction in software
modules, more so in those cases where fault labels are not
available. The K-Means algorithm was proposed by Bishnu

Journal of Software Engineering, Vol. 1, No. 1, April 2015

and Bhattacherjee (2012) for predicting defect in program
modules (Bishnu and Bhattacherjee 2012). Quad Trees are
applied for finding the initial cluster centers to be the input to
the K-Means Algorithm. The concept of clustering gain has
been used to define the quality of clusters for measuring the
Quad Tree-based initialization algorithm. The clusters
generated by the Quad Tree-based algorithm were found to
have maximum gain values (Bishnu and Bhattacherjee 2012).
The fifth type of work (Dataset Analysis) focuses on
analyzing and pre-processing the software defect datasets.
Some researchers conducted the dataset pre-processing using
some methods, while others analyzed software defect datasets
in multiple aspect of views. (Gray, Bowes, Davey, Sun, &
Christianson, 2012) demonstrated and explained why NASA
MDP datasets require significant pre-processing in order to be
suitable for defect prediction. They noted that the bulk of
defect prediction experiments based on the NASA Metrics
Data Program datasets may have led to erroneous findings.
This is mainly due to repeated data points potentially caused
by redundancy in the amount of training and testing data.
Figure 7 shows the total distribution of research topics on
software defect prediction from 2000 until 2013. 77.46% of the
research studies are related to classification topics, 14.08% of
the studies focused on estimation techniques, and 5.63% of the
primary studies are concerned with dataset analysis topics.
Clustering and association are minor research topics with only
1.41% coverage. It can be concluded that most of the software
defect prediction researchers selected classification as their
research topics. There are three possible reasons of why
researchers focus on this topic. As the first reason,
classification topics precisely match with the industrial needs
that require some methods to predict which modules are more
likely to be defect-prone. Thus, the result of prediction can be
used to support better targeted testing resources. The second
reason is related to the NASA MDP dataset that is mostly ready
for classification methods. The third possible reason for a lack
of studies in clustering and association related topics is that
clustering and association methods usually yield undesirable
performance which cannot be published in the literature.

5.63%

1.41% 14.08%

1.41%

77.46%

N

H Estimation B Association H Classification

Clustering H Dataset Analysis

Figure 7 Distribution of Research Topics

3.4 Datasets Used for Software Defect Prediction

A dataset is a collection of data used for some specific
machine learning purpose (Sammut and Webb 2011). A
training set is a data set that is used as input to a learning
system, which analyzes it to learn a model. A test set or
evaluation set is a data set containing data that are used to
evaluate the model learned by a learning system. A training set
may be further divided into a growing set and a pruning set,

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

where the training set and the test set that contain disjoint sets
of data, the test set is known as a holdout set.

One of the most critical problems for software defect
prediction studies is the usage of non-public datasets (Catal and
Diri 2009a). Numerous companies developed defect prediction
models using proprietary data and presented these models in
conferences. However, it is impossible to compare results of
such studies with results of the proposed models, because their
datasets cannot be assesed. Machine learning researchers had
similar problems in the 1990s, and they developed a repository
called University of California Irvine (UCI). Inspired by the
UCI effort, software engineering researchers developed the
PROMISE repository which has numerous public datasets in
2005. NASA software defect prediction datasets are located in
PROMISE. The ARFF format is used as a default format file
that makes it possible to use these datasets directly from
WEKA or RapidMiner, an open source machine learning
software.

In this literature review, 71 primary studies that analyzed
the performance of software defect prediction are included.
Figure 8 shows the distribution of dataset types from 2000 until
2013. 64.79% of the research studies used public datasets and
35.21% of the research studies used private datasets. Public
datasets are mostly located in the PROMISE and NASA MDP
(metrics data program) repositories and they are distributed
freely. Private datasets belong to private companies and they
are not distributed as public datasets.

u Public Dataset

H Private Dataset

Figure 8 Total Distribution of Datasets

The distribution over the years is presented to show how
the interest in dataset types has changed over time.
Unfortunately, totally 35.21% of the studies used private
datasets. This means that only the result of one study from three
studies can be compared and it is repeatable. However, it is not
possible to compare the results of such studies with the results
of the proposed models because their datasets are not
distributed as public. The use of standard datasets make the
research repeatable, refutable, and verifiable (Catal and Diri
2009a). The distribution of the primary studies over the years,
and per source, is presented in Figure 9. More studies have
been published, and more public datasets have been used for
the software defect prediction research since 2005. As
mentioned earlier, the PROMISE repository was developed in
2005. In addition, there is increased awareness among
researchers on the use of public datasets.

Journal of Software Engineering, Vol. 1, No. 1, April 2015

Number of Studies
B

1998 2000

2002

2004 2006 2008 2010 2012 2014

Year

——@— Private Dataset ~ ==@= Public Dataset

Figure 9 Distribution of Private and Public Datasets

3.5 Methods Used in Software Defect Prediction

As shown in Figure 10, since 2000, nineteen methods have
been applied and proposed as the best method to predict
software defects. A summary of the state-of-the-art methods
used in software defect prediction is shown in Figure 10 and
Table 6.

kM: k-Means

GP: Genetic Programming

ACO: Ant Colony Optimization
RvC: Regression via Classification
LDA: Linear Discriminant Analysis
FIS: Fuzzy Inference Systems

LR: Logistic Regression

MBR: Memory based Reasoning
AR: Association Rule

RF: Random Forest

LiR: Linear Regression

SVM: Support Vector Machine
DT: Decision Tree

NN: Neural Network

k-NN: k-Nearest Neighbor

NB: Naive Bayes

CR: Capture Recapture

EM: Expectation-Maximum

FNR: Fuzzy Nonlinear Regression Bl

o
(S}
N
o
0

10 12 14 16
Number of Studies

Figure 10 Methods Used in Software Defect Prediction

3.6 Most Used Methods in Software Defect Prediction
From the nineteen methods shown in Figure 10 in Section
3.5, seven most applied classification methods in software
defect prediction are identified. The methods are shown in
Figure 11. They are:
Logistic Regression (LR)
Naive Bayes (NB)
K-Nearest Neighbor (k-NN)
Neural Network (NN)
Decision Tree (DT)
Support Vector Machine (SVM)
Random Forest (RF)

Nk W=

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

Number of Studies

0

8 6

6 4 4

4

0

LR NB k-NN NN DT SVM RF
Methods

Figure 11 Most Used Methods in Software Defect Prediction

NB, DT, NN and RF are the four most frequently used
ones. They were adopted by 75% of the selected studies, as
illustrated in Figure 12.

LR
ENB
mk-NN
NN
uDT

uSVM

15.09%

ERF

Figure 12 Distribution of the Studies over Type of Methods

3.7 Method Perform Best for Software Defect Prediction

While many studies in the software defect prediction
individually report the comparative performance of the
modelling techniques used, there is no strong consensus on
which performs best when the studies are looked at individual.
Bibi et al. (Bibi, Tsoumakas, Stamelos, & Vlahavas, 2008)
have reported that Regression via Classification (RvC) works
very well. Hall et al. highlighted that studies using Support
Vector Machine (SVM) perform less well. These may be
performing bellow expectation as they require parameter
optimization for the best performance (T. Hall et al., 2012).
C4.5 seems to perform bellow expectation if they include
imbalanced class distribution of datasets, as the algorithm
seems to be sensitive to this (Arisholm, Briand, & Fuglerud,
2007) (Arisholm, Briand, & Johannessen, 2010).

Naive Bayes (NB) and Logistic Regression (LR) seem to
be the methods used in models that performs relatively well in
the field of software defect prediction (Menzies et al., 2007)
(Song et al., 2011). NB is a well understood algorithm and
commonly in use. Studies using Random Forests (RF) did not
perform as well as expected (T. Hall et al., 2012). However,
many studies using the NASA dataset employ RF and report
good performanc (Lessmann et al., 2008).

