

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1951–1955, 2014

1951 Adv. Sci. Lett. Vol. 20, No. 10-11, 2014 doi:10.1166/asl.2014.5641

Copyright © 2014 American Scientific Publishers Advanced Science Letters

All rights reserved Vol. 20, 1951–1955, 2014

Printed in the United States of America

Neural Network Parameter Optimization

Based on Genetic Algorithm

for Software Defect Prediction

Romi Satria Wahono1,2, Nanna Suryana Herman2, Sabrina Ahmad2
1Faculty of Computer Science, Dian Nuswantoro University, Indonesia

2Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka

Software fault prediction approaches are much more efficient and effective to detect software faults compared to software

reviews. Machine learning classification algorithms have been applied for software defect prediction. Neural network has

strong fault tolerance and strong ability of nonlinear dynamic processing of software defect data. However, practicability of

neural network is affected due to the difficulty of selecting appropriate parameters of network architecture. Software fault

prediction datasets are often highly imbalanced class distribution. Class imbalance will reduce classifier performance. A

combination of genetic algorithm and bagging technique is proposed for improving the performance of the software defect

prediction. Genetic algorithm is applied to deal with the parameter optimization of neural network. Bagging technique is

employed to deal with the class imbalance problem. The proposed method is evaluated using the datasets from NASA metric

data repository. Results have indicated that the proposed method makes an improvement in neural network prediction

performance.

Keywords: Software Defect Prediction, Neural Network, Genetic Algorithm, Bagging Technique

1. INTRODUCTION

Software defects or software faults are expensive in

quality and cost. The cost of capturing and correcting

defects is one of the most expensive software development

activities [1]. Unfortunately, industrial methods of manual

software reviews and testing activities can find only 60%

of defects [2].

Recent studies show that the probability of detection of

fault prediction models may be higher than the probability

of detection of software reviews. Menzies et al. found

defect predictors with a probability of detection of 71

percent [3]. This is markedly higher than other currently

used industrial methods such as manual code reviews.

Therefore, software defect prediction has been an

1 Email: romi@brainmatics.com

important research topic in the software engineering field,

especially to solve the inefficiency and ineffectiveness of

existing industrial approach of software testing and

reviews.

Classification algorithm is a popular machine learning

approach for software defect prediction. It categorizes the

software code attributes into defective or not defective,

which is collected from previous development projects.

Classification algorithm able to predict which components

are more likely to be defect-prone supports better targeted

testing resources and therefore, improved efficiency. If an

error is reported during system tests or from field tests, that

module’s fault data is marked as 1, otherwise 0. For

prediction modeling, software metrics are used as

Adv. Sci. Lett. 20, 1951–1955, 2014 RESEARCH ARTICLE

1952

independent variables and fault data is used as the

dependent variable [4]. Various types of classification

algorithms have been applied for predicting software

defect, including logistic regression [5], decision trees [6],

neural network [8], and naive bayes [9].

Neural network (NN) has strong fault tolerance and

strong ability of nonlinear dynamic processing of software

fault data, but practicability of neural network is limited

due to difficulty of selecting appropriate parameters of

network architecture, including number of hidden neuron,

learning rate, momentum and training cycles [10]. Rule of

thumb or trial-and-error methods are used to determine the

parameter settings for NN architectures. However, it is

difficult to obtain the optimal parameter settings for NN

architectures [11].
On the other hand, software defect datasets have an

imbalanced nature with very few defective modules

compared to defect-free ones [12]. Imbalance can lead to a

model that is not practical in software defect prediction,

because most instances will be predicted as non-defect

prone [13]. Learning from imbalanced class of dataset is

difficult. Class imbalance will reduce or boost classifier

performance [14]. The balance of on which models are

trained and tested is acknowledged by a few studies as

fundamental to the reliability of models [15].

