

RESEARCH ARTICLE Adv. Sci. Lett. 20, 239–244, 2014

239 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5283

Copyright © 2014 American Scientific Publishers Advanced Science Letters
All rights reserved Vol. 20, 239–244, 2014
Printed in the United States of America

Genetic Feature Selection for Software Defect
Prediction

Romi Satria Wahono1,2, Nanna Suryana Herman2
1Graduate School of Computer Science, Dian Nuswantoro University, Semarang, Indonesia

2Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka

Recently, software defect prediction is an important research topic in the software engineering field. The accurate prediction

of defect prone software modules can help the software testing effort, reduce costs, and improve the software testing process

by focusing on fault-prone module. Software defect data sets have an imbalanced nature with very few defective modules

compared to defect-free ones. The software defect prediction performance also decreases significantly because the dataset

contains noisy attributes. In this research, we propose the combination of genetic algorithm and bagging technique for

improving the performance of the software defect prediction. Genetic algorithm is applied to deal with the feature selection,

and bagging technique is employed to deal with the class imbalance problem. The proposed method is evaluated using the data

sets from NASA metric data repository. Results have indicated that the proposed method makes an impressive improvement

in prediction performance for most classifiers.

Keywords: Software Defect Prediction, Genetic Algorithm, Feature Selection, Bagging Technique

1. INTRODUCTION

The costs of finding and correcting software defects
have been the most expensive activity during both software
development and software maintenance1. A panel at IEEE
Metrics 20022 also concluded that manual software
reviews can find only 60 percent of defects. Therefore,
software defect prediction has been an important research
topic in the software engineering field, especially to solve
the inefficiency and ineffectiveness of existing industrial
approach of software testing and reviews.

The accurate prediction of defect‐prone software
modules can help direct test effort, reduce costs, improve
the software testing process by focusing on fault-prone
modules, and identifying refactoring candidates that are
predicted as fault-prone3. Recent advances in software
quality estimation yield building defect predictors with a
mean probability of detection of 71 percent4. However,
software fault prediction approaches are much more

1 Email Address: romi@romisatriawahono.net

efficient and effective to detect software faults compared
to software reviews.

Various machine learning classification algorithms
have been applied for software defect prediction5,
including Logistic Regression6, Decision Trees7,8, Neural
Networks9,10, and Naïve-Bayes11. Unfortunately, software
defect prediction remains a largely unsolved problem. The
comparisons and benchmarking result of the defect
prediction using machine learning classifiers indicate that,
no significant performance differences could be detected5
and no particular classifiers that performs the best for all
the data sets12. There is a need of accurate defect prediction
model for large-scale software system.

Two common aspects of data quality that can affect
classification performance are class imbalance and noisy
attributes13 of data sets. Software defect datasets have an
imbalanced nature with very few defective modules
compared to defect-free ones14. Imbalance can lead to a
model that is not practical in software defect prediction,

Adv. Sci. Lett. 20, 239–244, 2014 RESEARCH ARTICLE

240

because most instances will be predicted as non-defect
prone15. The software defect prediction performance also
decreases significantly because the dataset contains noisy
attributes16,17. However, the noisy data points in the
datasets that cannot be confidently assumed to be
erroneous using such simple method18.

Feature selection is generally used in a machine
learning field when the learning task involves high-
dimensional and noisy attribute datasets. Most of the
feature selection algorithms attempt to find solutions in
feature selection that range between sub-optimal and near
optimal regions, since they use local search throughout the
entire process, instead of global search. Consequently,
near-optimal to optimal solutions are quite difficult to
achieve using these algorithms19. Genetic Algorithm can
find a solution in the full search space and use a global
search ability, significantly increasing the ability of finding
high-quality solutions within a reasonable period of time20.

In the current work, we propose the combination of
Genetic Algorithm and Bagging technique for improving
the accuracy of software defect prediction. Genetic
Algorithm is applied to deal with the feature selection, and
bagging technique is employed to deal with the class
imbalance problem. Bagging technique is chosen due to
the effectiveness in handling class imbalance13.

2. RELATED WORKS

Feature selection is an important data preprocessing
activity and has been extensively studied in the data mining
and machine learning community. The main goal of feature
selection is to select a subset of features that minimizes the
prediction errors of classifiers. Feature selection
techniques are divided into two categories: wrapper-based
approach and filter-based approach. The wrapper-based
approach involves training a learner during the feature
selection process, while the filter-based approach uses the
intrinsic characteristics of the data, based on a given metric,
for feature selection and does not depend on training a
learner. The primary advantage of the filter-based approach
over the wrapper-based approach is that it is
computationally faster. However, if computational
complexity was not a factor, then a wrapper-based
approach was the best overall feature selection scheme in
terms of accuracy.