Some studies on software defect prediction indicated that
Neural Network (NN) has a good accuracy as a classifier
(Lessmann et al., 2008) (Benaddy and Wakrim 2012) (Quabh,
Mie, Thwin, & Quah, 2003) (T M Khoshgoftaar, Allen,
Hudepohl, & Aud, 1997). NN has been shown to be more
adequate for the problem on the complicated and nonlinear
relationship between software metrics and defect-proneness of

7

Journal of Software Engineering, Vol. 1, No. 1, April 2015

software modules (Zheng 2010). However, the practicability of
NN is limited due to difficulty in selecting appropriate
parameters of network architecture, including number of
hidden neuron, learning rate, momentum and training cycles
(Lessmann et al., 2008).

However, models seem to have performed best where the
right technique has been selected for the right set of data. No
particular classifiers that performs the best for all the datasets
(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011).
Therefore, the comparisons and benchmarking results of defect
prediction using machine learning classifiers indicate that the
poor accuracy level is dominant (Sandhu, Kumar, & Singh,
2007) (Lessmann et al., 2008), significant performance
differences could not be detected (Lessmann et al., 2008) and
no particular classifiers perform the best for all the datasets
(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011).

3.8 Proposed Method Improvements for Software Defect
Prediction

Researchers proposed some techniques for improving the
accuracy of machine learning classifier for software defect
prediction. Recent proposed techniques try to increase the
prediction accuracy of a generated model by: 1) modifying and
ensembling some machine learning methods (Misirli, Bener, &
Turhan, 2011) (Tosun, Turhan, & Bener, 2008), 2) using
boosting algorithm (Zheng, 2010) (Jiang, Li, Zhou, & Member,
2011), 3) adding feature selection (Gayatri et al. 2010)
(Khoshgoftaar and Gao, 2009) (Catal and Diri 2009b) (Song et
al.,, 2011), 4) by using parameter optimization for some
classifiers (Peng and Wang 2010) (Lin, Ying, Chen, & Lee,
2008) (X. C. Guo, Yang, Wu, Wang, & Liang, 2008).

However, eventhough various defect prediction methods
have been proposed, but none has been proven to be
consistently accurate (Challagulla et al., 2005) (Lessmann et
al., 2008). The accurate and reliable classification algorithm to
build a better prediction model is an open issue in software
defect prediction. There is a need for an accurate defect
prediction framework which has to be more robust to noise and
other problems associated with on datasets.

3.8.1 Feature Selection

Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with N features and M dimensions
(or features, attributes), feature selection aims to reduce M to
M’ and M’ < M (Sammut and Webb 2011). It is an important
and widely used approach to dimensionality reduction.
Another effective approach is feature extraction. One of the
key distinctions of the two approaches lies at their outcomes.
Assuming we have four features F,;, F,, F3, Fy, if both
approaches result in 2 features, the 2 selected features are a
subset of 4 original features (say, F, F3), but the 2 extracted
features are some combination of the 4 original features.

Feature selection is commonly used in applications where
original features need to be retained. Some examples are
document categorization, medical diagnosis and prognosis as
well as gene-expression profiling. The benefits of feature
selection are multifold: it helps improve machine learning in
terms of predictive accuracy, comprehensibility, learning
efficiency, compact models, and effective data collection. The
objective of feature selection is to remove irrelevant and/or
redundant features and retain only relevant features (Maimon
and Rokach 2010). Some researchers called irrelevant and
redundant feature by noisy attribute (Khoshgoftaar and Van
Hulse 2009). Irrelevant features can be removed without

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

affecting learning performance. Redundant features are a type
ofirrelevant features. The distinction is that a redundant feature
implies the copresence of another feature; individually, each
feature is relevant, but the removal of either one will not affect
learning performance.

Three classic methods of feature selection are filter,
wrapper, and embedded. Research shows that a classifier with
embedded feature selection capability can beneft from feature
selection in terms of learning performance. A filter model
relies on measures about the intrinsic data properties. Mutual
information and data consistency are two examples of
measures about data properties. A wrapper model involves a
learning algorithm (classifier) in determining the feature
quality. For instance, if removing a feature does not affect the
classifier’s accuracy, the feature can be removed. Obviously,
this way feature selection is adapted to improving a particular
classification algorithm. To determine if the feature should be
selected or removed, it needs to build a classifier every time
when a feature is considered. Hence, the wrapper model can be
quite costly. An embedded model embeds feature selection in
the learning of a classifier. The best example can be found in
decision tree induction in which a feature has to be selected
first at each brainching point. When feature selection is
performed for data preprocessing, fillter and wrapper models
are often employed. When the purpose of feature selection goes
beyond improving learning performance (e.g., classifcation
accuracy), the most applied is the filter model.

3.8.2 Ensemble Machine Learning

Ensemble learning refers to the procedures employed to
train multiple learning machines and combine their outputs,
treating them as a “committee” of decision makers (Sammut
and Webb 2011). The principle is that the decision of the
committee, with individual predictions = combined
appropriately, should have better overall accuracy, on average,
than any individual committee member. Numerous empirical
and theoretical studies have demonstrated that ensemble
models very often attain higher accuracy than single models.

The members of the ensemble might be predicting real-
valued numbers, class labels, posterior probabilities, rankings,
clusterings, or any other quantity. Therefore, their decisions
can be combined by many methods, including averaging,
voting, and probabilistic methods. The majority of ensemble
learning methods are generic as well as applicable across broad
classes of model types and learning tasks.

Several machine learning techniques do this by learning
an ensemble of models and using them in combination.
Prominent among these are schemes called bagging, boosting,
and stacking (Witten, Frank, & Hall, 2011). They can all, more
often than not, increase predictive performance over a single
model. They are general techniques that can be applied to
classification tasks and numeric prediction problems. Bagging,
boosting, and stacking have been developed over the last
couple of decades, and their performance is often astonishingly
good. Machine learning researchers have struggled to
understand why. And during that struggle, new methods have
emerged that are sometimes even better. For example, while
human committees rarely benefit from noisy distractions,
shaking up bagging by adding random variants of classifiers
can improve performance.

3.9 Proposed Frameworks for Software Defect Prediction
Three frameworks that are highly cited and therefore

influential in the software defect prediction field are the

Menzies et al. Framework (Menzies et al., 2007), Lessmann et

8

Journal of Software Engineering, Vol. 1, No. 1, April 2015

al. Framework (Lessmann et al., 2008), and Song et al.
Framework (Song et al., 2011).

3.9.1 Menzies et al.’s Framework

Menzies et al. (2007) published a study which compared
the performance of two classification algorithms techniques to
predict software components containing defects (Menzies et
al., 2007). They used the NASA MDP repository, which
contained 10 different datasets. Many researchers have
explored issues like the relative merits of Halstead’s software
science measures, McCabe’s cyclomatic complexity and lines
of code counts for building defect predictors. However,
Menzies et al. (2007) claim that such debates are irrelevant
since how the attributes are used to build predictors is much
more important than which particular attributes are used, and
the choice of learning method is far more important than which
subset of the available data is used for learning (Menzies et al.,
2007). Their research revealed that a Naive Bayes classifier
had a mean probability of detection of 71 percent and mean
false alarms rates of 25 percent, after log filtering and attribute
selection based on InfoGain. Naive bayes significantly
outperformed the rule induction methods of J48 and OneR.
However, the choice of which attribute subset is used for
learning is not only circumscribed by the attribute subset itself
and available data, but also by attribute selectors, learning
algorithms, and data preprocessors. An intrinsic relationship
between a learning method and an attribute selection method is
well known. For example, Hall and Holmes (2003) concluded
that the backward elimination (BE) search is more suitable for
C4.5, but the forward selection (FS) search was well suited to
Naive Bayes (Hall and Holmes 2003). Therefore, Menzies et
al. chose the combination of all learning algorithm, data
preprocessing, and attribute selection method before building
prediction models. Figure 13 shows Menzies ef al.’s software
defect prediction framework.