In this research, we propose the combination of genetic

algorithm (GA) and bagging technique for improving the

accuracy of software defect prediction. GA is applied to

deal with the parameter optimization of NN, and bagging

technique is employed to deal with the class imbalance

problem. GA is chosen due to the ability to find a solution

in the full search space and use a global search ability,

which significantly increasing the ability of finding high-

quality solutions within a reasonable period of time [16].

Bagging technique is chosen due to the effectiveness in

handling class imbalance problem in software defect

dataset [17] [18].

This paper is organized as follows. In section 2, the

related works are explained. In section 3, the proposed

method is presented. The experimental results of

comparing the proposed method with others are presented

in section 4. Finally, our work of this paper is summarized

in the last section.

2. RELATED WORKS

The problem of NN is that the number of parameters has

to be determined before any training begins. There is no

clear rule to optimize them, even though these parameters

determine the success of the training process. Thus, it is

well known that NN generalization performance depends

on a good setting of the parameters. Researchers have been

working on optimizing the NN parameters. Wang and

Huang [19] has presented an optimization procedure for

the GA-based NN model, and applied them to chaotic time

series problems. By reevaluating the weight matrices, the

optimal topology settings for the NN have been obtained

using a GA approach. A particle-swarm-optimization-

based approach is proposed by Lin et al. [11] to obtain the

suitable parameter settings for NN, and to select the

beneficial subset of features which result in a better

classification accuracy rate. Then, they applied the

proposed method to 23 different datasets from UCI

machine learning repository.

However, GA has been extensively used in NN

optimization and is known to achieve optimal solutions fair

successfully. Previous studies shows that the NN model

combined with GA is more effective in finding the

parameters of NN than trial-and-error method, and they

had been used in a variety of applications [20] [21] [22].

While considerable work has been done for NN parameter

optimization using GA in a variety applications, limited

research can be found on investigating them in the software

defect prediction field.

The class imbalance problem is observed in various

domain, including software defect prediction. Several

methods have been proposed in literature to deal with class

imbalance: data sampling, boosting and bagging. Data

sampling is the primary approach for handling class

imbalance, and it involves balancing the relative class

distributions of the given dataset. There are two types of

data sampling approaches: undersampling and

oversampling. Boosting is another technique which is very

effective when learning from imbalanced data. Seiffert et

al. [23] show that boosting performs very well. Bagging

techniques generally outperform boosting, and hence in

noisy data environments, bagging is the preferred method

for handling class imbalance [24]. In the previous works,

Wahono et al. have integrated bagging technique and GA

based feature selection for software defect prediction.

Wahono et al. show that the integration of bagging

technique and GA based feature selection is effective to

improve classification performance significantly.

In this research, we combine GA for optimizing the NN

parameters and bagging technique for solving the class

imbalance problem, in the context of software defect

prediction. While considerable work has been done for NN

parameter optimization and class imbalance problem

separately, limited research can be found on investigating

them both together, particularly in the software defect

prediction field.

3. PROPOSED NN GAPO+B METHOD

We propose a method called NN GAPO+B, which is

short for an integration of GA based NN parameter

optimization and bagging technique, to achieve better

prediction performance of software defect prediction.

Figure 1 shows an activity diagram of the proposed NN

GAPO+B method.

The aim of GA is to find optimum solution within the

potential solution set. Each solution set is called as

population. Populations are composed of vectors, namely,

chromosome or individual. Each item in the vector is called

as gene. In the proposed method, chromosomes represent

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1951–1955, 2014

1953

NN parameters, including learning rate, momentum and

training cycles. The basic process of GA is follows:

1. Randomly generate initial population

2. Estimate the fitness value of each chromosome in

the population.

3. Perform the genetic operations, including the

crossover, the mutation and the selection

4. Stop the algorithm if termination criterion is

satisfied; return to Step 2 otherwise. The

termination criterion is the pre-determined

maximum number

As shown in Figure 1, input dataset includes training

dataset and testing dataset. NN parameters, including,

learning rate, momentum and training cycles are selected

and optimized, and then NN are trained by training set with

selected parameters. Bagging technique [25] was proposed

to improve the classification by combining classifications

of randomly generated training sets. The bagging classifier

separates a training set into several new training sets by

random sampling, and builds models based on the new

training sets. The final classification result is obtained by

the voting of each model.

