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Software fault prediction approaches are much more efficient and effective to detect software faults compared to software 

reviews. Machine learning classification algorithms have been applied for software defect prediction. Neural network has 

strong fault tolerance and strong ability of nonlinear dynamic processing of software defect data. However, practicability of 

neural network is affected due to the difficulty of selecting appropriate parameters of network architecture. Software fault 

prediction datasets are often highly imbalanced class distribution. Class imbalance will reduce classifier performance. A 

combination of genetic algorithm and bagging technique is proposed for improving the performance of the software defect 

prediction. Genetic algorithm is applied to deal with the parameter optimization of neural network. Bagging technique is 

employed to deal with the class imbalance problem. The proposed method is evaluated using the datasets from NASA metric 

data repository. Results have indicated that the proposed method makes an improvement in neural network prediction 

performance. 
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1. INTRODUCTION 

Software defects or software faults are expensive in 

quality and cost. The cost of capturing and correcting 

defects is one of the most expensive software development 

activities [1]. Unfortunately, industrial methods of manual 

software reviews and testing activities can find only 60% 

of defects [2]. 

Recent studies show that the probability of detection of 

fault prediction models may be higher than the probability 

of detection of software reviews. Menzies et al. found 

defect predictors with a probability of detection of 71 

percent [3]. This is markedly higher than other currently 

used industrial methods such as manual code reviews. 

Therefore, software defect prediction has been an 

                                                      
1 Email: romi@brainmatics.com 

important research topic in the software engineering field, 

especially to solve the inefficiency and ineffectiveness of 

existing industrial approach of software testing and 

reviews.  

Classification algorithm is a popular machine learning 

approach for software defect prediction. It categorizes the 

software code attributes into defective or not defective, 

which is collected from previous development projects. 

Classification algorithm able to predict which components 

are more likely to be defect-prone supports better targeted 

testing resources and therefore, improved efficiency. If an 

error is reported during system tests or from field tests, that 

module’s fault data is marked as 1, otherwise 0. For 

prediction modeling, software metrics are used as 
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independent variables and fault data is used as the 

dependent variable [4]. Various types of classification 

algorithms have been applied for predicting software 

defect, including logistic regression [5], decision trees [6], 

neural network [8], and naive bayes [9]. 

Neural network (NN) has strong fault tolerance and 

strong ability of nonlinear dynamic processing of software 

fault data, but practicability of neural network is limited 

due to difficulty of selecting appropriate parameters of 

network architecture, including number of hidden neuron, 

learning rate, momentum and training cycles [10]. Rule of 

thumb or trial-and-error methods are used to determine the 

parameter settings for NN architectures. However, it is 

difficult to obtain the optimal parameter settings for NN 

architectures [11]. 
On the other hand, software defect datasets have an 

imbalanced nature with very few defective modules 

compared to defect-free ones [12]. Imbalance can lead to a 

model that is not practical in software defect prediction, 

because most instances will be predicted as non-defect 

prone [13]. Learning from imbalanced class of dataset is 

difficult. Class imbalance will reduce or boost classifier 

performance [14]. The balance of on which models are 

trained and tested is acknowledged by a few studies as 

fundamental to the reliability of models [15]. 

In this research, we propose the combination of genetic 

algorithm (GA) and bagging technique for improving the 

accuracy of software defect prediction. GA is applied to 

deal with the parameter optimization of NN, and bagging 

technique is employed to deal with the class imbalance 

problem. GA is chosen due to the ability to find a solution 

in the full search space and use a global search ability, 

which significantly increasing the ability of finding high-

quality solutions within a reasonable period of time [16]. 

Bagging technique is chosen due to the effectiveness in 

handling class imbalance problem in software defect 

dataset [17] [18].  

This paper is organized as follows. In section 2, the 

related works are explained. In section 3, the proposed 

method is presented. The experimental results of 

comparing the proposed method with others are presented 

in section 4. Finally, our work of this paper is summarized 

in the last section. 