NAJ;
MDP
Datasets

LEARNING SCHEME

Testing
Data

Data Preprocessor

Log-Filtering

Feature Selectors

O

Info Gain

NN

Processed
Testing
Data

Leaming Algorithms

000

NB DT 1R

Performance Report

Figure 13 Menzies ef al.’s Framework
(Compiled from (Menzies et al., 2007))

3.9.2 Lessmann et al.’s Framework

Lessmann et al. also conducted a follow up to Menzies et
al.’s framework on defect predictions (Lessmann et al., 2008).
However, Lessmann et al. did not perform attribute selection
when building prediction models. Lessmann et al. consider
three potential sources for bias: 1) relying on accuracy

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

indicators that are conceptually inappropriate for software
defect prediction and cross-study comparisons, 2) limiting use
of statistical testing procedures to secure empirical findings,
and 3) comparing classifiers over one or a small number of
proprietary datasets. Lessman et al. (2008) proposed a
framework for comparative software defect prediction
experiments. This framework is implemented on a large scale
empirical comparison of 22 classifiers over 10 datasets from
the NASA Metrics Data repository. An appealing degree of
predictive accuracy is observed, which supports the view that
the metric based classification is useful. However, the results
showed that no significant performance differences could be
detected among the top 17 classifiers. It indicates that the
importance of the particular classification algorithm may be
less than previously assumed. Figure 14 shows Lessman et
al.’s software defect prediction framework.

NAJ;
MDP
Datasets

Training

Testing
Data Data

Leaming Algorithms

O

22 Classifiers

Testing and
Validation

Leaming

Models

Performance Report

Figure 14 Lessmann et al.’s Framework
(Compiled from (Lessmann et al., 2008))

3.9.3 Song et al.’s Framework

Song et al. (Song et al., 2011) also conducted a follow-up
to the results of (Menzies et al., 2007) research on defect
predictions. Song et al. developed a general-purpose defect
prediction framework, which consists of two parts: scheme
evaluation and defect prediction. Scheme evaluation focuses
on evaluating the performance of a learning scheme, while
defect prediction focuses on building a final predictor using
historical data according to the learning scheme. Then the
predictor is used to predict the defect-prone components of a
new software. A learning scheme consists of 1) a data
preprocessor, 2) an attribute selector, and 3) a learning
algorithm. The main difference between Song et al’s
framework and that of Menzies et al.’s framework lies in the
following. Song et al. chose the entire learning scheme, not just
one out of the learning algorithm, attribute selector, or data
preprocessor.

Song et al. also argued that Menzies et al’s attribute
selection approach is problematic and produced a bias in the
evaluation results. One reason is that they ranked attributes on
the entire dataset, including both the training and test data,
though the class labels of the test data should have been made
unknown to the predictor. However, it violated the intention of
the holdout strategy. The potential result is that they
overestimate the performance of their learning model and
thereby report a potentially misleading result. After ranking the
attributes, each individual attribute are evaluated separately
and the features with the highest scores are chosen.
Unfortunately, this approach cannot consider features with
complementary information, and does not account for attribute
dependence. It is also not capable of eliminating redundant
features because redundant features are likely to have similar

9

Journal of Software Engineering, Vol. 1, No. 1, April 2015

rankings. They will all be selected as long as the features are
deemed relevant to the class, even though many of them are
highly correlated to each other. Figure 15 shows Song ef al.’s
software defect prediction framework.

NAJ;
MDP
Datasets

LEARNING SCHEME

Testing
Data

Data Preprocessor

O

Log-Filtering

Feature Selectors

Procesbedd

Training

Procesbodd

Testing
Data

Performance Report

Figure 15 Song et al.’s Framework
(Compiled from (Song et al., 2011))

4 CONCLUSION AND FUTURE WORKS

This literature review aims to identify and analyze the
trends, datasets, methods and frameworks used in software
defect prediction research betweeen 2000 and 2013. Based on
the designed inclusion and exclusion criteria, finally 71
software defect prediction studies published between January
2000 and December 2013 were remained and investigated.
This literature review has been undertaken as a systematic
literature review. Systematic literature review is defined as a
process of identifying, assessing, and interpreting all available
research evidence with the purpose to provide answers for
specific research questions.

Analysis of the selected primary studies revealed that
current software defect prediction research focuses on five
topics and trends: estimation, association, classification,
clustering and dataset analysis. The total distribution of defect
prediction methods is as follows. 77.46% of the research
studies are related to classification methods, 14.08% of the
studies focused on estimation methods, and 1.41% of the
studies concerned on clustering and association methods. In
addition, 64.79% of the research studies used public datasets
and 35.21% of the research studies used private datasets.

Nineteen different methods have been applied to predict
software defects. From the nineteen methods, seven most
applied methods in software defect prediction are identified.
They are Logistic Regression (LR), Naive Bayes (NB), K-
Nearest Neighbor (k-NN), Neural Network (NN), Decision
Tree (DT), Support Vector Machine (SVM) and Random
Forest (RF)

Researchers proposed some techniques for improving the
accuracy of machine learning classifier for software defect
prediction by ensembling some machine learning methods, by
using boosting algorithm, by adding feature selection and by
using parameter optimization for some classifiers.

The results of this research also identified three
frameworks that are highly cited and therefore influential in the
software defect prediction field. They are the Menzies et al.

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

Framework, Lessmann et al. Framework, and Song et al.
Framework.

Unfortunatelly, the existing software defect prediction
framework revealed some problems. Unintentionally
misleading results and overoptimism on the part of the
researchers can result from incomplete validation mechanism.
Comprehensive evaluation of different prediction methods is
still an open issue in the field of software defect prediction
(Mende and Koschke 2009). More reliable research procedures
need to be developed, before the confident conclusion of
comparative studies of software prediction models can be made
(Lessmann et al., 2008) (Myrtveit, Stensrud, & Shepperd,
2005) (Song et al., 2011) (Menzies et al., 2010). This research
proposes a new comparison frameworks for software defect
prediction in order to fulfill the requirement for more
systematic and unbiased methods for comparing the
performance of machine-learning-based defect prediction.

Frameworks developed by Menzies et al., Lessmann et al.,
and Song et al. are missing in the processing of class imbalance
problem in datasets. Software defect datasets are suferring
from an imbalanced problem in datasets with very few
defective modules compared to defect-free ones (Wang and
Yao 2013) (Zhang and Zhang 2007). The most well-known
issue regarding the use of NASA datasets in classification
experiments is the variety levels of imbalanced class (Gray et
al. 2012). Class imbalance either reduces classifier
performance (Gray, Bowes, Davey, & Christianson, 2011).
The bagging as meta-learning method is used in this study to
overcome the class imbalance problem.

The issue of dealing with noisy data has not been
addressed adequately in the three frameworks. The noisy and
irrelevant features on software defect prediction results in
inefficient outcome of the model (Gayatri et al. 2010). The
software defect prediction accuracy decreases significantly
because the dataset contains noisy attributes. The accuracy of
software defect prediction improved when irrelevant and
redundant attributes are removed. The Lessmann et al
framework does not address the issue regarding to the noisy
and irrelevant attribute problems. The Menzies et al. and Song
et al. frameworks employed the traditional feature selection
algorithms such as information gain, forward selection and
backward elimination. In this research, noisy attribute
problems were addressed by using metaheuristic optimization
methods, especially genetic algorithm and particle swarm
optimization. Cano et al. (2003) have shown that better results
in terms of higher classification accuracy can be obtained with
the metaheuristic optimization method than with many
traditional and non-evolutionary feature selection methods
(Cano, Herrera, & Lozano, 2003).

Finally, the list of primary studies is presented in Table 6.
This list is comprised of 6 attributes (year, primary studies,
publications, datasets, methods, and topics) and 71 primary
studies (from January 2000 to December 2013), and ordered by
year of publication.

Figure 16 shows the complete mind map, which presents
the results of the systematic literature review on software
defect prediction. Mind maps have been used to explore
relationships between ideas and elements of an argument and
to generate solutions to problems. It puts a new perspective on
things to see all the relevant issues and analyze choices in light
of the one big picture (Buzan and Griffiths 2013). It also makes
it easier to logically organize information and integrate new
knowledge. In this research the mind map is used to present the
results of the systematic literature review on software defect
prediction.

