
 

RESEARCH ARTICLE                                         Adv. Sci. Lett. 20, 239–244, 2014      
 
 

239                                           Adv.  Sci.  Lett. Vol. 20, No. 1, 2014                                          doi: 10.1166/asl.2014.5283 

Copyright © 2014 American Scientific Publishers                                              Advanced Science Letters 
All rights reserved                                                                                                    Vol. 20, 239–244, 2014 
Printed in the United States of America 

 
 
 
 

 
 
 
 

Genetic Feature Selection for Software Defect 
Prediction 

Romi Satria Wahono1,2,  Nanna Suryana Herman2  
1Graduate School of Computer Science, Dian Nuswantoro University, Semarang, Indonesia 

2Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka 
 

 
Recently, software defect prediction is an important research topic in the software engineering field. The accurate prediction 

of defect prone software modules can help the software testing effort, reduce costs, and improve the software testing process 

by focusing on fault-prone module. Software defect data sets have an imbalanced nature with very few defective modules 

compared to defect-free ones. The software defect prediction performance also decreases significantly because the dataset 

contains noisy attributes. In this research, we propose the combination of genetic algorithm and bagging technique for 

improving the performance of the software defect prediction. Genetic algorithm is applied to deal with the feature selection, 

and bagging technique is employed to deal with the class imbalance problem. The proposed method is evaluated using the data 

sets from NASA metric data repository. Results have indicated that the proposed method makes an impressive improvement 

in prediction performance for most classifiers. 
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1. INTRODUCTION 

The costs of finding and correcting software defects 
have been the most expensive activity during both software 
development and software maintenance1. A panel at IEEE 
Metrics 20022 also concluded that manual software 
reviews can find only 60 percent of defects. Therefore, 
software defect prediction has been an important research 
topic in the software engineering field, especially to solve 
the inefficiency and ineffectiveness of existing industrial 
approach of software testing and reviews. 

The accurate prediction of defect‐prone software 
modules can help direct test effort, reduce costs, improve 
the software testing process by focusing on fault-prone 
modules, and identifying refactoring candidates that are 
predicted as fault-prone3. Recent advances in software 
quality estimation yield building defect predictors with a 
mean probability of detection of 71 percent4. However, 
software fault prediction approaches are much more 
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efficient and effective to detect software faults compared 
to software reviews.  

Various machine learning classification algorithms 
have been applied for software defect prediction5, 
including Logistic Regression6, Decision Trees7,8, Neural 
Networks9,10, and Naïve-Bayes11. Unfortunately, software 
defect prediction remains a largely unsolved problem. The 
comparisons and benchmarking result of the defect 
prediction using machine learning classifiers indicate that, 
no significant performance differences could be detected5 
and no particular classifiers that performs the best for all 
the data sets12. There is a need of accurate defect prediction 
model for large-scale software system. 

Two common aspects of data quality that can affect 
classification performance are class imbalance and noisy 
attributes13 of data sets. Software defect datasets have an 
imbalanced nature with very few defective modules 
compared to defect-free ones14. Imbalance can lead to a 
model that is not practical in software defect prediction, 
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because most instances will be predicted as non-defect 
prone15. The software defect prediction performance also 
decreases significantly because the dataset contains noisy 
attributes16,17. However, the noisy data points in the 
datasets that cannot be confidently assumed to be 
erroneous using such simple method18. 

Feature selection is generally used in a machine 
learning field when the learning task involves high-
dimensional and noisy attribute datasets. Most of the 
feature selection algorithms attempt to find solutions in 
feature selection that range between sub-optimal and near 
optimal regions, since they use local search throughout the 
entire process, instead of global search. Consequently, 
near-optimal to optimal solutions are quite difficult to 
achieve using these algorithms19. Genetic Algorithm can 
find a solution in the full search space and use a global 
search ability, significantly increasing the ability of finding 
high-quality solutions within a reasonable period of time20.  

In the current work, we propose the combination of 
Genetic Algorithm and Bagging technique for improving 
the accuracy of software defect prediction. Genetic 
Algorithm is applied to deal with the feature selection, and 
bagging technique is employed to deal with the class 
imbalance problem. Bagging technique is chosen due to 
the effectiveness in handling class imbalance13.  

 
2. RELATED WORKS 

Feature selection is an important data preprocessing 
activity and has been extensively studied in the data mining 
and machine learning community. The main goal of feature 
selection is to select a subset of features that minimizes the 
prediction errors of classifiers. Feature selection 
techniques are divided into two categories: wrapper-based 
approach and filter-based approach. The wrapper-based 
approach involves training a learner during the feature 
selection process, while the filter-based approach uses the 
intrinsic characteristics of the data, based on a given metric, 
for feature selection and does not depend on training a 
learner. The primary advantage of the filter-based approach 
over the wrapper-based approach is that it is 
computationally faster. However, if computational 
complexity was not a factor, then a wrapper-based 
approach was the best overall feature selection scheme in 
terms of accuracy. 