 

2. RELATED WORKS 

The problem of NN is that the number of parameters has 

to be determined before any training begins. There is no 

clear rule to optimize them, even though these parameters 

determine the success of the training process. Thus, it is 

well known that NN generalization performance depends 

on a good setting of the parameters. Researchers have been 

working on optimizing the NN parameters. Wang and 

Huang [19] has presented an optimization procedure for 

the GA-based NN model, and applied them to chaotic time 

series problems. By reevaluating the weight matrices, the 

optimal topology settings for the NN have been obtained 

using a GA approach. A particle-swarm-optimization-

based approach is proposed by Lin et al. [11] to obtain the 

suitable parameter settings for NN, and to select the 

beneficial subset of features which result in a better 

classification accuracy rate. Then, they applied the 

proposed method to 23 different datasets from UCI 

machine learning repository. 

However, GA has been extensively used in NN 

optimization and is known to achieve optimal solutions fair 

successfully. Previous studies shows that the NN model 

combined with GA is more effective in finding the 

parameters of NN than trial-and-error method, and they 

had been used in a variety of applications [20] [21] [22]. 

While considerable work has been done for NN parameter 

optimization using GA in a variety applications, limited 

research can be found on investigating them in the software 

defect prediction field. 

The class imbalance problem is observed in various 

domain, including software defect prediction. Several 

methods have been proposed in literature to deal with class 

imbalance: data sampling, boosting and bagging. Data 

sampling is the primary approach for handling class 

imbalance, and it involves balancing the relative class 

distributions of the given dataset. There are two types of 

data sampling approaches: undersampling and 

oversampling. Boosting is another technique which is very 

effective when learning from imbalanced data. Seiffert et 

al. [23] show that boosting performs very well. Bagging 

techniques generally outperform boosting, and hence in 

noisy data environments, bagging is the preferred method 

for handling class imbalance [24]. In the previous works, 

Wahono et al. have integrated bagging technique and GA 

based feature selection for software defect prediction. 

Wahono et al. show that the integration of bagging 

technique and GA based feature selection is effective to 

improve classification performance significantly. 

In this research, we combine GA for optimizing the NN 

parameters and bagging technique for solving the class 

imbalance problem, in the context of software defect 

prediction. While considerable work has been done for NN 

parameter optimization and class imbalance problem 

separately, limited research can be found on investigating 

them both together, particularly in the software defect 

prediction field.  

 

3. PROPOSED NN GAPO+B METHOD 

We propose a method called NN GAPO+B, which is 

short for an integration of GA based NN parameter 

optimization and bagging technique, to achieve better 

prediction performance of software defect prediction. 

Figure 1 shows an activity diagram of the proposed NN 

GAPO+B method.  

The aim of GA is to find optimum solution within the 

potential solution set. Each solution set is called as 

population. Populations are composed of vectors, namely, 

chromosome or individual. Each item in the vector is called 

as gene. In the proposed method, chromosomes represent 
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NN parameters, including learning rate, momentum and 

training cycles. The basic process of GA is follows: 

1. Randomly generate initial population 

2. Estimate the fitness value of each chromosome in 

the population. 

3. Perform the genetic operations, including the 

crossover, the mutation and the selection  

4. Stop the algorithm if termination criterion is 

satisfied; return to Step 2 otherwise. The 

termination criterion is the pre-determined 

maximum number 

 

As shown in Figure 1, input dataset includes training 

dataset and testing dataset. NN parameters, including, 

learning rate, momentum and training cycles are selected 

and optimized, and then NN are trained by training set with 

selected parameters. Bagging technique [25] was proposed 

to improve the classification by combining classifications 

of randomly generated training sets. The bagging classifier 

separates a training set into several new training sets by 

random sampling, and builds models based on the new 

training sets. The final classification result is obtained by 

the voting of each model.  
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Fig. 1. Activity Diagram of NN GAPO+B Method 

Classification accuracy of NN is calculated by testing 

set with selected parameters. Classification accuracy of 

NN, the selected parameters and the parameter cost are 

used to construct a fitness function. Every chromosome is 

evaluated by the following fitness function equation. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝐴  × 𝐴 + 𝑊𝑃 × (𝑆 + (∑ 𝐶𝑖 × 𝑃𝑖

𝑛

𝑖=1

))

−1

 

 

where A is classification accuracy, WA is weight of 

classification accuracy, Pi is parameter value, WP is 

parameter weight, Ci is parameter cost, S is setting constant 

of avoiding that denominator reaches zero. 