10

UONEDIJISSE[D)
UONEDIJISSE[D)
UOnEIIJISSE[)
UONeIIJISSE])
uonedyIsse])
uonedyIsse])
UONEDIJISSE[D)
UOnEDIJISSE[)
UOnEIIJISSe[)
UONEOIJISSE]D)
UONEOIJISSE]D)
UONEOIJISSE[D)
UOneDIJISSE[)
UOnEIIJISSe])
UONEOIJISSE]D)
uonewnsy
UONEDIJISSE[D)
UOneDIJISSe])
UOneIIJISSe[)
UONEOIJISSE]D)
UOEOIJISSE]D)
UONEDIJISSE[D)
UOnEDIJISSE[D)
UOnEIIJISSe[)
uonedyIsse])
uonedyIsse])
uonewnsg
UONRIO0SSY
UONEIIJISSe[)
uonewnsy
UOEDIJISSE]D)
UONEDIJISSE[D)
UOneDIJISSE[)
UuonedIJISSe|)
uonewnsy
UOEOIJISSE]D)
UONDIJISSE[D)
UonedIJISSe[)
uonewnsy
UONEOIJISSE]D)
UONEDIJISSE[D)
UONEDIJISSE[D)
uonewnsy
UONEIIJISSE[)
uonewnsy
UONEDIJISSE]D)
uonewnsy

T SPowIIN

YL6E-95€C NSSI

9017, UOISIdJ
9017, UOISIdJ

(o1quuasus) sokeq dATBN
Surwwrei3old onouan
NI0MIDN [RINDN
Sutured[-eRN HOIHM
J0qUSTON 1S01BON-Y

soAeg 9AIEN PUE 1510, WOpUELY
Surdwesiopun

Sunsoog

Sunjuey paseq ydein [e) onelg
15010, WOopueY

QuIyoRIA 10J99A Moddng
uoneziundQ Auojo) juy
auIyory 10J09A 1oddng
UOT)BOIJISSB)) BIA UOISSAITaY
VAT YT 1se104 wopuey
9017, UOISIdJ

sakeq dAIBN
wnwixep-uoneoadxy
sokeg dAIBN

15010, WOopueY

W)SAS 9oudIdyu] AzZn g
sakeq dAIBN

uo1ssaIgoy] onsiSo]
Suruoseoy paseq AIOWIIA
10qUSTON 1S01BON-Y

[y UONBIOOSSY

15010, WoOpuEY

uoIssaISoy Jedur]

Sokeg SAIBN PUE 931 UOISIOA(]
QuIyory 10)09A 1oddng
9017, UOTSIdJ

sakeq dAIBN

NI0MIDN [RINON

NI0MIDN [RINDN

sokeq dAIEN

9017, UOISIdJ

JI0MIIN [eINAN

NI0MIDN [RINDN

(I¥VD) 9917, vorsta(
SIOMION [EINON

J0QUSTON 1S0TBON-Y

sakeq dAIBN

[9poN 2imdesay-ainyde)
wnuwixep-uoneoadxy
U0ISsaI30Yy JeouruoN Azznj

arqng
arqng
anqng
anang
anqnd
anqnd
arqng
arqng
anang
anqnd
eALd
arqng
anqng
anang
anqnd
0uﬁ>mhn_
arqng
arqng
QeALI]
anqnd
anqnd
arqng
anqng
anang
a1qnd
anqnd
AL
arqng
anang
JeAld
anqnd
ABALL]
AJBALL]
anang
eALd
eALd
arqng
AJBALL]
QeALI]
a1qnd
ABALL]
ABALL]
AJBALL]
QeALI]
QeALI]
JeALd
AJBALL]
syseyeq

UONDIPaI J99J2(] AIBMIOS JO P[AL] Y Ul SAPMIS ATewlid Jo ISIT YL 9 Qe

QIEM)JOS PUE SWSAS JO [euInof

20ua10g J1ndwo) pue FuLeouISuy uo sSAIZU0)) PO
suoneor[ddy pue SuruIeoT SUIYIBIA U0 9OUSIQJUO)) [BUOTIBUIONU]
SuroourSug o1em1jos uo suonoesuel], FAAI
suoneorddy yim swoisAg adxyg

SuueouiSug aremjos pajewomy

Surourduyg arem)jos [esundwyg

SO0UDIOS UOTBULIOJU]

suoneorjddy pue SuruIeoT SUIYIBIA U0 9OUSIOJUO)) [BUOTIBUIIU]
SO1OUISQAD) PUB ‘UBJA ‘SWAISAS UO suondesuer], gHHI
suoneorddy yim swoisAg uadxyg

suoneorddy ym swoisAS adxg

QIBM)JOS PUE SWSAS JO [euInOf

9IEM]JOS PUB SWIISAS JO [eUINOf

QIEMYOS PUE SWASAS JO [euInof

suoneorddy yim swoisAg wadxyg

SureaurSuy aremijog uo suonoesuel], FAAL

QIBM)JOS PUE SWSAS JO [euInof

A3oJouyoo], 91eM)JOS PUB UOTRWLIOJU]

[euwnor Ajjeng) a1emos

SuouiSug aremjos uo suonoesuel] FYHI
SuneouiSug arem)jos ur suonesrjddy Surured] SUIYORIA Ul SOOUBAPY
uoneISIU] puE ISNY UONLULIOJU] UO 9UIJU0D) FHHAL
SurourSuy o1em1jos uo suonoesuel], AT
SurouiSug o1em)jos uo suondesuer] FHHI
Q0UASI[JU] [BIOYIMY YIM S[00], UO d0UdIQJU0)) FHH]
Jeuinor Ajrjeng) aremiyos

SuroowSuyg orem1jos uo suonoesuel], FAHI

SUTUIROT SUIYIBA UI SOOUBAPY

SurouiSug a1em)jos uo suondesuel] FHHI

QIeMIIOS HHHT

SureouSug Ajiqerjay] aremyjos uo wnisodwis gHA[
Suueourdug arem)yos [esundwyg

swAsAS djqepuada s [-eay OO uo doysyiop a1
Sal0N Surieousuy a1emyos 1A0SOIS WOV
Q0oUdSI[IU] [BIOYIMY YIM S[00], UO d0UdIJU0)) FHH]
Suueourduy swoysAg doueinssy Y3y uo wnisodwis gAA]
QIEM)JOS PUE SWSAS JO [eUINOf

QOURUAUIBIA 9IEMIJOS UO 9OUIQJUO)) [BUOTIBUIIU]
SueouISuyg a1eM}J0S pIjeWIoINY U0 d0UIRJU0D) FHH]
SOLIIA d1emyog uo wnisodwds FHH]

SHIOMION] [BINAN UO 9IUAIOFUO)) JUIOf [BUOTRUINU]
SuroourSuyg orem1jos uo suonoesuel], [
SuroourSug o1em1jos uo suonoesuel], [
SuroourSug o1em1jos uo suonoesuel], AT

a1eM)J0S AJI[EN() UO 90UIJUOY) OIJIoRJ-BISY

Anpiqeroy uo suonoesuel], AT

suonedIqng

(+00¢ ‘Tempiquiey [, % ‘ueueAereueieyueg ‘(ereliey)) ‘Tuewuey)

3.0 21ndwoynwug1 ppunoly/:diy
wo)y emdwoynwi] 10z @ WSuAdo)

(0102 “Te 30 woysLy)
(0107 “1e 12 1lEARD) | 010C
(010¢ ‘oueyjodeN 2 ‘Ieelyodysoyy] ‘Suep ‘H)
(010T ‘eA1[og 2% “Ieeosysoy nIy)
(0107 ‘Buyz)
(010T & 12 SQIZUDIN)
(6007 ‘OurjAS I(q % ‘IJoudq ‘SAZUIJA ‘UBYIN])
(96007 1 pue [e1e))
(600¢ 0eD pue IeeoSYSOY])
(600 “@S[nH UEA 29 ‘Tee}joZyYsOyY] HOIOS)
(600¢ “1oudg % “Neoo3y ‘ueyIny)
(B600T 11(PuE [E12))
(800 Us1d pue ysIH)
(8007 “Te 12 sAn1dopue/)
(800€ ‘e1puoD) | 800T
(800¢ “1e 32 1919)
(8007 “[® 10 uuLWSSdY)
(L00Z nrT pue nioy sounn)
(L00T “T& 32 u0ud "N)
(LOOT TeeyyoSysoyy| pue eAIjog)
(L00T ueSn(pue red) = LO0OT
(L00T T8 10 BN UBR)
(L00T yewrogay pue I7)
(LOOT “Te 10 SOIZUDIN)
(900¢ Bund pue noyz)
(900T ‘uax 7 ‘1ueiseq ‘e[nSe[[eyd "A)
(900 “ysorepung 2 ‘eAI[og “IeeyoSysoys W IYSeL) = 900T
(9007 “1e 32 proddays)
(L00T B[N % ‘onn ‘BN UBX)
(500 “1e 12 puensQ)
(S00z 0T pue niovy)
(500Z ‘n&7 % ‘onn ‘Bury)
(S00T “Te 19 TeeyyoSysoys| N IySe])
(00T “T€ 32 B[MSe[ey) g "N "A)