Data Set

Select Neural Network Parameters:

Learning Rate, Momentum, and

Training Cycles

Validate the Generated Model

Testing

Data Set

Training

Data Set

Separates a Training Set into

Several New Training Sets by

Random Sampling

Satisfy

Stopping

Criteria?

Calculate the Model Accuracy

Train Neural Network with

Selected Parameters based on

New Training Sets

yes

Optimized Neural Network

Parameters

Selection Operation

Crossover Operation

Mutation Operation

no

All Training Sets

Finished?

Combine Votes of All Models

no

yes

Calculate the Fitness Value

Fig. 1. Activity Diagram of NN GAPO+B Method

Classification accuracy of NN is calculated by testing

set with selected parameters. Classification accuracy of

NN, the selected parameters and the parameter cost are

used to construct a fitness function. Every chromosome is

evaluated by the following fitness function equation.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝐴 × 𝐴 + 𝑊𝑃 × (𝑆 + (∑ 𝐶𝑖 × 𝑃𝑖

𝑛

𝑖=1

))

−1

where A is classification accuracy, WA is weight of

classification accuracy, Pi is parameter value, WP is

parameter weight, Ci is parameter cost, S is setting constant

of avoiding that denominator reaches zero.

When ending condition is satisfied, the operation ends

and the optimized NN parameters are produced. Otherwise,

the process will continue with the next generation

operation. The proposed method searches for better

solutions by genetic operations, including crossover,

mutation and selection.

4. EXPERIMENTAL RESULTS

The experiments are conducted using a computing

platform based on Intel Core i7 2.2 GHz CPU, 16 GB RAM,

and Microsoft Windows 7 Professional 64-bit with SP1

operating system. The development environment is

Netbeans 7 IDE, Java programming language, and

RapidMiner 5.2 library.

Table 1. NASA MDP Datasets and the Code Attributes

Code Attributes
NASA MDP Dataset

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LOC counts LOC_total √ √ √ √ √ √ √ √ √

LOC_blank √ √ √ √ √ √ √ √

LOC_code_and_comment √ √ √ √ √ √ √ √ √

LOC_comments √ √ √ √ √ √ √ √ √

LOC_executable √ √ √ √ √ √ √ √ √

number_of_lines √ √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √

difficulty √ √ √ √ √ √ √ √ √

effort √ √ √ √ √ √ √ √ √

error_est √ √ √ √ √ √ √ √ √

length √ √ √ √ √ √ √ √ √

level √ √ √ √ √ √ √ √ √

prog_time √ √ √ √ √ √ √ √ √

volume √ √ √ √ √ √ √ √ √

num_operands √ √ √ √ √ √ √ √ √

num_operators √ √ √ √ √ √ √ √ √

num_unique_operands √ √ √ √ √ √ √ √ √

num_unique_operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic_complexity √ √ √ √ √ √ √ √ √