Once the objective in the software defect prediction is
to improve the modeling quality and accuracy of software
defect prediction, it has been decided to use wrapper
methods. Nevertheless, wrapper methods have the
associated problem of having to train a classifier for each
tested feature subset. This means testing all the possible
combinations of features will be virtually impossible. To
solve this problem several search heuristics have been
proposed, e.g. Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO).
These methods are able to find fairly good solutions
without searching the entire workspace.

Although feature selection has been widely applied in

numerous application domains for many years, its
application in the software quality prediction domain is
limited25. Song et al.16 applied two wrapper approaches,
Forward Selection and Backward Elimination, as a feature
selection for their proposed model. Song et al. concluded
that a feature selection techniques, especially Forward
Selection and Backward Elimination can play different
roles with different learning algorithms for different data
sets and that no learning scheme dominates, i.e., always
outperforms the others for all data sets. This means we
should choose different learning schemes for different data
sets, and consequently, the evaluation and decision process
is important. Wang et al.21 applied ensemble feature
selection techniques to 16 software defect data sets, and
they concluded that ensembles of very few rankers are very
effective and even better than ensembles of many or all
rankers.

The class imbalance problem is observed in various
domain, including software defect prediction. Several
methods have been proposed in literature to deal with class
imbalance: data sampling, boosting and bagging. Data
sampling is the primary approach for handling class
imbalance, and it involves balancing the relative class
distributions of the given data set. There are two types of
data sampling approaches: undersampling and
oversampling22. Boosting is another technique which is
very effective when learning from imbalanced data.
Seiffert et al.22 show that boosting performs very well.
Bagging techniques generally outperform boosting, and
hence in noisy data environments, bagging is the preferred
method for handling class imbalance13.

While considerable work has been done for feature
selection and class imbalance problem separately, limited
research can be found on investigating them both together,
particularly in the software engineering field13. In this
study, we combine Genetic Algorithm for selecting
features and Bagging technique for solving the class
imbalance problem, in the context of software defect
prediction.

3. PROPOSED DEFECT PREDICTION METHOD

Figure1 shows an activity diagram of the integration of
Bagging technique and Genetic Algorithm (GA) based
feature selection. The aim of GA is to find optimum
solution within the potential solution set. Each solution set
is called as population. Populations are composed of
vectors, namely, chromosome or individual. Each item in
the vector is called as gene. In the proposed method,
chromosomes represent features which are encoded as
binary strings of 1 and 0. In this scheme, 1 represents se-
lection of a feature and 0 means a non-selection.

As shown in Figure 1, input data set includes training
data set and testing data set. Relational feature subsets are
chosen and unrelated features subsets are discarded by
feature subset selection. After training data set and testing
data set discarded unrelated feature subsets, they become
training data set of selected feature subset and testing data

RESEARCH ARTICLE Adv. Sci. Lett. 20, 239–244, 2014

241 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5283

set of selected feature subset. Classifiers are trained by
training set with selected feature subset. Bagging23 was
proposed to improve the classification by combining
classifications of randomly generated training sets. The
bagging classifier separates a training set into several new
training sets by random sampling, and builds models based
on the new training sets. The final classification result is
obtained by the voting of each model. Classification
accuracy of classifier is calculated by testing set with
selected feature subset. Classification accuracy of classifier,
the number of selected features and the feature cost are
used to construct a fitness function. Every chromosome is
evaluated by the following fitness function equation.

	

where A is classification accuracy, WA is weight of
classification accuracy, Fi is feature value, WF is feature
weight, Ci is feature cost, P is setting constant of avoiding
that denominator reaches zero.

Data Set

Select the Feature Subset

Validate the Generated Model

Testing
Data Set

Training
Data Set

Implement Bagging

Satisfy
Stopping
Criteria?

Calculate the Model Accuracy

Train Classifier with Selected
Feature Subset

yes

Optimized Feature Subset

Selection Operation

Crossover Operation

Mutation Operation

no

All Classifiers
Finished?

Combine Votes of All
Classifiers

no

yes

Calculate the Fitness Value

Fig.1. Activity Diagram of the Integration of Bagging

Technique and Genetic Algorithm based Feature Selection

When ending condition is satisfied, the operation ends,
otherwise, continue with the next generation operation.
The proposed method searches for better solutions by
genetic operations, including crossover, mutation and
selection.