600C

$00T

(40T nA pue Suepy) | F00C

(+00¢ ‘uewdey) 2 ‘030110 ‘OUBJAISI(‘SAZUIN))
(€00 uer[, pue nio3y $ounn)

(€00 “Te12 yENY) | €00T

(€00T ‘ysurg % ‘onyn) ‘onn ")

(200 ®BA1jos pue Ieeyosysoyy)

(200T “ZoA1pad 2 ‘s1owwng ‘1zz1d)

(100 epopey] pue proddays)

(100T ‘TN 7 ‘osnery] ‘wojudf 'N) = 100T
(100T “OPEYdRIA 29 ‘O[9I ‘Wrewrq [H Pey3])
(000T ‘n&7)

(000 U]V PUE IEEFOSYSOY])
SAIPN)S AJBWLI

00T

000T

610z 1dV 1 "ON ‘T "[OA ‘Surroourduy o1emijos Jo [euInof

cl

sIsA[euy joseje(
sisk[euy josejeq
UOneDIJISSE[)
sIs[euy 1osejeq
UONEIIJISSe[)
UONEOIJISSE]D)
UONEDIJISSE[D)
UOnEIIJISSE[D)
UOneIIJISSe[)
UONeIIJISSE[)
Suueisny)
uonewnsg
UONIIJISSE[D)
UONEIIJISSE[D)
uonewnsy
UONEOIJISSE]D)
sisk[euy josejeq
UOneDIJISSE[D)
UOneDIJISSE[D)
UOnEIIJISSe])
UONEOIJISSE]D)
UONEDIJISSE[D)
UONEOIJISSE[D)
UONEOIJISSE[)

YL6E-95€C NSSI

1s00qepy

sakeq dAIBN

NI0MIDN [RINDN

SIOMION [EINON

QuIyoRIA 10J99A Moddng
Surjdwesiopun

9017, UOTSI09(J

SUBIIA-Y

SIOMION [EINON

9017, UOTSIdJ

(€Y) HOoMIPN [emaN
(VS) I0mIN [eImaN
sokeq QAIBN JojSuel],
uonezziundQ Auojo) juy
(o1quuasus) sokeq dAIBN
UOTIBZII0}08,] XIIEJA QANESON-UON
(wnNSoT) sekeq oAleN
Suidseg

(A4 pue S) sokeq AN
sakeq dAIBN

onqngd
onqng
anang
onqng
onqng
onqngd
anqnd
anang
onqng
onqng
ESTINGE |
QJeALI]
anang
AJBALL]
QJeALld
onqngd
onqng
AJBALL]
anang
onqng
onqng
onang
onqng
onqng

ASojouyoo], 21eM)JOS puB UOLBULIOJU]

SunoourSuyg oremjos uo suonoesuer] FH[
Anqiqerfoy uo suonoesuel] AT

SuredurSuy a1em)jog uo suonoesuel] FAAT
SuredurSuy a1em)jog uo suonoesuel] AT

SOOURIOS UOTJEULIOJU]

$10139T 90U PIOUBAPY

Qlemyos LHI

Aymiqeroy uo suonoesuel] AT

SOIOUIAQAD) puk ‘UBA ‘SWRISAS U0 suonoesuel] FAA]
SueouiSug eje pue 25pa[mouy uo suonoesuel]]
uonendwo)) [eINjeN U0 9JUSIJU0.) [EUOTIRUIdU]
SOIUAIOS UOTJRULIOJU]

Anqiqerfoy uo suonoesuel] AT

suoneorjddy si] pue SulrdouISug oIem)jos JO [eUINOf [RUOTIRUIAU]
ASojouyoo], 21eM)JOS pPUB UOIBULIOJU]

olemyos LHI

A3oouyd9], 91eM}JOS PUL UOTJEULIOJU]

Tewnoyf Ajijene) dremijos

QIeM}JOS JO [ewInof

SOOURIOS UOTJEULIOJU]

SOIOUIAQA) PUE ‘UBA ‘SWSISAS UO SUONoesuel] [
SunoourSuyg oremijos uo suonoesuer], FH[
suonedrddy ym swdsAS padxg

3.0 21ndwoynwug1 ppunoly/:diy
wo)y emdwoynwi] 10z @ WSuAdo)

(€107 “Ie 192 P1a0ualpey)

(£10¢ Bueyz 29 ‘BUOD ‘SOIZUDIA S1010)
(€107 0B X pue Suepy)

(€10 “nejy 2 ‘ung ‘Suog ‘proddoys)
(€107 ‘sudsaeq % ‘UaRIqIDA “193aefo()
(€10T “Te 10 djred)

(2107 ‘Buog 2 ‘uI) ‘oe))

(T10T A % ‘uif ‘uif)

(210T 01 pue okejag)

(210 “nyz % ‘Suog ‘ung)

(210¢ @210yoeNRyg pUE nuyste)

(Z10¢ Suey) pue Sueyz)

(Z10T ‘Buep 2% Suep ‘Sudd “x)

(z10¢ ‘weyBuistenny], 5 ‘nx ‘uap[o ‘Ko1gaq Buoy)
(7107 wne A\ pue Appeuag)

(2107 ‘uay) % Buoz ‘on ey Suix)
(T10T “I¢ W Av1D)

(1107 [eY1q4A pue rezy)

(110T “'T® 39 THISTA)

(1107 ‘Sueyz % ‘0N ‘Suey) "H A)
(110T ‘uejeg 7% ‘Ue[y ‘[eje))

(110 ‘ourrjodeN 29 ‘oS[NH ueA ‘Tee1joSysoyy ‘N 1ySel)
(1102 “1e 0 Bu0g)

(1T0T ‘11 % ‘WIASS ‘Tere))

610z 1dV 1 "ON ‘T "[OA ‘Surroourduy o1emijos Jo [euInof

£€10T

(4[4

110T

a0 aaindwoynur ppuinoly/:dipy
wo)y ndwonuwi] 10z @ WIuLdo)

sisfjeuy 13se1BQ
spoyia Buusisnpy ®
$3|NY UOHEBIOSSY @

UoNIPaId 199J0(21EMPOS U0 YIS Y Jo dey purjy a3eidwo)) 91 ainSrg
spoyia|\ uondIpald
| 19240Qq 31emijos - SOY
L SpoYlal uonewnsy @
spoujay uonediisse) @

logyBiap 152183y
aulyaey Jo133) voddng

uoissaibay siboq

153404 Wopuey

@ 1aseleq asdipg . .
- ieseieqg algng)
@ j@seied dai WSYN é sjaseje(oajaqg alemyjos - DY |

@ 19se1eq d1eAlld
spoyiey uonesyisse|d
HOMIAN |[BINAN

Pasn 1soN - 9DY
o
3a4] uoIsdaQ
safeg anepn

s1@se1e(123)2Q 24emyjos 2yl buisssooid
-ald pue bBuizd|euy - sisf|euy 1ase1eQ
~| spuad] pue saido] yoieasay - £DY V/
, AN
o

193)3@ 34EMOS Jo 431500 3y Bunuawbas - BuusisnD

aulyae 40123/ voddng

FOMIBN |BINSN
uoissaibay ansibo

uondIpaid
»ajaq

SUDIIBIDOSSY 138)3Q 31EMYOS [BIA3Y Bulup - uonepossy
s133)3@ Jo Jaquinp 3yl Bunewns3 - uonewnsy

synsay

BUDI4-183(]-UON PUE auoid-12ajaq

se sjuaunduwo) asemyos Buifyissed - uoneayisse|d

ong Buld pue apn7 uelog ‘e uey ‘Buep, Buifueny Jauag _ .