cyclomatic_density √ √ √ √ √ √ √ √

design_complexity √ √ √ √ √ √ √ √ √

essential_complexity √ √ √ √ √ √ √ √ √

Misc. branch_count √ √ √ √ √ √ √ √ √

call_pairs √ √ √ √ √ √ √ √

condition_count √ √ √ √ √ √ √ √

decision_count √ √ √ √ √ √ √ √

decision_density √ √ √ √ √ √ √ √

edge_count √ √ √ √ √ √ √ √

essential_density √ √ √ √ √ √ √ √

parameter_count √ √ √ √ √ √ √ √

maintenance_severity √ √ √ √ √ √ √ √

modified_condition_count √ √ √ √ √ √ √ √

multiple_condition_count √ √ √ √ √ √ √ √

global_data_complexity √ √

global_data_density √ √

normalized_cyclo_complx √ √ √ √ √ √ √ √

percent_comments √ √ √ √ √ √ √ √

node_count √ √ √ √ √ √ √ √

Programming Language C C++ Java C C C C C C

Number of Code Attributes 37 21 39 39 37 37 36 37 37

Number of Modules 344 2096 200 127 264 759 1585 1125 1399

Number of fp Modules 42 325 36 44 27 61 16 140 178

Percentage of fp Modules 12.21 15.51 18 34.65 10.23 8.04 1.01 12.44 12.72

Adv. Sci. Lett. 20, 1951–1955, 2014 RESEARCH ARTICLE

1954

In this experiments, 9 software defect datasets from

NASA MDP [26] are used. Individual attributes per dataset,

together with some general statistics and descriptions, are

given in Table 1. These datasets have various scales of line

of code (LOC), various software modules coded by several

different programming languages, including C, C++ and

Java, and various types of code metrics, including code

size, Halstead’s complexity and McCabe’s cyclomatic

complexity.

The state-of-the-art stratified 10-fold cross-validation

for learning and testing data are employed. This means that

we divided the training data into 10 equal parts and then

performed the learning process 10 times. We employ the

stratified 10-fold cross validation, because this method has

become the standard method in practical terms. Some tests

have also shown that the use of stratification improves

results slightly [27]. Area under curve (AUC) is used as an

accuracy indicator to evaluate the performance of

classifiers in our experiments. Lessmann et al. [10]

advocated the use of the AUC to improve cross-study

comparability. The AUC has the potential to significantly

improve convergence across empirical experiments in

software defect prediction, because it separates predictive

performance from operating conditions, and represents a

general measure of predictiveness.

First of all, we conducted experiments on 9 NASA

MDP datasets by using back propagation NN classifier.

The experimental results are reported in Table 2 and Figure

2. NN model perform excellent on PC2 dataset, good on

PC4 dataset, fairly on CM1, KC1, MC2, PC1, PC3

datasets, but unfortunately poorly on KC3 and MW1

datasets perform.

Table 2. AUC of NN Model on 9 Datasets

Fig. 2. AUC of NN Model on 9 Datasets

In the next experiment, we implemented NN GAPO+B

method on 9 NASA MDP datasets. The experimental result

is shown in Table 3 and Figure 3. The improved model is

highlighted width boldfaced print. NN GAPO+B model

perform excellent on PC2 dataset, good on PC1 and PC4

datasets, and fairly on other datasets. Results show that

there were no poor results when the NN GAPO+B model

applied.

Table 3. AUC of NN GAPO+B Model on 9 Datasets

Fig. 3. AUC of NN GAPO+B Model on 9 Datasets

Table 4 and Figure 4 show AUC comparisons of NN

model tested on 9 NASA MDP datasets. As shown in Table

4 and Figure 4, although PC4 dataset have no improvement

on accuracy, almost all dataset (CM1, KC1, KC3, MC2,

MW1, PC1, PC2, PC3) that implemented NN GAPO+B

method outperform the original method. It indicates that

the integration of GA based NN parameter optimization

and bagging technique is effective to improve

classification performance of NN significantly.