When ending condition is satisfied, the operation ends 

and the optimized NN parameters are produced. Otherwise, 

the process will continue with the next generation 

operation. The proposed method searches for better 

solutions by genetic operations, including crossover, 

mutation and selection. 

 

4. EXPERIMENTAL RESULTS 

The experiments are conducted using a computing 

platform based on Intel Core i7 2.2 GHz CPU, 16 GB RAM, 

and Microsoft Windows 7 Professional 64-bit with SP1 

operating system. The development environment is 

Netbeans 7 IDE, Java programming language, and 

RapidMiner 5.2 library. 

 

Table 1. NASA MDP Datasets and the Code Attributes 

 
 

 

Code Attributes 
NASA MDP Dataset 

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

LOC counts LOC_total √ √ √ √ √ √ √ √ √ 

LOC_blank √ √ √ √ √ √  √ √ 

LOC_code_and_comment √ √ √ √ √ √ √ √ √ 

LOC_comments √ √ √ √ √ √ √ √ √ 

LOC_executable √ √ √ √ √ √ √ √ √ 

number_of_lines √  √ √ √ √ √ √ √ 

Halstead content √ √ √ √ √ √ √ √ √ 

difficulty √ √ √ √ √ √ √ √ √ 

effort √ √ √ √ √ √ √ √ √ 

error_est √ √ √ √ √ √ √ √ √ 

length √ √ √ √ √ √ √ √ √ 

level √ √ √ √ √ √ √ √ √ 

prog_time √ √ √ √ √ √ √ √ √ 

volume √ √ √ √ √ √ √ √ √ 

num_operands √ √ √ √ √ √ √ √ √ 

num_operators √ √ √ √ √ √ √ √ √ 

num_unique_operands √ √ √ √ √ √ √ √ √ 

num_unique_operators √ √ √ √ √ √ √ √ √ 

McCabe cyclomatic_complexity √ √ √ √ √ √ √ √ √ 

cyclomatic_density √  √ √ √ √ √ √ √ 

design_complexity √ √ √ √ √ √ √ √ √ 

essential_complexity √ √ √ √ √ √ √ √ √ 

Misc. branch_count √ √ √ √ √ √ √ √ √ 

call_pairs √  √ √ √ √ √ √ √ 

condition_count √  √ √ √ √ √ √ √ 

decision_count √  √ √ √ √ √ √ √ 

decision_density √  √ √ √ √ √ √ √ 

edge_count √  √ √ √ √ √ √ √ 

essential_density √  √ √ √ √ √ √ √ 

parameter_count √  √ √ √ √ √ √ √ 

maintenance_severity √  √ √ √ √ √ √ √ 

modified_condition_count √  √ √ √ √ √ √ √ 

multiple_condition_count √  √ √ √ √ √ √ √ 

global_data_complexity   √ √      

global_data_density   √ √      

normalized_cyclo_complx √  √ √ √ √ √ √ √ 

percent_comments √  √ √ √ √ √ √ √ 

node_count √  √ √ √ √ √ √ √ 

Programming Language C C++ Java C C C C C C 

Number of Code Attributes 37 21 39 39 37 37 36 37 37 

Number of Modules 344 2096 200 127 264 759 1585 1125 1399 

Number of fp Modules 42 325 36 44 27 61 16 140 178 

Percentage of fp Modules 12.21 15.51 18 34.65 10.23 8.04 1.01 12.44 12.72 
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In this experiments, 9 software defect datasets from 

NASA MDP [26] are used. Individual attributes per dataset, 

together with some general statistics and descriptions, are 

given in Table 1. These datasets have various scales of line 

of code (LOC), various software modules coded by several 

different programming languages, including C, C++ and 

Java, and various types of code metrics, including code 

size, Halstead’s complexity and McCabe’s cyclomatic 

complexity. 