4. EXPERIMENTAL RESULT

The used platform in this experiment is Intel Core i7 2.2

GHz CPU, 16 GB RAM, and Microsoft Windows 7
Professional 64-bit with SP1 operating system. The
development environment is Netbeans 7 with Java
programming language. The application software is
RapidMiner 5.2.

In this research, we use nine software defect prediction
data sets from NASA MDP18. Individual attributes per data
set, together with some general statistics and descriptions,
are given in Table 1. These data sets have various scales of
line of code (LOC), various software modules coded by
several different programming languages including C, C++
and Java, and various types of code metrics including code
size, Halstead’s complexity and McCabe’s cyclomatic
complexity.

Table 1. NASA MDP Data Sets and the Code Attributes

We use the state-of-the-art stratified 10-fold cross-
validation for learning and testing data. This means that we
divided the training data into 10 equal parts and then
performed the learning process 10 times. We employ the
stratified 10-fold cross validation, because this method has
become the standard method in practical terms. Some tests
have also shown that the use of stratification improves
results slightly24.

As an accuracy indicator to evaluate the performance of
classifiers in our experiments we applied area under curve
(AUC). Lessmann et al.5 advocated the use of the AUC to
improve cross-study comparability. The AUC has the
potential to significantly improve convergence across
empirical experiments in software defect prediction,
because it separates predictive performance from operating
conditions, and represents a general measure of
predictiveness.

Code Attributes
NASA MDP dataset

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LOC counts LOC total √ √ √ √ √ √ √ √ √
LOC blank √ √ √ √ √ √ √ √ √

LOC code and comment √ √ √ √ √ √ √ √ √
LOC comments √ √ √ √ √ √ √ √ √

LOC executable √ √ √ √ √ √ √ √ √
number of lines √ √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √
difficulty √ √ √ √ √ √ √ √ √

effort √ √ √ √ √ √ √ √ √
error est √ √ √ √ √ √ √ √ √

length √ √ √ √ √ √ √ √ √
level √ √ √ √ √ √ √ √ √

prog time √ √ √ √ √ √ √ √ √
volume √ √ √ √ √ √ √ √ √

num operands √ √ √ √ √ √ √ √ √
num operators √ √ √ √ √ √ √ √ √

num unique operands √ √ √ √ √ √ √ √ √
num unique operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic complexity √ √ √ √ √ √ √ √ √
cyclomatic density √ √ √ √ √ √ √ √

design complexity √ √ √ √ √ √ √ √ √
essential complexity √ √ √ √ √ √ √ √ √

Misc. branch count √ √ √ √ √ √ √ √ √
call pairs √ √ √ √ √ √ √ √

condition count √ √ √ √ √ √ √ √
decision count √ √ √ √ √ √ √ √
decision density √ √ √ √ √ √ √ √

edge count √ √ √ √ √ √ √ √
essential density √ √ √ √ √ √ √ √

parameter count √ √ √ √ √ √ √ √
maintenance severity √ √ √ √ √ √ √ √

modified condition count √ √ √ √ √ √ √ √
multiple condition count √ √ √ √ √ √ √ √

global data complexity √ √
global data density √ √

normalized cyclomatic complexity √ √ √ √ √ √ √ √
percent comments √ √ √ √ √ √ √ √

node count √ √ √ √ √ √ √ √
Programming Language C C++ Java C C C C C C

Number of Code Attributes 37 21 39 39 37 37 77 37 37
Number of Modules 505 1571 458 127 403 1059 4505 1511 1347

Number of fp Modules 48 319 43 44 31 76 23 160 178
Percentage of fp Modules 9.5 20.31 9.39 34.65 7.69 7.18 0.51 10.59 13.21

Adv. Sci. Lett. 20, 239–244, 2014 RESEARCH ARTICLE

242

First of all, we conducted experiments on 9 NASA
MDP data sets by using 10 classification algorithms. More
specifically, it applies five types of classification models
that include traditional statistical classifiers (Logistic
Regression (LR), Linear Discriminant Analysis (LDA),
and Naïve Bayes (NB)), Nearest Neighbors (k-nearest
neighbor (k-NN) and K*), Neural Network (Back
Propagation (BP)), Support Vector Machine (SVM), and
Decision Tree (C4.5, Classification and Regression Tree
(CART), and Random Forest (RF)).

The experimental results are reported in Table 2. This
result confirmed Hall et al.25 result that NB and LR, in
particular, seem to be the techniques used in models that
are performing relatively well in software defect
prediction. Models based on Decision Tree seem to
underperform due to the class imbalance. SVM techniques
also perform less well, though SVM has excellent
generalization ability in the situation of small sample data
like NASA MDP data set.