Table 4. AUC Comparisons of NN Model

and NN GAPO+B Model

Fig. 4. AUC Comparisons of NN Model

and NN GAPO+B Model

Finally, in order to verify whether a significant

difference between NN and the proposed NN GAPO+B

method, the results of both methods are compared. We

performed the statistical t-Test (Paired Two Sample for

Means) for pair of NN model and NN GAPO+B model on

each dataset. In statistical significance testing the P-value

is the probability of obtaining a test statistic at least as

extreme as the one that was actually observed, assuming

that the null hypothesis is true. One often "rejects the null

hypothesis" when the P-value is less than the

predetermined significance level (α), indicating that the

observed result would be highly unlikely under the null

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

NN 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883

0,713
0,791

0,647
0,71

0,625

0,784

0,918

0,79
0,883

0

0,2

0,4

0,6

0,8

1

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

A
U

C

Dataset

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

NN GAPO+B 0.744 0.794 0.703 0.779 0.76 0.801 0.92 0.798 0.871

0,744
0,794

0,703
0,779 0,76

0,801

0,92

0,798
0,871

0

0,2

0,4

0,6

0,8

1

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

A
U

C

Dataset

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

NN 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883

NN GAPO+B 0.744 0.794 0.703 0.779 0.76 0.801 0.92 0.798 0.871

0
,7

1
3

0
,7

9
1

0
,6

4
7

0
,7

1

0
,6

2
5 0

,7
8
4 0
,9

1
8

0
,7

9 0
,8

8
3

0
,7

4
4

0
,7

9
4

0
,7

0
3

0
,7

7
9

0
,7

6

0
,8

0
1 0
,9

2

0
,7

9
8

0
,8

7
1

C M 1 K C 1 K C 3 M C 2 M W 1 P C 1 P C 2 P C 3 P C 4

A
U

C

Dataset

NN NN GAPO+B

RESEARCH ARTICLE Adv. Sci. Lett. 20, 1951–1955, 2014

1955

hypothesis. In this case, we set the statistical significance

level (α) to be 0.05. It means that no statistically significant

difference if P-value > 0.05.

The result is shown in Table 5. P-value is 0.0279 (P <

0.05), it means that there is a statistically significant

difference between NN model and NN GAPO+B model.

We can conclude that the integration of bagging technique

and GA based NN parameter optimization achieved better

performance of software defect prediction.

Table 5. Paired Two-tailed t-Test of NN Model

and NN GAPO+B Model

5. CONCLUSION

A combination of genetic algorithm and bagging

technique is proposed for improving the performance of

the software defect prediction. Genetic algorithm is applied

to deal with the parameter optimization of neural network.

Bagging technique is employed to deal with the class

imbalance problem. The proposed method is applied to 9

NASA MDP datasets with context of software defect

prediction. Experimental results show us that the proposed

method achieved higher classification accuracy. Therefore,

we can conclude that proposed method makes an

improvement in neural network prediction performance.

REFERENCES

[1] C. Jones and O. Bonsignour, The Economics of Software Quality.

Pearson Education, Inc., 2012.

[2] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M.

Lindvall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What

we have learned about fighting defects,” in Proceedings Eighth

IEEE Symposium on Software Metrics 2002, 2002, pp. 249–258.

[3] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.

Bener, “Defect prediction from static code features: current

results, limitations, new approaches,” Autom. Softw. Eng., vol. 17,

no. 4, pp. 375–407, May 2010.

[4] C. Catal, “Software fault prediction: A literature review and

current trends,” Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636,

Apr. 2011.

[5] G. Denaro, “Estimating software fault-proneness for tuning

testing activities,” in Proceedings of the 22nd International

Conference on Software engineering - ICSE ’00, 2000, pp. 704–

706.

[6] T. M. Khoshgoftaar, N. Seliya, and K. Gao, “Assessment of a New

Three-Group Software Quality Classification Technique: An

Empirical Case Study,” Empir. Softw. Eng., vol. 10, no. 2, pp.

183–218, Apr. 2005.

[7] B.-J. Park, S.-K. Oh, and W. Pedrycz, “The design of polynomial

function-based neural network predictors for detection of software

defects,” Inf. Sci. (Ny)., Jan. 2011.

[8] J. Zheng, “Cost-sensitive boosting neural networks for software

defect prediction,” Expert Syst. Appl., vol. 37, no. 6, pp. 4537–

4543, Jun. 2010.

[9] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static

Code Attributes to Learn Defect Predictors,” IEEE Trans. Softw.