Once the objective in the software defect prediction is 
to improve the modeling quality and accuracy of software 
defect prediction, it has been decided to use wrapper 
methods. Nevertheless, wrapper methods have the 
associated problem of having to train a classifier for each 
tested feature subset. This means testing all the possible 
combinations of features will be virtually impossible. To 
solve this problem several search heuristics have been 
proposed, e.g. Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO). 
These methods are able to find fairly good solutions 
without searching the entire workspace. 

Although feature selection has been widely applied in 

numerous application domains for many years, its 
application in the software quality prediction domain is 
limited25. Song et al.16 applied two wrapper approaches, 
Forward Selection and Backward Elimination, as a feature 
selection for their proposed model. Song et al. concluded 
that a feature selection techniques, especially Forward 
Selection and Backward Elimination can play different 
roles with different learning algorithms for different data 
sets and that no learning scheme dominates, i.e., always 
outperforms the others for all data sets. This means we 
should choose different learning schemes for different data 
sets, and consequently, the evaluation and decision process 
is important. Wang et al.21 applied ensemble feature 
selection techniques to 16 software defect  data sets, and 
they concluded that ensembles of very few rankers are very 
effective and even better than ensembles of many or all 
rankers.  

The class imbalance problem is observed in various 
domain, including software defect prediction. Several 
methods have been proposed in literature to deal with class 
imbalance: data sampling, boosting and bagging. Data 
sampling is the primary approach for handling class 
imbalance, and it involves balancing the relative class 
distributions of the given data set. There are two types of 
data sampling approaches: undersampling and 
oversampling22. Boosting is another technique which is 
very effective when learning from imbalanced data. 
Seiffert et al.22 show that boosting performs very well. 
Bagging techniques generally outperform boosting, and 
hence in noisy data environments, bagging is the preferred 
method for handling class imbalance13.   

While considerable work has been done for feature 
selection and class imbalance problem separately, limited 
research can be found on investigating them both together, 
particularly in the software engineering field13. In this 
study, we combine Genetic Algorithm for selecting 
features and Bagging technique for solving the class 
imbalance problem, in the context of software defect 
prediction. 
 
3. PROPOSED DEFECT PREDICTION METHOD 

Figure1 shows an activity diagram of the integration of 
Bagging technique and Genetic Algorithm (GA) based 
feature selection. The aim of GA is to find optimum 
solution within the potential solution set. Each solution set 
is called as population. Populations are composed of 
vectors, namely, chromosome or individual. Each item in 
the vector is called as gene. In the proposed method, 
chromosomes represent features which are encoded as 
binary strings of 1 and 0. In this scheme, 1 represents se- 
lection of a feature and 0 means a non-selection. 

As shown in Figure 1, input data set includes training 
data set and testing data set. Relational feature subsets are 
chosen and unrelated features subsets are discarded by 
feature subset selection. After training data set and testing 
data set discarded unrelated feature subsets, they become 
training data set of selected feature subset and testing data 
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set of selected feature subset. Classifiers are trained by 
training set with selected feature subset. Bagging23 was 
proposed to improve the classification by combining 
classifications of randomly generated training sets. The 
bagging classifier separates a training set into several new 
training sets by random sampling, and builds models based 
on the new training sets. The final classification result is 
obtained by the voting of each model. Classification 
accuracy of classifier is calculated by testing set with 
selected feature subset. Classification accuracy of classifier, 
the number of selected features and the feature cost are 
used to construct a fitness function. Every chromosome is 
evaluated by the following fitness function equation. 

	  

where A is classification accuracy, WA is weight of 
classification accuracy, Fi is feature value, WF is feature 
weight, Ci is feature cost, P is setting constant of avoiding 
that denominator reaches zero. 
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Fig.1. Activity Diagram of the Integration of Bagging 

Technique and Genetic Algorithm based Feature Selection 
 

When ending condition is satisfied, the operation ends, 
otherwise, continue with the next generation operation. 
The proposed method searches for better solutions by 
genetic operations, including crossover, mutation and 
selection. 

 
4. EXPERIMENTAL RESULT 

The used platform in this experiment is Intel Core i7 2.2 

GHz CPU, 16 GB RAM, and Microsoft Windows 7 
Professional 64-bit with SP1 operating system. The 
development environment is Netbeans 7 with Java 
programming language. The application software is 
RapidMiner 5.2. 