3shy ‘ueyny yeang ‘leled Aeebed ‘uolua4 uewion ‘puaddays — S19424easay |enuanpju] - Z0Y
unep ‘B : ! alemljos
e ‘Buos oequip ‘ssizuay wiy Jeeyobusoyy ybe]
uosiedwod poylay - L0Y
Buusauibugz aiemyos pajewoiny : safeq anen
BIBMYOS JO |BUINOS
uoneziwndg Jaraweley
sjuawanoidw) poyiapy Bunnsoog
pasodoid - DY U013 aaneay

Buiuies] sjquasug

(LLOZ) yomaweid 5, e 13 Buos

Aianodsig ejeqg pue 3bpsjmouy uo suondesuel] 333
_ (8002) Jlomawel] s (e 18 uelssa?

513J337 3IU3|IS pAIUBAPY

s)iomawiel uolydipaid
(£00Z) Jomaluely 5|8 18 SalzUB

13333 24emyos pasodoid - 6DY

Bemyos 3]
suonesijqngd

suoned)ddy 53] pue BuuaaulBug 2JEM)JOS U [BUINOS |EUOIIEUIZIU|
aleMyos 3331
| jewanor Juesyubis - LOY

Bupsawbuz asemiyos (eaudwg

53133W30A0 puUE UBR ‘SW3)sAS UD sUoNIesUeR] 333
|euanaor f1jenD a1eM1joS

fI)qelay uo suondesuel] 333|

ABD|OUYIa | SIBMIJOS PUE UDIEWLIO)U]|
58JUB125 UOIEULIOM|
610z 1dV 1 "ON ‘T "[OA ‘Surroourduy o1emijos Jo [euInof

suonedddy yum swaisds uadig

SIBMIJOS PUE SWSISAS JO [EUINOf

Bupasubuz siemjos uo suondesuel) 333|

PLO6E-9SET NSSI

Journal of Software Engineering, Vol. 1, No. 1, April 2015
REFERENCES

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data Mining
Techniques for Building Fault-proneness Models in Telecom
Java Software. Proceedings of the The 18th IEEE International
Symposium on Sofiware Reliability, 215-224.
http://doi.org/10.1109/ISSRE.2007.22

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A
systematic and comprehensive investigation of methods to
build and evaluate fault prediction models. Journal of Systems
and Sofiware, 83(1), 2-17.
http://doi.org/10.1016/j.jss.2009.06.055

Azar, D., & Vybihal, J. (2011). An ant colony optimization algorithm
to improve software quality prediction models: Case of class
stability. Information and Software Technology, 53(4), 388—
393. http://doi.org/10.1016/j.infs0£.2010.11.013

Benaddy, M., & Wakrim, M. (2012). Simulated Annealing Neural

Network for Software Failure Prediction. International Journal

of Software Engineering and Its Applications, 6(4).

S., Tsoumakas, G., Stamelos, 1., & Vlahavas, 1. (2008).

Regression via Classification applied on software defect

estimation. Expert Systems with Applications, 34(3), 2091—

2101. http://doi.org/10.1016/j.eswa.2007.02.012

Bishnu, P. S., & Bhattacherjee, V. (2012). Software Fault Prediction
Using Quad Tree-Based K-Means Clustering Algorithm. /[EEE
Transactions on Knowledge and Data Engineering, 24(6),
1146-1150. http://doi.org/10.1109/TKDE.2011.163

Boehm, B., & Basili, V. R. (2001). Top 10 list [software
development]. Computer, 34(1), 135-137.

Buzan, T., & Griffiths, C. (2013). Mind Maps for Business: Using the
ultimate thinking tool to revolutionise how you work (2nd
Edition). FT Press.

Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary
algorithms as instance selection for data reduction in KDD: an
experimental study. IEEE Transactions on Evolutionary
Computation, 7(6), 561-575.

Cao, H., Qin, Z., & Feng, T. (2012). A Novel PCA-BP Fuzzy Neural
Network Model for Software Defect Prediction. Advanced
Science Letters, 9(1), 423-428.

Catal, C. (2011). Software fault prediction: A literature review and
current trends. Expert Systems with Applications, 38(4), 4626—
4636.

Catal, C., Alan, O., & Balkan, K. (2011). Class noise detection based
on software metrics and ROC curves. Information Sciences,
181(21), 4867-4877.

Catal, C., & Diri, B. (2009a). A systematic review of software fault
prediction studies. Expert Systems with Applications, 36(4),
7346-7354.

Catal, C., & Diri, B. (2009b). Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem. Information Sciences, 179(8), 1040-1058.
http://doi.org/10.1016/j.ins.2008.12.001

Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an
Eclipse-based software fault prediction tool using Naive Bayes
algorithm. Expert Systems with Applications, 38(3), 2347—
2353. http://doi.org/10.1016/j.eswa.2010.08.022

Challagulla, V., Bastani, F., & Yen, 1. (2006). A Unified Framework
for Defect Data Analysis Using the MBR Technique. 2006 18th
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), 39-46.
http://doi.org/10.1109/ICTAIL.2006.23

Challagulla, V. U. B., Bastani, F. B., & Paul, R. A. (2004). Empirical
Assessment of Machine Learning based Software Defect
Prediction Techniques. In 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (pp. 263—
270). IEEE. http://doi.org/10.1109/WORDS.2005.32

Chang, C.-P., Chu, C.-P., & Yeh, Y.-F. (2009). Integrating in-process
software defect prediction with association mining to discover
defect pattern. Information and Software Technology, 51(2),
375-384. http://doi.org/10.1016/j.infsof.2008.04.008

Chang, R. H., Mu, X. D., & Zhang, L. (2011). Software Defect
Prediction Using Non-Negative Matrix Factorization. Journal

Bibi,

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

of Software, 6(11),
http://doi.org/10.4304/jsw.6.11.2114-2120

Cukic, B., & Singh, H. (2004). Robust Prediction of Fault-Proneness
by Random Forests. /5th International Symposium on Software
Reliability Engineering, 417-428.
http://doi.org/10.1109/ISSRE.2004.35

Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward
Comprehensible Software Fault Prediction Models Using
Bayesian Network Classifiers. IEEE Transactions on Software
Engineering, 39(2), 237-257.
http://doi.org/10.1109/TSE.2012.20

Denaro, G. (2000). Estimating software fault-proneness for tuning
testing activities. In Proceedings of the 22nd International
Conference on Software engineering - ICSE "00 (pp. 704-706).
New York, New York, USA: ACM Press.

El Emam, K., & Laitenberger, O. (2001). Evaluating capture-
recapture models with two inspectors. IEEE Transactions on
Sofiware Engineering, 27(9), 851-864.
http://doi.org/10.1109/32.950319

El Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of
faulty classes using object-oriented design metrics. Journal of
Systems and Software, 56(1), 63-75.
http://doi.org/10.1016/S0164-1212(00)00086-8

Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software
modules using support vector machines. Journal of Systems
and Software, 81(5), 649-660.
http://doi.org/10.1016/].jss.2007.07.040

Fenton, N. E., & Neil, M. (1999). A critique of software defect
prediction models. [EEE Transactions on Software
Engineering, 25(5), 675-689.
http://doi.org/10.1109/32.815326

Fenton, N., Krause, P., & Neil, M. (2001). A Probabilistic Model for
Software Defect Prediction. /EEE Transactions on Software
Engineering, 44(0), 1-35.

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P.,
& Mishra, R. (2007). Predicting software defects in varying
development lifecycles using Bayesian nets. Information and
Sofiware Technology, 49(1), 32-43.
http://doi.org/10.1016/j.infsof.2006.09.001

Gayatri, N., Reddy, S., & Nickolas, A. V. (2010). Feature Selection
Using Decision Tree Induction in Class level Metrics Dataset
for Software Defect Predictions. Lecture Notes in Engineering
and Computer Science, 2186(1), 124—129.