Eng., vol. 33, no. 1, pp. 2–13, Jan. 2007.

[10] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings,” IEEE

Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496, Jul. 2008.

[11] S.-W. Lin, S.-C. Chen, W.-J. Wu, and C.-H. Chen, “Parameter

determination and feature selection for back-propagation network

by particle swarm optimization,” Knowl. Inf. Syst., vol. 21, no. 2,

pp. 249–266, Aug. 2009.

[12] S. Wang and X. Yao, “Using Class Imbalance Learning for

Software Defect Prediction,” IEEE Trans. Reliab., vol. 62, no. 2,

pp. 434–443, Jun. 2013.

[13] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute Selection

and Imbalanced Data: Problems in Software Defect Prediction,”

2010 22nd IEEE Int. Conf. Tools with Artif. Intell., pp. 137–144,

Oct. 2010.

[14] D. Gray, D. Bowes, N. Davey, and B. Christianson, “The misuse

of the NASA Metrics Data Program data sets for automated

software defect prediction,” 15th Annu. Conf. Eval. Assess. Softw.

Eng. (EASE 2011), pp. 96–103, 2011.

[15] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

Systematic Literature Review on Fault Prediction Performance in

Software Engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,

pp. 1276–1304, Nov. 2012.

[16] S. C. Yusta, “Different metaheuristic strategies to solve the feature

selection problem,” Pattern Recognit. Lett., vol. 30, no. 5, pp.

525–534, Apr. 2009.

[17] R. S. Wahono and N. S. Herman, “Genetic Feature Selection for

Software Defect Prediction,” Adv. Sci. Lett., vol. 20, no. 1, pp.

239–244, Jan. 2014.

[18] R. S. Wahono and N. Suryana, “Combining Particle Swarm

Optimization based Feature Selection and Bagging Technique for

Software Defect Prediction,” Int. J. Softw. Eng. Its Appl., vol. 7,

no. 5, pp. 153–166, Sep. 2013.

[19] T.-Y. Wang and C.-Y. Huang, “Applying optimized BPN to a

chaotic time series problem,” Expert Syst. Appl., vol. 32, no. 1, pp.

193–200, Jan. 2007.

[20] Y.-D. Ko, P. Moon, C. E. Kim, M.-H. Ham, J.-M. Myoung, and I.

Yun, “Modeling and optimization of the growth rate for ZnO thin

films using neural networks and genetic algorithms,” Expert Syst.

Appl., vol. 36, no. 2, pp. 4061–4066, Mar. 2009.

[21] J. Lee and S. Kang, “GA based meta-modeling of BPN

architecture for constrained approximate optimization,” Int. J.

Solids Struct., vol. 44, no. 18–19, pp. 5980–5993, Sep. 2007.

[22] T.-H. (Tony) Hou, C.-H. Su, and H.-Z. Chang, “Using neural

networks and immune algorithms to find the optimal parameters

for an IC wire bonding process,” Expert Syst. Appl., vol. 34, no.

1, pp. 427–436, Jan. 2008.

[23] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving

Software-Quality Predictions With Data Sampling and Boosting,”

IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans, vol. 39,

no. 6, pp. 1283–1294, Nov. 2009.

[24] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,

“Comparing Boosting and Bagging Techniques With Noisy and

Imbalanced Data,” IEEE Trans. Syst. Man, Cybern. - Part A Syst.

Humans, vol. 41, no. 3, pp. 552–568, May 2011.

[25] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,

pp. 123–140, 1996.

[26] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,

“Reflections on the NASA MDP data sets,” IET Softw., vol. 6, no.

6, p. 549, 2012.

[27] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Third Edition.
Elsevier Inc., 2011.

Variable 1 Variable 2

Mean 0.762333333 0.796666667

Variance 0.009773 0.004246

Observations 9 9

Pearson Correlation 0.923351408

Hypothesized Mean Difference 0

df 8

t Stat -2.235435933

P 0.02791077