Table 2. AUC of 10 Classifiers on 9 Data Sets

(without GA and Bagging)

In the next experiment, we implemented GA and

bagging technique for 10 classification algorithms on 9
NASA MDP data sets. The experimental result is shown in
Table 3. The improved model for each classifier is
highlighted width boldfaced print.

Table 3. AUC of 10 Classifiers on 9 Data Sets

(with GA and Bagging)

Figure 2 visually shows AUC comparisons of 10

algorithms on 9 NASA MDP data sets. As shown in Table
3 and Figure 2, almost all classifiers that implemented GA
and bagging outperform the original method. It indicate
that the integration of GA based feature selection and
Bagging technique is effective to improve classification

performance significantly.

Figure 2. AUC Comparisons of 9 Data Sets Classified by

10 Classifiers

Finally, in order to verify whether a significant
difference between the proposed method (with GA and
bagging) and a method without GA and bagging, the results
of both methods are compared. We performed the
statistical t-Test (Paired Two Sample for Means) for every
classifier (algorithm) pair of without/with GA and bagging
on each data set. In statistical significance testing the P value
is the probability of obtaining a test statistic at least as extreme
as the one that was actually observed, assuming that the null
hypothesis is true. One often "rejects the null hypothesis"
when the P value is less than the predetermined significance
level (α), indicating that the observed result would be highly
unlikely under the null hypothesis. In this case, we set the
statistical significance level (α) to be 0.05. It means that no
statistically significant difference if P value > 0.05.

The result is shown in Table 4. Although there are two
classifiers (LR and NB) that have no significant difference
(P value > 0.05), the results have indicated that those of
remaining eight classifiers (LDA, k-NN, K*, BP, SVM,
C4.5, CART and RF) have significant difference (P value
< 0.05). The integration between GA and Bagging
technique achieved higher classification accuracy for most
classifiers. Therefore, we can conclude that the proposed

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Statistical
Classifier

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838

Nearest
Neighbor

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76

Neural
Network

BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883

Support Vector
Machine

SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899

Decision Tree

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Statistical
Classifier

LR 0.753 0.795 0.691 0.761 0.742 0.852 0.822 0.813 0.901

LDA 0.592 0.627 0.635 0.64 0.674 0.637 0.607 0.635 0.715

NB 0.702 0.79 0.677 0.739 0.724 0.799 0.805 0.78 0.861

Nearest
Neighbor

k-NN 0.666 0.689 0.67 0.783 0.656 0.734 0.554 0.649 0.732

K* 0.71 0.822 0.503 0.718 0.68 0.876 0.877 0.816 0.893

Neural
Network

BP 0.744 0.797 0.707 0.835 0.689 0.829 0.905 0.799 0.921

Support Vector
Machine

SVM 0.667 0.767 0.572 0.747 0.659 0.774 0.139 0.476 0.879

Decision Tree

C4.5 0.64 0.618 0.658 0.732 0.695 0.758 0.642 0.73 0.844

CART 0.674 0.818 0.754 0.709 0.703 0.819 0.832 0.842 0.9

RF 0.706 0.584 0.605 0.483 0.735 0.696 0.901 0.734 0.601

RESEARCH ARTICLE Adv. Sci. Lett. 20, 239–244, 2014

243 Adv. Sci. Lett. Vol. 20, No. 1, 2014 doi: 10.1166/asl.2014.5283

method makes an impressive improvement in prediction
performance for most classifiers.

Table 4. Paired Two-tailed t-Test of without/with GA and

Bagging

5. CONCLUSION

Two common aspects of data quality in software defect
prediction that can affect classification performance are
class imbalance and noisy attributes of data sets. A novel
method that integrates genetic algorithm and bagging
technique for software defect prediction is proposed in this
paper. Genetic algorithm is applied to deal with the noise
attributes problem, and bagging technique is employed to
alleviate the class imbalance problem. We conducted a
comparative study of ten classifiers which is applied to
nine NASA MDP data sets with context of software defect
prediction. Experimental results show us that the proposed
method achieved higher classification accuracy. Therefore,
we can conclude that the proposed method makes an
impressive improvement in prediction performance for
most classifiers.

Future research will be concerned with benchmarking
the proposed method with other metaheuristic optimization
techniques such as bee colony or ant colony optimization,
and other metalearning techniques such as boosting and
sampling.

REFERENCES

[1] C. Jones. Applied Software Measurement. Mc Graw Hill, (2008).
[2] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall,

D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz. What we have
learned about fighting defects. Proceedings Eighth IEEE
Symposium on Software Metrics, (2002) 249-258.