Gondra, 1. (2008). Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software, 81(2),
186—-195. http://doi.org/10.1016/j.js5.2007.05.035

Gray, D., Bowes, D., Davey, N., & Christianson, B. (2011). The
misuse of the NASA Metrics Data Program data sets for
automated software defect prediction. 15th Annual Conference
on Evaluation & Assessment in Sofiware Engineering (EASE
2011),96-103.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012).
Reflections on the NASA MDP data sets. IET Software, 6(6),
549.

Gilines Koru, a., & Liu, H. (2007). Identifying and characterizing
change-prone classes in two large-scale open-source products.
Journal of Systems and Software, 80(1), 63-73.
http://doi.org/10.1016/j.jss.2006.05.017

Giines Koru, A., & Tian, J. (2003). An empirical comparison and
characterization of high defect and high complexity modules.
Journal of Systems and Software, 67(3), 153-163.
http://doi.org/10.1016/S0164-1212(02)00126-7

Guo, L., Cukic, B., & Singh, H. (2003). Predicting fault prone
modules by the Dempster-Shafer belief networks. In
Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, 2003 (pp. 249-252). IEEE
Comput. Soc. http://doi.org/10.1109/ASE.2003.1240314

Guo, X. C., Yang, J. H.,, Wu, C. G,, Wang, C. Y., & Liang, Y. C.
(2008). A novel LS-SVMs hyper-parameter selection based on
particle swarm optimization. Neurocomputing, 71(16-18),
3211-3215. http://doi.org/10.1016/j.neucom.2008.04.027

2114-2120.

14

Journal of Software Engineering, Vol. 1, No. 1, April 2015

Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection
techniques for discrete class data mining. /EEE Transactions
on Knowledge and Data Engineering, 15(6), 1437-1447.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A
Systematic Literature Review on Fault Prediction Performance
in Software Engineering. [EEE Transactions on Software
Engineering, 38(6), 1276—1304.

IEEE. (1990). IEEE Standard Glossary of Software Engineering
Terminology (Vol. 121990). Inst. of Electrical and Electronical
Engineers.

J. Pai, G., & Bechta Dugan, J. (2007). Empirical Analysis of Software
Fault Content and Fault Proneness Using Bayesian Methods.
IEEE Transactions on Sofiware Engineering, 33(10), 675-686.
http://doi.org/10.1109/TSE.2007.70722

Jiang, Y., Li, M., Zhou, Z., & Member, S. (2011). Software Defect
Detection with rocus. Journal of Computer Science and
Technology, 26(2), 328-342. http://doi.org/10.1007/s11390-
011-1135-6

Jin, C., Jin, S.-W., & Ye, J.-M. (2012). Artificial neural network-
based metric selection for software fault-prone prediction
model. [ET Software, 6(6), 479. http://doi.org/10.1049/iet-
sen.2011.0138

Jones, C., & Bonsignour, O. (2012). The Economics of Software
Quality. Pearson Education, Inc.

Jorgensen, M., & Shepperd, M. (2007). A Systematic Review of
Software Development Cost Estimation Studies. [EEE
Transactions on Software Engineering, 33(1).

Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., &
Thambidurai, P. (2004). Object oriented software quality
prediction using general regression neural networks. ACM
SIGSOFT Software Engineering Notes, 29(5), 1.
http://doi.org/10.1145/1022494.1022515

Karthik, R., & Manikandan, N. (2010). Defect association and
complexity prediction by mining association and clustering
rules. 2010 2nd International Conference on Computer
Engineering and Technology, V7-569-V7-573.
http://doi.org/10.1109/ICCET.2010.5485608

Kenny, G. Q. (1993). Estimating defects in commercial software
during operational use. /EEE Transactions on Reliability,
42(1), 107-115.

Khoshgoftaar, T. M., & Allen, E. B. (2000). Prediction of software
faults using fuzzy nonlinear regression modeling. Proceedings.
Fifth IEEE International Symposium on High Assurance
Systems Engineering (HASE 2000), 281-290.
http://doi.org/10.1109/HASE.2000.895473

Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J.
(1997). Application of neural networks to software quality
modeling of a very large telecommunications system. /[EEE
Transactions on Neural Networks / a Publication of the IEEE
Neural Networks Council, 8(4), 902-9.
http://doi.org/10.1109/72.595888

Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. P.
(2000). Classification-tree models of software-quality over
multiple releases. /EEE Transactions on Reliability, 49(1), 4—
11. http://doi.org/10.1109/24.855532

Khoshgoftaar, T. M., & Gao, K. (2009). Feature Selection with
Imbalanced Data for Software Defect Prediction. 2009
International ~ Conference on Machine Learning and
Applications, 235-240.
http://doi.org/10.1109/ICMLA.2009.18

Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-based software quality
estimation models for fault prediction. Proceedings Eighth
IEEE Symposium on Software Metrics, 203-214.
http://doi.org/10.1109/METRIC.2002.1011339

Khoshgoftaar, T. M., Seliya, N., & Gao, K. (2005). Assessment of a
New Three-Group Software Quality Classification Technique:
An Empirical Case Study. Empirical Sofiware Engineering,
10(2), 183-218.

Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An
empirical study of predicting software faults with case-based
reasoning. Software Quality Journal, 14(2), 85-111.
http://doi.org/10.1007/s11219-006-7597-z

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

Khoshgoftaar, T. M., & Van Hulse, J. (2009). Empirical Case Studies
in Attribute Noise Detection. /EEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),
39(4), 379-388.

Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2011).
Comparing Boosting and Bagging Techniques With Noisy and
Imbalanced Data. [EEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 41(3), 552-568.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing
Systematic Literature Reviews in Software Engineering. EBSE
Technical Report Version 2.3, EBSE-2007-.

Koru, A. G., & Liu, H. (2005). An investigation of the effect of
module size on defect prediction using static measures. In
Proceedings of the 2005 workshop on Predictor models in
software engineering - PROMISE ’05 (Vol. 30, pp. 1-5). New
York, New York, USA: ACM Press.
http://doi.org/10.1145/1082983.1083172

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).
Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings. I[EEE
Transactions on Software Engineering, 34(4), 485-496.

Li, Z., & Reformat, M. (2007). A practical method for the software
fault-prediction. In 2007 IEEE International Conference on
Information Reuse and Integration (pp. 659-666). 1EEE.
http://doi.org/10.1109/IR1.2007.4296695

Lin, S.-W., Ying, K.-C., Chen, S.-C., & Lee, Z.-J. (2008). Particle
swarm optimization for parameter determination and feature
selection of support vector machines. Expert Systems with
Applications, 35(4), 1817-1824.
http://doi.org/10.1016/j.eswa.2007.08.088

Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary
Optimization of Software Quality Modeling with Multiple
Repositories. [EEE Transactions on Software Engineering,
36(6), 852-864.

Lyu, M. R. (2000). Software quality prediction using mixture models
with EM algorithm. In Proceedings First Asia-Pacific
Conference on Quality Software (pp. 69-78). IEEE Comput.
Soc. http://doi.org/10.1109/APAQ.2000.883780

Ma, Y., Guo, L., & Cukic, B. (2007). A Statistical Framework for the
Prediction of Fault-Proneness. In Advances in Machine
Learning Applications in Software Engineering (pp. 1-26).

Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for
cross-company software defect prediction. Information and
Sofiware Technology, 54(3), 248-256.
http://doi.org/10.1016/j.infs0£.2011.09.007

Maimon, O., & Rokach, L. (2010). Data Mining and Knolwedge
Discovery Handbook Second Edition. Springer.

McDonald, M., Musson, R., & Smith, R. (2007). The practical guide
to defect prevention. Control, 260-272.

Mende, T., & Koschke, R. (2009). Revisiting the evaluation of defect
prediction models. Proceedings of the 5th International
Conference on Predictor Models in Software Engineering -
PROMISE 09, 1. http://doi.org/10.1145/1540438.1540448

Menzies, T., DiStefano, J., Orrego, A. S., & Chapman, R. (2004).
Assessing predictors of software defects. In Proceedings of the
Workshop on Predictive Software Models.

Mengzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static
Code Attributes to Learn Defect Predictors. IEEE Transactions
on Software Engineering, 33(1), 2—13.

Mengzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A.
(2010). Defect prediction from static code features: current
results, limitations, new approaches. Automated Sofiware
Engineering, 17(4), 375-407.