In this research, we use nine software defect prediction 
data sets from NASA MDP18. Individual attributes per data 
set, together with some general statistics and descriptions, 
are given in Table 1. These data sets have various scales of 
line of code (LOC), various software modules coded by 
several different programming languages including C, C++ 
and Java, and various types of code metrics including code 
size, Halstead’s complexity and McCabe’s cyclomatic 
complexity. 

 
Table 1. NASA MDP Data Sets and the Code Attributes 

We use the state-of-the-art stratified 10-fold cross-
validation for learning and testing data. This means that we 
divided the training data into 10 equal parts and then 
performed the learning process 10 times. We employ the 
stratified 10-fold cross validation, because this method has 
become the standard method in practical terms. Some tests 
have also shown that the use of stratification improves 
results slightly24. 

As an accuracy indicator to evaluate the performance of 
classifiers in our experiments we applied area under curve 
(AUC). Lessmann et al.5 advocated the use of the AUC to 
improve cross-study comparability. The AUC has the 
potential to significantly improve convergence across 
empirical experiments in software defect prediction, 
because it separates predictive performance from operating 
conditions, and represents a general measure of 
predictiveness. 

Code Attributes 
NASA MDP dataset

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LOC counts LOC total √ √ √ √ √ √ √ √ √
LOC blank √ √ √ √ √ √ √ √ √

LOC code and comment √ √ √ √ √ √ √ √ √
LOC comments √ √ √ √ √ √ √ √ √

LOC executable √ √ √ √ √ √ √ √ √
number of lines √  √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √
difficulty √ √ √ √ √ √ √ √ √

effort √ √ √ √ √ √ √ √ √
error est √ √ √ √ √ √ √ √ √

length √ √ √ √ √ √ √ √ √
level √ √ √ √ √ √ √ √ √

prog time √ √ √ √ √ √ √ √ √
volume √ √ √ √ √ √ √ √ √

num operands √ √ √ √ √ √ √ √ √
num operators √ √ √ √ √ √ √ √ √

num unique operands √ √ √ √ √ √ √ √ √
num unique operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic complexity √ √ √ √ √ √ √ √ √
cyclomatic density √  √ √ √ √ √ √ √

design complexity √ √ √ √ √ √ √ √ √
essential complexity √ √ √ √ √ √ √ √ √

Misc. branch count √ √ √ √ √ √ √ √ √
call pairs √  √ √ √ √ √ √ √

condition count √  √ √ √ √ √ √ √
decision count √  √ √ √ √ √ √ √
decision density √  √ √ √ √ √ √ √

edge count √  √ √ √ √ √ √ √
essential density √  √ √ √ √ √ √ √

parameter count √  √ √ √ √ √ √ √
maintenance severity √  √ √ √ √ √ √ √

modified condition count √  √ √ √ √ √ √ √
multiple condition count √  √ √ √ √ √ √ √

global data complexity  √ √  
global data density  √ √  

normalized cyclomatic complexity √  √ √ √ √ √ √ √
percent comments √  √ √ √ √ √ √ √

node count √  √ √ √ √ √ √ √
Programming Language C C++ Java C C C C C C

Number of Code Attributes 37 21 39 39 37 37 77 37 37
Number of Modules 505 1571 458 127 403 1059 4505 1511 1347

Number of fp Modules 48 319 43 44 31 76 23 160 178
Percentage of fp Modules 9.5 20.31 9.39 34.65 7.69 7.18 0.51 10.59 13.21
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First of all, we conducted experiments on 9 NASA 
MDP data sets by using 10 classification algorithms. More 
specifically, it applies five types of classification models 
that include traditional statistical classifiers (Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), 
and Naïve Bayes (NB)), Nearest Neighbors (k-nearest 
neighbor (k-NN) and K*), Neural Network (Back 
Propagation (BP)), Support Vector Machine (SVM), and 
Decision Tree (C4.5, Classification and Regression Tree 
(CART), and Random Forest (RF)).  

The experimental results are reported in Table 2. This 
result confirmed Hall et al.25 result that NB and LR, in 
particular, seem to be the techniques used in models that 
are performing relatively well in software defect 
prediction. Models based on Decision Tree seem to 
underperform due to the class imbalance. SVM techniques 
also perform less well, though SVM has excellent 
generalization ability in the situation of small sample data 
like NASA MDP data set. 

 
Table 2. AUC of 10 Classifiers on 9 Data Sets  

(without GA and Bagging) 

 
In the next experiment, we implemented GA and 

bagging technique for 10 classification algorithms on 9 
NASA MDP data sets. The experimental result is shown in 
Table 3. The improved model for each classifier is 
highlighted width boldfaced print.  