[3] C. Catal. Software fault prediction: A literature review and current
trends. Expert Systems with Applications, 38(4) (2011) 4626-
4636.

[4] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.
Bener. Defect prediction from static code features: current results,
limitations, new approaches. Automated Software Engineering,
17(4) (2010) 375-407.

[5] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Transactions on Software
Engineering, 34(4) (2008) 485-496

[6] G. Denaro. Estimating software fault-proneness for tuning testing
activities. Proceedings of the 22nd International Conference on
Software engineering (ICSE ’00), (2000) 704-706.

[7] T. M. Khoshgoftaar and N. Seliya. Tree-based software quality
estimation models for fault prediction. Proceedings Eighth IEEE
Symposium on Software Metrics, (2002) 203-214,.

[8] T. M. Khoshgoftaar and K. Gao. Feature Selection with
Imbalanced Data for Software Defect Prediction. International
Conference on Machine Learning and Applications, (2009) 235-
240.

[9] B.-J. Park, S.-K. Oh, and W. Pedrycz. The design of polynomial
function-based neural network predictors for detection of software
defects. Information Sciences, 229 (2013) 40-57.

[10] Q. Wang and B. Yu. Extract rules from software quality prediction
model based on neural network. 16th IEEE International
Conference on Tools with Artificial Intelligence, (2004) 191-195.

[11] T. Menzies, J. Greenwald, and A. Frank.Data Mining Static Code
Attributes to Learn Defect Predictors. IEEE Transactions on
Software Engineering, 33(1) (2007) 2-13.

[12] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A General
Software Defect-Proneness Prediction Framework. IEEE
Transactions on Software Engineering, 37(3) (2011) 356-370.

[13] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. Comparing
Boosting and Bagging Techniques With Noisy and Imbalanced
Data. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 41(3) (2011) 552-568.

[14] A. Tosun, A. Bener, B. Turhan, and T. Menzies. Practical
considerations in deploying statistical methods for defect
prediction: A case study within the Turkish telecommunications
industry. Information and Software Technology, 52(11) (2010)
1242-1257.

[15] T. M. Khoshgoftaar, Y. Xiao, and K. Gao. Software quality
assessment using a multi-strategy classifier. Information Sciences,
(2010) .

[16] T. Wang, W. Li, H. Shi, and Z. Liu. Software Defect Prediction
Based on Classifiers Ensemble. Journal of Information &
Computational Science. 16 (8) (2011) 4241-4254.

[17] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in
defect prediction. Proceeding of the 33rd International Conference
on Software Engineering, (2011) 481-490.

[18] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
Reflections on the NASA MDP data sets. IET Software, 6(6)
(2012) 549-558.

[19] M. M. Kabir, M. Shahjahan, and K. Murase. A new hybrid ant
colony optimization algorithm for feature selection. Expert
Systems with Applications, 39(3) (2012) 3747-3763.

[20] S. C. Yusta. Different metaheuristic strategies to solve the feature
selection problem. Pattern Recognition Letters, 30(5) (2009) 525-
534.

[21] H. Wang, T. M. Khoshgoftaar, and A. Napolitano. Software
measurement data reduction using ensemble techniques.
Neurocomputing, 92 (2012) 124-132.

[22] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse. Improving
Software-Quality Predictions With Data Sampling and Boosting.
IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, 39(6) (2009) 1283-1294.

[23] L. Breiman. Bagging predictors. Machine Learning, 24(2) (1996)
123-140.

[24] I. H. Witten, E. Frank, and M. A. Hall. Data Mining Third Edition.
Elsevier Inc., (2011).

[25] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
Systematic Literature Review on Fault Prediction Performance in
Software Engineering. IEEE Transactions on Software
Engineering, 38(6) (2012) 1276-1304.

Classifiers P value of t-Test Result

Statistical
Classifier

LR 0.156 Not Sig. (α > 0.05)

LDA 0.00004 Sig. (α < 0.05)

NB 0.294 Not Sig. (α > 0.05)

Nearest
Neighbor

k-NN 0.00002 Sig. (α < 0.05)

K* 0.001 Sig. (α < 0.05)

Neural Network BP 0.008 Sig. (α < 0.05)

Support Vector
Machine

SVM 0.03 Sig. (α < 0.05)

Decision Tree

C4.5 0.0002 Sig. (α < 0.05)

CART 0.0002 Sig. (α < 0.05)

RF 0.01 Sig. (α < 0.05)