The state-of-the-art stratified 10-fold cross-validation 

for learning and testing data are employed. This means that 

we divided the training data into 10 equal parts and then 

performed the learning process 10 times. We employ the 

stratified 10-fold cross validation, because this method has 

become the standard method in practical terms. Some tests 

have also shown that the use of stratification improves 

results slightly [27]. Area under curve (AUC) is used as an 

accuracy indicator to evaluate the performance of 

classifiers in our experiments. Lessmann et al. [10] 

advocated the use of the AUC to improve cross-study 

comparability. The AUC has the potential to significantly 

improve convergence across empirical experiments in 

software defect prediction, because it separates predictive 

performance from operating conditions, and represents a 

general measure of predictiveness. 

First of all, we conducted experiments on 9 NASA 

MDP datasets by using back propagation NN classifier. 

The experimental results are reported in Table 2 and Figure 

2. NN model perform excellent on PC2 dataset, good on 

PC4 dataset, fairly on CM1, KC1, MC2, PC1, PC3 

datasets, but unfortunately poorly on KC3 and MW1 

datasets perform.  

 

Table 2. AUC of NN Model on 9 Datasets  

 
 

 
Fig. 2. AUC of NN Model on 9 Datasets 

 

In the next experiment, we implemented NN GAPO+B 

method on 9 NASA MDP datasets. The experimental result 

is shown in Table 3 and Figure 3. The improved model is 

highlighted width boldfaced print. NN GAPO+B model 

perform excellent on PC2 dataset, good on PC1 and PC4 

datasets, and fairly on other datasets. Results show that 

there were no poor results when the NN GAPO+B model 

applied. 

 

Table 3. AUC of NN GAPO+B Model on 9 Datasets  

 

 
Fig. 3. AUC of NN GAPO+B Model on 9 Datasets 

 

Table 4 and Figure 4 show AUC comparisons of NN 

model tested on 9 NASA MDP datasets. As shown in Table 

4 and Figure 4, although PC4 dataset have no improvement 

on accuracy, almost all dataset (CM1, KC1, KC3, MC2, 

MW1, PC1, PC2, PC3) that implemented NN GAPO+B 

method outperform the original method. It indicates that 

the integration of GA based NN parameter optimization 

and bagging technique is effective to improve 

classification performance of NN significantly.  

 

Table 4. AUC Comparisons of NN Model 

and NN GAPO+B Model 

 
 

 
Fig. 4. AUC Comparisons of NN Model 

and NN GAPO+B Model 

 

Finally, in order to verify whether a significant 

difference between NN and the proposed NN GAPO+B 

method, the results of both methods are compared. We 

performed the statistical t-Test (Paired Two Sample for 

Means) for pair of NN model and NN GAPO+B model on 

each dataset. In statistical significance testing the P-value 

is the probability of obtaining a test statistic at least as 

extreme as the one that was actually observed, assuming 

that the null hypothesis is true. One often "rejects the null 

hypothesis" when the P-value is less than the 

predetermined significance level (α), indicating that the 

observed result would be highly unlikely under the null 
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hypothesis. In this case, we set the statistical significance 

level (α) to be 0.05. It means that no statistically significant 

difference if P-value > 0.05. 

The result is shown in Table 5. P-value is 0.0279 (P < 

0.05), it means that there is a statistically significant 

difference between NN model and NN GAPO+B model. 

We can conclude that the integration of bagging technique 

and GA based NN parameter optimization achieved better 

performance of software defect prediction. 

  

Table 5. Paired Two-tailed t-Test of NN Model 

and NN GAPO+B Model 

 
 

5. CONCLUSION 

A combination of genetic algorithm and bagging 

technique is proposed for improving the performance of 

the software defect prediction. Genetic algorithm is applied 

to deal with the parameter optimization of neural network. 

Bagging technique is employed to deal with the class 

imbalance problem. The proposed method is applied to 9 

NASA MDP datasets with context of software defect 

prediction. Experimental results show us that the proposed 

method achieved higher classification accuracy. Therefore, 

we can conclude that proposed method makes an 

improvement in neural network prediction performance. 
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Variable 1 Variable 2

Mean 0.762333333 0.796666667

Variance 0.009773 0.004246

Observations 9 9

Pearson Correlation 0.923351408

Hypothesized Mean Difference 0

df 8

t Stat -2.235435933

P 0.02791077