 
Table 3. AUC of 10 Classifiers on 9 Data Sets  

(with GA and Bagging) 

 
Figure 2 visually shows AUC comparisons of 10 

algorithms on 9 NASA MDP data sets. As shown in Table 
3 and Figure 2, almost all classifiers that implemented GA 
and bagging outperform the original method. It indicate 
that the integration of GA based feature selection and 
Bagging technique is effective to improve classification 

performance significantly.  

 
Figure 2. AUC Comparisons of 9 Data Sets Classified by 

10 Classifiers 
 

Finally, in order to verify whether a significant 
difference between the proposed method (with GA and 
bagging) and a method without GA and bagging, the results 
of both methods are compared. We performed the 
statistical t-Test (Paired Two Sample for Means) for every 
classifier (algorithm) pair of without/with GA and bagging 
on each data set. In statistical significance testing the P value 
is the probability of obtaining a test statistic at least as extreme 
as the one that was actually observed, assuming that the null 
hypothesis is true. One often "rejects the null hypothesis" 
when the P value is less than the predetermined significance 
level (α), indicating that the observed result would be highly 
unlikely under the null hypothesis. In this case, we set the 
statistical significance level (α) to be 0.05. It means that no 
statistically significant difference if P value > 0.05.  

The result is shown in Table 4. Although there are two 
classifiers (LR and NB) that have no significant difference 
(P value > 0.05), the results have indicated that those of 
remaining eight classifiers (LDA, k-NN, K*, BP, SVM, 
C4.5, CART and RF) have significant difference (P value 
< 0.05). The integration between GA and Bagging 
technique achieved higher classification accuracy for most 
classifiers. Therefore, we can conclude that the proposed 

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894 

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61 

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838 

Nearest 
Neighbor 

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76 

Neural 
Network 

BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883 

Support Vector 
Machine 

SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899 

Decision Tree 

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723 

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623 

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2 

 

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

LR 0.753 0.795 0.691 0.761 0.742 0.852 0.822 0.813 0.901 

LDA 0.592 0.627 0.635 0.64 0.674 0.637 0.607 0.635 0.715 

NB 0.702 0.79 0.677 0.739 0.724 0.799 0.805 0.78 0.861 

Nearest 
Neighbor 

k-NN 0.666 0.689 0.67 0.783 0.656 0.734 0.554 0.649 0.732 

K* 0.71 0.822 0.503 0.718 0.68 0.876 0.877 0.816 0.893 

Neural 
Network 

BP 0.744 0.797 0.707 0.835 0.689 0.829 0.905 0.799 0.921 

Support Vector 
Machine 

SVM 0.667 0.767 0.572 0.747 0.659 0.774 0.139 0.476 0.879 

Decision Tree 

C4.5 0.64 0.618 0.658 0.732 0.695 0.758 0.642 0.73 0.844 

CART 0.674 0.818 0.754 0.709 0.703 0.819 0.832 0.842 0.9 

RF 0.706 0.584 0.605 0.483 0.735 0.696 0.901 0.734 0.601 
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method makes an impressive improvement in prediction 
performance for most classifiers. 
 
Table 4. Paired Two-tailed t-Test of without/with GA and 

Bagging 

 
 
5. CONCLUSION 

Two common aspects of data quality in software defect 
prediction that can affect classification performance are 
class imbalance and noisy attributes of data sets. A novel 
method that integrates genetic algorithm and bagging 
technique for software defect prediction is proposed in this 
paper. Genetic algorithm is applied to deal with the noise 
attributes problem, and bagging technique is employed to 
alleviate the class imbalance problem. We conducted a 
comparative study of ten classifiers which is applied to 
nine NASA MDP data sets with context of software defect 
prediction. Experimental results show us that the proposed 
method achieved higher classification accuracy. Therefore, 
we can conclude that the proposed method makes an 
impressive improvement in prediction performance for 
most classifiers. 

Future research will be concerned with benchmarking 
the proposed method with other metaheuristic optimization 
techniques such as bee colony or ant colony optimization, 
and other metalearning techniques such as boosting and 
sampling.  
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Classifiers P value of t-Test Result 

Statistical 
Classifier 

LR 0.156 Not Sig. (α > 0.05) 

LDA 0.00004 Sig. (α < 0.05) 

NB 0.294 Not Sig. (α > 0.05) 

Nearest 
Neighbor 

k-NN 0.00002 Sig. (α < 0.05) 

K* 0.001 Sig. (α < 0.05) 

Neural Network BP 0.008 Sig. (α < 0.05) 

Support Vector 
Machine 

SVM 0.03 Sig. (α < 0.05) 

Decision Tree 

C4.5 0.0002 Sig. (α < 0.05) 

CART 0.0002 Sig. (α < 0.05) 

RF 0.01 Sig. (α < 0.05) 