Misirly, A. T., Bener, A. B., & Turhan, B. (2011). An industrial case
study of classifier ensembles for locating software defects.
Software Quality Journal, 19(3), 515-536.
http://doi.org/10.1007/s11219-010-9128-1

Myrtveit, 1., Stensrud, E., & Shepperd, M. (2005). Reliability and
validity in comparative studies of software prediction models.
IEEE Transactions on Software Engineering, 31(5), 380-391.
http://doi.org/10.1109/TSE.2005.58

Naik, K., & Tripathy, P. (2008). Sofiware Testing and Quality
Assurance. John Wiley & Sons, Inc.

15

Journal of Software Engineering, Vol. 1, No. 1, April 2015

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the
location and number of faults in large software systems. /EEE
Transactions on Software Engineering, 31(4), 340-355.
http://doi.org/10.1109/TSE.2005.49

Park, B., Oh, S., & Pedrycz, W. (2013). The design of polynomial
function-based neural network predictors for detection of
software defects. Information Sciences, 229, 40-57.

Pelayo, L., & Dick, S. (2012). Evaluating Stratification Alternatives
to Improve Software Defect Prediction. IEEE Transactions on
Reliability, 61(2), 516-525.
http://doi.org/10.1109/TR.2012.2183912

Peng, J., & Wang, S. (2010). Parameter Selection of Support Vector
Machine based on Chaotic Particle Swarm Optimization
Algorithm. Electrical Engineering, 3271-3274.

Peng, Y., Wang, G., & Wang, H. (2012). User preferences based
software defect detection algorithms selection using MCDM.
Information Sciences, 191, 3-13.
http://doi.org/10.1016/j.ins.2010.04.019

Peters, F., Menzies, T., Gong, L., & Zhang, H. (2013). Balancing
Privacy and Utility in Cross-Company Defect Prediction. /[EEE
Transactions on Software Engineering, 39(8), 1054-1068.
http://doi.org/10.1109/TSE.2013.6

Pizzi, N. J., Summers, A. R., & Pedrycz, W. (2002). Software quality
prediction using median-adjusted class labels. Proceedings of
the 2002 International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No.02CH37290), (1), 2405-24009.
http://doi.org/10.1109/IJCNN.2002.1007518

Quah, T., Mie, M., Thwin, T., & Quah, T. (2003). Application of
neural networks for software quality prediction using object-
oriented metrics. International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings. IEEE Comput.
Soc.

Radjenovi¢, D., Hericko, M., Torkar, R., & Zivkovié, A. (2013,
August). Software fault prediction metrics: A systematic
literature review. Information and Software Technology.
http://doi.org/10.1016/j.infsof.2013.02.009

Sammut, C., & Webb, G. 1. (2011). Encyclopedia of Machine
Learning. Springer.

Sandhu, P. S., Kumar, S., & Singh, H. (2007). Intelligence System for
Software Maintenance Severity Prediction. Journal of
Computer Science, 3(5), 281-288.
http://doi.org/10.3844/jcssp.2007.281.288

Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2009). Improving
Software-Quality Predictions With Data Sampling and
Boosting. [EEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 39(6), 1283—1294.

Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis
of Unlabeled Program Modules With Semisupervised
Clustering. [EEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 37(2), 201-211.
http://doi.org/10.1109/TSMCA.2006.889473

Shepperd, M., Cartwright, M., & Mair, C. (2006). Software defect
association mining and defect correction effort prediction.
IEEE Transactions on Software Engineering, 32(2), 69-82.
http://doi.org/10.1109/TSE.2006.1599417

Shepperd, M., & Kadoda, G. (2001). Comparing software prediction
techniques using simulation. /EEE Transactions on Software
Engineering, 27(11), 1014-1022.
http://doi.org/10.1109/32.965341

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality:
Some Comments on the NASA Software Defect Datasets.
IEEE Transactions on Software Engineering, 39(9), 1208—
1215. http://doi.org/10.1109/TSE.2013.11

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General
Software Defect-Proneness Prediction Framework. [EEE
Transactions on Software Engineering, 37(3), 356-370.

Sun, Z., Song, Q., & Zhu, X. (2012). Using Coding-Based Ensemble
Learning to Improve Software Defect Prediction. [EEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6), 1806-1817.
http://doi.org/10.1109/TSMCC.2012.2226152

Tosun, A., Turhan, B., & Bener, A. (2008). Ensemble of software
defect predictors. In Proceedings of the Second ACM-IEEE

Copyright @ 2015 IImuKomputer.Com
http://journal.ilmukomputer.org

ISSN 2356-3974

international symposium on Empirical software engineering
and measurement - ESEM 08 (p. 318). New York, New York,
USA: ACM Press. http://doi.org/10.1145/1414004.1414066

Turhan, B., Kocak, G., & Bener, A. (2009). Data mining source code
for locating software bugs: A case study in telecommunication
industry. Expert Systems with Applications, 36(6), 9986-9990.
http://doi.org/10.1016/j.eswa.2008.12.028

Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the
relative value of cross-company and within-company data for
defect prediction. Empirical Software Engineering, 14(5), 540—
578. http://doi.org/10.1007/s10664-008-9103-7

Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M. K. M. M.,
Cheng, C. K., Permadi, R. B., & Feldt, R. (2012). Evaluation
and Measurement of Software Process Improvement—A
Systematic Literature Review. [EEE Transactions on Software
Engineering, 38(2), 398-424.
http://doi.org/10.1109/TSE.2011.26

Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M.,
& Haesen, R. (2008). Mining software repositories for
comprehensible software fault prediction models. Journal of
Systems and Software, 81(5), 823-839.
http://doi.org/10.1016/].jss.2007.07.034

Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010). A
Comparative Study of Ensemble Feature Selection Techniques
for Software Defect Prediction. 2010 Ninth International
Conference on Machine Learning and Applications, 135-140.

Wang, Q., & Yu, B. (2004). Extract rules from software quality
prediction model based on neural network. [6th [EEE
International Conference on Tools with Artificial Intelligence,
(Ictai), 191-195. http://doi.org/10.1109/ICTAIL.2004.62

Wang, S., & Yao, X. (2013). Using Class Imbalance Learning for
Software Defect Prediction. /[EEE Transactions on Reliability,
62(2), 434-443.

Witten, 1. H., Frank, E., & Hall, M. A. (2011). Data Mining Third
Edition. Elsevier Inc.

Wong, W. E., Debroy, V., Golden, R., Xu, X., & Thuraisingham, B.
(2012). Effective Software Fault Localization Using an RBF
Neural Network. IEEE Transactions on Reliability, 61(1), 149—
169. http://doi.org/10.1109/TR.2011.2172031

Xing, F., Guo, P., & Lyu, M. R. (2005). A Novel Method for Early
Software Quality Prediction Based on Support Vector
Machine. /6th IEEE International Symposium on Sofiware
Reliability Engineering (ISSRE’05), 213-222.
http://doi.org/10.1109/ISSRE.2005.6

Zhang, P., & Chang, Y. (2012). Software fault prediction based on
grey neural network. In 2012 8th International Conference on
Natural Computation (pp. 466-469). IEEE.
http://doi.org/10.1109/ICNC.2012.6234505

Zheng, J. (2010). Cost-sensitive boosting neural networks for
software defect prediction. Expert Systems with Applications,
37(6), 4537-4543.

Zhou, Y., & Leung, H. (2006). Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults.
IEEE Transactions on Software Engineering, 32(10), 771-789.
http://doi.org/10.1109/TSE.2006.102

BIOGRAPHY OF AUTHOR

Romi Satria Wahono. Received B.Eng and
M.Eng degrees in Computer Science
respectively from Saitama University, Japan,
and Ph.D in Software Engineering and
Machine Learning from Universiti Teknikal
Malaysia Melaka. He is a lecturer at the
Faculty of Computer Science, Dian
Nuswantoro University, Indonesia. He is also
a founder and chief executive officer of PT
Brainmatics Cipta Informatika, a software development company in
Indonesia. His current research interests include software engineering
and machine learning. Professional member of the ACM, PMI and
IEEE Computer Society.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

